JP2015047042A - Power supply device - Google Patents

Power supply device Download PDF

Info

Publication number
JP2015047042A
JP2015047042A JP2013178062A JP2013178062A JP2015047042A JP 2015047042 A JP2015047042 A JP 2015047042A JP 2013178062 A JP2013178062 A JP 2013178062A JP 2013178062 A JP2013178062 A JP 2013178062A JP 2015047042 A JP2015047042 A JP 2015047042A
Authority
JP
Japan
Prior art keywords
electrode side
positive electrode
negative electrode
conductive coating
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013178062A
Other languages
Japanese (ja)
Inventor
博臣 舩越
Hiroomi Funakoshi
博臣 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013178062A priority Critical patent/JP2015047042A/en
Publication of JP2015047042A publication Critical patent/JP2015047042A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power supply device 1 capable of early detecting a short circuit when the short circuit occurs in a connection electric wire 4 between an electric vehicle 2 and a power converter 3.SOLUTION: An electric vehicle 2 is connected via a connection electric wire 4 to a power converter 3. The discharging or charging of a main battery 5 in the electric vehicle 2 is performed via the power converter 3. The connection electric wire 4 has: a positive electrode side conductor 41a; a negative electrode side conductor 42a; and a connection wire 7. The positive electrode side conductor 41a is covered with a positive electrode side insulating layer 41b, and the negative electrode side conductor 42a is covered with a negative side insulating layer 42b. The connection electric wire 4 also has: a positive electrode side conductive coating layer 41c surrounding the outer periphery of the positive electrode side insulating layer 41b; and a negative electrode side conductive coating layer 42c surrounding the outer periphery of the negative electrode side insulating layer 42b. The connection wire 7, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are connected to each other. The power converter 3 includes a current sensor 13 for detecting currents running between the positive electrode side conductor 41a or the negative electrode side conductor 42a and the connection wire 7.

Description

本発明は、電動車両と電力変換器との間を接続する接続ケーブル内の電力線の短絡をより正確に検知できる電力供給装置に関するものである。   The present invention relates to a power supply apparatus that can more accurately detect a short circuit of a power line in a connection cable that connects between an electric vehicle and a power converter.

従来、特許文献1に記載の送電回路の保護構造が知られている。この技術は、より高い安全性を確保することができる送電回路の保護構造を提供するものである。この構造では、電動車両から送電された直流電力を電力変換器内のDC/ACインバータで直流交流変換すると共に降圧している。この降圧した交流電力を外部に出力する電力変換器を有している。この電力変換器と電動車両とに接続される接続ケーブルを有している。また、接続ケーブル、電力変換器、および電動車両で、電動車両内の電池電力を外部に供給する電力供給装置を構成している。   Conventionally, a protection structure for a power transmission circuit described in Patent Document 1 is known. This technique provides a protection structure for a power transmission circuit that can ensure higher safety. In this structure, the DC power transmitted from the electric vehicle is DC / AC converted by the DC / AC inverter in the power converter and stepped down. It has a power converter that outputs the stepped down AC power to the outside. A connection cable connected to the power converter and the electric vehicle is provided. Further, the connection cable, the power converter, and the electric vehicle constitute a power supply device that supplies battery power in the electric vehicle to the outside.

また上記構造において、接続ケーブルは、端部に接続プラグ(コネクタ)を備える。そして、接続プラグは、内部に配線を遮断するヒューズを具備する。   In the above structure, the connection cable includes a connection plug (connector) at the end. The connection plug includes a fuse for cutting off the wiring inside.

特開2013−74762号公報JP 2013-74762 A

電動車両にて直流端子を外部に設ける場合は、急速充電を行うためであることが一般的であり、その電力線は大径ケーブルが用いられると共に、急速充電時の最大電流以上で溶断する電流容量の大きいヒューズが用いられる。   When a DC terminal is provided externally in an electric vehicle, it is generally for quick charging, and a large-diameter cable is used for the power line, and the current capacity that blows above the maximum current during rapid charging A large fuse is used.

一方、電動車両に対する低電力での充放電を直流端子を介して行う装置が普及し始めている。この用途では、大きい電流を扱わないため、車両と接続する電力線を細線化し、許容電流の小さい細線ケーブルにて構成することとなる。   On the other hand, an apparatus for charging / discharging electric vehicles with low power via a DC terminal has begun to spread. In this application, since a large current is not handled, the power line connected to the vehicle is thinned and configured with a thin cable having a small allowable current.

このような状況で接続ケーブル内の電力線間で半短絡(細線ケーブルには大きいが、急速充電電流よりは小さい短絡電流が流れる短絡)が起きると、充放電器は自身の小容量ヒューズなどで保護できる。しかし、車両側では急速充電用のヒューズが切れないことから、充放電ケーブルを成す接続ケーブルの短絡箇所から車両側までの間で、電力線が短絡電流により過熱する可能性がある。   In such a situation, if a half short circuit occurs between the power lines in the connection cable (short circuit in which a short circuit current that is smaller than the quick charge current is large, but the thin cable is large), the charger / discharger is protected by its own small capacity fuse. it can. However, since the fuse for rapid charging cannot be blown on the vehicle side, there is a possibility that the power line is overheated due to the short-circuit current between the short-circuit portion of the connection cable forming the charge / discharge cable and the vehicle side.

また、この問題のために特許文献1の構造を採用しても、ヒューズ容量の選定は、コネクタの内部に入るものに限られることから選択肢が限られる。つまり、より大電流を流すために大容量のヒューズを用いたい要望があっても、コネクタを小さくしたいという要求からヒューズがコネクタ内に入らず、この方策では解決できない場合がある。   Moreover, even if the structure of Patent Document 1 is adopted due to this problem, selection of the fuse capacity is limited to the one that enters the inside of the connector, so options are limited. In other words, even if there is a desire to use a large-capacity fuse in order to allow a larger current to flow, the fuse does not enter the connector due to a request to make the connector small, and this measure may not be able to solve this problem.

本発明は、上記問題点に鑑み、電動車両と電力変換器との間の接続ケーブル内の電力線において短絡が発生する場合に、早期に短絡を検出できる電力供給装置を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a power supply device that can detect a short circuit at an early stage when a short circuit occurs in a power line in a connection cable between an electric vehicle and a power converter. .

従来技術として列挙された特許文献の記載内容は、この明細書に記載された技術的要素の説明として、参照によって導入ないし援用することができる。   Descriptions of patent documents listed as prior art can be introduced or incorporated by reference as explanations of technical elements described in this specification.

本発明は上記目的を達成するために、下記の技術的手段を採用する。すなわち、本発明の一つでは、電力供給装置(1)において、電動車両(2)に接続電線(4)にて電力変換器(3)を接続し、電動車両(2)内の主電池(5)の放電または充電が電力変換器(3)を介して行われる。接続電線(4)は、正極側導体(41a)と負極側導体(42a)と接地線(7)とを有する。正極側導体(41a)は正極側絶縁層(41b)で覆われ、負極側導体(42a)は負極側絶縁層(42b)で覆われている。かつ、正極側絶縁層(41b)の外周を取り巻く正極側導電被覆層(41c)と負極側絶縁層(42b)の外周を取り巻く負極側導電被覆層(42c)とを有している。電動車両(2)は、正極側導体(41a)と負極側導体(42a)とに接続された主電池(5)を備え、電動車両(2)の車体(2b)が接地線(7)に接続されている。そして、接地線(7)と正極側導電被覆層(41c)と負極側導電被覆層(42c)とが互いに接続され、正極側導体(41a)または負極側導体(42a)と接地線(7)との間を流れる電流を検出する電流センサ(13)を備える。   In order to achieve the above object, the present invention employs the following technical means. That is, in one of the present inventions, in the power supply device (1), the power converter (3) is connected to the electric vehicle (2) by the connecting wire (4), and the main battery ( The discharging or charging of 5) is performed via the power converter (3). The connecting wire (4) has a positive electrode side conductor (41a), a negative electrode side conductor (42a), and a ground wire (7). The positive electrode side conductor (41a) is covered with a positive electrode side insulating layer (41b), and the negative electrode side conductor (42a) is covered with a negative electrode side insulating layer (42b). And it has the positive electrode side conductive coating layer (41c) surrounding the outer periphery of the positive electrode side insulating layer (41b) and the negative electrode side conductive coating layer (42c) surrounding the outer periphery of the negative electrode side insulating layer (42b). The electric vehicle (2) includes a main battery (5) connected to the positive electrode side conductor (41a) and the negative electrode side conductor (42a), and the vehicle body (2b) of the electric vehicle (2) is connected to the ground line (7). It is connected. The ground wire (7), the positive electrode side conductive coating layer (41c), and the negative electrode side conductive coating layer (42c) are connected to each other, and the positive electrode side conductor (41a) or the negative electrode side conductor (42a) and the ground wire (7). And a current sensor (13) for detecting a current flowing between the two.

この発明においては、接続電線(4)の正極側導体(41a)と負極側導体(42a)との間の短絡が発生することが想定される。このような短絡は、正極側導体(41a)と負極側導体(42a)相互間を絶縁する正極側絶縁層(41b)と負極側絶縁層(42b)とが破壊されなければ起こりえない。これらの正極側絶縁層(41b)と負極側絶縁層(42b)との周囲は夫々正極側導電被覆層(41c)と負極側導電被覆層(42c)とによって取り巻かれている。従って、正極側絶縁層(41b)と負極側絶縁層(42b)とのいずれかが破壊された場合、この破壊箇所と正極側導電被覆層(41c)または負極側導電被覆層(42c)と接地線(7)と電流センサ(13)とを介して電流が流れる。この電流は正極側導電被覆層(41c)または負極側導電被覆層(42c)を経由するため充分な大きさとなり、正極側絶縁層(41b)と負極側絶縁層(42b)とのいずれかの破壊を早期に検出することができる。つまり、正極側導体(41a)と負極側導体(42a)との間で半短絡が発生しても、短絡電流により過熱が発生する前の段階で正極側絶縁層(41b)と負極側絶縁層(42b)とのいずれかの破壊を早期に検出することができる電力供給装置が得られる。   In this invention, it is assumed that a short circuit occurs between the positive electrode side conductor (41a) and the negative electrode side conductor (42a) of the connecting wire (4). Such a short circuit cannot occur unless the positive electrode side insulating layer (41b) and the negative electrode side insulating layer (42b) that insulate the positive electrode side conductor (41a) and the negative electrode side conductor (42a) from each other are destroyed. These positive electrode side insulating layer (41b) and negative electrode side insulating layer (42b) are surrounded by a positive electrode side conductive coating layer (41c) and a negative electrode side conductive coating layer (42c), respectively. Therefore, when either the positive electrode side insulating layer (41b) or the negative electrode side insulating layer (42b) is broken, the broken portion and the positive electrode side conductive coating layer (41c) or the negative electrode side conductive coating layer (42c) are grounded. Current flows through the line (7) and the current sensor (13). This current is large enough to pass through the positive electrode side conductive coating layer (41c) or the negative electrode side conductive coating layer (42c), and either of the positive electrode side insulating layer (41b) and the negative electrode side insulating layer (42b) Destruction can be detected early. That is, even if a half short circuit occurs between the positive electrode side conductor (41a) and the negative electrode side conductor (42a), the positive electrode side insulating layer (41b) and the negative electrode side insulating layer are in a stage before overheating occurs due to the short circuit current. (42b) The electric power supply apparatus which can detect any destruction with early is obtained.

