JP5480572B2 - Ground fault detection device - Google Patents

Ground fault detection device Download PDF

Info

Publication number
JP5480572B2
JP5480572B2 JP2009214435A JP2009214435A JP5480572B2 JP 5480572 B2 JP5480572 B2 JP 5480572B2 JP 2009214435 A JP2009214435 A JP 2009214435A JP 2009214435 A JP2009214435 A JP 2009214435A JP 5480572 B2 JP5480572 B2 JP 5480572B2
Authority
JP
Japan
Prior art keywords
signal
detector
feeder
ground fault
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009214435A
Other languages
Japanese (ja)
Other versions
JP2011064534A (en
Inventor
泰三 辻
直樹 小笠原
顕彦 益田
数英 渡辺
俊治 中川
徹 小野里
冬樹 津屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2009214435A priority Critical patent/JP5480572B2/en
Publication of JP2011064534A publication Critical patent/JP2011064534A/en
Application granted granted Critical
Publication of JP5480572B2 publication Critical patent/JP5480572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地絡故障検出装置、特に送電線の断線などによる地絡事故に際して地絡故障を迅速に検出し、且つその復旧対応を迅速化する地絡故障検出装置に関する。   The present invention relates to a ground fault detection device, and more particularly to a ground fault detection device that quickly detects a ground fault in the event of a ground fault due to a disconnection of a power transmission line, etc., and speeds up its recovery.

高圧送電線では、送電線の絶縁劣化、或いは土木工事機械による地中の送電線の損傷などの理由により送電線が大地に接触し、地絡故障が発生することがある。このような故障を早く検出し、復旧処理を行うために、地絡故障検出装置が送電線に接続されてシステムを構成している。   In a high-voltage transmission line, the transmission line may contact the ground due to insulation deterioration of the transmission line or damage of the underground transmission line by a civil engineering machine, and a ground fault may occur. In order to detect such a failure early and perform recovery processing, a ground fault detection device is connected to the power transmission line to constitute a system.

そのような地絡故障検出システムの一般的な基本構成としては、例えば図4に示されたものがある。図4に示された地絡故障検出システムは、送電線1に接続され、送電線1の電流変化を検知する送量器2と、送量器2に光ケーブル3を介して接続され、送量器2からの検知信号を受信して解析する検出器4とから成る。送量器2は、検知信号を光信号に変換する光変換部5を有する。検出器4は受信した検知信号から地絡故障を検出する検出部6と、検出結果を出力する出力部7と、検出器4に電力を供給するための電源部8とを有する。出力部7の先方にはテレコン盤、すなわちコンピュータ(CPU)が接続されている。図4に示された地絡故障装置は区間判定方式を採用する装置の例であり、送電線1の所定区間の両端に配置された変流器(CT)9に対応して区間両端にそれぞれ送量器2が設けられている。各送量器2からの検知信号は1つの検出器4に送られる。   An example of a general basic configuration of such a ground fault detection system is shown in FIG. The ground fault detection system shown in FIG. 4 is connected to the power transmission line 1 and is connected to the feeder 2 for detecting the current change of the power transmission line 1 and to the feeder 2 via the optical cable 3. And a detector 4 for receiving and analyzing the detection signal from the detector 2. The feeder 2 includes an optical conversion unit 5 that converts a detection signal into an optical signal. The detector 4 includes a detection unit 6 that detects a ground fault from the received detection signal, an output unit 7 that outputs a detection result, and a power supply unit 8 that supplies power to the detector 4. A telecon board, that is, a computer (CPU) is connected to the output unit 7. The ground fault device shown in FIG. 4 is an example of a device that adopts the section determination method, and corresponds to current transformers (CT) 9 disposed at both ends of the predetermined section of the transmission line 1 respectively. A feeder 2 is provided. The detection signal from each feeder 2 is sent to one detector 4.

かかる基本構成を有する地絡故障検出システムに用いられる地絡故障検出装置の従来例としては、例えば図5に示されたものがある。図5に示された従来の地絡故障検出装置において、送量器2は、前記送電線1からの故障電流を入力する入力部11と、入力部11から入力された検知信号を濾波処理するフィルタ12と、検知信号の波形を半波整流する半波整流回路13と、半波整流された電圧信号をパルス信号に変換する電圧/周波数変換部(V/F変換部)14と、パルス信号を光信号に変換する電気/光変換部(E/O変換部)15と、送量器の電源を安定化させる安定化電源16とを備えて成る。また、検出器4は、送量器2のE/O変換部15に接続され光信号をパルス信号に変換する光/電気変換部(O/E変換部)17と、検知信号を解析して地絡故障が発生している区間を特定する演算処理部18とを備えている。   As a conventional example of the ground fault detection device used in the ground fault detection system having such a basic configuration, for example, there is the one shown in FIG. In the conventional ground fault detection apparatus shown in FIG. 5, the feeder 2 filters the input unit 11 for inputting the fault current from the power transmission line 1 and the detection signal input from the input unit 11. A filter 12, a half-wave rectifier circuit 13 for half-wave rectifying the waveform of the detection signal, a voltage / frequency converter (V / F converter) 14 for converting the half-wave rectified voltage signal into a pulse signal, and a pulse signal An electric / optical conversion unit (E / O conversion unit) 15 for converting the signal into an optical signal and a stabilized power source 16 for stabilizing the power source of the feeder. The detector 4 is connected to the E / O converter 15 of the feeder 2 and converts an optical signal into a pulse signal. The detector 4 analyzes the detection signal. And an arithmetic processing unit 18 that identifies a section in which a ground fault has occurred.

