JP2010239837A - Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault - Google Patents

Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault Download PDF

Info

Publication number
JP2010239837A
JP2010239837A JP2009087583A JP2009087583A JP2010239837A JP 2010239837 A JP2010239837 A JP 2010239837A JP 2009087583 A JP2009087583 A JP 2009087583A JP 2009087583 A JP2009087583 A JP 2009087583A JP 2010239837 A JP2010239837 A JP 2010239837A
Authority
JP
Japan
Prior art keywords
ground
ground fault
electric vehicle
electrode side
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009087583A
Other languages
Japanese (ja)
Inventor
Hiroomi Funakoshi
博臣 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2009087583A priority Critical patent/JP2010239837A/en
Priority to PCT/JP2010/055636 priority patent/WO2010113917A1/en
Publication of JP2010239837A publication Critical patent/JP2010239837A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charger for an electric vehicle that quickly detects a line-to-ground fault and besides is more reliable. <P>SOLUTION: The line-to-ground fault detector 102 of a charger 100 for electric vehicles has a series circuit 1021 composed of two resistors 1021A and 1021B with equal resistance values which are connected to lines 103A and 103B for charge on the sides of a positive electrode and a negative electrode, a grounding wire 1023 which connects a grounding connection point 1021C of wiring for connecting the resistors 1021A and 1021B with each other to an earth (the ground) 400, a current detector 1022 which outputs the measured values of a DC current flowing in the grounding wire 1023 successively, and a controller 1024 into which the measured values of the current detector 1022 are input. In quick charge of the on-board battery 202 of an electric vehicle 200, the current detector 1022 measures the DC currents flowing in the grounding wire 1023 successively, and the controller 1024 detects the line-to-ground fault by comparison between the actually measured current values output successively by the current detector 1022 and a threshold. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電動車両用充電器の地絡検出装置に係り、特に、急速充電器における地絡検出の速度およびその信頼性を向上させる技術に関する。   The present invention relates to a ground fault detection device for an electric vehicle charger, and more particularly to a technique for improving the speed of ground fault detection in a quick charger and its reliability.

車体アースから絶縁されたバッテリを搭載した電気自動車のなかには、バッテリから車体アースへの漏電を検知するコンデンサ型の絶縁監視装置が設けられているものがある。例えば、特許文献1には、このようなコンデンサ型の絶縁監視装置として機能する漏電検知システムが開示されている。この漏電検知システムにおいては、一方の極側の充電用ラインと車体との間に、直流電流を遮断するコンデンサと変流器と交流電源とからなる直列回路が設けられており、漏電発生時に交流電源からコンデンサおよび充電用ラインを流れる交流電流が、変流器を介して漏電電流検出器によって検出される。   Some electric vehicles equipped with a battery that is insulated from the vehicle body ground are provided with a capacitor-type insulation monitoring device that detects leakage from the battery to the vehicle body ground. For example, Patent Literature 1 discloses a leakage detection system that functions as such a capacitor-type insulation monitoring device. In this leakage detection system, a series circuit consisting of a capacitor, a current transformer, and an AC power source that cuts off direct current is provided between the charging line on one pole side and the vehicle body. An alternating current flowing from the power source through the capacitor and the charging line is detected by the leakage current detector via the current transformer.

なお、特許文献2にも、これと類似の構成を有するコンデンサ型の絶縁監視装置(電気自動車の地絡検出回路)が記載されている。   Patent Document 2 also describes a capacitor-type insulation monitoring device (electric vehicle ground fault detection circuit) having a similar configuration.

特開2005−20848号公報(図14、図15、図16)Japanese Patent Laying-Open No. 2005-20848 (FIGS. 14, 15, and 16) 特開平8−70503号公報JP-A-8-70503

ところで、電気自動車の車載バッテリを充電する充電器の充電用ラインには、一般に、交直変換器内部で発生したノイズをアース(大地)にバイパスさせるためのノイズ除去用コンデンサが設けられている。このため、仮にコンデンサ型の絶縁監視装置を充電器の地絡検出装置としてそのまま適用すると、地絡検出装置の交流電源により発生する交流電流が絶縁監視装置のコンデンサとノイズ除去用コンデンサとを循環してしまう可能性がある。このような交流電流の循環が発生すると、実際には漏電が発生していないにも関わらず、漏電電流検出器が漏電を検知する可能性がある。   Incidentally, a charging line of a charger for charging an in-vehicle battery of an electric vehicle is generally provided with a noise removing capacitor for bypassing noise generated inside the AC / DC converter to the ground (ground). For this reason, if a capacitor-type insulation monitoring device is applied as it is as a ground fault detection device for a charger, the AC current generated by the AC power source of the ground fault detection device circulates between the capacitor of the insulation monitoring device and the noise removal capacitor. There is a possibility that. When such alternating current circulation occurs, there is a possibility that the leakage current detector detects the leakage even though no leakage actually occurs.

