JP5369833B2 - Electric vehicle charger and ground fault detection method - Google Patents

Electric vehicle charger and ground fault detection method Download PDF

Info

Publication number
JP5369833B2
JP5369833B2 JP2009087002A JP2009087002A JP5369833B2 JP 5369833 B2 JP5369833 B2 JP 5369833B2 JP 2009087002 A JP2009087002 A JP 2009087002A JP 2009087002 A JP2009087002 A JP 2009087002A JP 5369833 B2 JP5369833 B2 JP 5369833B2
Authority
JP
Japan
Prior art keywords
electric vehicle
ground
charging
electrode side
charger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009087002A
Other languages
Japanese (ja)
Other versions
JP2010239827A (en
Inventor
博臣 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009087002A priority Critical patent/JP5369833B2/en
Priority to PCT/JP2010/055651 priority patent/WO2010113927A1/en
Publication of JP2010239827A publication Critical patent/JP2010239827A/en
Application granted granted Critical
Publication of JP5369833B2 publication Critical patent/JP5369833B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is an electric vehicle charger capable of, while rapidly charging to an electric vehicle, quickly detecting both the occurrence of a ground fault in an electric vehicle charger and the occurrence of leakage in the electric vehicle. In order to allow data communication with an electric vehicle (200) during charging, a communication earth wire (110) for connecting the negative electrode of a control system power supply (208) of the electric vehicle charger to a vehicle body earth (203) is grounded to the earth (400) via a ground wire (109). A ground fault detection device (102) of the electric vehicle charger (100) has a series circuit (1021) of resistors (1021A, 1021B) having the same resistance values and connected to positive electrode-side and negative electrode-side charging lines (103A, 103B), a ground wire (1023) for connecting a point between the resistors (1021A, 1021B) to the earth (400), a current detector (1022) for sequentially outputting the measured values of DC current flowing through the ground wire (1023), and a controller (1024) for detecting the occurrence of a ground fault in the electric vehicle charger (100) and the occurrence of leakage in the electric vehicle by comparing the measured current values output by the current detector (1022) with a threshold value.

Description

本発明は、電動車両用充電器の地絡検出に関し、特に、電動車両への急速充電中において、電動車両用充電器側の地絡検出装置によって、電動車両用充電器における地絡発生および電動車両における漏電発生の双方を迅速に検出可能とする技術に関する。   The present invention relates to ground fault detection of an electric vehicle charger, and in particular, during the rapid charging of an electric vehicle, the ground fault detection device on the electric vehicle charger side and electric The present invention relates to a technology that can quickly detect both occurrences of electric leakage in a vehicle.

車体アースから絶縁されたバッテリを搭載した電気自動車のなかには、バッテリから車体アースへの漏電を検知するコンデンサ型の絶縁監視装置が設けられているものがある。例えば、特許文献1には、このようなコンデンサ型の絶縁監視装置として機能する漏電検知システムが開示されている。この漏電検知システムにおいては、一方の極側の充電用ラインと車体との間に、直流電流を遮断するコンデンサと変流器と交流電源とからなる直列回路が設けられており、漏電発生時に交流電源からコンデンサおよび充電用ラインを流れる交流電流が、変流器を介して漏電電流検出器によって検出される。   Some electric vehicles equipped with a battery that is insulated from the vehicle body ground are provided with a capacitor-type insulation monitoring device that detects leakage from the battery to the vehicle body ground. For example, Patent Literature 1 discloses a leakage detection system that functions as such a capacitor-type insulation monitoring device. In this leakage detection system, a series circuit consisting of a capacitor, a current transformer, and an AC power source that cuts off direct current is provided between the charging line on one pole side and the vehicle body. An alternating current flowing from the power source through the capacitor and the charging line is detected by the leakage current detector via the current transformer.

一方、電気自動車の車載バッテリの充電制御を行う充電システムとして、特許文献2記載の充電システムが知られている。この充電システムにおいては、車載バッテリの充電中、電気自動車の制御装置が、車載バッテリの充電状況に応じた充電基準値を既定の充電パターンに基づき逐次決定し、この充電基準値を充電器に通知する。そして、充電器は、電気自動車から受け付けた充電基準値に基づき出力電力量を制御する。   On the other hand, a charging system described in Patent Document 2 is known as a charging system that controls charging of an on-vehicle battery of an electric vehicle. In this charging system, during charging of the in-vehicle battery, the control device of the electric vehicle sequentially determines a charging reference value corresponding to the charging status of the in-vehicle battery based on a predetermined charging pattern, and notifies the charger of the charging reference value. To do. And a charger controls output electric energy based on the charge reference value received from the electric vehicle.

ここで、電気自動車の車載バッテリの充電中における充電器−電気自動車間の通信を実現するため、充電器の充電ケーブル内には、電気自動車の車載バッテリに給電するための充電用ラインの他、電気自動車の制御装置と通信するための通信線が収容されており、この充電ケーブルの先端のコネクタを電気自動車側に装着することにより、充電器側の充電用ラインおよび通信線がそれぞれ電気自動車側の電源線および通信線に接続されるようになっている。   Here, in order to realize communication between the charger and the electric vehicle during charging of the in-vehicle battery of the electric vehicle, in the charging cable of the charger, in addition to a charging line for supplying power to the in-vehicle battery of the electric vehicle, A communication line for communicating with the control device of the electric vehicle is accommodated. By attaching the connector at the tip of the charging cable to the electric vehicle side, the charging line on the charger side and the communication line are respectively connected to the electric vehicle side. Are connected to the power line and communication line.

特開2005−20848号公報(図14、図15、図16)Japanese Patent Laying-Open No. 2005-20848 (FIGS. 14, 15, and 16) 特開2007−336778号公報JP 2007-336778 A

電気自動車に搭載されるコンデンサ型の絶縁監視装置においては、一般に、漏電発生時に流れる微小な交流電流とノイズとを識別するために、高速フーリエ変換によるフィルタ処理が行われる。漏電発生時に流れる交流電流とノイズとを高速フーリエ変換によって識別するには、ある程度の時間にわたってデータをサンプリングする必要があるため、その分、漏電発生時に流れる交流電流の検出処理に時間を要する。   In a capacitor-type insulation monitoring device mounted on an electric vehicle, generally, a filtering process by a fast Fourier transform is performed in order to discriminate a minute alternating current and noise that flow when an electric leakage occurs. In order to identify AC current and noise that flows when leakage occurs by fast Fourier transform, it is necessary to sample data over a certain amount of time, and accordingly, it takes time to detect AC current that flows when leakage occurs.

ところで、電動車両の車載バッテリを急速充電する急速充電器では、電動車両の車載バッテリへの急速充電中、急速充電器側における地絡監視が行われ、地絡発生の際には、直ちに回路が遮断されるようになっている。そして、電動車両の車載バッテリへの急速充電中は、電動車両側の漏電発生も、より迅速に検出されることが望まれる。   By the way, in a quick charger that rapidly charges an in-vehicle battery of an electric vehicle, a ground fault is monitored on the quick charger side during the rapid charging of the in-vehicle battery of the electric vehicle. It is designed to be blocked. It is desired that the occurrence of electric leakage on the electric vehicle side be detected more quickly during the rapid charging of the on-vehicle battery of the electric vehicle.

本発明は上記事情に鑑みてなされたものであり、本発明の目的は、電動車両への充電中に、電動車両用充電器における地絡発生および電動車両における漏電発生の双方を迅速に検出可能な電動車両用充電器を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to quickly detect both the occurrence of a ground fault in an electric vehicle charger and the occurrence of electric leakage in an electric vehicle during charging of the electric vehicle. An object of the present invention is to provide an electric vehicle charger.