かかる構成において、地絡故障の検出は、送電線1から送量器2へ流れる故障電流を入力部11に取り込み、この故障電流から送量器2の動作に必要な電源を作り出し、同時に故障電流をフィルタ12により濾波した後、半波整流回路13により故障電流波形を半波整流する。次に半波整流された電圧信号をV/F変換部14によりパルス信号に変換し、このパルス信号をE/O変換部15により光信号に変換した後、光ケーブル3を通して検出器4に送信している。検出器4では、入力した光信号をO/E変換部17により電気信号に変換し、この電気信号を演算処理部18により解析して地絡故障が発生している送電線1の部位或いは区間を特定する。   In such a configuration, the detection of the ground fault is performed by taking the fault current flowing from the transmission line 1 to the metering device 2 into the input unit 11 and creating a power source necessary for the operation of the metering device 2 from this fault current. Is filtered by the filter 12, and the fault current waveform is half-wave rectified by the half-wave rectifier circuit 13. Next, the half-wave rectified voltage signal is converted into a pulse signal by the V / F converter 14, this pulse signal is converted into an optical signal by the E / O converter 15, and then transmitted to the detector 4 through the optical cable 3. ing. In the detector 4, the input optical signal is converted into an electric signal by the O / E conversion unit 17, and the electric signal is analyzed by the arithmetic processing unit 18 so that the part or section of the transmission line 1 in which the ground fault has occurred. Is identified.

このような従来の地絡故障検出装置の動作において、上述のように半波整流が行われるため、波形情報として半波分が損なわれ、また、電源電圧の交流電流の正側のみであるため、故障検出として電流差動方式が適用できない。   In the operation of such a conventional ground fault detection device, half-wave rectification is performed as described above, so that the half-wave portion is lost as waveform information, and only the positive side of the alternating current of the power supply voltage is used. The current differential method is not applicable for failure detection.

さらに、送量器2から検出器4の間における光ケーブル3の通信線断線監視は、送量器2の出力端子の近く、すなわち、図5において点Aの部分に、図6に示されるような光結合器20を配置しておき、検出器4から断線検出信号を送信し、送量器2内で光結合器20を使用して検出器4へ戻し、検出器4側で光信号を受信することにより光ケーブル3の断線監視をしている。つまり、断線監視のために2本の光ケーブル3および光結合器20が必要となる。また、光結合器20より前段(入力側)にある送量器2の主要回路に異常があった場合、回路の不具合を検出できない。   Further, the disconnection monitoring of the optical cable 3 between the feeder 2 and the detector 4 is performed near the output terminal of the feeder 2, that is, at the point A in FIG. 5, as shown in FIG. An optical coupler 20 is arranged, a disconnection detection signal is transmitted from the detector 4, the optical coupler 20 is used in the feeder 2 to return to the detector 4, and the optical signal is received on the detector 4 side. By doing so, the disconnection of the optical cable 3 is monitored. That is, two optical cables 3 and an optical coupler 20 are required for monitoring disconnection. Further, when there is an abnormality in the main circuit of the feeder 2 in the previous stage (input side) from the optical coupler 20, a malfunction of the circuit cannot be detected.

本発明はこのような従来の課題に鑑みてなされたもので、その第1の目的は、地絡故障の検出方式として、電流差動方式を適用することである。   The present invention has been made in view of such a conventional problem, and a first object thereof is to apply a current differential method as a detection method of a ground fault.

本発明の第2の目的は、地絡故障検出装置におけるユニットや部品の省略化を図り、地絡故障検出装置の製造コストを低減させることである。   The second object of the present invention is to reduce units and parts in the ground fault detection device and reduce the manufacturing cost of the ground fault detection device.

本発明の第3の目的は、送量器における主要回路の健全性を常時監視する機能を備え、地絡故障検出装置の信頼性を向上させることである。   The third object of the present invention is to provide a function of constantly monitoring the soundness of the main circuit in the feeder, and to improve the reliability of the ground fault detector.

本発明の第4の目的は、異常の発生時における故障箇所の特定を確実に行え、また復旧対応を迅速に行うことである。   A fourth object of the present invention is to reliably identify a failure location at the time of occurrence of an abnormality and to promptly perform a recovery response.