次に、接続電線(4)の正極側導体(41a)と負極側導体(42a)とは、一体の接続ケーブル(40)内に収納されている。そして、正極側導電被覆層(41c)と負極側導電被覆層(42c)とは共通のケーブル外装部(40a)で覆われている。   Next, the positive electrode side conductor (41a) and the negative electrode side conductor (42a) of the connection electric wire (4) are accommodated in the integral connection cable (40). And the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) are covered with the common cable exterior part (40a).

この発明においては、正極側導体(41a)の電線と負極側導体(42a)の電線とを一つのケーブルとして扱うことができる。また、正極側導電被覆層(41c)と負極側導電被覆層(42c)とは共通のケーブル外装部(40a)で覆われているから、正極側導電被覆層(41c)と負極側導電被覆層(42c)とをケーブル外装部(40a)によって破壊から防護することができる。   In this invention, the electric wire of the positive electrode side conductor (41a) and the electric wire of the negative electrode side conductor (42a) can be handled as one cable. Moreover, since the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) are covered with a common cable sheath (40a), the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer are covered. (42c) can be protected from destruction by the cable sheath (40a).

次に、接続電線(4)の正極側導体(41a)と負極側導体(42a)とは、一体の接続ケーブル(40)内に収納された電線で構成されている。そして、正極側導電被覆層(41c)と負極側導電被覆層(42c)とは共通のケーブル外装部(40a)で覆われている。更に、正極側導電被覆層(41c)と負極側導電被覆層(42c)とはケーブル外装部(40a)の内部で接触している。   Next, the positive electrode side conductor (41a) and the negative electrode side conductor (42a) of the connection electric wire (4) are comprised by the electric wire accommodated in the integral connection cable (40). And the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) are covered with the common cable exterior part (40a). Furthermore, the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) are in contact with each other inside the cable exterior portion (40a).

この発明においては、正極側導電被覆層(41c)と負極側導電被覆層(42c)とはケーブル外装部(40a)の内部で接触している。よって、正極側導体(41a)または負極側導体(42a)から故障に伴う電流が流れた場合に、正極側導電被覆層(41c)と負極側導電被覆層(42c)の両方を経由して短絡電流または漏電電流が流れる。その結果、正極側導電被覆層(41c)と負極側導電被覆層(42c)との合成抵抗が小さくなり、導電部材の量を少なめに設定しても充分な量の短絡電流または漏電電流を流すことができる。   In this invention, the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) are in contact with each other inside the cable exterior portion (40a). Therefore, when a current accompanying a failure flows from the positive electrode side conductor (41a) or the negative electrode side conductor (42a), a short circuit occurs via both the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c). Current or leakage current flows. As a result, the combined resistance of the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) becomes small, and a sufficient amount of short-circuit current or leakage current flows even if the amount of the conductive member is set small. be able to.

次に、電力変換器(3)内において、正極側導体(41a)または負極側導体(42a)は、電力変換用パワー素子(3a)に接続されている。正極側導体(41a)と負極側導体(42a)とは、夫々抵抗(11、12)を介して電流センサ(13)の一端に接続されている。そして、電流センサ(13)の他端が接地線(7)に接続されている。   Next, in the power converter (3), the positive electrode side conductor (41a) or the negative electrode side conductor (42a) is connected to the power element (3a) for power conversion. The positive electrode side conductor (41a) and the negative electrode side conductor (42a) are connected to one end of the current sensor (13) via resistors (11, 12), respectively. The other end of the current sensor (13) is connected to the ground line (7).

この発明においては、電力変換器(3)内において、正極側導体(41a)または負極側導体(42a)は、電力変換用パワー素子(3a)に接続されている。よって、電動車両内の主電池(5)の電力を電力変換して外部に放電させることができる。または、電力変換用パワー素子(3a)を介して電動車両内の主電池(5)を外部電力により充電したりすることができる。また、正極側導体(41a)と負極側導体(42a)とは夫々抵抗(11、12)を介して電流センサ(13)の一端に接続され、電流センサ(13)の他端が接地線(7)に接続されている。従って、正極側絶縁層(41b)または負極側絶縁層(42b)が破壊されたとき、正極側導電被覆層(41c)または負極側導電被覆層(42c)を介して接地線(7)と電流センサ(13)とを通る電流が流れる。これにより、正極側絶縁層(41b)または負極側絶縁層(42b)の破壊に伴う短絡または漏電を早期に検出することができる。また、地絡検出器は最初から装置に備わっているので、この地絡検出器を準用して抵抗(11、12)および電流センサ(13)を構成できる。   In the present invention, in the power converter (3), the positive electrode side conductor (41a) or the negative electrode side conductor (42a) is connected to the power element for power conversion (3a). Therefore, the power of the main battery (5) in the electric vehicle can be converted into electric power and discharged to the outside. Alternatively, the main battery (5) in the electric vehicle can be charged with external power through the power conversion power element (3a). The positive electrode side conductor (41a) and the negative electrode side conductor (42a) are connected to one end of the current sensor (13) via resistors (11, 12), respectively, and the other end of the current sensor (13) is connected to the ground wire ( 7). Therefore, when the positive electrode side insulating layer (41b) or the negative electrode side insulating layer (42b) is broken, the ground wire (7) and the current are passed through the positive electrode side conductive coating layer (41c) or the negative electrode side conductive coating layer (42c). A current flows through the sensor (13). Thereby, the short circuit or electric leakage accompanying destruction of the positive electrode side insulating layer (41b) or the negative electrode side insulating layer (42b) can be detected at an early stage. In addition, since the ground fault detector is provided in the apparatus from the beginning, the resistance (11, 12) and the current sensor (13) can be configured by applying the ground fault detector.

なお、特許請求の範囲および上記各手段に記載の括弧内の符号ないし説明は、後述する実施形態に記載の具体的手段との対応関係を分かり易く示す一例であり、発明の内容を限定するものではない。   In addition, the code | symbol in parentheses described in a claim and each said means is an example which shows the correspondence with the specific means as described in embodiment mentioned later easily, and limits the content of invention is not.

本発明の第1実施形態となる電力供給装置の電気回路図である。1 is an electric circuit diagram of a power supply device according to a first embodiment of the present invention. 上記実施形態における接続電線における一対の電力線の構造を示す断面図である。It is sectional drawing which shows the structure of a pair of power line in the connecting wire in the said embodiment. 本発明の第2実施形態に使用される接続ケーブルの断面図である。It is sectional drawing of the connection cable used for 2nd Embodiment of this invention. 本発明の第3実施形態に使用される接続ケーブルの断面図である。It is sectional drawing of the connection cable used for 3rd Embodiment of this invention. 本発明の第4実施形態に使用される接続ケーブルの断面図である。It is sectional drawing of the connection cable used for 4th Embodiment of this invention. 本発明のその他の実施形態となる電力供給装置の電気回路図である。It is an electric circuit diagram of the electric power supply apparatus which becomes other embodiment of this invention.

以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部を説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。   A plurality of modes for carrying out the present invention will be described below with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. In the case where a part of the configuration is described in each form, the other forms described above can be applied to the other parts of the configuration.

各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示していなくても実施形態同士を部分的に組合せることも可能である。   Not only combinations of parts that clearly indicate that the combination is possible in each embodiment, but also the embodiments are partially combined even if they are not clearly specified unless there is a problem with the combination. It is also possible.

(第1実施形態)
以下、本発明の第1実施形態について図1および図2を用いて詳細に説明する。図1は、本発明の一実施形態となる電力供給装置の電気回路を示している。また、図2は接続電線4のうちの一対の電力線41、42の断面構造を示している。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2. FIG. 1 shows an electric circuit of a power supply apparatus according to an embodiment of the present invention. FIG. 2 shows a cross-sectional structure of a pair of power lines 41 and 42 in the connecting wire 4.

電力供給装置1は、電動車両2と可搬型の電力変換器3とを備えている。電動車両2に接続電線4にて電力変換器3を接続し、電動車両2内の主電池5の放電が電力変換器3を介して行われる電力供給装置1を提供している。なお、本発明の接続電線4は接続ケーブルを含む。電力変換器3は、電動車両2の主電池5の電力をコンタクタ6とコネクタ4cとを介して外部に取り出す放電装置としての役割を備える。コネクタ4cは、模式的に図示しているが、凹凸嵌合により電気的に接続状態または非接続状態にすることができるプラス側メス端子、プラス側オス端子、マイナス側メス端子、およびマイナス側オス端子が設けられている。電力変換器3から延在した接続電線4は、コネクタ4cで電動車両2内の接続電線に接続状態または非接続状態とされる。   The power supply device 1 includes an electric vehicle 2 and a portable power converter 3. A power supply device 1 is provided in which a power converter 3 is connected to an electric vehicle 2 by a connecting wire 4 and a main battery 5 in the electric vehicle 2 is discharged via the power converter 3. In addition, the connecting wire 4 of the present invention includes a connecting cable. The power converter 3 has a role as a discharge device that extracts the power of the main battery 5 of the electric vehicle 2 to the outside through the contactor 6 and the connector 4c. Although the connector 4c is schematically illustrated, the positive female terminal, the positive male terminal, the negative female terminal, and the negative male can be electrically connected or disconnected by fitting the concave and convex portions. Terminals are provided. The connecting wire 4 extending from the power converter 3 is connected to or disconnected from the connecting wire in the electric vehicle 2 by the connector 4c.