上記課題を解決するために、本発明では、電動車両用充電器において、正極側および負極側の各充電用ライン−アース(大地)間に、互いに抵抗値の等しい抵抗を挿入するとともに、充電中の電動車両との間のデータ通信の実現のために電動車両用充電器の制御装置の電源の負極を車体アースにつなぐ既存の通信用アース線をアース(大地)に接地する。そして、電動車両の充電中には、電動車両用充電器側において、抵抗を介した正極側および負極側の各充電用ライン−アース間の直流電流等を検出器により逐次測定して、その測定値の変動を監視する。   In order to solve the above-described problem, in the present invention, in the battery charger for electric vehicles, while inserting resistances having equal resistance values between the charging line and the ground (ground) on the positive electrode side and the negative electrode side, In order to realize data communication with the other electric vehicle, an existing communication ground wire that connects the negative electrode of the power supply of the controller for the electric vehicle charger to the vehicle body ground is grounded. During charging of the electric vehicle, on the electric vehicle charger side, the DC current between the charging line and the ground on the positive electrode side and the negative electrode side via the resistor is sequentially measured by the detector, and the measurement is performed. Monitor value fluctuations.

例えば、本発明は、電動車両への充電中に、制御装置に電源供給する第一の電源の負極が通信用アース線により前記電動車両の車体アースにつながれて前記電動車両と前記制御装置とのデータ通信を実現する電動車両用充電器であって、
前記電動車両の車載バッテリに給電するための正極側および負極側充電用ラインと、
前記正極側および負極側充電用ライン間に挿入された、抵抗値の等しい2つの抵抗からなる直列回路と、
前記2つの抵抗間に定めた接地位置をアースにつなぐ第一の接地線と、
前記通信用アース線を前記アースにつなぐ第二の接地線と、
前記第一の接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段と、を備え、
前記制御装置は、
前記検出手段の検出値に基づき、前記正極側および負極側のいずれかの充電用ラインにおける地絡発生、および前記電動車両における漏電発生を検出する。
For example, according to the present invention, during charging of the electric vehicle, the negative electrode of the first power source that supplies power to the control device is connected to the vehicle body ground of the electric vehicle by a communication ground wire, and the electric vehicle and the control device are connected to each other. An electric vehicle charger for realizing data communication,
A positive electrode side and a negative electrode side charging line for supplying power to the in-vehicle battery of the electric vehicle;
A series circuit composed of two resistors having the same resistance value, inserted between the positive and negative charging lines;
A first grounding wire connecting the grounding position defined between the two resistors to the ground;
A second ground wire connecting the communication ground wire to the ground;
Detecting means for detecting a current flowing in the first ground line, or a voltage between the ground position and the ground,
The controller is
Based on the detection value of the detection means, the occurrence of a ground fault in the charging line on either the positive electrode side or the negative electrode side and the occurrence of electric leakage in the electric vehicle are detected.

または、本発明は、電動車両への充電中に、制御装置に電源供給する第一の電源の負極が通信用アース線により前記電動車両の車体アースにつながれて前記電動車両と前記制御装置とのデータ通信を実現する電動車両用充電器であって、
前記電動車両の車載バッテリに給電するための正極側および負極側充電用ラインと、
前記正極側および負極側充電用ライン間に挿入された、抵抗値の等しい2つの抵抗からなる直列回路と、
前記2つの抵抗間に定めた接地位置をアースにつなぐ第一の接地線と、
前記通信用アース線を前記アースにつなぐ第二の接地線と、
前記第一の接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段と、
前記検出手段の検出値に基づき、前記正極側および負極側のいずれかの充電用ラインにおける地絡発生、および前記電動車両における漏電発生を検出する制御器と、を備える。
Alternatively, according to the present invention, during charging of the electric vehicle, the negative electrode of the first power source that supplies power to the control device is connected to the vehicle body ground of the electric vehicle by a communication ground wire, and the electric vehicle and the control device are connected to each other. An electric vehicle charger for realizing data communication,
A positive electrode side and a negative electrode side charging line for supplying power to the in-vehicle battery of the electric vehicle;
A series circuit composed of two resistors having the same resistance value, inserted between the positive and negative charging lines;
A first grounding wire connecting the grounding position defined between the two resistors to the ground;
A second ground wire connecting the communication ground wire to the ground;
Detection means for detecting a current flowing through the first ground line or a voltage between the ground position and the ground;
And a controller for detecting a ground fault occurrence in the charging line on either the positive electrode side or the negative electrode side and a leakage occurrence in the electric vehicle based on a detection value of the detection means.

このような電動車両用充電器に、前記正極側および負極側充電用ラインの少なくとも一方を遮断する遮断器を設け、前記制御装置が、前記地絡または前記漏電の発生を検出すると、前記正極側および負極側充電用ラインの少なくとも一方の遮断を前記遮断器に指示するようにしてもよい。   When such an electric vehicle charger is provided with a circuit breaker that interrupts at least one of the positive electrode side and the negative electrode side charging line, and the control device detects the occurrence of the ground fault or the electric leakage, the positive electrode side The circuit breaker may be instructed to interrupt at least one of the negative-side charging line.

また、このような電動車両用充電器に、前記アースから絶縁された第二の電源を設け、前記制御装置が、前記第一の電源から電源供給され、前記電動車両との間のデータ通信を実行する通信系回路部と、前記第二の電源から電源供給され、当該電動車両用充電器の制御処理を実行する制御系回路部と、前記制御系回路部および前記通信系回路部間のデータ転送を非接触で行う中継手段と、を備えてもよい。   In addition, the electric vehicle charger is provided with a second power source insulated from the ground, and the control device is supplied with power from the first power source to perform data communication with the electric vehicle. A communication system circuit unit to be executed; a control system circuit unit which is supplied with power from the second power source and executes control processing of the electric vehicle charger; and data between the control system circuit unit and the communication system circuit unit Relay means for performing contact-free transfer.

本発明によれば、電動車両への充電中、電動車両用充電器において、電動車両用充電器における地絡発生および電動車両における漏電発生の双方をより迅速に検出することができる。   According to the present invention, during charging of an electric vehicle, the electric vehicle charger can more quickly detect both the occurrence of a ground fault in the electric vehicle charger and the occurrence of electric leakage in the electric vehicle.

図1は、本発明の一実施の形態に係る電気自動車用充電器の概略構成を説明するための図である。FIG. 1 is a diagram for explaining a schematic configuration of a charger for an electric vehicle according to an embodiment of the present invention. 図2(A)は、図1において、電気自動車用充電器の負極側充電用ラインで地絡が発生した場合の地絡電流の流れを示す図であり、図2(B)は、図1において、電気自動車用充電器の正極側充電用ラインで地絡が発生した場合の地絡電流の流れを示す図である。FIG. 2A is a diagram showing a flow of a ground fault current when a ground fault occurs in the negative electrode side charging line of the electric vehicle charger in FIG. 1, and FIG. FIG. 2 is a diagram showing a flow of a ground fault current when a ground fault occurs in the positive electrode side charging line of the electric vehicle charger. 図3(A)は、図1において、電気自動車用充電器による急速充電中に、電気自動車の負極側充電用ラインで漏電が発生した場合の漏電電流の流れを示す図であり、図3(B)は、図1において、電気自動車用充電器による急速充電中に、電気自動車の正極側充電用ラインで漏電が発生した場合の漏電電流の流れを示す図である。FIG. 3A is a diagram illustrating a flow of a leakage current when a leakage occurs in the negative electrode side charging line of the electric vehicle during the rapid charging by the electric vehicle charger in FIG. B) is a diagram illustrating a flow of a leakage current when a leakage occurs in the positive electrode charging line of the electric vehicle during the rapid charging by the electric vehicle charger in FIG. 1. 図4は、本発明の他の実施形態に係る、サージ対策が施された電気自動車用充電器の概略構成を説明するための図である。FIG. 4 is a diagram for explaining a schematic configuration of a charger for an electric vehicle with a countermeasure against surge according to another embodiment of the present invention.

以下、添付図面を参照しながら、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

まず、本実施の形態に係る電気自動車充電器の構成について説明する。ここでは、充電スタンド等に設置される、電気自動車の車載バッテリを急速充電する急速充電器を例にとり説明する。   First, the configuration of the electric vehicle charger according to the present embodiment will be described. Here, an explanation will be given by taking as an example a quick charger that is installed in a charging stand or the like and that rapidly charges an in-vehicle battery of an electric vehicle.