上記課題を解決するため、本発明の地絡故障検出装置は、送電線に接続され、送電線の電力変化を検知する送量器と、この送量器に光ケーブルを介して接続され、前記送量器からの検出信号を受信して解析する検出器とから成り、前記送量器は、前記送電線からの故障電流を入力する入力部と、入力部から入力された検知信号に所定の直流電圧を重畳する直流重畳部と、直流重畳された電圧信号をパルス信号に変換する電圧/周波数変換部と、パルス信号を光信号に変換する電気/光変換部と、送量器の電源を安定化させる安定化電源とを備え、前記検出器は、光信号をパルス信号に変換する光/電気変換部と、パルス信号を電圧信号に変換する周波数/電圧変換部と、検知信号を解析して地絡故障が発生している区間を特定する演算処理部とを備え、前記送量器において、前記直流重畳部は、検知信号の入力波形が全波出力し得るように直流電圧を重畳することが特徴である。   In order to solve the above problems, a ground fault detection device of the present invention is connected to a power transmission line, detects a power change of the power transmission line, is connected to the feeder via an optical cable, and A detector that receives and analyzes a detection signal from the meter, and the meter includes an input unit that inputs a fault current from the power transmission line, and a predetermined direct current to the detection signal that is input from the input unit. Stable power supply for DC superimposing unit that superimposes voltage, voltage / frequency converting unit that converts DC superimposed voltage signal into pulse signal, electrical / optical converting unit that converts pulse signal into optical signal, and feeder The detector includes an optical / electrical converter that converts an optical signal into a pulse signal, a frequency / voltage converter that converts the pulse signal into a voltage signal, and an analysis of the detection signal. Arithmetic processing unit that identifies the section where the ground fault has occurred Comprising a, in the Okuryou unit, the DC superposition unit is characterized in that input waveform detection signal to superimpose a direct current voltage so as to full-wave output.

本発明によれば、故障電流の波形に直流成分を加算シフトして全波形情報を伝送することにより、負荷側の故障電流波形を表現することができる。これにより、2台の送量器を使用して、サンプリングデータを使用したデジタル演算による電流差動検出方式を適用できる。   According to the present invention, a load-side fault current waveform can be expressed by adding and shifting a DC component to the fault current waveform and transmitting all waveform information. Thereby, the current differential detection method by digital calculation using sampling data can be applied using two feeders.

また、故障電流の波形に直流成分を加算シフトした結果を0アンペア相当と認識することにより、検出器は送量器から信号あり(0アンペア)、または信号なしの2値を判別することができ、また、信号ありの場合には、検出器側にて通信線断線監視信号の直流重畳分を監視することで、従来自動点検できなかった、送量器のV/F変換部、E/O変換部、及び検出器のO/E変換部、F/V変換部の故障を判定でき、検出機能の信頼性向上が図れる。また、信号なしの状態を認識することにより、誤検出を防止できる。   In addition, by recognizing that the result of adding and shifting the DC component to the waveform of the fault current is equivalent to 0 amperes, the detector can determine whether there is a signal (0 amperes) or no signal from the feeder. In addition, when there is a signal, by monitoring the DC superposition of the communication line disconnection monitoring signal on the detector side, the V / F conversion unit of the feeder, E / O, which could not be automatically inspected conventionally. The failure of the converter, the O / E converter and the F / V converter of the detector can be determined, and the reliability of the detection function can be improved. Further, it is possible to prevent erroneous detection by recognizing the state of no signal.

また、本発明では、通信線断線監視、アナログ回路監視、及び電池残量監視機能を有しており、故障部位の特定が容易となり、復旧対応の迅速化が図れる。   In addition, the present invention has functions for monitoring disconnection of communication lines, monitoring of analog circuits, and monitoring of remaining battery capacity, so that it becomes easy to identify a faulty part and to speed up recovery.

また、本発明において地絡故障信号と通信線断線信号とが輻輳した場合でも、通信線断線信号は0アンペアの直流なので、地絡故障検出に影響を及ぼさない。   In the present invention, even when the ground fault signal and the communication line disconnection signal are congested, the communication line disconnection signal is a direct current of 0 amperes and therefore does not affect the ground fault detection.

通信線断線監視信号、電池残量監視のためのビット列、及び故障電流波形を1本の光ケーブルにて検出器側へ送信し、これを分離処理できる(信号多重化)。よって、光ケーブルは片道のみとなり、光結合器も不要となり、システム全体のコストを低減できる。   A communication line disconnection monitoring signal, a bit string for monitoring the remaining battery level, and a failure current waveform can be transmitted to the detector side through a single optical cable, and this can be separated (signal multiplexing). Therefore, the optical cable is only one way, the optical coupler is not required, and the cost of the entire system can be reduced.

本発明の一実施の形態に係る地絡故障検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the ground fault detection apparatus which concerns on one embodiment of this invention. 前記実施の形態の地絡故障検出装置における電池残量評価方法を示す説明図である。It is explanatory drawing which shows the battery remaining charge evaluation method in the ground fault detection apparatus of the said embodiment. 前記実施の形態の地絡故障検出装置における各種信号の多重化伝送を解析する演算処理を示す説明図である。It is explanatory drawing which shows the arithmetic processing which analyzes the multiplexed transmission of various signals in the ground fault detection apparatus of the said embodiment. 本発明が適用される地絡故障検出システムの一般的な基本構成を示すブロック図。1 is a block diagram showing a general basic configuration of a ground fault detection system to which the present invention is applied. 従来の地絡故障検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional ground fault detector. 従来の地絡故障検出装置において通信線断線検出に用いられていた光結合器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical coupler used for the communication line disconnection detection in the conventional ground fault detection apparatus.