また、コンデンサ型の絶縁監視装置においては、一般に、漏電発生時に流れる微小な交流電流とノイズとを識別するために、高速フーリエ変換によるフィルタ処理が行われる。漏電発生時に流れる交流電流とノイズとを高速フーリエ変換によって識別するには、ある程度の時間にわたってデータをサンプリングする必要があるため、その分、漏電発生時に流れる交流電流の検出処理に時間を要する。例えば、充電スタンド内に設置される電気自動車用急速充電器からは、電気自動車とは異なり、高圧電流が流れる充電用ケーブルが外部に露出しているため、これに適用される地絡検出システムには、地絡の発生をより迅速に検出することが求められる。   Further, in a capacitor-type insulation monitoring device, generally, a filter process by a fast Fourier transform is performed in order to discriminate between a minute alternating current that flows when a leakage occurs and noise. In order to identify AC current and noise that flows when leakage occurs by fast Fourier transform, it is necessary to sample data over a certain amount of time, and accordingly, it takes time to detect AC current that flows when leakage occurs. For example, from an electric vehicle quick charger installed in a charging stand, unlike an electric vehicle, a charging cable through which a high-voltage current flows is exposed to the outside. Is required to detect the occurrence of a ground fault more quickly.

このため、コンデンサ型の絶縁監視装置は、電気自動車用充電器の地絡検出装置としてそのまま適用するには不向きである。   For this reason, the capacitor-type insulation monitoring device is not suitable for application as it is as a ground fault detection device for an electric vehicle charger.

本発明は上記事情に鑑みてなされたものであり、本発明の目的は、電動車両用充電器における地絡を迅速に検出でき、かつ信頼性のより高い地絡検出装置、およびこれを備える電動車両用充電器を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to quickly detect a ground fault in a charger for an electric vehicle and to provide a highly reliable ground fault detection apparatus, and an electric motor including the same. The object is to provide a vehicle charger.

上記課題を解決するために、本発明においては、電動車両用充電器の正極側および負極側の各充電用ライン−アース(大地)間に、互いに抵抗値の等しい抵抗を挿入する。そして、電動車両の充電中には、それぞれ抵抗を介した正極側および負極側の各充電用ライン−アース間の直流電流等を検出器により逐次測定して、その測定値の変動を監視する。   In order to solve the above-described problem, in the present invention, resistors having the same resistance value are inserted between the charging line and the ground (ground) on the positive electrode side and the negative electrode side of the electric vehicle charger. During charging of the electric vehicle, a direct current between the charging line and the ground on the positive electrode side and the negative electrode side via the resistors is sequentially measured by a detector, and the fluctuation of the measured value is monitored.

例えば、本発明の地絡検出装置は、電動車両用充電器の正極側および負極側充電用ラインの地絡を検出する地絡検出装置であって、
前記正極側および負極側充電用ライン間に挿入された、抵抗値の等しい2つの抵抗からなる直列回路と、
前記2つの抵抗間に定めた接地位置をアースにつなぐ接地線と、
前記接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段と、を備える。
For example, the ground fault detection device of the present invention is a ground fault detection device that detects the ground fault of the positive side and the negative side charging line of the electric vehicle charger,
A series circuit composed of two resistors having the same resistance value, inserted between the positive and negative charging lines;
A grounding wire connecting the grounding position defined between the two resistors to the ground;
Detecting means for detecting a current flowing in the ground line or a voltage between the ground position and the ground.