電力変換器3内には、電動車両2と電力変換器3との間の制御を実行する図示しない電力変換器側制御装置(インターフェースとも呼ばれる)を有している。電力変換器3は、例えば特許文献1に記載されたように、図示しない内蔵バッテリ、内蔵充電器、DC/ACインバータユニット(絶縁変圧器を内包している、以下同じ)8等を有している。一方、電動車両2には、主電池5のほかに、主電池電力を電力変換器3側に供給するコンタクタ6、図示しないDC12ボルトの補機用バッテリ、電池制御用電子ユニット等を含むEV−ECU(電動車両側制御装置)が搭載されている。なお、電動車両側制御装置と電力変換器側制御装置とは、図示しない制御信号線または無線で信号の授受を行う。   The power converter 3 includes a power converter side control device (also referred to as an interface) (not shown) that executes control between the electric vehicle 2 and the power converter 3. For example, as described in Patent Document 1, the power converter 3 includes a built-in battery, a built-in charger, a DC / AC inverter unit (including an insulating transformer, the same applies hereinafter) 8 and the like (not shown). Yes. On the other hand, the electric vehicle 2 includes, in addition to the main battery 5, an EV− that includes a contactor 6 that supplies main battery power to the power converter 3, a DC 12-volt auxiliary battery (not shown), a battery control electronic unit, and the like. An ECU (electric vehicle control device) is mounted. The electric vehicle-side control device and the power converter-side control device exchange signals with a control signal line (not shown) or wirelessly.

そして、電動車両側制御装置と電力変換器側制御装置とによって電動車両2と電力変換器3との間で通信がなされる。この通信の一例は、電動車両2内のコンタクタ6の投入を依頼する。コンタクタ6の投入による電動車両2からの電力線41、42を経由した高圧電力によって、電力変換器3内のDC/ACインバータユニット8がAC100ボルト電流を生成する。   And communication is made between the electric vehicle 2 and the power converter 3 by the electric vehicle side control device and the power converter side control device. As an example of this communication, the contactor 6 in the electric vehicle 2 is requested to be turned on. The DC / AC inverter unit 8 in the power converter 3 generates an AC 100 volt current by the high-voltage power from the electric vehicle 2 via the power lines 41 and 42 by turning on the contactor 6.

電動車両2から電力変換器3を介して電力を取り出すのを停止する場合は、DC/ACインバータユニット8を停止させると共に、電動車両2内のコンタクタ6がオフする。その結果、電力線41、42に高圧電源が来なくなってDC/ACインバータユニット8のAC出力が無くなる。   When stopping taking out electric power from the electric vehicle 2 via the power converter 3, the DC / AC inverter unit 8 is stopped and the contactor 6 in the electric vehicle 2 is turned off. As a result, the high voltage power supply does not come to the power lines 41 and 42, and the AC output of the DC / AC inverter unit 8 is lost.

次に、地絡検出の構成について説明する。電動車両2内には、12ボルトの通常の補機用バッテリ(低圧電池とも言う)以外に、主電池5が搭載されている。この主電池5からコンタクタ6を介して電力変換器3側に電力線41、42が接続される。この電力線41、42は、接地線7等と共にバインド線等で束ねられていても良い。   Next, the configuration of ground fault detection will be described. In the electric vehicle 2, a main battery 5 is mounted in addition to a 12-volt normal auxiliary battery (also referred to as a low-voltage battery). Power lines 41 and 42 are connected from the main battery 5 through the contactor 6 to the power converter 3 side. The power lines 41 and 42 may be bundled with a bind line or the like together with the ground line 7 or the like.

この接地線7は、本来の接地作用以外に、電力変換器3内のスイッチ素子と電動車両2内のスイッチ素子とのオンオフ信号を、電動車両2と電力変換器3との間でやり取りする場合の信号帰路としての作用を成す。   In addition to the original grounding action, the ground line 7 exchanges on / off signals between the switch element in the power converter 3 and the switch element in the electric vehicle 2 between the electric vehicle 2 and the power converter 3. It serves as a signal return path.

電力変換器3内には、地絡検出のために、地絡検出回路9が形成されている。この地絡検出回路9は、接地線7に接続された2つの抵抗11、12と、この抵抗11、12に接続された電流センサ(CT)13とを有している。   A ground fault detection circuit 9 is formed in the power converter 3 for ground fault detection. The ground fault detection circuit 9 includes two resistors 11 and 12 connected to the ground line 7 and a current sensor (CT) 13 connected to the resistors 11 and 12.

地絡が発生すると、抵抗11、12のいずれかと接地線7とを介して電流センサ13に微弱電流(地絡電流または漏電電流)が流れて地絡の有無が検出される。つまり、接地線7は、地絡検出という作用にも関係する(特開2010−239827号公報の従来技術参照)。   When a ground fault occurs, a weak current (a ground fault current or a leakage current) flows through the current sensor 13 via one of the resistors 11 and 12 and the ground wire 7 to detect the presence or absence of a ground fault. That is, the grounding wire 7 is also related to the function of ground fault detection (refer to the prior art in JP 2010-239827 A).

接続電線4は、正極側導体41aを含む電力線41、負極側導体42aを含む電力線42および接地線7を有する。正極側導体41aは正極側絶縁層41bで覆われ、負極側導体42aは負極側絶縁層42bで覆われている。かつ、正極側絶縁層41bの外周を取り巻く正極側導電被覆層41cと負極側絶縁層の外周を取り巻く負極側導電被覆層42cとを有している。   The connecting wire 4 includes a power line 41 including a positive electrode side conductor 41a, a power line 42 including a negative electrode side conductor 42a, and a ground line 7. The positive electrode side conductor 41a is covered with a positive electrode side insulating layer 41b, and the negative electrode side conductor 42a is covered with a negative electrode side insulating layer 42b. In addition, it has a positive electrode side conductive coating layer 41c surrounding the outer periphery of the positive electrode side insulating layer 41b and a negative electrode side conductive coating layer 42c surrounding the outer periphery of the negative electrode side insulating layer.

正極側導電被覆層41cおよび負極側導電被覆層42cは、この実施形態においては金属メッシュ(金網)状の被覆からなるが、軟銅のテープを巻いたものやフレキシブルな金属製外装部であっても良い。要は、電力線の可撓性を確保することができ、正極側絶縁層41bまたは負極側絶縁層42bから成る絶縁被覆が損傷した場合に損傷箇所を接地することができる導電性部材であればよい。   In this embodiment, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are made of a metal mesh (metal mesh) -like coating, but even if they are wound with a soft copper tape or a flexible metal exterior portion. good. In short, any conductive member can be used as long as it can ensure the flexibility of the power line and can ground the damaged portion when the insulating coating made of the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b is damaged. .

電動車両2は、正極側導体41aと負極側導体42aとに接続された主電池5を備え、電動車両2の車体2bが接地線7に接続されている。   The electric vehicle 2 includes a main battery 5 connected to the positive electrode side conductor 41 a and the negative electrode side conductor 42 a, and the vehicle body 2 b of the electric vehicle 2 is connected to the ground line 7.

電力変換器3内では、接地線7と正極側導電被覆層41cと負極側導電被覆層42cとが互いに接続されて接地されている。そして、正極側導体41aまたは負極側導体42aと接地線7との間を流れる電流を検出する電流センサ13を備える。   In the power converter 3, the ground wire 7, the positive electrode side conductive coating layer 41c, and the negative electrode side conductive coating layer 42c are connected to each other and grounded. The current sensor 13 detects a current flowing between the positive electrode side conductor 41 a or the negative electrode side conductor 42 a and the ground line 7.

このように、接続電線4の正極側導体41aと負極側導体42aと接地線7とは夫々分離独立した電線で構成されている。電動車両2は、夫々の電線内の正極側導体41aと負極側導体42aとに接続された主電池5を備え、電動車両2の車体2bが接地線7に接続されている。一方、電力変換器3内では、接地線7と正極側導電被覆層41cと負極側導電被覆層42cとが互いに接続され、正極側導体41aまたは負極側導体42aと接地線7との間を流れる電流を電流センサ13が検出する。   As described above, the positive electrode side conductor 41a, the negative electrode side conductor 42a, and the ground wire 7 of the connection electric wire 4 are constituted by separate and independent electric wires. The electric vehicle 2 includes a main battery 5 connected to the positive electrode side conductor 41 a and the negative electrode side conductor 42 a in each electric wire, and the vehicle body 2 b of the electric vehicle 2 is connected to the ground line 7. On the other hand, in the power converter 3, the ground wire 7, the positive electrode side conductive coating layer 41 c, and the negative electrode side conductive coating layer 42 c are connected to each other and flow between the positive electrode side conductor 41 a or the negative electrode side conductor 42 a and the ground wire 7. The current sensor 13 detects the current.

正極側導体41aまたは負極側導体42aの周囲は、夫々絶縁層41b、42bで覆われ、その外周を正極側導電被覆層41cまたは負極側導電被覆層42cが覆っている。第1実施形態では正極側導電被覆層41cまたは負極側導電被覆層42cの外側は外気に晒されているが、正極側導電被覆層41cまたは負極側導電被覆層42cの外側を絶縁性の外装部材(シース)で覆っても良い。つまり正極側導電被覆層41cまたは負極側導電被覆層42cは、電線の中にあっても良い。   The periphery of the positive electrode side conductor 41a or the negative electrode side conductor 42a is covered with insulating layers 41b and 42b, respectively, and the outer periphery thereof is covered with the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c. In the first embodiment, the outside of the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c is exposed to the outside air, but the outer side of the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c is insulated from the exterior member. (Sheath) may be covered. That is, the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c may be in the electric wire.