以下、本発明の代表的実施例を説明する。図1は本発明の一実施の形態に係る地絡故障検出装置の構成を示すブロック図である。この実施の形態が適用される地絡故障検出システムについての基本構成は、図4に示すシステムと同じ構成を有する。図1において、符号30は送量器を示す。送量器30は、前記送電線1(図4参照)からの故障電流を入力する入力部31と、入力部31から入力された検知信号に所定の直流電圧を重畳する直流重畳部32と、直流重畳された電圧信号をパルス信号に変換する電圧/周波数変換部(V/F変換部)33と、パルス信号を光信号に変換する電気/光変換部(E/O変換部)34と、直流重畳部32、V/F変換部33及びE/O変換部34に接続され送量器30の電源を安定化させる安定化電源35と、安定化電源35に接続され直流重畳部32に直流重畳分の電圧を与える補助電源としての電池37と、電池37の残量を演算により求めるCPU36とを備えて成る。また、検出器40は、送量器30のE/O変換部34に接続され光信号をパルス信号に変換して復元する光/電気変換部(O/E変換部)41と、O/E変換されたパルス信号を電圧信号に変換する周波数/電圧変換部(F/V変換部)42と、検知信号である電圧信号を解析して地絡故障が発生している区間を特定する演算処理部すなわち、CPU43とを備えている。送量器30と検出器40は光ケーブル35により接続されている。なお図1の送量器30は図4の送量器2に対応し、図1の検出器40は図4の検出器4に対応し、図1の光ケーブル35は図4の光ケーブル3に対応する。   Hereinafter, representative examples of the present invention will be described. FIG. 1 is a block diagram showing a configuration of a ground fault detection apparatus according to an embodiment of the present invention. The basic configuration of the ground fault detection system to which this embodiment is applied has the same configuration as the system shown in FIG. In FIG. 1, reference numeral 30 denotes a feeder. The feeder 30 includes an input unit 31 that inputs a fault current from the power transmission line 1 (see FIG. 4), a DC superimposing unit 32 that superimposes a predetermined DC voltage on the detection signal input from the input unit 31, A voltage / frequency conversion unit (V / F conversion unit) 33 that converts a DC superimposed voltage signal into a pulse signal, an electrical / optical conversion unit (E / O conversion unit) 34 that converts the pulse signal into an optical signal, A stabilized power source 35 that stabilizes the power supply of the feeder 30 connected to the DC superimposing unit 32, the V / F converting unit 33, and the E / O converting unit 34, and a DC power source connected to the stabilizing power source 35 to the DC superimposing unit 32. A battery 37 serving as an auxiliary power source for applying a voltage for superimposition and a CPU 36 for calculating the remaining amount of the battery 37 by calculation are provided. The detector 40 is connected to the E / O converter 34 of the feeder 30 and converts an optical signal into a pulse signal for restoration, and an O / E converter 41. A frequency / voltage conversion unit (F / V conversion unit) 42 that converts the converted pulse signal into a voltage signal, and an arithmetic process that identifies a section in which a ground fault has occurred by analyzing the voltage signal that is a detection signal Unit, that is, a CPU 43. The feeder 30 and the detector 40 are connected by an optical cable 35. 1 corresponds to the feeder 2 in FIG. 4, the detector 40 in FIG. 1 corresponds to the detector 4 in FIG. 4, and the optical cable 35 in FIG. 1 corresponds to the optical cable 3 in FIG. To do.

かかる構成において、地絡故障の検出は、送電線1から送量器2へ流れる故障電流を入力部11に取り込み、この故障電流から送量器30の動作に必要な電源を作り出し、直流重畳部32により故障電流に直流成分を加算シフトして重畳する。これにより故障電流の全波形情報を伝送することが可能となる。次に直流重畳された電圧信号をV/F変換部33によりパルス信号に変換し、このパルス信号をE/O変換部34により光信号に変換した後、光ケーブル35を通して検出器40に送信している。検出器40では、入力した光信号をO/E変換部41により電気信号(パルス信号)に変換し、O/E変換されたパルス信号をF/V変換部42により電圧信号に変換し、この電圧信号をCPU43により解析して地絡故障が発生している送電線1の部位或いは区間を特定する地絡故障検出を行ったりその他の状態を検出する。地絡故障検出装置としての検出動作には次の動作がある。   In such a configuration, the detection of the ground fault is performed by taking the fault current flowing from the power transmission line 1 to the metering device 2 into the input unit 11 and generating a power source necessary for the operation of the metering device 30 from the fault current. By 32, the DC component is added and shifted to the fault current. As a result, it is possible to transmit the entire waveform information of the fault current. Next, the DC superimposed voltage signal is converted into a pulse signal by the V / F converter 33, and this pulse signal is converted into an optical signal by the E / O converter 34, and then transmitted to the detector 40 through the optical cable 35. Yes. In the detector 40, the input optical signal is converted into an electric signal (pulse signal) by the O / E converter 41, and the pulse signal subjected to O / E conversion is converted into a voltage signal by the F / V converter 42. The voltage signal is analyzed by the CPU 43 to detect a ground fault or to identify other states that identify the part or section of the transmission line 1 where the ground fault has occurred. The detection operation as the ground fault detection device includes the following operations.