また、本発明の電動車両用充電器は、
前記電動車両の車載バッテリに給電するための正極側および負極側充電用ラインと、
前記正極側および負極側充電用ラインに接続された前記地絡検出装置と、
遮断器と、
前記地絡検出装置が地絡の発生を検出した場合、前記遮断器に遮断を指示する制御装置と、を備える。
The electric vehicle charger of the present invention is
A positive electrode side and a negative electrode side charging line for supplying power to the in-vehicle battery of the electric vehicle;
The ground fault detection device connected to the positive and negative charging lines;
A circuit breaker,
And a control device that instructs the circuit breaker to shut off when the ground fault detection device detects the occurrence of a ground fault.

本発明によれば、地絡を迅速に検出でき、かつ信頼性のより高い電動車両用充電器を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, a ground fault can be detected rapidly and the charger for electric vehicles with higher reliability can be provided.

図1は、本発明の一実施の形態に係る電気自動車用充電器の概略構成を説明するための図である。FIG. 1 is a diagram for explaining a schematic configuration of a charger for an electric vehicle according to an embodiment of the present invention. 図2(A)は、本発明の一実施の形態に係る電気自動車用充電器において、負極側充電用ラインで地絡が発生した場合の地絡電流の流れを示す図であり、図2(B)は、本発明の一実施の形態に係る電気自動車用充電器において、正極側充電用ラインで地絡が発生した場合の地絡電流の流れを示す図である。FIG. 2A is a diagram showing a flow of a ground fault current when a ground fault occurs in the negative electrode side charging line in the electric vehicle charger according to the embodiment of the present invention. B) is a diagram showing a flow of a ground fault current when a ground fault occurs in the positive electrode charging line in the electric vehicle charger according to the embodiment of the present invention. FIG.

以下、添付図面を参照しながら、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

まず、本実施の形態に係る電気自動車充電器の構成について説明する。ここでは、充電スタンド等に設置される、電気自動車の車載バッテリを急速充電する急速充電器を例にとり説明する。   First, the configuration of the electric vehicle charger according to the present embodiment will be described. Here, an explanation will be given by taking as an example a quick charger that is installed in a charging stand or the like and that rapidly charges an in-vehicle battery of an electric vehicle.

図1は、本発明の一実施の形態に係る電気自動車用充電器100の概略構成を示した図である。なお、図1には、電気自動車用充電器100の接触式コネクタ101を電気自動車200側の接触式コネクタ201に装着した状態を一例として示してある。   FIG. 1 is a diagram showing a schematic configuration of an electric vehicle charger 100 according to an embodiment of the present invention. FIG. 1 shows an example in which the contact connector 101 of the electric vehicle charger 100 is attached to the contact connector 201 on the electric vehicle 200 side.

図示するように、電気自動車用充電器100は、漏電遮断器(ELB)105と、交直変換部103と、充電ケーブル106と、接触式コネクタ101と、制御装置104と、を有する。   As illustrated, the electric vehicle charger 100 includes an electric leakage breaker (ELB) 105, an AC / DC converter 103, a charging cable 106, a contact connector 101, and a control device 104.

漏電遮断器105には、交流電源(例えば200V)300の引き込みケーブルが接続され、交直変換部103は、漏電遮断器105を介して交流電源300から供給される交流電流を直流電流に変換する。ここでは、交流電源300の正極側および負極側出力(正極側および負極側充電用ライン103A,103B)の双方を交流電源300から引き外す漏電遮断器105の構成を図示している。充電ケーブル106は、交直変換部103からの正極側充電用ライン103Aおよび負極側充電用ライン103Bを収容する。接触式コネクタ101は、充電ケーブル106の先端部に設けられている。制御装置104は、電気自動車用充電器100全体を制御する。   The earth leakage breaker 105 is connected to a lead-in cable for an AC power supply (for example, 200V) 300, and the AC / DC converter 103 converts the alternating current supplied from the AC power supply 300 through the earth leakage breaker 105 into a direct current. Here, the configuration of earth leakage circuit breaker 105 that disconnects both the positive electrode side and negative electrode side outputs (positive electrode side and negative electrode side charging lines 103A and 103B) of AC power source 300 from AC power source 300 is illustrated. Charging cable 106 accommodates positive electrode side charging line 103 </ b> A and negative electrode side charging line 103 </ b> B from AC / DC converter 103. The contact connector 101 is provided at the tip of the charging cable 106. The control device 104 controls the entire electric vehicle charger 100.