(第1実施形態の作用効果)
上記第1実施形態においては、電動車両2に接続電線4にて電力変換器3を接続し、電動車両2内の主電池5の放電または充電が電力変換器3を介して行われる電力供給装置1を構成している。この電力供給装置1の接続電線4は、正極側導体41aと負極側導体42aと接地線7とを有している。このうち、正極側導体41aは正極側絶縁層41bで覆われ、負極側導体42aは負極側絶縁層42bで覆われている。かつ、正極側絶縁層41bの外周を取り巻く正極側導電被覆層41cと負極側絶縁層42bの外周を取り巻く負極側導電被覆層42cとを有している。
(Operational effects of the first embodiment)
In the first embodiment, the power converter 3 is connected to the electric vehicle 2 with the connecting wire 4, and the main battery 5 in the electric vehicle 2 is discharged or charged via the power converter 3. 1 is configured. The connection electric wire 4 of the power supply device 1 includes a positive electrode side conductor 41a, a negative electrode side conductor 42a, and a ground wire 7. Among these, the positive electrode side conductor 41a is covered with the positive electrode side insulating layer 41b, and the negative electrode side conductor 42a is covered with the negative electrode side insulating layer 42b. Moreover, it has a positive electrode side conductive coating layer 41c surrounding the outer periphery of the positive electrode side insulating layer 41b and a negative electrode side conductive coating layer 42c surrounding the outer periphery of the negative electrode side insulating layer 42b.

電動車両2は、正極側導体41aと負極側導体42aとにコネクタ4cおよびコンタクタ6を介して接続された主電池5を備え、電動車両2の車体2bが接地線7に接続されている。電力変換器3内では、接地線7と正極側導電被覆層41cと負極側導電被覆層42cが互いに接続され、正極側導体41aまたは負極側導体42aと接地線7との間を流れる電流を検出する電流センサ13を備える。   The electric vehicle 2 includes a main battery 5 connected to the positive electrode side conductor 41 a and the negative electrode side conductor 42 a via the connector 4 c and the contactor 6, and the vehicle body 2 b of the electric vehicle 2 is connected to the ground line 7. In the power converter 3, the ground wire 7, the positive electrode side conductive coating layer 41c, and the negative electrode side conductive coating layer 42c are connected to each other, and a current flowing between the positive electrode side conductor 41a or the negative electrode side conductor 42a and the ground wire 7 is detected. The current sensor 13 is provided.

このような構成においては、接続電線4において、正極側導体41aと負極側導体42aとの間の短絡または地絡が発生することが想定される。このような短絡または地絡は、正極側導体41aと負極側導体42aを絶縁する正極側絶縁層41bと負極側絶縁層42bとが破壊されなければ起こりえない。   In such a configuration, it is assumed that a short circuit or a ground fault occurs between the positive electrode side conductor 41a and the negative electrode side conductor 42a in the connecting wire 4. Such a short circuit or ground fault cannot occur unless the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b that insulate the positive electrode side conductor 41a and the negative electrode side conductor 42a are destroyed.

これらの正極側絶縁層41bと負極側絶縁層42bとの周囲は夫々正極側導電被覆層41cと負極側導電被覆層42cとによって取り巻かれている。従って、正極側絶縁層41bと負極側絶縁層42bとのいずれかが破壊された場合、この破壊箇所と正極側導電被覆層41cまたは負極側導電被覆層42cと接地線7と電流センサ13とを介して矢印Y11のように電流が流れる。   The periphery of the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b is surrounded by the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c, respectively. Therefore, when any one of the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b is broken, the broken portion, the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c, the ground wire 7 and the current sensor 13 are connected. Current flows as shown by an arrow Y11.

この電流は、金属メッシュ等から成る正極側導電被覆層41cまたは負極側導電被覆層42cを経由するため充分な大きさとなり、絶縁層41b、42bの破壊を早期に検出することができる。つまり、接続電線4の短絡箇所を流れる短絡電流、または地絡電流を含む漏電電流により過熱または感電が発生する前の段階で、絶縁層41b、42bの破壊を早期に検出することができ、的確に対処できる電力供給装置1が得られる。   Since this current passes through the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c made of a metal mesh or the like, the current becomes sufficiently large, and the breakdown of the insulating layers 41b and 42b can be detected at an early stage. That is, the breakdown of the insulating layers 41b and 42b can be detected at an early stage before overheating or electric shock occurs due to a short-circuit current flowing through the short-circuited portion of the connection wire 4 or a leakage current including a ground fault current. The power supply device 1 that can cope with the above is obtained.

更に、接続電線4の正極側導体41aと負極側導体42aと接地線7とは夫々分離独立した電線で構成されている。従って、接続電線4全体の可撓性に優れ、導電被覆層を持つ単一種類の電線で正極側導体41aを持つ電力線41と負極側導体42aを持つ電力線42とを構成できる。   Furthermore, the positive electrode side conductor 41a, the negative electrode side conductor 42a, and the grounding wire 7 of the connection electric wire 4 are respectively constituted by separate and independent electric wires. Therefore, it is possible to configure the power line 41 having the positive electrode side conductor 41a and the power line 42 having the negative electrode side conductor 42a with a single type of electric wire having a conductive covering layer, which is excellent in flexibility of the entire connection electric wire 4.

加えて、電力変換器3内において、正極側導体41aまたは負極側導体42aは、DC/ACインバータユニット8内の例えば電力変換用パワー素子3aに接続されている。そして、正極側導体41aと負極側導体42aとは夫々同じ抵抗値の抵抗11、12を介して電流センサ13の一端に接続されている。そして、電流センサ13の他端が接地線7に接続されて接地(アース)されている。   In addition, in the power converter 3, the positive electrode side conductor 41 a or the negative electrode side conductor 42 a is connected to, for example, the power conversion power element 3 a in the DC / AC inverter unit 8. The positive electrode side conductor 41a and the negative electrode side conductor 42a are connected to one end of the current sensor 13 via resistors 11 and 12 having the same resistance value, respectively. The other end of the current sensor 13 is connected to the ground line 7 and grounded.

これにおいては、正極側導体41aまたは負極側導体42aは、電力変換用パワー素子3aに接続されているから、電動車両2内の主電池5の電力を電力変換して外部に放電させることができる。かつ、電力変換用パワー素子3aを介して電動車両2内の主電池5を外部電力により充電することもできる。   In this case, since the positive electrode side conductor 41a or the negative electrode side conductor 42a is connected to the power conversion power element 3a, the electric power of the main battery 5 in the electric vehicle 2 can be converted into electric power and discharged to the outside. . And the main battery 5 in the electric vehicle 2 can also be charged with external electric power via the power element 3a for power conversion.

また、正極側導体41aと負極側導体42aとは夫々抵抗11、12を介して電流センサ13の一端に接続され、電流センサ13の他端が接地線7に接続されている。従って、正極側絶縁層41bまたは負極側絶縁層42bが破壊され電流が正極側導電被覆層41cまたは負極側導電被覆層42cを介して接地線7と電流センサ13とを通る電流が流れる。これにより、正極側絶縁層41bまたは負極側絶縁層42bの破壊を早期に検出することができる。また、金属メッシュ等から成る導電被覆層41c、42cで被覆することで電力線41、42の強度を上げて破壊を防止することで短絡し難くすることができる。   Further, the positive electrode side conductor 41 a and the negative electrode side conductor 42 a are connected to one end of the current sensor 13 via the resistors 11 and 12, respectively, and the other end of the current sensor 13 is connected to the ground line 7. Accordingly, the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b is destroyed, and a current flows through the ground line 7 and the current sensor 13 via the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c. Thereby, destruction of the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b can be detected at an early stage. Further, by covering with the conductive coating layers 41c and 42c made of a metal mesh or the like, the strength of the power lines 41 and 42 can be increased to prevent breakage, thereby making it difficult to short-circuit.

なお、金属メッシュを電線内に設け、かつ金属メッシュを接地すること自体は、電線から放射する電磁ノイズの遮蔽または抑制ためにも用いられることもある。しかし、この実施形態は、それにとどまらず、地絡を検出する電流センサ13を利用して、絶縁性能の低下に伴う短絡を地絡現象として早期に検知する考え方を採用している。   In addition, providing a metal mesh in an electric wire and grounding the metal mesh itself may be used for shielding or suppressing electromagnetic noise radiated from the electric wire. However, this embodiment is not limited to this, and employs a concept of detecting a short circuit accompanying a decrease in insulation performance as a ground fault phenomenon at an early stage by using the current sensor 13 that detects a ground fault.

なお、正極と負極を備えた電力線間(異なる極性間)の短絡防止という名目だけであれば、正極と負極のどちらか一方の電力線41または42に対策を加えるだけで、いずれの電力線41または42で絶縁低下が起こっても短絡防止は可能になる。すなわち、正極側絶縁層41bと負極側絶縁層42bとの双方に破壊が生じなければ、このような電力線間短絡は発生しない。   In addition, if it is only the name of the short circuit prevention between the power lines provided with the positive electrode and the negative electrode (between different polarities), any power line 41 or 42 can be obtained only by applying a countermeasure to either the positive electrode or the negative electrode power line 41 or 42. Therefore, even if the insulation is lowered, the short circuit can be prevented. That is, such a short circuit between power lines does not occur unless both the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b are broken.

更に、上記実施形態では、電力線41、42と大地が導通状態になる地絡事象に対しても、実際に大規模な地絡が起こる前に検知できるため、短絡だけでなく、地絡監視に関しても安全性が高まることになる。   Furthermore, in the above embodiment, since a ground fault event in which the power lines 41 and 42 and the ground are in a conductive state can be detected before a large-scale ground fault actually occurs, not only a short circuit but also a ground fault monitoring is performed. However, safety will increase.