(1)地絡故障検出
送量器30のV/F変換部33では、故障電流の全波形情報をf1±fnkHz(kHzは周波数の単位のキロヘルツ)の周波数信号として検出器側へ伝送する。すなわち、直流重畳分はf1kHzとする。そして、地絡故障発生時には、上記直流分を重畳して正負両側の交流波形を伝送する。図4に示されたシステムからわかるように、送量器30は送電線1の区間の両側にそれぞれ1個接続されており、両送量器30から検出器40へ故障電流の全波形情報が伝送される。検出器40側では、これらの故障電流の全波形情報をサンプリングし、サンプリングデータをCPU43にてデジタル演算して電流差動検出を行う。
(1) Ground fault detection In the V / F conversion unit 33 of the feeder 30, all the waveform information of the fault current is sent to the detector side as a frequency signal of f 1 ± f n kHz (kHz is the frequency unit kilohertz). To transmit. That is, the DC superimposition is f 1 kHz. When a ground fault occurs, the alternating current waveform on both the positive and negative sides is transmitted with the direct current component superimposed. As can be seen from the system shown in FIG. 4, one metering device 30 is connected to each side of the section of the power transmission line 1, and all the waveform information of the fault current is transmitted from both the metering devices 30 to the detector 40. Is transmitted. On the detector 40 side, all waveform information of these fault currents is sampled, and the sampling data is digitally calculated by the CPU 43 to perform current differential detection.

(2)アナログ回路監視と電池残量検出
直流重畳信号f1kHzをT1ms(msは時間の単位のミリセカンド)及びT2msの2種類の継続時間として送信し、T1msを論理「0」に割り当てる一方、T2msを論理「1」に割り当て、送量器30から検出器40へシリアル伝送する。検出器40において測定した直流重畳信号が、予め設定した監視幅f1±ΔfkHzから外れたときは、送量器30から検出器40の間のアナログ回路の異常と判断する。また、上記直流重畳によって、光ケーブル35の通信線断線監視を行う。
(2) Analog circuit monitoring and remaining battery level detection DC superimposition signal f 1 kHz is transmitted as T 1 ms (ms is the millisecond of the unit of time) and T 2 ms, and T 1 ms is logically transmitted. While assigning to “0”, T 2 ms is assigned to logic “1” and serially transmitted from the feeder 30 to the detector 40. When the DC superimposed signal measured in the detector 40 deviates from the preset monitoring width f 1 ± Δf kHz, it is determined that the analog circuit between the feeder 30 and the detector 40 is abnormal. Moreover, the communication line disconnection monitoring of the optical cable 35 is performed by the DC superposition.

また、送量器30ではCPU36を使用して電池37の電圧を測定し、この電池電圧から電圧残量を評価する。例えば、図2に示すように、上記論理「0」と論理「1」を3ビット分使って電池残量を4段階で評価し、ビット列データを検出器40へ送信する。これにより送量器側の電池残量を検出することができる。ビット列データはT1およびT2に比して充分長い時間間隔毎に1回、上記直流重畳信号を利用して検出機40側へ送信される。 The feeder 30 measures the voltage of the battery 37 using the CPU 36, and evaluates the remaining voltage from the battery voltage. For example, as shown in FIG. 2, the remaining amount of battery is evaluated in four stages using the above logic “0” and logic “1” for 3 bits, and bit string data is transmitted to the detector 40. As a result, the remaining battery level on the feeder side can be detected. The bit string data is transmitted to the detector 40 using the DC superimposed signal once every time interval sufficiently longer than T 1 and T 2 .

(3)通信線の断線監視
検出器40側では受信した信号がf1±fMkHzの範囲にあるときに送量器30側から信号「有り」、f1−fnkHz未満のときは送量器30から信号「無し」と判断する。そして、送量器30から送信するf1kHzの周波数信号を検出器40側では0アンペア相当の電流と認識する。つまり、0アンペアと、信号「無し」の2値を判別する。このように、故障電流の波形に直流成分を加算シフトした結果を0アンペア相当と認識することにより、検出器40は送量器30から信号「有り」(0アンペア)、または信号「無し」の2値を判別することができ、また、信号「有り」の場合には、検出器40側にて光ケーブル35における通信線断線監視信号の直流重畳分を監視することで、従来自動点検できなかった、送量器30のV/F変換部33、E/O変換部34、及び検出器40のO/E変換部41、F/V変換部42の故障を判定でき、検出機能の信頼性向上が図れる。また、信号「無し」の状態を認識することにより、誤検出を防止できる。
(3) Communication line disconnection monitoring On the detector 40 side, when the received signal is in the range of f 1 ± f M kHz, the signal is “present” from the feeder 30 side, and when it is less than f 1 −f n kHz. It is determined from the feeder 30 that the signal is “none”. The f 1 kHz frequency signal transmitted from the feeder 30 is recognized as a current corresponding to 0 amperes on the detector 40 side. That is, a binary value of 0 ampere and a signal “none” is discriminated. In this way, by recognizing that the result of adding and shifting the DC component to the waveform of the fault current is equivalent to 0 amperes, the detector 40 outputs the signal “present” (0 amperes) or “signal absent” from the feeder 30. Binary values can be discriminated, and when the signal is “present”, automatic detection has not been possible in the past by monitoring the DC superimposition of the communication line disconnection monitoring signal in the optical cable 35 on the detector 40 side. The failure of the V / F converter 33, the E / O converter 34 of the feeder 30 and the O / E converter 41 and the F / V converter 42 of the detector 40 can be determined, and the reliability of the detection function is improved. Can be planned. Further, by recognizing the state of the signal “none”, erroneous detection can be prevented.