さらに、この電気自動車用充電器100は、正極側充電用ライン103Aおよび負極側充電用ライン103Bの地絡を検出する地絡検出装置102を有する。この地絡検出装置102は、正極側および負極側充電用ライン103A,103Bに接続された同じ抵抗値の2つの抵抗1021A,1021Bからなる直列回路1021と、抵抗1021A,1021B間をつなぐ配線の適当な位置(例えば抵抗を均等に2分割する位置、以下、接地接続ポイントと呼ぶ)1021Cをアース(大地)400へつなぐ接地線1023と、接地線1023を流れる直流電流の測定値を逐次出力する変流器(DC CT)等の電流検出器1022と、電流検出器1022の測定値が入力される制御器1024と、を有する。すなわち、正極側充電用ライン103A−アース400間と、負極側充電用ライン103B−アース400間とに、互いに抵抗値の等しい抵抗1021A,1021Bがそれぞれ挿入されており、電気自動車200の車載バッテリ202への急速充電中は、電流検出器1022が、抵抗1021Aを介した正極側充電用ライン1021A−アース400間の直流電流と、抵抗1021Bを介した負極側充電用ライン103B−アース400間の直流電流とを逐次測定し、制御器1024が、その測定値の変動を監視するようになっている。   Furthermore, the electric vehicle charger 100 includes a ground fault detection device 102 that detects a ground fault of the positive side charging line 103A and the negative side charging line 103B. This ground fault detection device 102 has an appropriate wiring connecting the series circuit 1021 composed of two resistors 1021A and 1021B having the same resistance value connected to the positive and negative side charging lines 103A and 103B and the resistors 1021A and 1021B. (For example, a position where resistance is equally divided into two, hereinafter referred to as a ground connection point) 1021C is connected to ground (ground) 400, and a measured value of DC current flowing through the ground line 1023 is sequentially output. A current detector 1022 such as a current collector (DC CT); and a controller 1024 to which a measurement value of the current detector 1022 is input. That is, resistors 1021A and 1021B having the same resistance value are inserted between the positive electrode side charging line 103A and the ground 400 and between the negative electrode side charging line 103B and the ground 400, respectively. During the rapid charging, the current detector 1022 causes the DC current between the positive charging line 1021A and the ground 400 via the resistor 1021A and the DC current between the negative charging line 103B and the ground 400 via the resistor 1021B. The current is sequentially measured, and the controller 1024 monitors the fluctuation of the measured value.

ここで、2つの抵抗1021A,1021Bには、地絡発生時に流れる異常電流を小さく抑制するものを用いる必要がある。また、抵抗1021A,1021Bの抵抗値が大きくなりすぎると電流検知時間が長くなるため、抵抗1021A,1021Bの抵抗値を定める際には、使用する電流検出器1022等の性能を考慮する必要もある。これらのことより、例えば交流電源200Vを用いる場合には、数十kΩ〜数百kΩの範囲で抵抗1021A,1021Bの抵抗値を設計することが好ましい。   Here, it is necessary to use the two resistors 1021A and 1021B that suppress the abnormal current that flows when a ground fault occurs. In addition, if the resistance values of the resistors 1021A and 1021B become too large, the current detection time becomes long. Therefore, when determining the resistance values of the resistors 1021A and 1021B, it is necessary to consider the performance of the current detector 1022 to be used. . From these things, when using AC power supply 200V, for example, it is preferable to design the resistance values of the resistors 1021A and 1021B in the range of several tens kΩ to several hundreds kΩ.

つぎに、このような電気自動車用充電器100における地絡発生の検出原理について説明する。   Next, the detection principle of the occurrence of a ground fault in the electric vehicle charger 100 will be described.

図2(A)は、電気自動車用充電器100の負極側充電用ライン103Bで地絡が発生した場合の直流電流(地絡電流)の流れを示す図であり、図2(B)は、電気自動車用充電器100の正極側充電用ライン103Aで地絡が発生した場合の直流電流(地絡電流)の流れを示す図である。なお、これらの図には、地絡電流が流れる閉回路部分の構成のみが示され、それ以外の構成は省略されている。   FIG. 2A is a diagram illustrating a flow of a direct current (ground fault current) when a ground fault occurs in the negative electrode side charging line 103B of the electric vehicle charger 100. FIG. It is a figure which shows the flow of a direct current (ground fault current) at the time of a ground fault having generate | occur | produced in the positive electrode side charging line 103A of the charger 100 for electric vehicles. In these figures, only the configuration of the closed circuit portion through which the ground fault current flows is shown, and the other configurations are omitted.

接触式コネクタ101を電気自動車200側の接触式コネクタ201に装着することによって、正極側および負極側充電用ライン103A,103Bの端子を電気自動車200の車載バッテリ202の正極端子および負極端子にそれぞれ接続し、正極側充電用ライン103Aおよび負極側充電用ライン103Bを介して電気自動車200の車載バッテリ202に直流電流Iを給電すると(図1参照)、電気自動車200の車載バッテリ202の充電が開始する。この状態においては、抵抗値の等しい2つの抵抗1021A,1021Bにかかる電圧がバランスしているため、接地接続ポイント1021Cとアース400とが同電位(0V)となり、接地線1023に直流電流は流れない。 By attaching the contact connector 101 to the contact connector 201 on the electric vehicle 200 side, the terminals of the positive and negative charging lines 103A and 103B are connected to the positive terminal and the negative terminal of the in-vehicle battery 202 of the electric vehicle 200, respectively. and, when power is supplied a direct current I 1 to the vehicle battery 202 for the electric vehicle 200 via the positive electrode side charging line 103A and the negative electrode side charging line 103B (see FIG. 1), charging start of the on-vehicle battery 202 of the electric vehicle 200 To do. In this state, since the voltages applied to the two resistors 1021A and 1021B having the same resistance value are balanced, the ground connection point 1021C and the ground 400 have the same potential (0 V), and no direct current flows through the ground line 1023. .

ここで、図2(A)に示すように、負極側充電用ライン103Bの任意の位置(地絡点)P1で地絡が発生すると、アース400から負極側充電用ライン103Bの地絡点P1に流れ込んだ地絡電流Iは、交直変換部103、正極側充電用ライン103A、一方の抵抗1021Aおよび接地線1023を介してアース400に流れ込む。このため、電流検出器1022は、この地絡電流Iを検知する。 Here, as shown in FIG. 2A, when a ground fault occurs at an arbitrary position (ground fault point) P1 of the negative electrode side charging line 103B, a ground fault point P1 of the negative electrode side charging line 103B from the ground 400 is obtained. ground fault current I 2 flowing into and flows into the ground 400 via the AC-DC converter 103, the positive electrode side charging line 103A, one of the resistors 1021A and the ground line 1023. Therefore, the current detector 1022 detects the ground fault current I 2.

一方、図2(B)に示すように、正極側充電用ライン103Aの任意の位置(地絡点)P2で地絡が発生すると、正極側充電用ライン103Aの地絡点P2からアース400に流れ込んだ地絡電流Iは、接地線1023、他方の抵抗1021Bおよび負極側充電用ライン103Bを介して交直変換部103に流れ込む。このため、電流検出器1022は、この地絡電流Iを検知する。 On the other hand, as shown in FIG. 2B, when a ground fault occurs at an arbitrary position (ground fault point) P2 of the positive electrode side charging line 103A, the ground fault point P2 of the positive electrode side charging line 103A is connected to the ground 400. ground fault current I 3 which flows the ground line 1023 flows to the AC-DC converter 103 via the other resistor 1021B and the negative electrode side charging line 103B. Therefore, the current detector 1022 detects the ground fault current I 3.

以上からわかるように、電気自動車200の車載バッテリ202への急速充電中において、正極側および負極側のいずれかの充電用ライン103A,103Bにおける地絡発生は、電流検出器1022の測定値から検出することができる。そこで、制御器1024は、電気自動車200の車載バッテリ202への急速充電中、電流検出器1022から逐次入力される測定値を監視し、その測定値が、あらかじめ定めた閾値を超えると、正極側充電用ライン103Aおよび負極側充電用ライン103Bのいずれかに異常電流(すなわち地絡)が発生したと判断して、地絡発生を示す異常信号を制御装置104に送信する。これに応じて、制御装置104は、漏電遮断器105の制御により回路を遮断させる。
なお、電気自動車用充電器100が出力装置を有する場合には、管理者等への通報が出力装置から出力されるようにしてもよい。
As can be seen from the above, during the rapid charging of the in-vehicle battery 202 of the electric vehicle 200, the occurrence of the ground fault in the charging line 103A, 103B on either the positive electrode side or the negative electrode side is detected from the measured value of the current detector 1022. can do. Therefore, the controller 1024 monitors the measurement value sequentially input from the current detector 1022 during the rapid charging of the in-vehicle battery 202 of the electric vehicle 200, and when the measurement value exceeds a predetermined threshold value, It is determined that an abnormal current (i.e., ground fault) has occurred in either charging line 103 </ b> A or negative charging line 103 </ b> B, and an abnormal signal indicating the occurrence of a ground fault is transmitted to control device 104. In response to this, the control device 104 interrupts the circuit under the control of the leakage breaker 105.
In addition, when the electric vehicle charger 100 has an output device, a report to an administrator or the like may be output from the output device.

以上、本発明の一実施の形態を説明した。   The embodiment of the present invention has been described above.

このように、本実施の形態に係る電気自動車用充電器100によれば、地絡発生時には地絡検出装置102の電流検出器1022が0.1〜数mA程度の電流を検出し、この実測値をそのまま閾値と比較することにより、地絡発生を直ちに検出可能である。このため、FFT等といった、ある程度の時間を要する演算処理を行う必要がなく、その分、より迅速に地絡を検出して、直ちに回路を遮断することができる。すなわち、地絡発生から回路遮断までに要する時間をより短縮可能である。また、地絡検出装置102には、電気自動車用充電器100のノイズ除去用コンデンサと干渉する要素が含まれていないため、電気自動車用充電器100の既存の要素との干渉に起因する地絡誤検出の発生を防止することができる。したがって、本実施の形態によれば、電気自動車用充電器における地絡を迅速に検出でき、かつその検出の信頼性を向上させることができる。   Thus, according to the electric vehicle charger 100 according to the present embodiment, when a ground fault occurs, the current detector 1022 of the ground fault detection device 102 detects a current of about 0.1 to several mA, and this measurement is performed. By directly comparing the value with the threshold value, the occurrence of ground fault can be detected immediately. For this reason, it is not necessary to perform arithmetic processing such as FFT, which requires a certain amount of time, and accordingly, the ground fault can be detected more quickly and the circuit can be shut off immediately. That is, the time required from the occurrence of the ground fault to the circuit interruption can be further shortened. In addition, since the ground fault detection device 102 does not include an element that interferes with the noise removing capacitor of the electric vehicle charger 100, the ground fault due to the interference with the existing elements of the electric vehicle charger 100. The occurrence of false detection can be prevented. Therefore, according to the present embodiment, it is possible to quickly detect a ground fault in the electric vehicle charger and improve the reliability of the detection.

また、正極側および負極側のいずれの充電用ライン103A,103Bにおける地絡発生も1台の電流検出器1022の測定値に基づき検知することができるため、より安価な電気自動車用充電器100を実現することができる。   Further, since the occurrence of a ground fault in any of the charging lines 103A and 103B on the positive electrode side and the negative electrode side can be detected based on the measured value of one current detector 1022, a cheaper electric vehicle charger 100 can be obtained. Can be realized.

なお、以上においては、接地接続ポイント1021C−アース400間の直流電流を電流検出器1022で検出しているが、接地接続ポイント1021C−アース400間の電圧を電圧変成器等の電圧検出器で検出してもよい。この場合、接地線1023は、少なくとも、接地接続ポイント1021C−アース400間の電圧を検出するのに十分な抵抗を有している必要がある。   In the above, the DC current between the ground connection point 1021C and the ground 400 is detected by the current detector 1022, but the voltage between the ground connection point 1021C and the ground 400 is detected by a voltage detector such as a voltage transformer. May be. In this case, the ground line 1023 needs to have at least a resistance sufficient to detect a voltage between the ground connection point 1021C and the ground 400.

また、以上においては、電流検出器1022の測定値に基づき地絡発生を判断する制御器1024を地絡検出装置102内に設けているが、例えば、制御装置104が、電流検出器1022の測定値の入力を逐次受け付け、この測定値と閾値との比較により地絡発生を判断するようにしてもよい。   In the above description, the controller 1024 that determines the occurrence of a ground fault based on the measurement value of the current detector 1022 is provided in the ground fault detection device 102. For example, the control device 104 measures the current detector 1022. A value input may be sequentially received and occurrence of a ground fault may be determined by comparing the measured value with a threshold value.

また、本発明は、電気自動車のみならず、搭載されたバッテリの外部電源からの充電機能を有する電動車両に広く適用できる。   Further, the present invention can be widely applied not only to electric vehicles but also to electric vehicles having a charging function from an external power source of a mounted battery.

100:電気自動車用充電器、101:接触式コネクタ、102:地絡検出装置、103:交直変換部、103A:正極側充電用ライン、103B:負極側充電用ライン、104:制御装置、105:漏電遮断器(ELB)、106:充電ケーブル、200:電気自動車、201:接触式コネクタ、202:車載バッテリ、300:交流電源、400:アース(大地)、1021:抵抗の直列回路、1021A,1021B:抵抗、1022:電流検出器、1023:接地線、1024:制御器 DESCRIPTION OF SYMBOLS 100: Charger for electric vehicles, 101: Contact-type connector, 102: Ground fault detection apparatus, 103: AC / DC conversion part, 103A: Positive side charging line, 103B: Negative side charging line, 104: Control apparatus, 105: Earth leakage breaker (ELB), 106: charging cable, 200: electric vehicle, 201: contact connector, 202: on-board battery, 300: AC power supply, 400: earth (ground), 1021: series circuit of resistors, 1021A, 1021B : Resistance, 1022: Current detector, 1023: Ground line, 1024: Controller

Claims (3)

電動車両用充電器の正極側および負極側充電用ラインの地絡を検出する地絡検出装置であって、
前記正極側および負極側充電用ライン間に挿入された、抵抗値の等しい2つの抵抗からなる直列回路と、
前記2つの抵抗間に定めた接地位置をアースにつなぐ接地線と、
前記接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段と、を備える
ことを特徴とする地絡検出装置。
A ground fault detection device for detecting a ground fault of a positive electrode side and a negative electrode side charging line of an electric vehicle charger,
A series circuit composed of two resistors having the same resistance value, inserted between the positive and negative charging lines;
A grounding wire connecting the grounding position defined between the two resistors to the ground;
A ground fault detection device comprising: a detection unit configured to detect a current flowing through the ground line or a voltage between the ground position and the ground.
電動車両の車載バッテリを充電する電動車両用充電器であって、
前記電動車両の車載バッテリに給電するための正極側および負極側充電用ラインと、
前記正極側および負極側充電用ラインに接続された請求項1に記載の地絡検出装置と、
遮断器と
前記地絡検出装置が地絡の発生を検出した場合、前記遮断器に遮断を指示する制御装置と、を備える
ことを特徴とする電動車両用充電器。
An electric vehicle charger for charging an in-vehicle battery of an electric vehicle,
A positive electrode side and a negative electrode side charging line for supplying power to the in-vehicle battery of the electric vehicle;
The ground fault detection device according to claim 1 connected to the positive electrode side and negative electrode side charging lines,
A battery charger for an electric vehicle comprising: a circuit breaker; and a control device that instructs the circuit breaker to break when the ground fault detection device detects the occurrence of a ground fault.
電動車両用充電器の正極側および負極側充電用ラインの地絡を検出する地絡検出方法であって、
前記電動車両用充電器において、前記正極側および負極側充電用ライン間に、抵抗値の等しい2つの抵抗からなる直列回路を挿入するとともに、前記2つの抵抗間に定めた接地位置を接地線でアースにつなぎ、かつ前記接地線に流れる電流、または前記接地位置および前記アース間の電圧を検出する検出手段を設け、
前記電動車両用充電器が、電動車両の車載バッテリへの充電中、前記検出手段により逐次検出された、前記接地線に流れる電流、または前記接地位置および前記アース間の電圧の検出値に基づき地絡の発生を検出する
ことを特徴とする地絡検出方法。
A ground fault detection method for detecting a ground fault of a positive electrode side and a negative electrode side charging line of an electric vehicle charger,
In the electric vehicle charger, a series circuit composed of two resistors having the same resistance value is inserted between the positive electrode side and the negative electrode side charging line, and a grounding position defined between the two resistors is a ground wire. A detecting means for detecting a current flowing through the grounding wire, or a voltage between the grounding position and the ground, connected to the ground;
The electric vehicle charger is grounded based on a detected value of a current flowing in the ground line or a voltage detected between the ground position and the ground, which is sequentially detected by the detection means during charging of the on-vehicle battery of the electric vehicle. A ground fault detection method characterized by detecting the occurrence of a fault.
JP2009087583A 2009-03-31 2009-03-31 Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault Pending JP2010239837A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009087583A JP2010239837A (en) 2009-03-31 2009-03-31 Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault
PCT/JP2010/055636 WO2010113917A1 (en) 2009-03-31 2010-03-30 Ground fault detection device, electric vehicle charger, and ground fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009087583A JP2010239837A (en) 2009-03-31 2009-03-31 Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault

Publications (1)

Publication Number Publication Date
JP2010239837A true JP2010239837A (en) 2010-10-21

Family

ID=42828207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009087583A Pending JP2010239837A (en) 2009-03-31 2009-03-31 Line-to-ground fault detector, charger for electric vehicles, and method of detecting line-to-ground fault

Country Status (2)

Country Link
JP (1) JP2010239837A (en)
WO (1) WO2010113917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092529A1 (en) * 2013-12-20 2015-06-25 パナソニックIpマネジメント株式会社 Ground fault detector and charging/discharging system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508490B1 (en) * 2015-12-18 2023-03-10 주식회사 유라코퍼레이션 Apparatus and Method for Auto Re-Closing of Control Box of Electric Vehicle Charging Cable
JP6797343B1 (en) * 2020-05-20 2020-12-09 三菱電機株式会社 Charge / discharge system
DE102022116360A1 (en) 2021-07-08 2023-01-12 Cummins Power Generation Ip, Inc. SYSTEMS AND METHODS FOR PROVIDING EARTH FAULT PROTECTION ON DC POWER SUPPLY OF ENGINE COMPONENTS
CN113771630B (en) * 2021-09-24 2023-08-25 中车长春轨道客车股份有限公司 Urban railway vehicle grounding protection circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549838U (en) * 1977-06-24 1979-01-23
JPS57119263A (en) * 1981-01-17 1982-07-24 Fuji Electric Co Ltd Detecting method for leak in dc power source
JPH07123599A (en) * 1993-10-18 1995-05-12 Toyota Motor Corp Charge controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS549838U (en) * 1977-06-24 1979-01-23
JPS57119263A (en) * 1981-01-17 1982-07-24 Fuji Electric Co Ltd Detecting method for leak in dc power source
JPH07123599A (en) * 1993-10-18 1995-05-12 Toyota Motor Corp Charge controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092529A1 (en) * 2013-12-20 2015-06-25 パナソニックIpマネジメント株式会社 Ground fault detector and charging/discharging system

Also Published As

Publication number Publication date
WO2010113917A1 (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
WO2010113936A1 (en) Charging system, method of charging electric vehicle, and electric vehicle
CN105486923B (en) Bus leakage resistance estimation for electrical isolation testing and diagnostics
US10161982B2 (en) Failure inspection system enabling discrimination between leakage current failure and short-circuit failure
CN109642919B (en) Grounding detection device and power storage system
JP2012242330A (en) Electric leakage detection device
CN111090027A (en) High voltage system and method for monitoring an insulation fault in a high voltage system
WO2010113917A1 (en) Ground fault detection device, electric vehicle charger, and ground fault detection method
JP2010239773A (en) Charger, electric vehicle and method for detecting ground fault-short circuit in charging system
JP6369407B2 (en) Failure detection system
JP2010181368A (en) Inspection apparatus of battery pack
KR101189582B1 (en) Voltage sensing system for detecting disconnection of voltage sensing line of battery
WO2011018910A1 (en) Charging cable insulation testing device for quick charger for electric vehicle
KR101707815B1 (en) Method for monitoring a battery, evaluation device and measurement system
US9645186B2 (en) Loose plug detection
GB2556129B (en) Systems and methods for monitoring isolation in high voltage systems
EP3958428B1 (en) Control device, energy converting system, energy converting method, and storage medium
CN109001583A (en) For being connected to the electrical equipment of tachometer
CN104578243A (en) A method for monitoring the DC voltage charge and a battery management system
KR101362934B1 (en) Apparatus and methof for diagnosing performance characteristics of a circuit breaker in a state of live wire
JP2016096630A (en) Electric vehicle and power supply system
TWI547396B (en) Electric vehicle with leakage detection system and its leakage detection method
JP2008263763A (en) Vehicle semiconductor relay diagnosing apparatus and method
WO2017159053A1 (en) Abnormality detection device
CN102998536A (en) Highly-reliable detection method for insulation resistance of direct-current buses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903