加えて、図1では片方の電力線41の絶縁層41bの劣化状態を代表して示したが、当然ながら、正極と負極の両方の絶縁層41b、42bで絶縁低下を引き起こしても、同様に早期検知は可能である。なお、正極または負極の片方でも電力線41、42に異常があれば検知可能である。このため、特開2011−38898号公報に開示のある絶縁試験も省略することができる。かつ、この絶縁試験では、充放電前に電力線41、42の短絡がないことを確認することで充放電中の絶縁確保の担保としているが、上記実施形態であれば、充放電中も連続して絶縁監視を行うことができる。また、地絡検出器は従来の仕様のまま利用することができる。   In addition, in FIG. 1, the deterioration state of the insulating layer 41b of one power line 41 is shown as a representative. Naturally, even if the insulation lowering is caused in both the positive and negative insulating layers 41b and 42b, early deterioration is similarly caused. Detection is possible. In addition, even if one of a positive electrode or a negative electrode has abnormality in the power lines 41 and 42, it can detect. For this reason, the insulation test disclosed in JP 2011-38898 A can also be omitted. And in this insulation test, it is assured of insulation ensuring during charging / discharging by confirming that there is no short circuit of the power lines 41, 42 before charging / discharging. Insulation monitoring. In addition, the ground fault detector can be used with the conventional specifications.

なお、上記特開2011−38898号公報は、平滑コンデンサの電圧と電圧基準信号記憶部に記憶された電圧基準信号とを比較し、充電ケーブルの絶縁が正常であるか否かを判定する方策である。この方策では、充電ケーブルの絶縁が正常であるときの平滑コンデンサの電圧基準信号を予め電圧基準信号記憶部に記憶しておく。そして、充電ケーブルに電圧を印加して平滑コンデンサを充電した後の平滑コンデンサの電圧を電圧計で測定する。その上で、比較判定部は、電圧計で測定した平滑コンデンサの電圧と電圧基準信号記憶部に記憶された電圧基準信号とを比較し、充電ケーブルの絶縁が正常であるか否かを判定している。   In addition, the said Unexamined-Japanese-Patent No. 2011-38898 is a policy which compares the voltage of a smoothing capacitor and the voltage reference signal memorize | stored in the voltage reference signal memory | storage part, and determines whether the insulation of a charging cable is normal. is there. In this measure, the voltage reference signal of the smoothing capacitor when the insulation of the charging cable is normal is stored in advance in the voltage reference signal storage unit. And the voltage of the smoothing capacitor after applying a voltage to a charging cable and charging a smoothing capacitor is measured with a voltmeter. Then, the comparison / determination unit compares the voltage of the smoothing capacitor measured by the voltmeter with the voltage reference signal stored in the voltage reference signal storage unit, and determines whether the insulation of the charging cable is normal. ing.

次に、異なる極性の電力線間短絡発生前に異常を検知可能なので、従来技術において用いられてきた電力線間短絡時に溶断するように選定され取り付けられたヒューズ(例えば接続ケーブル末端のコネクタ4c内のヒューズ)は省略することが可能である。   Next, since an abnormality can be detected before occurrence of a short circuit between power lines having different polarities, a fuse selected and attached so as to be blown at the time of a short circuit between power lines used in the prior art (for example, a fuse in the connector 4c at the end of the connection cable) ) Can be omitted.

勿論、上記ヒューズを併用することも可能である。この場合は、電力線41、42を成す細径電線の先端に設けられ、電動車両2との接続に用いられるコネクタ4c内に、電力線41、42の正極と負極の片方ないし両方に細線化電力線を保護可能な容量のヒューズを設ける。これにより、半短絡が発生しても、コネクタ4c内に追加したヒューズが溶断することから、電力線41、42を成す細径電線の車両側に過大な電流が流れることがなくなり、利用者の安全性を二重に高めることができる。   Of course, it is also possible to use the above fuses together. In this case, a thinned power line is provided at one end or both of the positive electrode and the negative electrode of the power lines 41 and 42 in the connector 4c that is provided at the tip of the thin electric wire forming the power lines 41 and 42 and used for connection to the electric vehicle 2. Provide a fuse with a protective capacity. As a result, even if a half short-circuit occurs, the fuse added in the connector 4c is blown, so that an excessive current does not flow to the vehicle side of the thin electric wires forming the power lines 41 and 42, and the user's safety Sexuality can be doubled.

以上、まとめれば、電動車両2に接続電線4にて電力変換器3を接続し、電動車両2内の主電池5の放電または充電が電力変換器3を介して行われる電力供給装置1が構成される。この電力供給装置1は、接続電線4は、正極側導体41aと負極側導体42aと接地線7とを少なくとも有する。そして、正極側導体41aは正極側絶縁層41bで覆われ、負極側導体42aは負極側絶縁層42bで覆われている。かつ、正極側絶縁層41bの外周を取り巻く正極側導電被覆層41cと負極側絶縁層42bの外周を取り巻く負極側導電被覆層42cとを有している。また、電動車両2は、正極側導体41aと負極側導体42aとに接続された主電池5を備え、電動車両2の車体2bが接地線7に接続されて接地されている。そして、接地線7と正極側導電被覆層41cと負極側導電被覆層42cとが互いに接続され、正極側導体41aまたは負極側導体42aと接地線7との間を流れる電流を検出する電流センサ13を備える。   In summary, the power supply device 1 is configured in which the power converter 3 is connected to the electric vehicle 2 by the connecting wire 4 and the main battery 5 in the electric vehicle 2 is discharged or charged via the power converter 3. Is done. In the power supply device 1, the connecting wire 4 includes at least a positive electrode side conductor 41 a, a negative electrode side conductor 42 a, and a ground line 7. The positive electrode side conductor 41a is covered with a positive electrode side insulating layer 41b, and the negative electrode side conductor 42a is covered with a negative electrode side insulating layer 42b. Moreover, it has a positive electrode side conductive coating layer 41c surrounding the outer periphery of the positive electrode side insulating layer 41b and a negative electrode side conductive coating layer 42c surrounding the outer periphery of the negative electrode side insulating layer 42b. The electric vehicle 2 includes a main battery 5 connected to the positive electrode side conductor 41a and the negative electrode side conductor 42a, and the vehicle body 2b of the electric vehicle 2 is connected to the ground line 7 and grounded. The ground wire 7, the positive electrode side conductive coating layer 41c, and the negative electrode side conductive coating layer 42c are connected to each other, and the current sensor 13 detects the current flowing between the positive electrode side conductor 41a or the negative electrode side conductor 42a and the ground wire 7. Is provided.

この構成においては、接続電線4において、正極側導体41aと負極側導体42aとの間の短絡が発生することが想定される。このような短絡は、正極側導体41aと負極側導体42aとの相互間を絶縁する正極側絶縁層41bと負極側絶縁層42bとが破壊されなければ起こりえない。これらの正極側絶縁層41bと負極側絶縁層42bとの周囲は夫々正極側導電被覆層41cと負極側導電被覆層42cとによって取り巻かれている。   In this configuration, it is assumed that a short circuit occurs between the positive electrode side conductor 41a and the negative electrode side conductor 42a in the connecting wire 4. Such a short circuit cannot occur unless the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b that insulate the positive electrode side conductor 41a and the negative electrode side conductor 42a are destroyed. The periphery of the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b is surrounded by the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c, respectively.

従って、正極側絶縁層41bと負極側絶縁層42bとのいずれかが破壊された場合、この破壊箇所と正極側導電被覆層41cまたは負極側導電被覆層42cと接地線7と電流センサ13とを介して電流が流れる。この電流は、正極側導電被覆層41cまたは負極側導電被覆層42cを経由するため充分な大きさとなり、正極側絶縁層41bと負極側絶縁層42bとのいずれかの破壊を早期に検出することができる。つまり、接続電線4を成す正極側導体41aと負極側導体42aとの間で半短絡が発生しても、短絡箇所を流れる短絡電流により過熱が発生する前の段階で正極側絶縁層41bと負極側絶縁層42bとのいずれかの破壊を早期に検出することができる。よって、半短絡に対し的確に対処できる電力供給装置1が得られる。   Therefore, when any one of the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b is broken, the broken portion, the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c, the ground wire 7 and the current sensor 13 are connected. Current flows through. This current is large enough to pass through the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c, so that any destruction of the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b is detected at an early stage. Can do. That is, even if a semi-short circuit occurs between the positive electrode side conductor 41a and the negative electrode side conductor 42a forming the connection wire 4, the positive electrode side insulating layer 41b and the negative electrode are in a stage before overheating occurs due to a short circuit current flowing through the short circuit portion. Any destruction with the side insulating layer 42b can be detected at an early stage. Therefore, the electric power supply apparatus 1 which can cope with a half short circuit exactly is obtained.

次に、接続電線4の正極側導体41aと負極側導体42aと接地線7とは夫々分離独立した電線で構成されている。従って、接続電線4全体の可撓性に優れ、正極側絶縁層41bまたは負極側絶縁層42bを持つ単一種類の電線で正極側導体41aの電線と負極側導体42aの電線とを構成できる。   Next, the positive electrode side conductor 41a, the negative electrode side conductor 42a, and the ground wire 7 of the connection electric wire 4 are respectively constituted by separate and independent electric wires. Therefore, the whole connecting wire 4 is excellent in flexibility, and the wire of the positive electrode side conductor 41a and the wire of the negative electrode side conductor 42a can be constituted by a single type of electric wire having the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b.

次に、電力変換器3内において、正極側導体41aまたは負極側導体42aは、電力変換用パワー素子3aに接続されている。また、正極側導体41aと負極側導体42aとは、夫々抵抗11、12を介して電流センサ13の一端に接続されている。電流センサ13の他端は、接地線7に接続されている。   Next, in the power converter 3, the positive electrode side conductor 41a or the negative electrode side conductor 42a is connected to the power element 3a for power conversion. Further, the positive electrode side conductor 41a and the negative electrode side conductor 42a are connected to one end of the current sensor 13 via resistors 11 and 12, respectively. The other end of the current sensor 13 is connected to the ground line 7.

これにおいては、電力変換器3内において、正極側導体41aまたは負極側導体42aは、電力変換用パワー素子3aに接続されている。よって、電動車両2内の主電池5の電力を電力変換して外部に放電させたり、電力変換用パワー素子3aを介して電動車両2内の主電池5を外部電力により充電したりすることができる。   In this, in the power converter 3, the positive electrode side conductor 41a or the negative electrode side conductor 42a is connected to the power element 3a for power conversion. Therefore, the power of the main battery 5 in the electric vehicle 2 can be converted into electric power and discharged to the outside, or the main battery 5 in the electric vehicle 2 can be charged with external power via the power conversion power element 3a. it can.