この検出動作において、地絡故障が発生した場合、及び通信線断線監視信号を検出器40が受信した場合には、信号発生前後上記地絡故障信号の発生前後において過渡的に過大な交流成分が検出され、誤検出の要因と成り得るが、直前の直流成分から信号「無し」の状態を検出し、誤検出を防止することができる。このように、地絡故障信号と通信線断線信号とが輻輳した場合でも、通信線断線信号は0アンペアの直流なので、地絡故障検出に影響を及ぼさない。   In this detection operation, when a ground fault occurs and when the detector 40 receives a communication line disconnection monitoring signal, an excessively large alternating current component is present before and after the signal generation and before and after the occurrence of the ground fault signal. Although it is detected and may be a cause of erroneous detection, the state of the signal “none” can be detected from the immediately preceding DC component, and erroneous detection can be prevented. Thus, even when the ground fault signal and the communication line disconnection signal are congested, the communication line disconnection signal is a direct current of 0 amperes and thus does not affect the detection of the ground fault.

(4)検出信号の多重化伝送
送量器30からは、各種の検出信号が多重化伝送により検出器40に送信される。検出器40はF/V変換部42の後段側(下流側)にA/D変換部44と、A/D変換部44に接続されデジタル処理により直流成分を除去する直流除去フィルタ45と、直流除去フィルタ45に接続された基本波実効値演算部46とを有する。さらに、直流除去フィルタ45とは並列の関係にA/D変換部44に接続された直流実効値演算部47と、同じく、直流除去フィルタ45とは並列の関係にA/D変換部44に接続され送量器30からの信号「無し」を検出する検出部48を有する。直流実効値演算部47は、例えば面積法により直流実効値を演算する。そして、検出器40は、周波数信号をF/V変換部42によりアナログ波形に復元し、さらにA/D変換部44によりA/D変換を行って内蔵のメモリに取り込む。また、検出器40はデジタル処理手段としての直流除去フィルタ45により濾波処理をおこない、その後基本波実効値演算部46により基本波実効値を求める。また、直流実効値演算部47により直流実効値を求め、検出部48により送量器30からの信号「無し」を検出する。これにより、通信線断線監視信号、電池残量監視のためのビット列、及び故障電流波形を1本の光ケーブルにて検出器側へ送信し、これを分離処理できる(信号多重化)。よって、光ケーブルは片道のみとなり、光結合器も不要となり、システム全体のコストを低減できる。
(4) Multiplexed Transmission of Detection Signal From the feeder 30, various detection signals are transmitted to the detector 40 by multiplexed transmission. The detector 40 includes an A / D converter 44 on the downstream side (downstream side) of the F / V converter 42, a DC removal filter 45 that is connected to the A / D converter 44 and removes a DC component by digital processing, A fundamental effective value calculation unit 46 connected to the removal filter 45. Further, the DC effective value calculation unit 47 connected to the A / D conversion unit 44 in a parallel relationship with the DC removal filter 45, and similarly, the DC removal filter 45 is connected to the A / D conversion unit 44 in a parallel relationship. And a detector 48 for detecting the signal “none” from the feeder 30. The DC effective value calculation unit 47 calculates the DC effective value by, for example, the area method. Then, the detector 40 restores the frequency signal to an analog waveform by the F / V conversion unit 42, further performs A / D conversion by the A / D conversion unit 44, and takes in the built-in memory. Further, the detector 40 performs a filtering process by a direct current removal filter 45 as a digital processing means, and then obtains a fundamental wave effective value by a fundamental wave effective value calculation unit 46. Also, the DC effective value calculation unit 47 obtains the DC effective value, and the detection unit 48 detects the signal “none” from the feeder 30. Thereby, the communication line disconnection monitoring signal, the bit string for monitoring the remaining battery level, and the failure current waveform can be transmitted to the detector side by one optical cable, and this can be separated (signal multiplexing). Therefore, the optical cable is only one way, the optical coupler is not required, and the cost of the entire system can be reduced.

本発明では、故障電流の波形に直流成分を加算シフトして全波形情報を伝送することにより、負側の故障電流波形を表現することができ、2台の送量器を使用して、サンプリングデータを使用したデジタル演算による電流差動検出方式を適用できる。   In the present invention, by adding and shifting the DC component to the waveform of the fault current and transmitting the entire waveform information, the negative fault current waveform can be expressed, and sampling can be performed using two feeders. A current differential detection method using digital calculation using data can be applied.

また、故障電流の波形に直流成分を加算シフトした結果を0アンペア相当と認識することにより、信号あり、または信号なしの2値を判別することができ、送量器のV/F変換部、E/O変換部、及び検出器のO/E変換部、F/V変換部の故障を判定でき、検出機能の信頼性向上が図れる。   Further, by recognizing that the result of adding and shifting the DC component to the waveform of the fault current is equivalent to 0 amperes, it is possible to determine whether there is a signal or no signal, and the V / F converter of the feeder Failure of the E / O converter, the detector O / E converter, and the F / V converter can be determined, and the reliability of the detection function can be improved.