図1は、本実施の形態に係る電気自動車用充電器100の概略構成を示した図である。なお、図1には、電気自動車用充電器100の接触式コネクタ101を電気自動車200側の接触式コネクタ201に装着した状態を一例として示してある。   FIG. 1 is a diagram showing a schematic configuration of an electric vehicle charger 100 according to the present embodiment. FIG. 1 shows an example in which the contact connector 101 of the electric vehicle charger 100 is attached to the contact connector 201 on the electric vehicle 200 side.

図示するように、電気自動車用充電器100は、制御装置104と、制御系電源108と、漏電遮断器(ELB)105と、交直変換部103と、充電ケーブル106と、接触式コネクタ101と、を有する。   As shown in the figure, the electric vehicle charger 100 includes a control device 104, a control system power supply 108, an electric leakage breaker (ELB) 105, an AC / DC converter 103, a charging cable 106, a contact connector 101, Have

制御装置104は、電気自動車用充電器100全体を制御する。制御系電源108は、制御装置104に12V電源を供給する。漏電遮断器(ELB)105には、交流電源(例えば200V)300の引き込みケーブルが接続され、交直変換部103は、漏電遮断器105を介して交流電源300から供給される交流電流を直流電流Iに変換する。ここでは、交流電源300の正極側および負極側出力(正極側および負極側充電用ライン103A,103B)の双方を交流電源300から引き外す漏電遮断器105の構成を図示しているが、漏電遮断器105は、正極側および負極側充電用ライン103A,103Bのいずれか一方を交流電源300から引き外すものであってもよい。充電ケーブル106は、交直変換部103からの正極側および負極側充電用ライン103A,103Bを収容する。そして、接触式コネクタ101は、充電ケーブル106の先端部に設けられている。 The control device 104 controls the entire electric vehicle charger 100. The control system power supply 108 supplies 12V power to the control device 104. The earth leakage breaker (ELB) 105 is connected to a lead-in cable for an AC power supply (for example, 200 V) 300, and the AC / DC converter 103 converts the AC current supplied from the AC power supply 300 via the earth leakage breaker 105 to the DC current I. Convert to 1 . Here, the configuration of the earth leakage circuit breaker 105 that disconnects both the positive electrode side and negative electrode side outputs (positive electrode side and negative electrode side charging lines 103A and 103B) of the AC power source 300 from the AC power source 300 is illustrated. The device 105 may be configured to disconnect one of the positive electrode side and negative electrode side charging lines 103 </ b> A and 103 </ b> B from the AC power supply 300. The charging cable 106 accommodates the positive and negative charging lines 103 </ b> A and 103 </ b> B from the AC / DC converter 103. The contact connector 101 is provided at the tip of the charging cable 106.

なお、急速充電中において、電気自動車200の制御装置204との通信を実現するため、充電ケーブル106は、さらに、制御装置104からの通信線107と、通信用アース線110と、を収容する。通信用アース線110は、制御系電源108の負極を車体アース203に接続するためのものである。車体アース203には、電気自動車200の制御装置204に12V電源を供給する制御系電源208の負極が接続されている。   In order to realize communication with control device 204 of electric vehicle 200 during rapid charging, charging cable 106 further accommodates communication line 107 from control device 104 and communication ground wire 110. The communication ground wire 110 is for connecting the negative electrode of the control system power supply 108 to the vehicle body ground 203. The vehicle body ground 203 is connected to a negative electrode of a control system power source 208 that supplies a 12V power source to the control device 204 of the electric vehicle 200.

このため、電気自動車用充電器100の接触式コネクタ101と電気自動車200側の接触式コネクタ201とを連結することによって、電気自動車用充電器100の正極側および負極側充電用ライン103A,103Bと電気自動車200側の正極側および負極側充電用ライン206A,206Bだけでなく、電気自動車用充電器100の通信線107の端子と電気自動車200側の通信線207の端子、および電気自動車用充電器100の通信用アース線110の端子と電気自動車200側の通信用アース線205の端子がそれぞれ接続される。   Therefore, by connecting the contact connector 101 of the electric vehicle charger 100 to the contact connector 201 on the electric vehicle 200 side, the positive and negative charging lines 103A and 103B of the electric vehicle charger 100 are Not only the positive and negative charge lines 206A and 206B on the electric vehicle 200 side, but also the terminal of the communication line 107 and the terminal of the communication line 207 on the electric vehicle 200, and the charger for the electric vehicle. 100 terminals of the communication ground line 110 and terminals of the communication ground line 205 on the electric vehicle 200 side are respectively connected.

さらに、この電気自動車用充電器100は、電気自動車200の車載バッテリ202への急速充電中に、正極側および負極側充電用ライン103A,103Bにおける地絡発生の他、電気自動車200における漏電も監視するための構成を有している。具体的には、通信用アース線110を電気自動車用充電器100側のアース(大地)400につなぐ接地線109と、正極側および負極側充電用ライン103A,103Bにおける地絡発生、および電気自動車200における漏電発生の双方を検出する地絡検出装置102と、を有する。   Further, the electric vehicle charger 100 also monitors for a ground fault in the positive and negative charging lines 103A and 103B during the rapid charging of the in-vehicle battery 202 of the electric vehicle 200, as well as leakage in the electric vehicle 200. It has the structure for doing. Specifically, the grounding wire 109 that connects the communication grounding wire 110 to the ground (ground) 400 on the electric vehicle charger 100 side, the occurrence of ground faults in the positive and negative charging lines 103A and 103B, and the electric vehicle And a ground fault detection device 102 that detects both occurrences of electric leakage in 200.

ここで、地絡検出装置102は、正極側充電用ライン103Aおよび負極側充電用ライン103B間に挿入された同じ抵抗値の2つの抵抗1021A,1021Bからなる直列回路1021と、抵抗1021A,1021B間をつなぐ配線の適当な位置(例えば抵抗を均等に2分割する位置、以下、接地接続ポイントと呼ぶ)1021Cをアース(大地)400へつなぐ接地線1023と、接地線1023を流れる直流電流の測定値を逐次出力する変流器(DC CT)等の電流検出器1022と、電流検出器1022の測定値が入力される制御器1024と、を有している。   Here, the ground fault detection device 102 includes a series circuit 1021 composed of two resistors 1021A and 1021B having the same resistance value inserted between the positive-side charging line 103A and the negative-side charging line 103B, and between the resistors 1021A and 1021B. A suitable position (for example, a position where resistance is equally divided into two, hereinafter referred to as a ground connection point) 1021C to the ground (ground) 400, and a measured value of a direct current flowing through the ground line 1023 Current detector 1022 such as a current transformer (DC CT) that sequentially outputs and a controller 1024 to which a measured value of the current detector 1022 is input.

すなわち、正極側充電用ライン103A−アース400間と、負極側充電用ライン103B−アース400間に、互いに抵抗値の等しい抵抗1021A,1021Bがそれぞれ挿入されており、電気自動車200の車載バッテリ202への急速充電中は、電流検出器1022が、抵抗1021A,1021Bを介した地絡電流(正極側充電用ライン103A−アース400間の直流電流、負極側充電用ライン103B−アース400間の直流電流、電気自動車200側の正極側充電用ライン206A−車体アース203(=アース400)間の直流電流、および、電気自動車200側の負極側充電用ライン206B−車体アース203(=アース400)間の直流電流)を逐次測定し、制御器1024が、その測定値の変動を監視するようになっている。   That is, resistors 1021A and 1021B having the same resistance value are inserted between the positive side charging line 103A and the ground 400 and between the negative side charging line 103B and the ground 400, respectively, to the in-vehicle battery 202 of the electric vehicle 200. During the quick charging, the current detector 1022 causes the ground fault current (the DC current between the positive charging line 103A and the ground 400, the DC current between the negative charging line 103B and the ground 400, via the resistors 1021A and 1021B. Between the positive side charging line 206A on the electric vehicle 200 side and the vehicle body ground 203 (= earth 400), and between the negative side charging line 206B on the electric vehicle 200 side and the vehicle body ground 203 (= earth 400). DC current) is measured sequentially, and the controller 1024 monitors the fluctuation of the measured value. You have me.