また、正極側導体41aと負極側導体42aとは夫々抵抗11、12を介して電流センサ13の一端に接続され、電流センサ13の他端が接地線7に接続されている。従って、正極側絶縁層41bまたは負極側絶縁層42bが破壊されると、正極側導電被覆層41cまたは負極側導電被覆層42cを介して接地線7と電流センサ13とを通る電流が流れる。これにより、正極側絶縁層41bまたは負極側絶縁層42bの破壊を早期に検出することができる。   Further, the positive electrode side conductor 41 a and the negative electrode side conductor 42 a are connected to one end of the current sensor 13 via the resistors 11 and 12, respectively, and the other end of the current sensor 13 is connected to the ground line 7. Therefore, when the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b is destroyed, a current passing through the ground line 7 and the current sensor 13 flows through the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c. Thereby, destruction of the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b can be detected at an early stage.

(第2実施形態)
次に、本発明の第2実施形態について説明する。なお、以降の各実施形態においては、上述した第1実施形態と同一の構成要素には同一の符号を付して説明を省略し、異なる構成について説明する。なお、第2実施形態以下については、第1実施形態と同じ符号は、同一の構成を示すものであって、先行する説明が援用される。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the following embodiments, the same components as those in the first embodiment described above are denoted by the same reference numerals, description thereof is omitted, and different configurations will be described. In addition, about 2nd Embodiment or less, the same code | symbol as 1st Embodiment shows the same structure, Comprising: The description which precedes is used.

図3は、本発明の第2実施形態に使用される電力線41、42の断面図である。図3において、接続電線4の正極側導体41aと負極側導体42aとは、一体の接続ケーブル40内に収納されている。つまり、接続電線4は接続ケーブル40で構成されている。そして、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部(シース)40aで覆われている。   FIG. 3 is a cross-sectional view of power lines 41 and 42 used in the second embodiment of the present invention. In FIG. 3, the positive electrode side conductor 41 a and the negative electrode side conductor 42 a of the connection wire 4 are accommodated in an integral connection cable 40. That is, the connection wire 4 is configured by the connection cable 40. The positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with a common cable sheath (sheath) 40a.

これにおいては、接続ケーブル40の正極側導体41aと負極側導体42aとは、一体のケーブル外装部40a内に収納されているから、正極側導体41aの電力線41と負極側導体42aの電力線42とを一つのケーブルとして扱うことができる。また、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われているから、正極側導電被覆層41cと負極側導電被覆層42cとを破壊から保護することができる。   In this case, since the positive electrode side conductor 41a and the negative electrode side conductor 42a of the connection cable 40 are accommodated in the integral cable sheath 40a, the power line 41 of the positive electrode side conductor 41a and the power line 42 of the negative electrode side conductor 42a Can be treated as a single cable. Moreover, since the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with a common cable sheath 40a, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are protected from destruction. Can do.

この第2実施形態においては、電動車両2に接続電線4を成す接続ケーブル40にて電力変換器3を接続し、電動車両2内の主電池5の放電または充電が電力変換器3を介して行われる電力供給装置1を構成している。   In the second embodiment, the power converter 3 is connected to the electric vehicle 2 by the connection cable 40 that forms the connection electric wire 4, and the discharge or charging of the main battery 5 in the electric vehicle 2 is performed via the power converter 3. The power supply apparatus 1 to be performed is configured.

接続ケーブル40は、正極側導体41aと負極側導体42aとを備える。かつ、正極側導体41aと負極側導体42aとの相互間を絶縁する内部絶縁層とも言うべき正極側絶縁層41b、負極側絶縁層42bとを備える。また、正極側導体41aまたは負極側導体42aと外部とを絶縁する外部絶縁層(ケーブル外装部)40aを備える。そして、接続ケーブル40は、正極側絶縁層41bの外周を取り巻く正極側導電被覆層41cと負極側絶縁層42bの外周を取り巻く負極側導電被覆層42cとを有している。   The connection cable 40 includes a positive electrode side conductor 41a and a negative electrode side conductor 42a. In addition, the positive electrode side conductor 41a and the negative electrode side conductor 42a are provided with a positive electrode side insulating layer 41b and a negative electrode side insulating layer 42b which are also referred to as internal insulating layers that insulate each other. In addition, an external insulating layer (cable exterior portion) 40a that insulates the positive electrode side conductor 41a or the negative electrode side conductor 42a from the outside is provided. The connection cable 40 includes a positive electrode side conductive coating layer 41c surrounding the outer periphery of the positive electrode side insulating layer 41b and a negative electrode side conductive coating layer 42c surrounding the outer periphery of the negative electrode side insulating layer 42b.

その上で、図1と同様に、電動車両2は、正極側導体41aと負極側導体42aとに接続された主電池5を備え、電動車両2の車体2bが接地線7に接続されている。電力変換器3内では、接地線7と正極側導電被覆層41cと負極側導電被覆層42cが互いに接続されて接地されている。更に、正極側導体41aまたは負極側導体42aと接地線7との間を流れる電流を検出する電流センサ13を備える。   In addition, similarly to FIG. 1, the electric vehicle 2 includes a main battery 5 connected to the positive electrode side conductor 41 a and the negative electrode side conductor 42 a, and the vehicle body 2 b of the electric vehicle 2 is connected to the ground line 7. . In the power converter 3, the ground line 7, the positive electrode side conductive coating layer 41c, and the negative electrode side conductive coating layer 42c are connected to each other and grounded. Furthermore, a current sensor 13 for detecting a current flowing between the positive electrode side conductor 41a or the negative electrode side conductor 42a and the ground line 7 is provided.

このような構成においては、接続ケーブル40内において正極側導体41aと負極側導体42aとの間の短絡が発生することが想定される。このような短絡は、正極側導体41aと負極側導体42aとの相互間を絶縁する内部絶縁層となる正極側絶縁層41b、負極側絶縁層42bが破壊されなければ起こりえない。   In such a configuration, it is assumed that a short circuit occurs between the positive electrode side conductor 41 a and the negative electrode side conductor 42 a in the connection cable 40. Such a short circuit cannot occur unless the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b, which are internal insulating layers that insulate the positive electrode side conductor 41a and the negative electrode side conductor 42a from each other, are destroyed.

ここで、この第2実施形態においては、内部絶縁層は、正極側絶縁層41bと負極側絶縁層42bとから成る。これらの絶縁層41b、42bの周囲は夫々正極側導電被覆層41cと負極側導電被覆層42cとによって取り巻かれている。   Here, in the second embodiment, the internal insulating layer includes the positive electrode side insulating layer 41b and the negative electrode side insulating layer 42b. These insulating layers 41b and 42b are surrounded by a positive electrode side conductive coating layer 41c and a negative electrode side conductive coating layer 42c, respectively.

従って、正極側絶縁層41b、負極側絶縁層42bのいずれかが破壊された場合、この破壊箇所と正極側導電被覆層41cまたは負極側導電被覆層42cと接地線7と電流センサ13とを介して電流が流れる。この電流は、抵抗が少ない正極側導電被覆層41cまたは負極側導電被覆層42cを経由するため充分な大きさとなり、絶縁層41b、42bのいずれかの破壊を早期に検出することができる。   Therefore, when either the positive electrode side insulating layer 41b or the negative electrode side insulating layer 42b is broken, the broken portion, the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c, the ground wire 7 and the current sensor 13 are interposed. Current flows. Since this current passes through the positive electrode side conductive coating layer 41c or the negative electrode side conductive coating layer 42c having a low resistance, the current becomes sufficiently large, and the destruction of any of the insulating layers 41b and 42b can be detected at an early stage.

従来、接続ケーブル40の正極側導体41aと負極側導体42aとの間で半短絡が発生して電動車両2側で急速充電用のヒューズが切れないことがあり、接続ケーブル40の短絡箇所から電動車両2側までの間で、短絡電流により過熱が発生することが懸念された。しかし、第2実施形態においては、このような懸念が現実となる前の段階で、絶縁層41b、42bの破壊に伴う電流を早期に電流センサ13で検出することができ、的確に対処できる電力供給装置1が得られる。   Conventionally, a semi-short circuit may occur between the positive electrode side conductor 41a and the negative electrode side conductor 42a of the connection cable 40 and the quick charging fuse may not be blown on the electric vehicle 2 side. There was a concern that overheating occurred due to a short-circuit current up to the vehicle 2 side. However, in the second embodiment, before such a concern becomes a reality, the current accompanying the breakdown of the insulating layers 41b and 42b can be detected by the current sensor 13 at an early stage, and power that can be dealt with accurately. A supply device 1 is obtained.

(第2実施形態の作用効果)
接続電線4の正極側導体41aと負極側導体42aとは、一体の接続ケーブル40内に収納されている。そして、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われている。
(Operational effect of the second embodiment)
The positive electrode side conductor 41 a and the negative electrode side conductor 42 a of the connection electric wire 4 are accommodated in an integral connection cable 40. And the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with the common cable exterior part 40a.

これにおいては、正極側導体41aの電線と負極側導体42aの電線とを一つのケーブルとして扱うことができる。また、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われているから、正極側導電被覆層41cと負極側導電被覆層42cとをケーブル外装部40aによって破壊から防護することができる。   In this case, the electric wire of the positive electrode side conductor 41a and the electric wire of the negative electrode side conductor 42a can be handled as one cable. Moreover, since the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with a common cable sheathing portion 40a, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered by the cable sheathing portion 40a. Can protect against destruction.

(第3実施形態)
次に、本発明の第3実施形態について説明する。上述した実施形態と異なる部分を説明する。図4は、本発明の第3実施形態に使用される接続ケーブル40の断面を示す。図4において、接続電線4の正極側導体41aと負極側導体42aとは、一体の接続ケーブル40で構成されている。かつ、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われている。
(Third embodiment)
Next, a third embodiment of the present invention will be described. A different part from embodiment mentioned above is demonstrated. FIG. 4 shows a cross section of the connection cable 40 used in the third embodiment of the present invention. In FIG. 4, the positive electrode side conductor 41 a and the negative electrode side conductor 42 a of the connection wire 4 are constituted by an integral connection cable 40. And the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with the common cable exterior part 40a.