また、本発明では、通信線断線監視、アナログ回路監視、及び電池残量監視機能を有しており、故障部位の特定が容易となり、復旧対応の迅速化が図れる。   In addition, the present invention has functions for monitoring disconnection of communication lines, monitoring of analog circuits, and monitoring of remaining battery capacity, so that it becomes easy to identify a faulty part and to speed up recovery.

また、通信線断線監視信号、電池残量監視のためのビット列、及び故障電流波形を1本の光ケーブルにて検出器側へ送信し、これを分離処理できる(信号多重化)。よって、光ケーブルは片道のみとなり、光結合器も不要となり、システム全体のコストを低減できる。   In addition, a communication line disconnection monitoring signal, a bit string for monitoring the remaining battery level, and a fault current waveform can be transmitted to the detector side using a single optical cable, and this can be separated (signal multiplexing). Therefore, the optical cable is only one way, the optical coupler is not required, and the cost of the entire system can be reduced.

1 送電線
2,30 送量器
3,35 光ケーブル
4,40 検出器
11,31 入力部
32 直流重畳部
33 V/F変換部
34 E/O変換部
36 CPU
37 電池
41 O/E変換部
42 F/V変換部
DESCRIPTION OF SYMBOLS 1 Transmission line 2,30 Feeder 3,35 Optical cable 4,40 Detector 11,31 Input part 32 DC superimposition part 33 V / F conversion part 34 E / O conversion part 36 CPU
37 Battery 41 O / E converter 42 F / V converter

Claims (5)

送電線の区間の両端にそれぞれ接続され、送電線の電流変化を検知する送量器と、
これらの送量器に光ケーブルを介して接続され、前記送量器からの検出信号を受信して解析する検出器とから成り、
前記送量器は、前記送電線からの故障電流を入力する入力部と、入力部から入力された検知信号に所定の直流電圧を重畳する直流重畳部と、直流重畳された電圧信号をパルス信号に変換する電圧/周波数変換部と、パルス信号を光信号に変換する電気/光変換部と、送量器の電源を安定化させる安定化電源とを備え、
前記検出器は、光信号をパルス信号に変換する光/電気変換部と、パルス信号を電圧信号に変換する周波数/電圧変換部と、検知信号を解析して地絡故障が発生している区間を特定する演算処理部とを備え、
前記送量器において、前記直流重畳部は、検知信号の入力波形が全波出力し得るように直流電圧を重畳し、また、
前記検出器はさらに、F/V変換部の後段側にA/D変換部と、A/D変換部に接続されデジタル処理により直流成分を除去する直流除去フィルタと、直流除去フィルタに接続された基本波実効値演算部とを有し、さらに、直流除去フィルタとは並列の関係にA/D変換部に接続された直流実効値演算部と、同じく、直流除去フィルタとは並列の関係にA/D変換部に接続され送量器からの信号「無し」を検出する検出部を有し、通信線断線監視信号、電池残量監視のためのビット列、及び故障電流波形を1本の光ケーブルにて検出器側へ送信し、これを分離処理する、
ことを特徴とする地絡故障検出装置。
A feeder that is connected to both ends of the section of the transmission line and detects a current change in the transmission line,
It is connected to these metering devices via an optical cable, and consists of a detector that receives and analyzes the detection signal from the metering device,
The feeder includes an input unit for inputting a fault current from the power transmission line, a DC superimposing unit for superimposing a predetermined DC voltage on a detection signal input from the input unit, and a pulse signal for the DC superimposed voltage signal. A voltage / frequency conversion unit for converting into an electric signal, an electric / optical conversion unit for converting a pulse signal into an optical signal, and a stabilized power source for stabilizing the power source of the feeder,
The detector includes an optical / electrical converter that converts an optical signal into a pulse signal, a frequency / voltage converter that converts a pulse signal into a voltage signal, and a section in which a ground fault has occurred by analyzing the detection signal And an arithmetic processing unit for identifying
In the feeder, the DC superimposing unit superimposes a DC voltage so that the input waveform of the detection signal can be output in a full wave ,
The detector is further connected to an A / D converter on the rear side of the F / V converter, a DC removal filter connected to the A / D converter to remove a DC component by digital processing, and a DC removal filter A fundamental RMS value calculator, a DC effective value calculator connected to the A / D converter in parallel with the DC rejection filter, and A in parallel with the DC rejection filter. It has a detection unit that is connected to the / D conversion unit and detects the signal “None” from the feeder, and the communication line disconnection monitoring signal, the bit string for monitoring the remaining battery level, and the fault current waveform in one optical cable And send it to the detector for separation.
A ground fault detection device.
送量器において、直流重畳部は故障電流の波形に直流成分を加算シフトして全波形情報を伝送することを特徴とする請求項1記載の地絡故障検出装置。   2. The ground fault detection device according to claim 1, wherein the DC superimposing unit transmits the entire waveform information by adding and shifting the DC component to the waveform of the fault current. 送量器のV/F変換部では、故障電流の全波形情報をf1±fn kHz(kHzは周波数の単位のキロヘルツ)の周波数信号として検出器側へ伝送し、直流重畳分はf1 kHzとして、地絡故障発生時には、上記直流分を重畳して正負両側の交流波形を伝送することを特徴とする請求項1記載の地絡故障検出装置。 In the V / F converter of the feeder, the entire waveform information of the fault current is transmitted to the detector side as a frequency signal of f 1 ± f n kHz (kHz is a unit of kilohertz), and the DC superimposition is f 1. 2. The ground fault detection device according to claim 1, wherein when a ground fault occurs, the AC component is transmitted on both sides of the positive and negative sides by superimposing the DC component when a ground fault occurs. 送量器は、直流重畳信号f1 kHzをT1ms(msは時間の単位のミリセカンド)及びT2msの2種類の継続時間として送信し、T1msを論理「0」に割り当てる一方、T2msを論理「1」に割り当て、送量器から検出器へシリアル伝送することを特徴とする請求項1記載の地絡故障検出装置。 The metering device transmits the DC superimposed signal f 1 kHz as two types of durations of T 1 ms (ms is millisecond of time unit) and T 2 ms, and assigns T 1 ms to logic “0”. , T 2 ms is assigned to logic “1”, and serial transmission is performed from the feeder to the detector. 送量器はさらに、安定化電源に接続され直流重畳部に直流重畳分の電圧を与える補助電源としての電池と、電池の残量を演算により求めるCPUとを備え、CPUにより電池の電圧を測定し、前記論理「0」と論理「1」を所定ビット分使って電池残量をビット数に対応する段階で評価し、ビット列データを検出器へ送信し、検出器側で送量器側の電池残量を検出することを特徴とする請求項4記載の地絡故障検出装置。
以上
The feeder further includes a battery as an auxiliary power source that is connected to the stabilized power source and applies a voltage corresponding to the DC superimposition to the DC superimposing unit, and a CPU that calculates the remaining battery level by calculation, and measures the battery voltage by the CPU. Then, the logic “0” and the logic “1” are used for a predetermined number of bits, and the remaining battery level is evaluated at a stage corresponding to the number of bits, and the bit string data is transmitted to the detector. The ground fault detection device according to claim 4, wherein the remaining battery level is detected.
that's all
JP2009214435A 2009-09-16 2009-09-16 Ground fault detection device Active JP5480572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214435A JP5480572B2 (en) 2009-09-16 2009-09-16 Ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214435A JP5480572B2 (en) 2009-09-16 2009-09-16 Ground fault detection device