ここで、2つの抵抗1021A,1021Bには、地絡発生時に流れる異常電流を小さく抑制するものを用いる必要がある。また、抵抗1021A,1021Bの抵抗値が大きくなりすぎると電流検知時間が長くなるため、抵抗1021A,1021Bの抵抗値を定める際には、使用する電流検出器1022等の性能を考慮する必要もある。これらのことより、例えば交流電源200Vの場合には、数十kΩ〜数百kΩの範囲で抵抗1021A,1021Bの抵抗値を決定することが好ましい。   Here, as the two resistors 1021A and 1021B, it is necessary to use a resistor that suppresses an abnormal current that flows when a ground fault occurs. In addition, if the resistance values of the resistors 1021A and 1021B become too large, the current detection time becomes long. Therefore, when determining the resistance values of the resistors 1021A and 1021B, it is necessary to consider the performance of the current detector 1022 to be used. . For these reasons, for example, in the case of an AC power supply of 200 V, it is preferable to determine the resistance values of the resistors 1021A and 1021B within a range of several tens of kΩ to several hundreds of kΩ.

つぎに、このような電気自動車用充電器100による電気自動車200の車載バッテリ202への急速充電中における地絡および漏電の発生の検出原理について説明する。ここでは、まず、電気自動車用充電器100側における地絡の検出について説明してから、ついで、電気自動車200側における漏電の検出について説明する。   Next, the detection principle of the occurrence of ground fault and electric leakage during the rapid charging of the in-vehicle battery 202 of the electric vehicle 200 by the electric vehicle charger 100 will be described. Here, first, detection of ground fault on the electric vehicle charger 100 side will be described, and then detection of electric leakage on the electric vehicle 200 side will be described.

図2(A)は、電気自動車用充電器100の負極側充電用ライン103Bで地絡が発生した場合の地絡電流の流れを示す図であり、図2(B)は、電気自動車用充電器100の正極側充電用ライン103Aで地絡が発生した場合の地絡電流の流れを示す図である。なお、これらの図には、地絡電流が流れる閉回路部分の構成のみが示され、それ以外の構成は省略されている。   FIG. 2A is a diagram illustrating a flow of a ground fault current when a ground fault occurs in the negative electrode side charging line 103B of the electric vehicle charger 100, and FIG. It is a figure which shows the flow of a ground fault electric current when a ground fault generate | occur | produces in the positive electrode side charging line 103A of the device 100. FIG. In these figures, only the configuration of the closed circuit portion through which the ground fault current flows is shown, and the other configurations are omitted.

電気自動車用充電器100の接触式コネクタ101を電気自動車200側の接触式コネクタ201に装着することによって、電気自動車用充電器100の正極側および負極側充電用ライン103A,103Bの端子を電気自動車200の正極側および負極側充電用ライン206A,206Bの端子にそれぞれ接続し、電気自動車用充電器100から電気自動車200の車載バッテリ202に直流電流Iを給電すると(図1参照)、電気自動車200の車載バッテリ202の急速充電が開始する。この状態においては、抵抗値の等しい2つの抵抗1021A,1021Bにかかる電圧がバランスしているため、接地接続ポイント1021Cとアース400とが同電位(0V)となり、接地線1023に直流電流は流れない。 By attaching the contact connector 101 of the electric vehicle charger 100 to the contact connector 201 on the electric vehicle 200 side, the terminals of the positive and negative charging lines 103A and 103B of the electric vehicle charger 100 are connected to the electric vehicle. When the DC current I 1 is supplied from the electric vehicle charger 100 to the in-vehicle battery 202 of the electric vehicle 200 by connecting to the terminals of the positive electrode side and negative electrode side charging lines 206A and 206B of the electric vehicle 200 (see FIG. 1), the electric vehicle Rapid charging of 200 in-vehicle batteries 202 starts. In this state, since the voltages applied to the two resistors 1021A and 1021B having the same resistance value are balanced, the ground connection point 1021C and the ground 400 have the same potential (0 V), and no direct current flows through the ground line 1023. .

ここで、図2(A)に示すように、電気自動車用充電器100の負極側充電用ライン103Bの任意の位置(地絡点)P1で地絡が発生すると、アース400から負極側充電用ライン103Bの地絡点P1に流れ込んだ地絡電流Iは、交直変換部103、正極側充電用ライン103A、一方の抵抗1021Aおよび接地線1023を介してアース400に流れ込む。このため、電流検出器1022は、この地絡電流Iを検知する。 Here, as shown in FIG. 2A, when a ground fault occurs at an arbitrary position (ground fault point) P1 of the negative electrode side charging line 103B of the electric vehicle charger 100, the ground 400 is charged for negative side charging. ground fault current I 2 flowing into the land絡点P1 line 103B flows into the ground 400 via the AC-DC converter 103, the positive electrode side charging line 103A, one of the resistors 1021A and the ground line 1023. Therefore, the current detector 1022 detects the ground fault current I 2.

一方、図2(B)に示すように、電気自動車用充電器100の正極側充電用ライン103Aの任意の位置(地絡点)P2で地絡が発生すると、正極側充電用ライン103Aの地絡点P2からアース400に流れ込んだ地絡電流Iは、接地線1023、他方の抵抗1021Bおよび負極側充電用ライン103Bを介して交直変換部103に流れ込む。このため、電流検出器1022は、この地絡電流Iを検知する。 On the other hand, as shown in FIG. 2B, when a ground fault occurs at an arbitrary position (ground fault point) P2 of the positive-side charging line 103A of the electric vehicle charger 100, the ground of the positive-side charging line 103A is obtained. ground fault current I 3 flowing into the earth 400 from絡点P2 is a ground line 1023 flows to the AC-DC converter 103 via the other resistor 1021B and the negative electrode side charging line 103B. Therefore, the current detector 1022 detects the ground fault current I 3.

図3(A)は、電気自動車200の負極側充電用ライン206Bで漏電が発生した場合の漏電電流の流れを示す図であり、図3(B)は、電気自動車200の正極側充電用ライン206Aで漏電が発生した場合の漏電電流の流れを示す図である。なお、これらの図には、漏電電流が流れる閉回路部分の構成のみが示され、それ以外の構成は省略されている。   FIG. 3A is a diagram illustrating a flow of a leakage current when a leakage occurs in the negative electrode side charging line 206 </ b> B of the electric vehicle 200, and FIG. 3B is a positive electrode side charging line of the electric vehicle 200. It is a figure which shows the flow of the earth leakage current when the earth leakage occurs in 206A. In these figures, only the configuration of the closed circuit portion through which the leakage current flows is shown, and the other configurations are omitted.

前述したように、電気自動車200の車載バッテリ202の急速充電が正常に行われている間、地絡検出装置102においては、抵抗値の等しい2つの抵抗1021A,1021Bにかかる電圧がバランスしているため、接地線1023に直流電流は流れない。   As described above, while the rapid charging of the in-vehicle battery 202 of the electric vehicle 200 is normally performed, in the ground fault detection device 102, the voltages applied to the two resistors 1021A and 1021B having the same resistance value are balanced. Therefore, no direct current flows through the ground line 1023.