この第3実施形態の構成では、接続電線4の正極側導体41aと負極側導体42aとは、一体の接続ケーブル40で構成されているから、正極側導体41aの電線と負極側導体42aの電線とを一つのケーブルとして扱うことができる。また、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われているから、正極側導電被覆層41cと負極側導電被覆層42cとを保護することができる。   In the configuration of the third embodiment, since the positive electrode side conductor 41a and the negative electrode side conductor 42a of the connection wire 4 are configured by an integral connection cable 40, the electric wire of the positive electrode side conductor 41a and the electric wire of the negative electrode side conductor 42a. Can be treated as a single cable. Moreover, since the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with the common cable sheath 40a, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c can be protected. .

更に、正極側導電被覆層41cと負極側導電被覆層42cとはケーブル外装部40aの内部で互いに接触部40bにて接触している。従って、正極側導体41aまたは負極側導体42aから短絡電流または地絡電流を含む漏電電流が流れた場合に、正極側導電被覆層41cと負極側導電被覆層42cの両方を経由して短絡電流または漏電電流が流れる。このため、正極側導電被覆層41cと負極側導電被覆層42cの導電部材の量を少なめに設定しても十分な量の短絡電流または漏電電流を流すことができる。   Furthermore, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are in contact with each other at the contact portion 40b inside the cable exterior portion 40a. Therefore, when a leakage current including a short circuit current or a ground fault current flows from the positive electrode side conductor 41a or the negative electrode side conductor 42a, the short circuit current or the negative electrode side conductive cover layer 42c passes through both the positive electrode side conductive cover layer 41c and the negative electrode side conductive cover layer 42c. Leakage current flows. For this reason, even if the amount of the conductive members of the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c is set to be small, a sufficient amount of short-circuit current or leakage current can flow.

(第3実施形態の作用効果)
上記第3実施形態においては、接続電線4の正極側導体41aと負極側導体42aとは、一体の接続ケーブル40内に収納された電線で構成されている。そして、正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われている。更に、正極側導電被覆層41cと負極側導電被覆層42cとはケーブル外装部40aの内部で互いに接触部40bで接触している。
(Operational effect of the third embodiment)
In the said 3rd Embodiment, the positive electrode side conductor 41a and the negative electrode side conductor 42a of the connection electric wire 4 are comprised by the electric wire accommodated in the integral connection cable 40. As shown in FIG. And the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with the common cable exterior part 40a. Furthermore, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are in contact with each other at the contact portion 40b inside the cable exterior portion 40a.

これにおいては、正極側導電被覆層41cと負極側導電被覆層42cとはケーブル外装部40aの内部で接触している。よって、正極側導体41aまたは負極側導体42aから故障に伴う電流が流れた場合に、正極側導電被覆層41cと負極側導電被覆層42cの両方またはいずれか一方を経由して確実に漏電電流が流れる。その結果、より確実に漏電を検出できる。また、正極側導電被覆層41cと負極側導電被覆層42cとの合成抵抗が小さくなり、導電部材の量を少なめに設定しても充分な量の漏電電流を流すことができる。   In this case, the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are in contact with each other inside the cable exterior portion 40a. Therefore, when a current due to a failure flows from the positive electrode side conductor 41a or the negative electrode side conductor 42a, the leakage current surely flows through both or either of the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c. Flowing. As a result, leakage can be detected more reliably. Further, the combined resistance of the positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c is reduced, and a sufficient amount of leakage current can be passed even if the amount of the conductive member is set to be small.

(第4実施形態)
次に、本発明の第4実施形態について説明する。上述した実施形態と異なる部分を説明する。図5は、本発明の第4実施形態に使用される接続ケーブル40の断面図である。図5において、接続電線4の正極側導体41aと負極側導体42aとは、一体の接続ケーブル40で構成されている。正極側導電被覆層41cと負極側導電被覆層42cとは共通のケーブル外装部40aで覆われている。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described. A different part from embodiment mentioned above is demonstrated. FIG. 5 is a cross-sectional view of the connection cable 40 used in the fourth embodiment of the present invention. In FIG. 5, the positive electrode side conductor 41 a and the negative electrode side conductor 42 a of the connection wire 4 are constituted by an integral connection cable 40. The positive electrode side conductive coating layer 41c and the negative electrode side conductive coating layer 42c are covered with a common cable sheath 40a.

そして、ケーブル外装部40a内に少なくとも接地線7を含む電力線以外の配線(例えば接地線7と通信線)が収納されている。図5において、他芯電線部51、52は、断面構造を省略しているが、複数本の電線が収納されており、これらの電線が信号線または接地線を構成する。なお、接地線7は一本である必要はなく、複数本に分かれて設けられていても良い。これよれば、一本の接地線が断線しても他方の接地線で機能を発揮できる。また、正極側導体41aと負極側導体42aと接地線7とを含む単一の接続ケーブル40で接続電線4を構成することができる。   And the wiring (for example, the grounding wire 7 and the communication line) other than the power line including at least the grounding wire 7 is accommodated in the cable exterior part 40a. In FIG. 5, although the cross-sectional structure is abbreviate | omitted for the other core electric wire parts 51 and 52, the several electric wire is accommodated and these electric wires comprise a signal wire or a grounding wire. Note that the grounding wire 7 does not have to be a single one, and may be provided separately in a plurality. According to this, even if one ground wire is disconnected, the function can be exhibited by the other ground wire. In addition, the connection electric wire 4 can be configured by a single connection cable 40 including the positive electrode side conductor 41 a, the negative electrode side conductor 42 a, and the ground wire 7.

上記第4実施形態においては、ケーブル外装部40a内に少なくとも接地線7が収納されている。従って、正極側導体41aと負極側導体42aと接地線7とを含む単一ケーブルから成る接続ケーブル40で接続電線4を構成することができる。   In the fourth embodiment, at least the ground wire 7 is accommodated in the cable exterior part 40a. Therefore, the connection electric wire 4 can be configured by the connection cable 40 formed of a single cable including the positive electrode side conductor 41a, the negative electrode side conductor 42a, and the ground wire 7.

(他の実施形態)
上述の実施形態では、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態に何ら制限されることなく、本発明の主旨を逸脱しない範囲において種々変形して実施することが可能である。上記実施形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、更に、特許請求の範囲の記載と均等の意味および範囲内での全ての変更を含むものである。
(Other embodiments)
In the above-described embodiment, the preferred embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. It is. The structure of the said embodiment is an illustration to the last, Comprising: The scope of the present invention is not limited to the range of these description. The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

例えば、図6に示したように、電動車両2内の接続電線も、正極側導体が正極側絶縁層で覆われ、負極側導体が負極側絶縁層で覆われている。かつ、正極側絶縁層の外周を取り巻く正極側導電被覆層と負極側絶縁層の外周を取り巻く負極側導電被覆層とを有する構成とすることができる。これにより、電動車両内の接続電線に漏電が発生した場合においても、破壊箇所と正極側導電被覆層または負極側導電被覆層と接地線7と電流センサ13とを介して矢印Y12のように電流が流れる。   For example, as shown in FIG. 6, the connecting wire in the electric vehicle 2 also has a positive electrode side conductor covered with a positive electrode side insulating layer and a negative electrode side conductor covered with a negative electrode side insulating layer. And it can be set as the structure which has the positive electrode side conductive coating layer surrounding the outer periphery of a positive electrode side insulating layer, and the negative electrode side conductive coating layer surrounding the outer periphery of a negative electrode side insulating layer. As a result, even when a leakage occurs in the connecting wire in the electric vehicle, the current flows as indicated by an arrow Y12 via the breakage point and the positive-side conductive coating layer or the negative-side conductive coating layer, the ground wire 7 and the current sensor 13. Flows.

この電流は、金属メッシュ等から成る正極側導電被覆層または負極側導電被覆層を経由するため充分な大きさとなり、電動車両2内の接続電線の絶縁層の破壊を早期に検出することができる。   Since this current passes through the positive electrode side conductive coating layer or the negative electrode side conductive coating layer made of a metal mesh or the like, the current becomes sufficiently large, and the breakdown of the insulating layer of the connecting wire in the electric vehicle 2 can be detected at an early stage. .

電力変換器3は、電動車両2の主電池5の電力を外部に取りだす放電装置を構成したが、外部の電力で主電池5を充電する充電装置、または充放電装置であっても良い。また、充放電装置として構成する場合は、プラグインハイブリット車の当該自動車駆動用バッテリ(主電池)の電力を一般家庭用電力供給源として利用することもできる。また、車両外部からの電力供給により主電池からなる自動車駆動用バッテリを蓄電することができる。   The power converter 3 is configured as a discharge device that extracts the power of the main battery 5 of the electric vehicle 2 to the outside, but may be a charging device that charges the main battery 5 with external power or a charge / discharge device. Moreover, when comprised as a charging / discharging apparatus, the electric power of the battery (main battery) for the said automobile drive of a plug-in hybrid vehicle can also be utilized as a general household electric power supply source. In addition, an automobile driving battery composed of a main battery can be stored by supplying power from outside the vehicle.

ところで、電動車両の主電池を急速充電する急速充電器では、電動車両の主電池への急速充電中、急速充電器側における地絡監視が行われ、地絡発生の際には、直ちに回路が遮断されるようになっている。よって、電流を検出する電流センサ等は従来の構成の一部を共用できる。   By the way, in the quick charger that rapidly charges the main battery of the electric vehicle, the ground fault is monitored on the quick charger side during the quick charge to the main battery of the electric vehicle. It is designed to be blocked. Therefore, a current sensor or the like that detects current can share part of the conventional configuration.

電動車両の主電池への急速充電中は、電動車両側の漏電発生も、より迅速に検出されることが望まれるが、導電被覆層41c、42cを共に接地する上記実施形態の構成は、漏電発生が、より迅速に検出され、急速充電器への応用に理想的である。   During rapid charging of the main battery of the electric vehicle, it is desired that the occurrence of electric leakage on the electric vehicle side be detected more quickly. However, the configuration of the above embodiment in which both the conductive coating layers 41c and 42c are grounded is The occurrence is detected more quickly and is ideal for fast charger applications.

なお、接続電線ないし接続ケーブルは細径電線に限らず、急速充電に耐えられる十分な内径を持った電力線で構成できることは勿論である。また、接続電線または接続ケーブルを保護するヒューズを本発明の構成と併設して、二重の防護構造とすれば一層安全である。   Of course, the connecting wire or the connecting cable is not limited to a thin wire, but can be constituted by a power line having a sufficient inner diameter that can withstand rapid charging. Further, it is further safer if a fuse for protecting the connection wire or the connection cable is provided together with the structure of the present invention to form a double protection structure.

2 電動車両
3 電力変換器
4 接続電線
5 主電池
7 接地線
9 地絡検出回路
13 電流センサ
41c 正極側導電被覆層
40 接続ケーブル
42c 負極側導電被覆層
DESCRIPTION OF SYMBOLS 2 Electric vehicle 3 Power converter 4 Connection electric wire 5 Main battery 7 Grounding wire 9 Ground fault detection circuit 13 Current sensor 41c Positive electrode side conductive coating layer 40 Connection cable 42c Negative electrode side conductive coating layer

Claims (6)

電動車両(2)に接続電線(4)にて電力変換器(3)を接続し、電動車両(2)内の主電池(5)の放電または充電が前記電力変換器(3)を介して行われる電力供給装置(1)において、
前記接続電線(4)は、正極側導体(41a)と負極側導体(42a)と接地線(7)とを有し、
前記正極側導体(41a)は正極側絶縁層(41b)で覆われ、前記負極側導体(42a)は負極側絶縁層(42b)で覆われており、
かつ、前記正極側絶縁層(41b)の外周を取り巻く正極側導電被覆層(41c)と前記負極側絶縁層(42b)の外周を取り巻く負極側導電被覆層(42c)とを有し、
前記電動車両(2)は、前記正極側導体(41a)と前記負極側導体(42a)とに接続された前記主電池(5)を備え、前記電動車両(2)の車体(2b)が前記接地線(7)に接続されて接地され、
前記接地線(7)と前記正極側導電被覆層(41c)と前記負極側導電被覆層(42c)とが互いに接続され、前記正極側導体(41a)または前記負極側導体(42a)と前記接地線(7)との間を流れる電流を検出する電流センサ(13)を備えることを特徴とする電力供給装置。
A power converter (3) is connected to the electric vehicle (2) by a connecting wire (4), and the discharge or charging of the main battery (5) in the electric vehicle (2) is conducted via the power converter (3). In the power supply device (1) to be performed,
The connecting wire (4) has a positive electrode side conductor (41a), a negative electrode side conductor (42a), and a grounding wire (7),
The positive electrode side conductor (41a) is covered with a positive electrode side insulating layer (41b), the negative electrode side conductor (42a) is covered with a negative electrode side insulating layer (42b),
And a positive electrode side conductive coating layer (41c) surrounding the outer periphery of the positive electrode side insulating layer (41b) and a negative electrode side conductive coating layer (42c) surrounding the outer periphery of the negative electrode side insulating layer (42b),
The electric vehicle (2) includes the main battery (5) connected to the positive electrode side conductor (41a) and the negative electrode side conductor (42a), and the vehicle body (2b) of the electric vehicle (2) is Connected to the ground wire (7) and grounded,
The ground wire (7), the positive electrode side conductive coating layer (41c), and the negative electrode side conductive coating layer (42c) are connected to each other, and the positive electrode side conductor (41a) or the negative electrode side conductor (42a) and the ground are connected. A power supply apparatus comprising a current sensor (13) for detecting a current flowing between the line (7) and the line (7).
前記接続電線(4)の前記正極側導体(41a)と前記負極側導体(42a)とは、一体の接続ケーブル(40)内に収納された電線で構成されており、前記正極側導電被覆層(41c)と前記負極側導電被覆層(42c)とは共通のケーブル外装部(40a)で覆われていることを特徴とする請求項1に記載の電力供給装置。   The positive electrode side conductor (41a) and the negative electrode side conductor (42a) of the connection electric wire (4) are constituted by electric wires housed in an integral connection cable (40), and the positive electrode side conductive coating layer 2. The power supply device according to claim 1, wherein the negative electrode side conductive coating layer is covered with a common cable sheathing part. 前記正極側導電被覆層(41c)と前記負極側導電被覆層(42c)とは前記ケーブル外装部(40a)の内部で接触していることを特徴とする請求項2に記載の電力供給装置。   The power supply device according to claim 2, wherein the positive electrode side conductive coating layer (41c) and the negative electrode side conductive coating layer (42c) are in contact with each other inside the cable exterior part (40a). 前記ケーブル外装部(40a)内に少なくとも前記接地線(7)が収納されていることを特徴とする請求項2または3に記載の電力供給装置。   The power supply device according to claim 2 or 3, wherein at least the ground wire (7) is accommodated in the cable sheath (40a). 前記接続電線(4)の前記正極側導体(41a)と前記負極側導体(42a)と前記接地線(7)とは夫々分離独立した電線で構成されていることを特徴とする請求項1に記載の電力供給装置。   The positive electrode side conductor (41a), the negative electrode side conductor (42a), and the ground wire (7) of the connection electric wire (4) are each constituted by separate and independent electric wires. The power supply device described. 前記電力変換器(3)内において、前記正極側導体(41a)または前記負極側導体(42a)は、電力変換用パワー素子(3a)に接続され、前記正極側導体(41a)と前記負極側導体(42a)とは、夫々抵抗(11、12)を介して前記電流センサ(13)の一端に接続され、前記電流センサ(13)の他端が前記接地線(7)に接続されていることを特徴とする請求項1ないし5のいずれか一項に記載の電力供給装置。   In the power converter (3), the positive electrode side conductor (41a) or the negative electrode side conductor (42a) is connected to a power element for power conversion (3a), and the positive electrode side conductor (41a) and the negative electrode side The conductor (42a) is connected to one end of the current sensor (13) via a resistor (11, 12), and the other end of the current sensor (13) is connected to the ground line (7). The power supply device according to claim 1, wherein the power supply device is a power supply device.
JP2013178062A 2013-08-29 2013-08-29 Power supply device Pending JP2015047042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013178062A JP2015047042A (en) 2013-08-29 2013-08-29 Power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013178062A JP2015047042A (en) 2013-08-29 2013-08-29 Power supply device

Publications (1)

Publication Number Publication Date
JP2015047042A true JP2015047042A (en) 2015-03-12

Family

ID=52672108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013178062A Pending JP2015047042A (en) 2013-08-29 2013-08-29 Power supply device

Country Status (1)

Country Link
JP (1) JP2015047042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297200A (en) * 2018-03-22 2019-10-01 通用电气公司 Bus, gradient amplifier and magnetic resonance imaging system
JP2020115706A (en) * 2019-01-17 2020-07-30 本田技研工業株式会社 Power transmission/reception unit and power transmission/reception system
WO2021234867A1 (en) * 2020-05-20 2021-11-25 三菱電機株式会社 Charging/discharging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104632A (en) * 1996-06-13 1998-01-06 Hitachi Ltd Power feeder for vehicle and integrated wiring device
JPH10116519A (en) * 1996-07-26 1998-05-06 Delco Electron Corp Power cable for high frequency and high voltage
JPH11185536A (en) * 1997-12-24 1999-07-09 Aichi Corp Control cable
JP2010239827A (en) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The Charger for electric vehicle, and method of detecting line-to-ground fault
WO2013051484A1 (en) * 2011-10-03 2013-04-11 パナソニック株式会社 Power charging device for electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104632A (en) * 1996-06-13 1998-01-06 Hitachi Ltd Power feeder for vehicle and integrated wiring device
JPH10116519A (en) * 1996-07-26 1998-05-06 Delco Electron Corp Power cable for high frequency and high voltage
JPH11185536A (en) * 1997-12-24 1999-07-09 Aichi Corp Control cable
JP2010239827A (en) * 2009-03-31 2010-10-21 Tokyo Electric Power Co Inc:The Charger for electric vehicle, and method of detecting line-to-ground fault
WO2013051484A1 (en) * 2011-10-03 2013-04-11 パナソニック株式会社 Power charging device for electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297200A (en) * 2018-03-22 2019-10-01 通用电气公司 Bus, gradient amplifier and magnetic resonance imaging system
JP2020115706A (en) * 2019-01-17 2020-07-30 本田技研工業株式会社 Power transmission/reception unit and power transmission/reception system
US11618336B2 (en) 2019-01-17 2023-04-04 Honda Motor Co., Ltd. Power transfer unit, and power transfer system
WO2021234867A1 (en) * 2020-05-20 2021-11-25 三菱電機株式会社 Charging/discharging system

Similar Documents

Publication Publication Date Title
CN109689436B (en) Automobile electrical system and automobile with same
US20140347769A1 (en) Electric-vehicular charge and discharge device
US9272626B2 (en) Devices and methods for the safe driving, charging and energy recovery operation of an electric vehicle
US20170001529A1 (en) Electrical connecting device and charging cable for an electric vehicle
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
JP7317237B2 (en) Protective devices for electrical DC networks, on-board electrical systems for vehicles, vehicles and DC charging stations
US9841451B2 (en) Zone fault detection method and system for electric vehicle charging systems
JP6081251B2 (en) Power system
JP2019071771A (en) Charging device and vehicle including multiple charging interfaces
US9437350B2 (en) Electrical line for a motor vehicle
JP2015047042A (en) Power supply device
US9656569B2 (en) Vehicle power source apparatus
WO2015092529A1 (en) Ground fault detector and charging/discharging system
JP5573800B2 (en) Ground fault detection device
CN112564058B (en) Electrically connected AC charger with monitoring and diagnostic system
CN102354865A (en) Electric leakage protection plug
CN108445813B (en) A kind of power control circuit of automobile engine
CN104919661B (en) Safe electric connection for vehicle application
CN203562473U (en) Connecting device for cars
CN202167712U (en) Leakage protection plug
CN107925046A (en) Battery management system and electric connector
JPH0770257B2 (en) Power cord with protective grounding function
KR101248207B1 (en) Apparatus for sensing vehicles battery cable breakage
CN116194326A (en) Plug connection element and device for monitoring a plug connection element
CN117980749A (en) Monitoring device for a high-voltage on-board electrical system and method for operating a monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170314