Publications (2)

Publication Number Publication Date
JP2011064534A JP2011064534A (en) 2011-03-31
JP5480572B2 true JP5480572B2 (en) 2014-04-23

Family

ID=43950953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214435A Active JP5480572B2 (en) 2009-09-16 2009-09-16 Ground fault detection device

Country Status (1)

Country Link
JP (1) JP5480572B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717403A (en) * 2014-12-04 2016-06-29 国家电网公司 Insulation fault monitoring system for cell array

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636721A (en) * 2012-04-18 2012-08-15 孟州市电力公司 Ground fault detector for power transmission line

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03251022A (en) * 1990-02-28 1991-11-08 Mitsubishi Electric Corp Device for monitoring abnormal state of distribution line
JPH08146072A (en) * 1994-11-28 1996-06-07 Nissin Electric Co Ltd High insulation type leak current detector
JP2005176440A (en) * 2003-12-09 2005-06-30 Hitachi Ltd Method and device for protecting transmission line
JP2008131788A (en) * 2006-11-22 2008-06-05 Toshiba Corp Transmission line protection relay system and device therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105717403A (en) * 2014-12-04 2016-06-29 国家电网公司 Insulation fault monitoring system for cell array
CN105717403B (en) * 2014-12-04 2018-09-07 国家电网公司 Cell array insulation fault monitors system

Also Published As

Publication number Publication date
JP2011064534A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
CN109725229B (en) Detection device and method for distinguishing capacitive transient ground fault branch from resistive transient ground fault branch
US10191101B2 (en) System and method for detecting ground fault in a dc system
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
CN102478614B (en) Current transformer disconnection detecting method and device, and relay protecting equipment
EP2857850B1 (en) HRG ground fault detector and method
CN102985836A (en) Fast distance protection for energy supply networks
US9594126B2 (en) Distributed detection of leakage current and fault current, and detection of string faults
CN106405202B (en) Motor driving device
CN105548755A (en) Method of detecting inverter AC and DC-side grounding through single grounding insulation impedance detection network
WO2013125189A1 (en) Network overseeing device and network overseeing method
CN107872049A (en) Method and apparatus for controlling the breaker in power supply network
JP5480572B2 (en) Ground fault detection device
JP2018121434A (en) Arc failure detector
JP2009081905A (en) Apparatus and method for detecting break in distribution line
CN104062555B (en) The discrimination method of distribution line high resistance earthing fault characteristic harmonics
CN110596529B (en) Flexible direct current power grid ground insulation fault detection device and system
JP2010239837A (en) Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault
JP6202925B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JP6834334B2 (en) Arc failure detection system
CN104090245B (en) The detection means that a kind of DC power-supply system alternating current is mixed into
CN105021942B (en) A kind of zero line docking looped network fault detection method and system
CN209992644U (en) Detection device for distinguishing capacitive and resistive instantaneous ground fault branch
JPH0819168A (en) Method and apparatus for protective relaying of dc transmission line
JP2012249445A (en) Power distribution system monitoring control system and monitoring control server
CN104698369A (en) Analog link hardware failure detection circuit and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140214

R150 Certificate of patent or registration of utility model

Ref document number: 5480572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250