ここで、図3(A)に示すように、電気自動車200の負極側充電用ライン206Bの任意の位置(漏電点)P3で漏電が発生すると、車体アース203から負極側充電用ライン206Bの漏電点P3に流れ込む漏電電流Iは、正極側充電用ライン206A、電気自動車用充電器100の正極側充電用ライン103A、地絡検出装置102の一方の抵抗1021Aおよび接地線1023を介してアース400に流れ込み、さらに、制御系電源108の接地線109と通信用アース線110,205とを介して車体アース203に戻る。すなわち、本来、制御装置104の電源グラウンドはアース400と共用されていないものであるところ、本実施の形態においては、制御装置104に電源を供給する制御系電源108の負極側をアース400に接地する接地線109を設けて、制御装置104の電源グラウンドと、地絡検出装置102が接続されたアース400とを共用化したことにより、電気自動車200側で発生した漏電電流Iが、地絡検出装置102の接地線1023、制御系電源108の接地線109および通信用アース線110,205を経由するルートが形成される。このため、地絡検出装置102の電流検出器1022は、この漏電電流Iを検知する。 Here, as shown in FIG. 3A, if a leakage occurs at an arbitrary position (leakage point) P3 of the negative electrode side charging line 206B of the electric vehicle 200, the electric leakage of the negative electrode side charging line 206B from the vehicle body ground 203 will be described. Leakage current I 4 flowing into point P3 is connected to ground 400 via positive electrode side charging line 206A, positive electrode side charging line 103A of electric vehicle charger 100, one resistance 1021A of ground fault detection device 102 and ground line 1023. And return to the vehicle body ground 203 via the ground line 109 of the control system power supply 108 and the communication ground lines 110 and 205. That is, the power supply ground of the control device 104 is originally not shared with the ground 400, but in this embodiment, the negative side of the control system power supply 108 that supplies power to the control device 104 is grounded to the ground 400. Since the grounding wire 109 to be provided is shared and the power supply ground of the control device 104 and the earth 400 to which the ground fault detection device 102 is connected are shared, the earth leakage current I 4 generated on the electric vehicle 200 side becomes a ground fault. A route is formed through the ground line 1023 of the detection device 102, the ground line 109 of the control system power supply 108, and the communication ground lines 110 and 205. Therefore, the current detector 1022 of the ground fault sensing device 102 detects the leakage current I 4.

一方、図3(B)に示すように、電気自動車200の正極側充電用ライン206Aの任意の位置(漏電点)P4で漏電が発生すると、正極側充電用ライン206Aの漏電点P4から車体アース203に流れ込んだ漏電電流Iは、通信用アース線205,110と制御系電源108の接地線109とを介して電気自動車用充電器100のアース400に流れ込み、さらに、地絡検出装置102の他方の抵抗1021Bおよび電気自動車用充電器100の負極側充電用ライン103Bを介して車体アース203に戻る。すなわち、本来、制御装置104の電源グラウンドはアース400と共用されていないものであるところ、本実施の形態においては、上述したように接地線109を設けて、制御装置104の電源グラウンドと、地絡検出装置102が接続されたアース400とを共用化したことにより、電気自動車200側で発生した漏電電流Iが、通信用アース線110,205、制御系電源108の接地線109および地絡検出装置102の接地線1023を経由するルートが形成される。このため、地絡検出装置102の電流検出器1022は、この漏電電流Iを検知する。 On the other hand, as shown in FIG. 3B, when a leakage occurs at an arbitrary position (leakage point) P4 of the positive electrode side charging line 206A of the electric vehicle 200, the vehicle body is grounded from the leakage point P4 of the positive electrode side charging line 206A. Leakage current I 5 that has flowed into 203 flows into ground 400 of electric vehicle charger 100 via communication ground lines 205 and 110 and ground line 109 of control system power supply 108, and further, It returns to the vehicle body ground 203 through the other resistor 1021B and the negative-side charging line 103B of the electric vehicle charger 100. That is, the power ground of the control device 104 is originally not shared with the ground 400. In the present embodiment, the ground wire 109 is provided as described above, and the power ground of the control device 104 and the ground are grounded. By sharing the ground 400 to which the fault detection device 102 is connected, the leakage current I 5 generated on the electric vehicle 200 side causes the communication ground lines 110 and 205, the ground line 109 of the control system power supply 108, and the ground fault. A route passing through the ground line 1023 of the detection device 102 is formed. Therefore, the current detector 1022 of the ground fault sensing device 102 detects the earth leakage current I 5.

以上からわかるように、電気自動車200の車載バッテリ202への急速充電中に、電気自動車用充電器100の正極側および負極側のいずれかの充電用ライン103A,103Bにおける地絡発生だけでなく、電気自動車200の正極側および負極側のいずれかの充電用ライン206A,206Bにおける漏電発生も、電流検出器1022の測定値から検出することができる。   As can be seen from the above, during the rapid charging of the in-vehicle battery 202 of the electric vehicle 200, not only the occurrence of a ground fault in the charging line 103A, 103B on either the positive electrode side or the negative electrode side of the electric vehicle charger 100, The occurrence of leakage in the charging lines 206A and 206B on either the positive electrode side or the negative electrode side of the electric vehicle 200 can also be detected from the measured value of the current detector 1022.

そこで、本実施の形態において、電気自動車用充電器100において、制御器1024は、電気自動車200の車載バッテリ202への急速充電中、電流検出器1022から逐次入力される測定値を監視し、その測定値が、あらかじめ定めた閾値を超えると、電気自動車用充電器100側の地絡または電気自動車200側の漏電が発生したと判断して、地絡等の発生を示す異常信号を制御装置104に送信する。これに応じて、制御装置104は、漏電遮断器105の制御により回路を遮断させる。また、制御装置104は、電気自動車用充電器100側の地絡または電気自動車200側の漏電の発生を通知するメッセージを、通信線107,207を介して、電気自動車200の制御装置204に送信する。なお、電気自動車用充電器100が出力装置を有する場合には、制御装置104が、管理者等への通報を出力装置から出力するようにしてもよい。   Therefore, in the present embodiment, in the electric vehicle charger 100, the controller 1024 monitors the measurement values sequentially input from the current detector 1022 during the rapid charging of the in-vehicle battery 202 of the electric vehicle 200, and If the measured value exceeds a predetermined threshold value, it is determined that a ground fault on the electric vehicle charger 100 side or an electric leakage on the electric vehicle 200 side has occurred, and an abnormal signal indicating the occurrence of a ground fault or the like is transmitted to the control device 104. Send to. In response to this, the control device 104 interrupts the circuit under the control of the leakage breaker 105. Further, the control device 104 transmits a message notifying the occurrence of a ground fault on the electric vehicle charger 100 side or an electric leakage on the electric vehicle 200 side to the control device 204 of the electric vehicle 200 via the communication lines 107 and 207. To do. In the case where the electric vehicle charger 100 has an output device, the control device 104 may output a report to the administrator or the like from the output device.

以上、本発明の一実施の形態を説明した。   The embodiment of the present invention has been described above.

このように、本実施の形態に係る電気自動車用充電器100によれば、電気自動車200の急速充電中において、電気自動車用充電器100側における地絡発生時には、地絡検出装置102の電流検出器1022が0.1〜数mA程度の電流を検出するため、この実測値をそのまま閾値と比較することにより、地絡発生を直ちに検出可能である。また、電気自動車200の制御装置204と電気自動車用充電器100の制御装置104との基準電位共通化のための既存の通信用アース線110を接地線109で電気自動車用充電器100側のアース400に接地したことにより、電気自動車200側で発生した異常電流I,Iが、地絡検出装置102の電流検出器1022を介して電気自動車200側に戻るループが形成されるため、急速充電中の電気自動車200における漏電発生も、地絡検出装置102の電流検出器1022の実測値と閾値との比較により直ちに検出することができる。このため、FFT等といった、ある程度の時間を要する演算処理を行う必要がなく、その分、より迅速に、電気自動車用充電器100の地絡および電気自動車200の漏電を検出して回路を遮断することができる。これにより、回路遮断までに要する時間をより短縮できる。 Thus, according to the electric vehicle charger 100 according to the present embodiment, during the rapid charging of the electric vehicle 200, when a ground fault occurs on the electric vehicle charger 100 side, the current detection of the ground fault detection device 102 is performed. Since the device 1022 detects a current of about 0.1 to several mA, it is possible to immediately detect the occurrence of a ground fault by directly comparing this measured value with a threshold value. In addition, an existing communication ground wire 110 for common reference potential between the control device 204 of the electric vehicle 200 and the control device 104 of the electric vehicle charger 100 is grounded by the ground wire 109 on the electric vehicle charger 100 side. Since a ground is connected to 400, a loop is formed in which abnormal currents I 4 and I 5 generated on the electric vehicle 200 side return to the electric vehicle 200 side via the current detector 1022 of the ground fault detection device 102. The occurrence of electric leakage in the electric vehicle 200 being charged can be immediately detected by comparing the measured value of the current detector 1022 of the ground fault detection device 102 with a threshold value. For this reason, it is not necessary to perform arithmetic processing such as FFT, which requires a certain amount of time, and accordingly, the ground fault of the electric vehicle charger 100 and the electric leakage of the electric vehicle 200 are detected and the circuit is shut off. be able to. As a result, the time required for circuit interruption can be further shortened.

また、電気自動車用充電器100の正極側および負極側充電用ライン103A,103Bに、交直変換部103内部で発生したノイズをアース400にバイパスさせるためのノイズ除去用コンデンサを設けた場合、仮に従来のコンデンサ型の絶縁監視装置を電気自動車用充電器100の地絡検出装置としてそのまま適用すると、地絡検出装置の交流電源より発生する交流電流が絶縁監視装置のコンデンサとノイズ除去用コンデンサとを循環してしまう可能性がある。このような交流電流の循環が発生すると、実際には漏電が発生していないにも関わらず、漏電が誤検知される可能性がある。しかし、本実施の形態に係る地絡検出装置102には、電気自動車用充電器100のノイズ除去用コンデンサと干渉する要素が含まれていないため、電気自動車用充電器100の他の要素との干渉に起因する地絡誤検出の発生を防止することができる。   In addition, when a noise removing capacitor for bypassing noise generated in the AC / DC converter 103 to the ground 400 is provided on the positive and negative charging lines 103A and 103B of the electric vehicle charger 100, it is assumed to be conventional. When the capacitor-type insulation monitoring device is applied as it is as the ground fault detection device of the charger 100 for an electric vehicle, the AC current generated from the AC power source of the ground fault detection device circulates between the capacitor of the insulation monitoring device and the noise removal capacitor. There is a possibility that. When such alternating current circulation occurs, there is a possibility that the leakage is erroneously detected even though the leakage does not actually occur. However, since the ground fault detection apparatus 102 according to the present embodiment does not include an element that interferes with the noise removing capacitor of the electric vehicle charger 100, the ground fault detection apparatus 102 is different from other elements of the electric vehicle charger 100. Occurrence of false ground fault detection due to interference can be prevented.

したがって、本実施の形態によれば、電気自動車200の急速充電中における電気自動車用充電器100の地絡および電気自動車200の漏電をより迅速に検出でき、かつその検出の信頼性を向上させることができる。   Therefore, according to the present embodiment, the ground fault of electric vehicle charger 100 and the electric leakage of electric vehicle 200 during rapid charging of electric vehicle 200 can be detected more quickly, and the reliability of the detection can be improved. Can do.

また、電気自動車200の急速充電中、電気自動車用充電器100の正極側および負極側充電用ライン103A,103Bにおける地絡発生だけでなく、電気自動車200の正極側および負極側充電用ライン206A,206Bにおける漏電発生も1台の電流検出器1022の測定値に基づき検知することができるため、より安価な電気自動車用充電器100を実現することができる。   Moreover, during the rapid charging of the electric vehicle 200, not only the ground fault occurs in the positive and negative charging lines 103A and 103B of the electric vehicle charger 100, but also the positive and negative charging lines 206A, The occurrence of electric leakage in 206B can also be detected based on the measurement value of one current detector 1022, and therefore, a cheaper electric vehicle charger 100 can be realized.

なお、以上においては、接地接続ポイント1021C−アース400間の直流電流を電流検出器1022で検出しているが、接地接続ポイント1021C−アース400間の電圧を電圧検出器で検出してもよい。この場合、接地線1023は、少なくとも、接地接続ポイント1021C−アース400間の電圧を検出するのに十分な抵抗を有している必要がある。   In the above description, the DC current between the ground connection point 1021C and the ground 400 is detected by the current detector 1022, but the voltage between the ground connection point 1021C and the ground 400 may be detected by a voltage detector. In this case, the ground line 1023 needs to have at least a resistance sufficient to detect a voltage between the ground connection point 1021C and the ground 400.

また、以上においては、電流検出器1022の測定値に基づき地絡発生を判断する制御器1024を地絡検出装置102内に設けているが、例えば、制御装置104が、電流検出器1022の測定値の入力を逐次受け付け、この測定値と閾値との比較により地絡発生を判断するようにしてもよい(以下においても同様)。   In the above description, the controller 1024 that determines the occurrence of a ground fault based on the measurement value of the current detector 1022 is provided in the ground fault detection device 102. For example, the control device 104 measures the current detector 1022. The input of a value may be sequentially received, and the occurrence of a ground fault may be determined by comparing the measured value with a threshold value (the same applies below).

ところで、本実施の形態では、電気自動車200の制御装置204と電気自動車用充電器100の制御装置104との基準電位共通化のための通信用アース線110が電気自動車用充電器100のアース400に接地されている。このため、電気自動車用充電器100の制御装置104へのサージ等の影響を考慮する必要が生じるケースがある。以下、サージ対策が施された電気自動車用充電器の構成について、前述の電気自動車用充電器100との相違を中心に説明する。   By the way, in the present embodiment, the communication ground line 110 for common reference potential between the control device 204 of the electric vehicle 200 and the control device 104 of the electric vehicle charger 100 is connected to the ground 400 of the electric vehicle charger 100. Is grounded. For this reason, it may be necessary to consider the influence of a surge or the like on the control device 104 of the electric vehicle charger 100. Hereinafter, the configuration of the charger for an electric vehicle provided with a countermeasure against surge will be described focusing on the difference from the charger 100 for the electric vehicle described above.

図4は、サージ対策を施した電気自動車用充電器100Aの概略構成を説明するための図である。なお、図4において、前述の電気自動車用充電器100と同様の構成については、図1と同じ符号が付してある。   FIG. 4 is a diagram for explaining a schematic configuration of an electric vehicle charger 100A that has taken a surge countermeasure. In FIG. 4, the same reference numerals as those in FIG. 1 are assigned to the same configurations as those of the electric vehicle charger 100 described above.

図示するように、電気自動車用充電器100Aの制御装置104Aは、電気自動車用充電器100A全体の制御処理を実行する制御系回路部1042と、電気自動車200とのデータ通信処理を実行する通信系回路部1041と、制御系回路部1042のデータ転送線および通信系回路部1041のデータ転送線をつなぐフォトカプラ1043と、を有する。すなわち、制御装置104A内部において、制御系回路部1042と通信系回路部1041とが、相互のデータ通信を非接触(電気的に分離された状態)で実現している。   As illustrated, the control device 104A of the electric vehicle charger 100A includes a control system circuit unit 1042 that executes control processing of the entire electric vehicle charger 100A and a communication system that executes data communication processing with the electric vehicle 200. The circuit unit 1041 includes a photocoupler 1043 that connects the data transfer line of the control system circuit unit 1042 and the data transfer line of the communication system circuit unit 1041. That is, in the control device 104A, the control system circuit unit 1042 and the communication system circuit unit 1041 realize mutual data communication in a non-contact (electrically separated) state.

電気自動車用充電器100Aは、接地線109および通信用アース線110の双方に負極がつながれた前述の制御系電源108とは独立して、アース400から浮いた別の制御系電源108Aをさらに備えている。そして、前述の制御系電源108は通信系回路部1041に12V電源を供給し、制御系電源108Aは制御系回路部1042に12V電源を供給している。その他の構成は、前述の電気自動車用充電器100と同様である。   The electric vehicle charger 100 </ b> A further includes another control system power supply 108 </ b> A floating from the ground 400 independently of the control system power supply 108 in which the negative electrode is connected to both the ground line 109 and the communication ground line 110. ing. The control system power supply 108 supplies 12 V power to the communication system circuit unit 1041, and the control system power supply 108 A supplies 12 V power to the control system circuit unit 1042. Other configurations are the same as those of the electric vehicle charger 100 described above.

このような構成によれば、制御系回路部1042と電気自動車200の制御装置204との間のデータ通信を可能としつつ、制御系回路部1042をアース400から浮かすことができる。このため、前述の電気自動車用充電器100と同様、地絡検出装置102は、急速充電中の電気自動車用充電器100Aにおける地絡発生を検知するだけでなく、急速充電中の電気自動車200における漏電発生も、通信用アース線110,205および接地線109を利用して検知できる。これに加えて、電気自動車用充電器100の制御装置104へのサージ等の影響を防止することができる。   According to such a configuration, it is possible to float the control system circuit unit 1042 from the ground 400 while enabling data communication between the control system circuit unit 1042 and the control device 204 of the electric vehicle 200. For this reason, as with the electric vehicle charger 100 described above, the ground fault detection device 102 not only detects the occurrence of a ground fault in the electric vehicle charger 100A during the rapid charging, but also in the electric vehicle 200 during the rapid charging. The occurrence of electric leakage can also be detected using the communication ground wires 110 and 205 and the ground wire 109. In addition to this, the influence of a surge or the like on the control device 104 of the electric vehicle charger 100 can be prevented.

なお、ここでは、制御系回路部1042のデータ転送線と通信系回路部1041のデータ転送線と間をフォトカプラ1043でつないでいるが、制御系回路部1042と通信系回路部1041との間のデータ転送を非接触で実現できるもので両者をつなぐものであればよい。例えば、制御系回路部1042のデータ転送線と通信系回路部1041のデータ転送線と間を非接触型のリレーでつないでもよい。   Note that here, the data transfer line of the control system circuit unit 1042 and the data transfer line of the communication system circuit unit 1041 are connected by the photocoupler 1043, but between the control system circuit unit 1042 and the communication system circuit unit 1041. What is necessary is just to be able to realize the data transfer in a non-contact manner and to connect the two. For example, the data transfer line of the control system circuit unit 1042 and the data transfer line of the communication system circuit unit 1041 may be connected by a non-contact type relay.

また、本発明は、電気自動車のみならず、搭載されたバッテリの外部電源からの充電機能を有する電動車両に広く適用できる。   Further, the present invention can be widely applied not only to electric vehicles but also to electric vehicles having a charging function from an external power source of a mounted battery.

100,100A:電気自動車用充電器、101:接触式コネクタ、102:地絡検出装置、103:交直変換部、103A:正極側充電用ライン、103B:負極側充電用ライン、104、04A:制御装置、105:漏電遮断器(ELB)、106:充電ケーブル、107:通信線、108:制御系電源、108A:制御系電源、109:接地線、110:通信用アース線、200:電気自動車、201:接触式コネクタ、202:車載バッテリ、203:車体アース、204:制御装置、205:通信用アース線、206A:正極側充電用ライン、206B:負極側充電用ライン、207:通信線、208:制御系電源、300:交流電源、400:アース、1021A,1021B:抵抗、1021:抵抗の直列回路、1022:電流検出器、1023:接地線、1024:制御器、1041:通信系回路部、1042:制御系回路部、1043:フォトカプラ DESCRIPTION OF SYMBOLS 100,100A: Charger for electric vehicles, 101: Contact type connector, 102: Ground fault detection device, 103: AC / DC converter, 103A: Positive side charging line, 103B: Negative side charging line, 104, 04A: Control Device: 105: Earth leakage breaker (ELB), 106: Charging cable, 107: Communication line, 108: Control system power supply, 108A: Control system power supply, 109: Ground line, 110: Communication ground line, 200: Electric vehicle, 201: contact type connector, 202: vehicle-mounted battery, 203: vehicle body ground, 204: control device, 205: communication ground wire, 206A: positive side charging line, 206B: negative side charging line, 207: communication line, 208 : Control system power supply, 300: AC power supply, 400: ground, 1021A, 1021B: resistance, 1021: series circuit of resistance, 1022: electricity Detector, 1023: ground line, 1024: controller, 1041: communication circuits unit, 1042: control system circuit unit, 1043: photocoupler

Claims (5)

電動車両への充電中に、制御装置に電源供給する第一の電源の負極が通信用アース線により前記電動車両の車体アースにつながれて前記電動車両と前記制御装置とのデータ通信を実現する電動車両用充電器であって、
前記電動車両の車載バッテリに給電するための正極側および負極側充電用ラインと、
前記正極側および負極側充電用ライン間に挿入された、抵抗値の等しい2つの抵抗からなる直列回路と、
前記2つの抵抗間に定めた接地位置をアースにつなぐ第一の接地線と、
前記通信用アース線を前記アースにつなぐ第二の接地線と、
前記第一の接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段と、
を備え、
前記制御装置は、
前記検出手段の検出値に基づき、前記正極側および負極側のいずれかの充電用ラインにおける地絡発生、および前記電動車両における漏電発生を検出する
ことを特徴とする電動車両用充電器。
During charging of the electric vehicle, the negative electrode of the first power source that supplies power to the control device is connected to the vehicle body ground of the electric vehicle by a communication ground wire to realize data communication between the electric vehicle and the control device. A vehicle charger,
A positive electrode side and a negative electrode side charging line for supplying power to the in-vehicle battery of the electric vehicle;
A series circuit composed of two resistors having the same resistance value, inserted between the positive and negative charging lines;
A first grounding wire connecting the grounding position defined between the two resistors to the ground;
A second ground wire connecting the communication ground wire to the ground;
Detection means for detecting a current flowing through the first ground line or a voltage between the ground position and the ground;
With
The controller is
An electric vehicle charger characterized by detecting occurrence of a ground fault in the charging line on either the positive electrode side or the negative electrode side and occurrence of electric leakage in the electric vehicle based on a detection value of the detection means.
電動車両への充電中に、制御装置に電源供給する第一の電源の負極が通信用アース線により前記電動車両の車体アースにつながれて前記電動車両と前記制御装置とのデータ通信を実現する電動車両用充電器であって、
前記電動車両の車載バッテリに給電するための正極側および負極側充電用ラインと、
前記正極側および負極側充電用ライン間に挿入された、抵抗値の等しい2つの抵抗からなる直列回路と、
前記2つの抵抗間に定めた接地位置をアースにつなぐ第一の接地線と、
前記通信用アース線を前記アースにつなぐ第二の接地線と、
前記第一の接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段と、
前記検出手段の検出値に基づき、前記正極側および負極側のいずれかの充電用ラインにおける地絡発生、および前記電動車両における漏電発生を検出する制御器と、を備える
ことを特徴とする電動車両用充電器。
During charging of the electric vehicle, the negative electrode of the first power source that supplies power to the control device is connected to the vehicle body ground of the electric vehicle by a communication ground wire to realize data communication between the electric vehicle and the control device. A vehicle charger,
A positive electrode side and a negative electrode side charging line for supplying power to the in-vehicle battery of the electric vehicle;
A series circuit composed of two resistors having the same resistance value, inserted between the positive and negative charging lines;
A first grounding wire connecting the grounding position defined between the two resistors to the ground;
A second ground wire connecting the communication ground wire to the ground;
Detection means for detecting a current flowing through the first ground line or a voltage between the ground position and the ground;
An electric vehicle comprising: a controller for detecting a ground fault in the charging line on either the positive electrode side or the negative electrode side and an electric leakage occurrence in the electric vehicle based on a detection value of the detection means. Charger.
請求項1または2に記載の電動車両用充電器であって、
前記正極側および負極側充電用ラインの少なくとも一方を遮断する遮断器をさらに備え、
前記制御装置は、
前記地絡または前記漏電が発生した場合に、前記正極側および負極側充電用ラインの少なくとも一方の遮断を前記遮断器に指示する
ことを特徴とする電動車両用充電器。
The electric vehicle charger according to claim 1 or 2,
A circuit breaker that further cuts off at least one of the positive electrode side and negative electrode side charging lines;
The controller is
An electric vehicle charger characterized by instructing the circuit breaker to cut off at least one of the positive electrode side and negative electrode side charging lines when the ground fault or the electric leakage occurs.
請求項1、2および3のいずれか1項に記載の電動車両用充電器であって、
前記アースから絶縁された第二の電源をさらに備え、
前記制御装置は、
前記第一の電源から電源供給され、前記電動車両との間のデータ通信を実行する通信系回路部と、
前記第二の電源から電源供給され、当該電動車両用充電器の制御処理を実行する制御系回路部と、
前記制御系回路部および前記通信系回路部間のデータ転送を非接触で行う中継装置と、を備える
ことを特徴とする電動車両用充電器。
The electric vehicle charger according to any one of claims 1, 2, and 3,
A second power source insulated from the ground;
The controller is
A communication system circuit unit that is supplied with power from the first power source and performs data communication with the electric vehicle;
A control system circuit unit that is supplied with power from the second power source and executes control processing of the electric vehicle charger;
And a relay device that performs non-contact data transfer between the control system circuit unit and the communication system circuit unit.
電動車両への充電中に、制御装置に電源供給する電源の負極が通信用アース線により前記電動車両の車体アースにつながれて前記電動車両と前記制御装置とのデータ通信を実現する電動車両用充電器において、前記電動車両へ給電するための正極側および負極側充電用ラインにおける地絡の発生と、前記電動車両側における漏電の発生とを検出する地絡検出方法であって、
前記電動車両用充電器において、前記正極側および負極側充電用ライン間に抵抗値の等しい2つの抵抗からなる直列回路を挿入し、前記2つの抵抗間に定めた接地位置を第一の接地線でアースにつなぐとともに、前記通信用アース線を第二の接地線で前記アースにつなぎ、かつ前記第一の接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段を設けておき、
前記制御装置または前記制御装置とは別に前記電動車両用充電器に設けられた制御器が、前記電動車両への充電中に、前記検出手段により逐次検出された前記第一の接地線に流れる電流、または前記接地位置および前記アース間の電圧の測定値に基づき前記地絡および前記漏電の発生を検出する
ことを特徴とする地絡検出方法。
Charging for an electric vehicle that realizes data communication between the electric vehicle and the control device by connecting a negative electrode of a power source that supplies power to the control device to a vehicle body ground of the electric vehicle via a communication ground wire during charging of the electric vehicle A ground fault detection method for detecting the occurrence of a ground fault in the positive and negative charge lines for supplying power to the electric vehicle and the occurrence of a leakage in the electric vehicle side,
In the electric vehicle charger, a series circuit composed of two resistors having the same resistance value is inserted between the positive electrode side and the negative electrode side charging line, and a grounding position defined between the two resistors is defined as a first ground line. And detecting means for detecting the current flowing through the first ground line or the voltage between the ground position and the ground, and connecting the ground line for communication to the ground with a second ground line. Set up
The controller or the controller provided in the charger for the electric vehicle separately from the controller is a current flowing through the first ground line that is sequentially detected by the detection means during charging of the electric vehicle. Alternatively, the ground fault and the occurrence of the electric leakage are detected based on a measured value of the voltage between the grounding position and the ground.
JP2009087002A 2009-03-31 2009-03-31 Electric vehicle charger and ground fault detection method Expired - Fee Related JP5369833B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009087002A JP5369833B2 (en) 2009-03-31 2009-03-31 Electric vehicle charger and ground fault detection method
PCT/JP2010/055651 WO2010113927A1 (en) 2009-03-31 2010-03-30 Electric vehicle charger and ground fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087002A JP5369833B2 (en) 2009-03-31 2009-03-31 Electric vehicle charger and ground fault detection method

Publications (2)

Publication Number Publication Date
JP2010239827A JP2010239827A (en) 2010-10-21
JP5369833B2 true JP5369833B2 (en) 2013-12-18

Family

ID=42828217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087002A Expired - Fee Related JP5369833B2 (en) 2009-03-31 2009-03-31 Electric vehicle charger and ground fault detection method

Country Status (2)

Country Link
JP (1) JP5369833B2 (en)
WO (1) WO2010113927A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803849B1 (en) * 2010-12-02 2011-10-26 榮 高橋 How to charge an electric vehicle
US20140347769A1 (en) 2011-10-03 2014-11-27 Panasonic Corporation Electric-vehicular charge and discharge device
KR101305759B1 (en) 2011-10-27 2013-09-06 엘에스산전 주식회사 Power supply system for electric vehicle
JP5945804B2 (en) 2012-03-29 2016-07-05 パナソニックIpマネジメント株式会社 Relay welding diagnostic device
JP6070254B2 (en) * 2013-02-21 2017-02-01 日産自動車株式会社 Charger
JP6111500B2 (en) 2013-03-29 2017-04-12 パナソニックIpマネジメント株式会社 Connector for electrical connection
JP2015047042A (en) * 2013-08-29 2015-03-12 株式会社デンソー Power supply device
WO2018008074A1 (en) * 2016-07-04 2018-01-11 三菱電機株式会社 Station-building power supply device and charge detection method
CN106696734B (en) * 2016-12-17 2019-05-17 广州益充新能源有限公司 Electric automobile charging pile, electric car and electric car charging method
JP6724811B2 (en) * 2017-02-07 2020-07-15 トヨタ自動車株式会社 Charging system
TWI689733B (en) * 2017-11-26 2020-04-01 台達電子工業股份有限公司 On board charge device and operating method thereof
JP7070333B2 (en) 2018-10-29 2022-05-18 トヨタ自動車株式会社 Power conversion unit
CN113771630B (en) * 2021-09-24 2023-08-25 中车长春轨道客车股份有限公司 Urban railway vehicle grounding protection circuit

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57119263A (en) * 1981-01-17 1982-07-24 Fuji Electric Co Ltd Detecting method for leak in dc power source
JPH06253449A (en) * 1993-03-01 1994-09-09 Nippon Telegr & Teleph Corp <Ntt> Power supply system
JP3147620B2 (en) * 1993-10-18 2001-03-19 トヨタ自動車株式会社 Electric vehicle charging device
JPH07123599A (en) * 1993-10-18 1995-05-12 Toyota Motor Corp Charge controller
JP2000354332A (en) * 1999-06-09 2000-12-19 Matsushita Electric Works Ltd Charging device for electric vehicle

Also Published As

Publication number Publication date
JP2010239827A (en) 2010-10-21
WO2010113927A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
WO2010113936A1 (en) Charging system, method of charging electric vehicle, and electric vehicle
CN105486923B (en) Bus leakage resistance estimation for electrical isolation testing and diagnostics
JP5972972B2 (en) DC power supply equipment
KR101473397B1 (en) Apparatus and method for checking current sensor abnormality in battery pack
EP2887080B1 (en) Power supply apparatus
US20140347769A1 (en) Electric-vehicular charge and discharge device
JP5234282B2 (en) Battery pack inspection device
CN103576046A (en) Storage battery system having storage battery protector and diagnostic device, and diagnostic method thereof
CN111090027A (en) High voltage system and method for monitoring an insulation fault in a high voltage system
EP3015307B1 (en) Evse shorted cable protection method
JP6706688B2 (en) Battery control device
KR101189582B1 (en) Voltage sensing system for detecting disconnection of voltage sensing line of battery
US11156653B2 (en) Combined monitoring device for insulation-resistance monitoring and protective-conductor-resistance monitoring of a power supply system
US9588164B2 (en) Method and device for monitoring a high-voltage arrangement
WO2010113917A1 (en) Ground fault detection device, electric vehicle charger, and ground fault detection method
CN116001570A (en) Method for checking the plausibility of insulation monitoring of a high-voltage system of an electric vehicle
NO20200398A1 (en) Procedure for charging a vehicle and vehicles
CN103180160A (en) Device and method for estimating a touch current and protecting an electrical apparatus against such touch currents
JP2009268188A (en) Charger for electric vehicle
EP3958428B1 (en) Control device, energy converting system, energy converting method, and storage medium
US20240100956A1 (en) Control unit circuit for a motor vehicle, motor vehicle and operating mathod for the control unit circuit
CN110596529B (en) Flexible direct current power grid ground insulation fault detection device and system
CN104578243A (en) A method for monitoring the DC voltage charge and a battery management system
JP2018038138A (en) vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5369833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees