JPH03251022A - Device for monitoring abnormal state of distribution line - Google Patents

Device for monitoring abnormal state of distribution line

Info

Publication number
JPH03251022A
JPH03251022A JP2047493A JP4749390A JPH03251022A JP H03251022 A JPH03251022 A JP H03251022A JP 2047493 A JP2047493 A JP 2047493A JP 4749390 A JP4749390 A JP 4749390A JP H03251022 A JPH03251022 A JP H03251022A
Authority
JP
Japan
Prior art keywords
waveform
zero
abnormal
distribution line
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2047493A
Other languages
Japanese (ja)
Inventor
Akira Kaneda
明 金田
Toshinobu Ebizaka
敏信 海老坂
Keiji Isahaya
諫早 啓司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2047493A priority Critical patent/JPH03251022A/en
Publication of JPH03251022A publication Critical patent/JPH03251022A/en
Pending legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To enable failure in a distribution line to be detected at a failure prediction stage by providing a waveform classification means at each sub station and by analyzing and classifying an abnormal waveform of zero-phase voltage/current of the distribution line automatically. CONSTITUTION:A waveform classification means is provided at each sub station 11-n and an abnormal waveform of zero-phase voltage and zero-phase current is automatically collected for each waveform classification. Also, a failure prediction means 27 of a master station 40 detects a failure section from output details of an abnormal cause data which is determined and extracted by an abnormal cause determination means 26 to enable a failure in the distribution line to be detected readily at a failure prediction stage, thus preventing the failure from occurring and enabling the failed part to be removed and recovered readily. Also, data accumulation for analyzing an abnormal waveform of zero-phase voltage and zero-phase current which occur in the distribution line can be automatically performed at a level of each sub station 11-n. Further, it is possible to enable accuracy for determining correlation between an abnormal waveform and a failure in the distribution line to be less subject to influence of system coefficients of the distribution system.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、配電線に発生する零相電圧、零相電流の異
常波形を波形分類し、異常波形を自動的に収集するとと
もに、この異常波形から配電線の故障予知を行う配電線
の異常状態監視装置に関するものである。
This invention classifies abnormal waveforms of zero-sequence voltages and zero-sequence currents that occur in distribution lines, automatically collects abnormal waveforms, and detects abnormal states of distribution lines by predicting failures of distribution lines from these abnormal waveforms. This relates to a monitoring device.

【従来の技術】[Conventional technology]

第4図は、従来のこの種装置を示す配電線故障時の零相
電圧Vo、零相電流1oの異常波形の収集と配電線故障
予知の検出を行うためのシステムを示すブロック構成図
であり、図において、1は配電用変圧器、2はこの配電
用変圧器1に接続された配電用変電所の母線、Lは配電
用変電所の母線2に接続された配電線、CBは配電線り
と配電用変電所の母線2との間に接続された遮断器、Z
CT、は零相電流検出器(以下、零相変流器という)で
、これが各配電線りの零相電流を検出して、その出力を
2次側に接続した各配電線の地絡方向リレー67Gに入
力するようになっている。また、ZCT2はもう一つの
零相変流器、CTは変流器、51Sは短絡用の過電流継
電器、GPTは配電用変電所の母線2に接続された接地
用変圧器で、これには地絡故障の際に発生する零相電圧
を検出して動作する地絡過電圧リレーOVG及びこの零
相電圧と各配電線りの零相電流の位相関係から地絡方向
を検出して動作する地絡方向リレー67Gが接続されて
いる。さらに、10は異常波形の解析部である。なお、
上記配電線りは配電用変電所の母線2に対して複数系統
接続され、各系統の配電線りに、上記零相変流器Z C
TC,z CT2.変流器CT、遮断器CBがそれぞれ
接続されている。SHlは各配電線りの零相変流器ZC
T、が検出する各零相変流101〜IOr+をサンプリ
ングして保持するサンプルホールド回路、SH,は接地
用変圧器GPTの3次巻線で検出する零相電圧■。をサ
ンプリングして保持するサンプルホールド回路、SH3
は接地用変圧器GPTの2次巻線で検出する位相基準用
線間電圧Vsをサンプリングして保持するサンプルホー
ルド回路、MPXはサンフルホールド回路S H+、 
S Ht、 S Hsの各出力を1つずつ選択入力する
マルチプレクサ、A/DはマルチプレクサMPXの出力
をディジタル変換するアナログ/ディジタル変換器、3
はアナログ/ディジタル変換器A/Dの出力を監視し、
あらしめ設定した規定値以上の入力を検出した時、マイ
クロプロセッサCPUに対し演算開始の起動を行う起動
検出器、ROMは各種の演算処理を実行するためのプロ
グラムを格納するプログラムメモリ、RAMは各種デー
タを一時格納する一時記憶メモリ、RAM、は配電線り
に発生した零相電圧(以下、■。という)および零相電
流(以下、i、という)を格納する異常波形データメモ
リ、RA M zは異常波形データメモリRAM、に格
納された■。、I。 データの異常波形を解析して得たデータを格納する異常
波形の解析データメモリ、ROM、は実配電系統から得
たフィルドデータあるいは予め実験的に求められた複数
の基準データを格納する波形分類データメモリ、ROM
 zはその波形分類データメモリROM、の基準データ
に対応する原因データを格別に格納する原因別データメ
モリ、CPUは上記各メモリRA M+、 RA Mt
、 ROM+、 R0M2が格納するデータを利用して
、上記プログラムメモリROMのプログラムに従って所
期の演算処理を実行するマイクロプロセッサ、CRTは
上記の演算結果の表示や故障予知を行うCRT表示器な
どの表示器、4は表示器CRTの表示を制御するコント
ローラ、PI3は警報出力のためのプロセス入出力装置
である。 また、第5図において、20は配電線の零相電圧、零相
電流を検出する検出手段、21は検出手段20から零相
電圧、零相電流をサンプリングし、ディジタルデータに
変換する信号変換手段、22は信号変換手段21からの
データを用いて零相電圧、零相電流の異常波形を検出す
る異常波形検出手段、23は異常波形を解析する波形解
析手段、24は波形解析手段23から得た波形解析デー
タと予め登録した波形分類データとを照合し波形分類す
る波形分類手段、25は波形分類別の異常波形データ群
を格納する波形分類メモリ、26はその波形分類結果に
従って上記解析9分類した波形データに対応する異常原
因を判定する異常原因判定手段、27はその異常原因に
もとづき配電線の故障予知を行う故障予知手段である。 次に、第4図の動作を第5図及び第6図のフローチャー
トを参照して以下に説明する。 まず、各配電線りのいずれにも異常がない場合には、各
区間ごとに接続された負荷に対して電力が正規に供給さ
れる。一方、上記各配電線りのいずれかで地絡事故が発
生すると、その故障点、大地および零相変流器ZCT、
に零相電流が流れる。 このため、この零相変流器ZCT、の2次側に接続しだ
地絡方向リレー67Gに零相2次電流が流れ、かつ接地
用変圧器GPTを介して零相電圧が入力されて、これが
動作する。一方、このとき地絡過電圧リレーOVCは事
故時に発生する零相電圧を検出して動作する。この地絡
過電圧リレーOVGの動作出力と地絡方向リレー67G
の動作出力の論理積が成立した時、所定時間後に遮断器
CBを開放する。なお、このほかの配電vALで生じた
地絡事故の保護動作も、上記と同様にして行われる。 一方、上記各配電線りのいずれかに、地絡事故などの故
障が発生すると、対応する配電線りの零相電圧、零相電
流検出手段20を構成する零相変流器ZCT2および接
地用変圧器GPTに零相電圧V0.零相電圧I0がそれ
ぞれ検出され(ステップ5T1)、これらが位相基準用
線間電圧V3とともに信号変換手段21を構成するサン
プルホールド回路S H+ 〜SH3において例えば3
06間隔でサンプリングされる(ステップ5T2)。次
に、サンプリングされたデータは一時的に保持された後
、マルチプレクサMPXによって次々に取り込まれる。 このようにして取り込まれた■。、I0データは信号変
換手段21を構成するアナログ/ディジタル変換器A/
Dによりディジタルデータに変換されマイクロプロセッ
サCPUにより一時記憶メモリRAMに格納される。一
方、起動検出器3は1サイクル分の上記サンプリングし
たデータを加算して平均値を求め、これを■。、Ioの
入力ごとに毎サイクル演算を行い(ステップ5T3)、
その平均値が規定値を超えているか否かを判定する(ス
テップ5T4)。ここで、規定値を超えていると判定さ
れた場合には、ディジタルデータを一時記憶メモリRA
Mに格納するとともに(ステップ5T5) 、規定値を
超えた後、規定値以下になった時点より一定時間後に出
力しくステ・ノブ5T6)、異常波形発生として一時記
憶メモリRAMに格納されているディジタルデータに発
生信号を付して、Vo、I0異常波形データメモリRA
Mに格納する(ステップ5T7)。そして、このステッ
プST3〜ST7までの処理が異常波形検出手段22に
おいて実行される。次に、上記の異常波形データを波形
解析手段23によって発生番号ごとに、高速フーリエ変
換により波形解析(以下、FFT解析という)をする(
ステップ5T8)。 この波形解析手段23では、位相基準用線間電圧■、の
1サイクルを解析サイクルとして設定し、次に解析サイ
クル中のサンプリングデータを使用して、FFT解析を
行い、直流、基本波、高周波成分の実効値、波高値+V
OIo位相角の算出を行う(ステップ5T8)。 ここで、各配電線りごとの各零相電流1(II〜Ion
は波高値の最も大きい回線のものを使用し、Vo。 Ioがともに異常波形となっている場合は、■。。 ■。+IOの発生時刻が一定時間内にあること、すなわ
ち、Vo、Ioが同じ故障原因で発生していることの確
認を行う。そして、このような異常波形の解析データを
解析データメモリRAM、に格納する(ステップ5T9
)。続いて、この格納した解析データを波形分類データ
メモリROM、に格納しである基準波形データと照合し
くステップ5T10)、これらの照合対象が一致するか
否かを判定しくステップSTI 1) 、一致する場合
には波形分類番号を付番する(ステップ5T12)。ま
た、このような波形分類番号に該当する原因を、原因別
データメモリROM2に格納されている原因別データの
中から抽出しくステップ5T13)、その原因を表示器
CRTに表示したり警報出力として警報器に出力する(
ステップST 14)。また、ステップ5TIIで照合
対象が不一致である場合には、波形分類データを全部抽
出しくステップSTI 5) 、抽出し終わったところ
で、新規な異常データとして特異波形番号を付番しくス
テップ5T16)、ステップ5T13以下を実行する。 そして、このような処理によって、表示器CRTには、
■。、■。の波形、配電線番号、異常発生時刻、波形分
類2発生原因別などが表示され、故障の予知が具体的に
行われることになる。 第7図(a)は波形分類データメモリROMに格納され
る■。の波形分類データ、第7図(b)は同じ<1.の
波形分類データを示し、配電線にLおける故障事故に対
応する波形パターンを呈する。また、このような■。、
Ioの波形分類データに対応する異常原因は、実配電系
統における故障例あるいは実験的に求められて、第8図
に示すようになる。なお、この表で見るように■。の波
形がAC波Va〜不規則な歪波Viまでは故障(原因不
明の場合も含む)領域である。従って、この表を見れば
分かるように、■。がAC波Vaで、Ioが矩形波の場
合には、その配電線りの故障原因は例えば異相地絡と判
定でき、これを配電線りの故障予知情報として確認する
ことにより、劣化進行中の配電設備の異常、樹木、鳥獣
など他物との接触、水害、氷雪、火災などの自然現象9
人災などによる事故を早期に発見し、かつ修復して、配
電線事故を未然に防止することができ、これにより電力
安定供給の信軌性を向上することができる。なお、第7
図において、■。については、VaはAC波、歪波、V
rは矩形波、Vsは階段波、Viは不規則な歪波、Vd
は直流重畳波、vhは高周波減衰振動数、Vzは■。変
化のない場合を示し、IoについてはIaはAC波、歪
波、Irは矩形波、Iゎは針状波、Iiは不規則な歪波
、Ihは高周波減衰振動数、IzはI0変化のない場合
を示す。
FIG. 4 is a block configuration diagram showing a system for collecting abnormal waveforms of zero-sequence voltage Vo and zero-sequence current 1o at the time of a distribution line failure and detecting distribution line failure prediction, which is a conventional device of this type. In the figure, 1 is the distribution transformer, 2 is the busbar of the distribution substation connected to this distribution transformer 1, L is the distribution line connected to the bus 2 of the distribution substation, and CB is the distribution line. A circuit breaker connected between the busbar 2 and the distribution substation
CT is a zero-sequence current detector (hereinafter referred to as a zero-sequence current transformer), which detects the zero-sequence current of each distribution line and uses its output to detect the ground fault direction of each distribution line connected to the secondary side. It is designed to be input to relay 67G. In addition, ZCT2 is another zero-phase current transformer, CT is a current transformer, 51S is an overcurrent relay for short circuit, and GPT is a grounding transformer connected to bus 2 of the distribution substation. The ground fault overvoltage relay OVG operates by detecting the zero-sequence voltage that occurs in the event of a ground fault, and the ground fault overvoltage relay OVG operates by detecting the direction of the ground fault from the phase relationship between this zero-sequence voltage and the zero-sequence current of each distribution line. A winding direction relay 67G is connected. Furthermore, 10 is an abnormal waveform analysis section. In addition,
The above-mentioned distribution line is connected to the bus 2 of the distribution substation in multiple systems, and the above-mentioned zero-phase current transformer Z C is connected to the distribution line of each system.
TC,z CT2. A current transformer CT and a circuit breaker CB are respectively connected. SHl is the zero-phase current transformer ZC of each distribution line.
T, is a sample hold circuit that samples and holds each zero-phase current transformer 101 to IOr+ detected, and SH, is a zero-phase voltage (2) detected by the tertiary winding of the grounding transformer GPT. Sample and hold circuit, SH3, samples and holds
is a sample hold circuit that samples and holds the phase reference line voltage Vs detected by the secondary winding of the grounding transformer GPT, MPX is a sample hold circuit S H+,
A multiplexer that selects and inputs each output of S Ht and S Hs one by one; A/D is an analog/digital converter that digitally converts the output of the multiplexer MPX; 3
monitors the output of the analog/digital converter A/D,
A startup detector that activates the microprocessor CPU to start calculations when an input exceeding a preset value is detected, ROM is a program memory that stores programs for executing various calculation processes, and RAM is a variety of RAM, a temporary storage memory that temporarily stores data, is an abnormal waveform data memory, RAM, that stores zero-sequence voltage (hereinafter referred to as ■) and zero-sequence current (hereinafter referred to as i) generated on the distribution line. ■ is stored in the abnormal waveform data memory RAM. ,I. Abnormal waveform analysis data memory (ROM) that stores data obtained by analyzing abnormal waveforms of data is waveform classification data that stores field data obtained from the actual power distribution system or multiple reference data obtained experimentally in advance. Memory, ROM
z is the waveform classification data memory ROM, a cause-specific data memory that specifically stores cause data corresponding to the standard data, and the CPU is each of the above memories RAM+, RA Mt.
, ROM+, and R0M2 utilize the data stored in the microprocessor to execute the desired arithmetic processing according to the program in the program memory ROM. 4 is a controller for controlling the display of the display CRT, and PI3 is a process input/output device for outputting an alarm. Further, in FIG. 5, 20 is a detection means for detecting the zero-sequence voltage and zero-sequence current of the distribution line, and 21 is a signal conversion means for sampling the zero-sequence voltage and zero-sequence current from the detection means 20 and converting them into digital data. , 22 is an abnormal waveform detection means for detecting abnormal waveforms of zero-sequence voltage and zero-sequence current using data from the signal conversion means 21; 23 is a waveform analysis means for analyzing the abnormal waveform; and 24 is a signal obtained from the waveform analysis means 23. 25 is a waveform classification memory that stores abnormal waveform data groups for each waveform classification; 26 is the nine analysis classifications according to the waveform classification results; An abnormality cause determining means 27 determines the cause of an abnormality corresponding to the waveform data, and a failure prediction means 27 predicts a failure of the distribution line based on the cause of the abnormality. Next, the operation shown in FIG. 4 will be explained below with reference to the flowcharts shown in FIGS. 5 and 6. First, if there is no abnormality in any of the distribution lines, power is normally supplied to the loads connected to each section. On the other hand, if a ground fault occurs in any of the above distribution lines, the failure point, ground and zero-phase current transformer ZCT,
A zero-sequence current flows through. Therefore, a zero-phase secondary current flows through the ground fault direction relay 67G connected to the secondary side of the zero-phase current transformer ZCT, and a zero-phase voltage is input via the grounding transformer GPT. This works. On the other hand, at this time, the ground fault overvoltage relay OVC detects the zero-sequence voltage that occurs at the time of the accident and operates. Operating output of this ground fault overvoltage relay OVG and ground fault direction relay 67G
When the logical product of the operation outputs is established, the circuit breaker CB is opened after a predetermined time. Note that protection operations for ground faults occurring in other power distribution vALs are performed in the same manner as described above. On the other hand, if a failure such as a ground fault occurs in any of the above-mentioned distribution lines, the zero-phase current transformer ZCT2 and the grounding Zero-sequence voltage V0. The zero-phase voltages I0 are each detected (step 5T1), and these, together with the phase reference line voltage V3, are transmitted to the sample and hold circuits S H+ to SH3 that constitute the signal conversion means 21, for example, 3
The data is sampled at intervals of 0.06 (step 5T2). Next, the sampled data is temporarily held and then taken in one after another by the multiplexer MPX. This is how ■ was captured. , I0 data is sent to the analog/digital converter A/ which constitutes the signal converting means 21.
The data is converted into digital data by the microprocessor CPU and stored in the temporary memory RAM. On the other hand, the activation detector 3 adds the sampled data for one cycle to obtain an average value, and calculates the average value. , Io is calculated every cycle for each input (step 5T3),
It is determined whether the average value exceeds a specified value (step 5T4). Here, if it is determined that the value exceeds the specified value, the digital data is stored in the temporary storage memory RA.
M (step 5T5), and output after a certain period of time after exceeding the specified value and falling below the specified value. Vo, I0 abnormal waveform data memory RA
Store it in M (step 5T7). Then, the processing from steps ST3 to ST7 is executed in the abnormal waveform detection means 22. Next, the above abnormal waveform data is subjected to waveform analysis (hereinafter referred to as FFT analysis) by fast Fourier transform for each occurrence number by the waveform analysis means 23 (
Step 5T8). This waveform analysis means 23 sets one cycle of the phase reference line voltage ■ as an analysis cycle, and then performs FFT analysis using the sampling data during the analysis cycle to detect direct current, fundamental wave, and high frequency components. effective value, peak value +V
The OIo phase angle is calculated (step 5T8). Here, each zero-sequence current 1 (II to Ion
uses the line with the largest peak value, and Vo. If both Io and Io have abnormal waveforms, ■. . ■. It is confirmed that +IO occurs within a certain period of time, that is, that Vo and Io occur due to the same failure cause. Then, the analysis data of such an abnormal waveform is stored in the analysis data memory RAM (step 5T9).
). Next, the stored analysis data is stored in the waveform classification data memory ROM, and is compared with reference waveform data (step 5T10), and it is determined whether or not these items of comparison match (step STI 1), they match. If so, a waveform classification number is assigned (step 5T12). In addition, the cause corresponding to such a waveform classification number is extracted from the cause-specific data stored in the cause-specific data memory ROM2 (step 5T13), and the cause is displayed on the display CRT or an alarm is issued as an alarm output. output to the device (
Step ST14). In addition, if the verification targets do not match in step 5TII, extract all the waveform classification data in step STI 5), and when the extraction is finished, assign a unique waveform number as new abnormal data in step 5T16). Execute 5T13 and below. Through such processing, the display CRT displays the following information:
■. ,■. The waveform, distribution line number, abnormality occurrence time, waveform classification 2 occurrence cause, etc. are displayed, and failures can be concretely predicted. 7(a) is stored in the waveform classification data memory ROM. The waveform classification data of FIG. 7(b) is the same <1. shows the waveform classification data of , and exhibits a waveform pattern corresponding to a failure accident in the distribution line L. Also, ■ like this. ,
The cause of the abnormality corresponding to the waveform classification data of Io is obtained from a failure example in an actual power distribution system or experimentally, and is shown in FIG. As you can see in this table,■. The waveforms from AC wave Va to irregular distorted wave Vi are in the failure (including cases where the cause is unknown) region. Therefore, as you can see from this table, ■. If is an AC wave Va and Io is a rectangular wave, the cause of the failure in the distribution line can be determined to be, for example, a different-phase ground fault, and by confirming this as failure prediction information for the distribution line, it can be determined that deterioration is progressing. Natural phenomena such as abnormalities in power distribution equipment, contact with other objects such as trees, birds and animals, water damage, ice and snow, fire, etc.9
Accidents caused by man-made disasters can be detected and repaired early, and distribution line accidents can be prevented, thereby improving the reliability of stable power supply. In addition, the seventh
In the figure, ■. For, Va is AC wave, distorted wave, V
r is a rectangular wave, Vs is a staircase wave, Vi is an irregular distorted wave, Vd
is the DC superimposed wave, vh is the high frequency damping frequency, and Vz is ■. Indicates the case where there is no change, and for Io, Ia is an AC wave, distorted wave, Ir is a rectangular wave, Iゎ is a needle wave, Ii is an irregular distorted wave, Ih is a high frequency damping frequency, and Iz is an I0 change. Indicates the case where there is no

【発明が解決しようとする課題】 従来の配電線の異常状態監視装置は以上のように構成さ
れており、配電線における故障の前兆段階、あるいは瞬
時故障段階で発生する零相電圧。 零相電流の異常波形を収集し、この異常波形を収集し、
この異常波形を波形分類データのいずれに相当するもの
であるかを判定し、その該当する波形分類データに対応
する原因を抽出してこれにより、永久故障に至る前の故
障予知を行っているが、配電用変電所で収集した零相電
圧、零相電流の異常波形は配電線のインダクタンス、対
地容量等の系統定数で構成される信号伝送路を通して故
障点の異常波形が送られてくるため、故障点で発生する
異常波形と異なっている。このため異常波形の波形分類
と碍子不良、樹木接触、トランス事故等の故障種別との
関係付が難しかった。故障種別の分類として、■。、I
o共に、AC波、歪波が発生する同一枠内の現象項目が
多く、例えば、碍子不良などの判別がつけにくい。よっ
て、きめ細かな故障予知段階の検出が困難であるという
課題があった。 この発明は上記のような課題を解消するためになされた
もので、配電線の異常波形を子局内で波形解析、波形分
類することによって、故障予知段階で配電線の異常を早
期に発見し、故障を未然に防止する配電線の異常状態監
視装置を得ることを目的とする。
[Problem to be Solved by the Invention] A conventional abnormal state monitoring device for a power distribution line is configured as described above, and detects zero-sequence voltage that occurs at a precursor stage of a failure or an instantaneous failure stage in a power distribution line. Collect the abnormal waveform of zero-sequence current, collect this abnormal waveform,
It determines which waveform classification data this abnormal waveform corresponds to, extracts the cause corresponding to the corresponding waveform classification data, and thereby predicts failures before they lead to permanent failures. , Abnormal waveforms of zero-sequence voltage and zero-sequence current collected at distribution substations are transmitted through a signal transmission path consisting of system constants such as the inductance of the distribution line and ground capacity, so the abnormal waveform of the fault point is transmitted. It is different from the abnormal waveform that occurs at the failure point. For this reason, it was difficult to correlate the waveform classification of abnormal waveforms with failure types such as defective insulators, contact with trees, and transformer accidents. As a classification of failure types, ■. , I
In both cases, there are many phenomenon items within the same frame where AC waves and distorted waves occur, making it difficult to distinguish, for example, a defective insulator. Therefore, there is a problem in that it is difficult to detect the detailed failure prediction stage. This invention was made to solve the above-mentioned problems, and by analyzing and classifying abnormal waveforms in distribution lines within slave stations, abnormalities in distribution lines can be discovered early at the failure prediction stage. The object of the present invention is to obtain an abnormal condition monitoring device for power distribution lines that prevents failures.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る配電線の異常状態監視装置は、子局と親
局の機能分担をするため、まず子局は配電線に生じる零
相電圧、零相電流を検出し、この零相電圧、零相電流の
異常波形を異常波形検出手段にて検出し、ここで検出し
た異常波形を波形解析手段で解析し、この波形解析デー
タを波形分類手段において予め波形分類メモリに登録し
である波形分類データと照合し、異常波形を波形分類し
、子局のモデムから親局のモデムにデータを出力する。 親局は異常波形を波形分類メモリに格納すると共に、こ
の照合結果に従って、異常原因判定手段にて上記解析お
よび分類した波形データに対応する異常原因を判定し、
この判定した異常原因に基づいて、故障予知手段で配電
線の故障予知情報を出力するようにしたものである。
In the power distribution line abnormal condition monitoring device according to the present invention, in order to divide the functions between the slave station and the master station, the slave station first detects the zero-sequence voltage and zero-sequence current occurring in the distribution line, and then detects the zero-sequence voltage and zero-sequence current. The abnormal waveform of the phase current is detected by the abnormal waveform detection means, the abnormal waveform detected here is analyzed by the waveform analysis means, and this waveform analysis data is registered in advance in the waveform classification memory by the waveform classification means to generate waveform classification data. The abnormal waveform is classified as a waveform, and the data is output from the slave station's modem to the master station's modem. The master station stores the abnormal waveform in the waveform classification memory, and uses the abnormality cause determination means to determine the abnormality cause corresponding to the analyzed and classified waveform data according to the verification result.
Based on the determined cause of the abnormality, the failure prediction means outputs failure prediction information for the power distribution line.

【作 用】[For use]

この発明における波形分類手段は、夫々の子局に設けら
れ、配電線の零相電圧、零相電流の異常波形を波形分類
別に自動的に収集できるようにする。また、親局の故障
予知手段は、異常原因判定手段で判定、および抽出した
異常原因データの出力内容から故障区間検出を行うこと
により故障予知段階で配電線の異常を早期に発見する。 そして、故障を未然に防止し、故障個所の除去、復旧を
早期に行う。
The waveform classification means in this invention is provided in each slave station, and enables abnormal waveforms of zero-sequence voltage and zero-sequence current of the distribution line to be automatically collected by waveform classification. Further, the failure prediction means of the master station detects a failure section from the output content of the abnormality cause data determined and extracted by the abnormality cause determination means, thereby discovering an abnormality in the distribution line at an early stage at the failure prediction stage. Then, failures can be prevented before they occur, and failures can be removed and restored at an early stage.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。図中
、第8図及び第9図と同一の部分は同一の符号をもって
図示した第1図ないし第3図において、Cは親局40と
子局11,12・・・nとを結ぶ通信線、ZCTnは子
局に設けた零相電流検出器、ZVnは零相電圧検出器、
30A及び30Bは親局40と子局n間で通信するモデ
ム、RAM3は一時記憶メモリで子局の波形分類データ
メモリ、ROM2は読出し専用メモリで原因別データメ
モリである。 次に動作について説明する。まず、この発明では従来親
局40において一括処理していた検出や波形解析などの
機能動作を親局40と子局nとに分担し、互いに最も効
率の良い持分の範囲で異常波形の解析1分類を行い原因
別を抽出する。例えば、親局40は夫々の子局11,1
2・・・nに対し系統電圧の有無、開閉器の開閉状態等
を監視するため周期的に通信線Cを介してポーリング方
式により情報の収集を行っている。その時、配電線りに
設けた子局nの零相電圧、零相電流の検出手段ZVn、
ZCTn20で異常波形を検出すると、この異常波形を
信号変換手段21で信号変換し、異常波形検出手段22
で検出するので検出した異常波形を波形解析手段23で
解析し、次の波形分類手段24において予め波形分類メ
モリ25に登録しである波形分類データと照合し、Vo
。 I0異常波形データ及び異常波形解析データに特異波形
番号をつける(第6図、ステップ5T16)、以上を子
局nで処理しモデム30Bから親局40のモデム30A
へ信号送信する。親局40ではその転送データを一旦R
AMに格納し、前記分類波形番号に該当する原因を、原
因別データメモリROM、+に格納されている原因別デ
ータの中から異常原因別判定手段26により波形分類番
号に該当する原因を抽出する。このことによって、夫々
の子局は故障予知手段27の段階で配電線の異常を早期
に発見し、故障区間検出が必要な場合のみこれを検出し
、以後、故障個所除去、復旧の動作に移る。
An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 to 3, the same parts as in FIGS. 8 and 9 are designated by the same reference numerals. In FIGS. , ZCTn is a zero-phase current detector provided in the slave station, ZVn is a zero-phase voltage detector,
30A and 30B are modems for communication between the master station 40 and the slave station n, RAM3 is a temporary storage memory and is a waveform classification data memory of the slave station, and ROM2 is a read-only memory and is a cause-specific data memory. Next, the operation will be explained. First, in this invention, the functional operations such as detection and waveform analysis, which were conventionally processed collectively in the master station 40, are divided between the master station 40 and the slave station n, and abnormal waveforms are analyzed within the most efficient range of each other. Classify and extract causes. For example, the master station 40 is connected to the respective slave stations 11 and 1.
2...n, information is collected periodically via the communication line C by a polling method in order to monitor the presence or absence of system voltage, the opening/closing status of switches, etc. At that time, the zero-sequence voltage and zero-sequence current detection means ZVn of the slave station n installed on the distribution line,
When an abnormal waveform is detected by the ZCTn 20, this abnormal waveform is converted into a signal by the signal conversion means 21, and the abnormal waveform is converted into a signal by the abnormal waveform detection means 22.
Therefore, the detected abnormal waveform is analyzed by the waveform analysis means 23, and the next waveform classification means 24 compares it with the waveform classification data registered in the waveform classification memory 25 in advance.
. A peculiar waveform number is assigned to the I0 abnormal waveform data and the abnormal waveform analysis data (Fig. 6, step 5T16), the above is processed by the slave station n, and the modem 30A of the master station 40 is sent from the modem 30B to the modem 30A of the master station 40.
send a signal to At the master station 40, the transferred data is
The cause corresponding to the waveform classification number stored in AM is extracted by the abnormality cause determination means 26 from the cause data stored in the cause data memory ROM, +. . As a result, each slave station detects an abnormality in the distribution line early at the stage of the failure prediction means 27, detects it only when it is necessary to detect a faulty section, and then moves on to the operation of removing the faulty part and restoring it. .

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、親局と子局の機能分
担を図り、子局においては、配電線に生じる零相電圧、
零相電流の異常波形を異常波形検出手段で検出し、その
検出した異常波形を波形解析手段で解析し、この解析し
た波形解析データを波形分類手段において予め登録しで
ある波形分類データと照合し、この照合結果に従って異
常波形に波形分類番号を付番してメモリに格納すると共
に、通信線を介して親局にデータを送る。親局は、異常
原因判定手段にて上記解析および分類した波形データに
対応する異常原因を判定し、この判定した異常原因に基
づいて故障予知手段で配電線の故障予知を行い故障区間
を検出するようにしたので、各子局レベルで配電線に発
生するV、、Ioの異常波形を波形解析、波形分類する
データ蓄積が自動的に行えるようになり、異常波形と配
電線故障との相関性の判定精度が配電系統の系統定数の
影響を受けにくくなり大幅に向上する他、親局は配電線
故障予知を中心を行うので、早期発見と信転性向上とが
図れる。また、■。、Ioの波形を解析2分類および比
較検討することによって、配電線故障をその前兆段階で
発見することができ、この発見により異常発生回線およ
びこれの特定設備の巡視点検を容易に行えるようになり
、従って劣化、あるいは被害を受けている箇所を永久故
障に至る前に修繕することができる。この結果、故障箇
所の除去、復旧を早く行うことができ、配電線故障によ
る停電時間を短縮することができる効果がある。
As described above, according to the present invention, the functions are shared between the master station and the slave station, and the slave station handles the zero-sequence voltage generated in the distribution line,
An abnormal waveform of the zero-sequence current is detected by an abnormal waveform detection means, the detected abnormal waveform is analyzed by a waveform analysis means, and the analyzed waveform analysis data is compared with waveform classification data registered in advance in a waveform classification means. According to the comparison result, a waveform classification number is assigned to the abnormal waveform and stored in the memory, and the data is sent to the master station via the communication line. The master station uses the abnormality cause determination means to determine the abnormality cause corresponding to the analyzed and classified waveform data, and based on the determined abnormality cause, the failure prediction means predicts a failure in the distribution line and detects a fault section. As a result, it is now possible to automatically accumulate data for analyzing and classifying abnormal waveforms of V, , and Io that occur in distribution lines at each slave station level, and to check the correlation between abnormal waveforms and distribution line failures. The accuracy of judgment is greatly improved as it is less affected by the system constants of the distribution system, and since the master station mainly predicts distribution line failures, early detection and improved reliability can be achieved. Also ■. By analyzing and comparing the waveforms of Io and Io, it is possible to discover distribution line failures at their precursor stage, and this discovery makes it easier to carry out patrol inspections of abnormal lines and their specific equipment. Therefore, it is possible to repair deteriorated or damaged parts before they lead to permanent failure. As a result, the failure location can be removed and restored quickly, and the time required for power outages due to distribution line failures can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例による故障区間検出システ
ムの構成図、第2図はこの発明による親局と子局の機能
分担構成を示すブロック図、第3図はこの発明による配
電線異常状態監視装置の機能動作ブロック図、第4図は
従来のVo、Io異常波形の収集と配電線故障予知検出
を実行するためのシステム構成を示すブロック図、第5
図は従来の配電線異常状態監視装置の機能動作ブロック
図、第6図は第5図の細部動作順序を示すフローチャー
ト、第7図は■。、Ioの波形分類データを示す波形図
、第8図は■。、Ioの波形分類データに対応する異常
原因図である。 図において、20は零相電圧、零相電流の検出手段、2
1は信号変換手段、22は異常波形検出手段、23は波
形解析手段、24は波形分類手段、25は波形分類メモ
リ、26は異常原因判定手段、27は故障予知手段、3
0A、30Bはモデム、40は親局、nは子局である。 なお、図中、同一符号は同一、又は相当部分を示す。 特 許 出 願 人  三菱電機株式会社第 第 図 第 ワ 図(Yの1) (a) 第 ワ 図(−fの2) (b) 手 続 補 正 書(自 発)
FIG. 1 is a block diagram of a fault section detection system according to an embodiment of the present invention, FIG. 2 is a block diagram showing a functional division configuration between a master station and a slave station according to the present invention, and FIG. 3 is a distribution line abnormality according to the present invention. FIG. 4 is a functional operation block diagram of the condition monitoring device.
The figure is a functional operation block diagram of a conventional distribution line abnormal state monitoring device, FIG. 6 is a flowchart showing the detailed operation sequence of FIG. 5, and FIG. , Io waveform diagram showing waveform classification data, FIG. 8 is ■. , Io is an abnormality cause diagram corresponding to waveform classification data. In the figure, 20 is zero-sequence voltage and zero-sequence current detection means;
1 is a signal conversion means, 22 is an abnormal waveform detection means, 23 is a waveform analysis means, 24 is a waveform classification means, 25 is a waveform classification memory, 26 is an abnormality cause determination means, 27 is a failure prediction means, 3
0A and 30B are modems, 40 is a master station, and n is a slave station. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent Applicant: Mitsubishi Electric Corporation, Figure 1, Figure W (Y-1) (a) Figure W (-f-2) (b) Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 配電用変電所に繋がれた配電線を区分する開閉器の設置
個所に設けた複数の子局と、前記子局が検出した配電線
の故障検出情報を受信して前記開閉器を制御する親局と
、前記配電線に生ずる零相電圧、零相電流を検出する零
相電圧、零相電流の検出手段と、前記検出手段からの零
相電圧、零相電流を標本化してディジタルデータに変換
する前記子局の信号変換手段と、前記信号変換手段から
のディジタルデータを利用して零相電圧、零相電流の異
常波形を検出する前記子局の異常波形検出手段と、前記
異常波形検出手段で検出した異常波形を解析する前記子
局の波形解析手段と、前記波形解析手段で解析した波形
解析データを予め登録した波形分類データと照合し、波
形分類する前記子局の波形分類手段と、前記波形分類手
段で分類した異常波形を蓄積する前記子局の波形分類メ
モリと、前記子局と親局とを通信線を介して結合するモ
デムと、前記波形分類手段における波形分類データに対
応して登録した異常原因データと上記異常波形とから異
常原因を判定する前記親局の異常原因判定手段と、前記
異常原因判定手段で判定した異常原因に基づき、配電線
の故障予知を行う親局の故障予知手段とを備えた配電線
の異常状態監視装置。
A plurality of slave stations installed at locations where switches are installed that separate distribution lines connected to a distribution substation, and a parent station that receives failure detection information of the distribution line detected by the slave stations and controls the switches. a station, zero-sequence voltage and zero-sequence current detection means for detecting zero-sequence voltage and zero-sequence current occurring in the distribution line, and sampling and converting the zero-sequence voltage and zero-sequence current from the detection means into digital data. abnormal waveform detection means for detecting abnormal waveforms of zero-sequence voltage and zero-sequence current using digital data from the signal conversion means; and abnormal waveform detection means for detecting abnormal waveforms of zero-sequence voltage and zero-sequence current. a waveform analysis means of the slave station that analyzes the abnormal waveform detected by the slave station; a waveform classification means of the slave station that classifies the waveform by comparing the waveform analysis data analyzed by the waveform analysis means with pre-registered waveform classification data; a waveform classification memory of the slave station that stores abnormal waveforms classified by the waveform classification means; a modem that connects the slave station and the master station via a communication line; an abnormality cause determining means of the master station that determines the cause of the abnormality based on the abnormality cause data registered in the above and the abnormal waveform; and a master station that predicts failure of the distribution line based on the abnormality cause determined by the abnormality cause determination means. An abnormal state monitoring device for a power distribution line, which is equipped with a failure prediction means.
JP2047493A 1990-02-28 1990-02-28 Device for monitoring abnormal state of distribution line Pending JPH03251022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2047493A JPH03251022A (en) 1990-02-28 1990-02-28 Device for monitoring abnormal state of distribution line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2047493A JPH03251022A (en) 1990-02-28 1990-02-28 Device for monitoring abnormal state of distribution line

Publications (1)

Publication Number Publication Date
JPH03251022A true JPH03251022A (en) 1991-11-08

Family

ID=12776642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2047493A Pending JPH03251022A (en) 1990-02-28 1990-02-28 Device for monitoring abnormal state of distribution line

Country Status (1)

Country Link
JP (1) JPH03251022A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096709A (en) * 2008-10-20 2010-04-30 Kinkei System Corp Detection device for warning sign of electrical installation accident and detection system for warning sign of electrical installation accident
JP2011064534A (en) * 2009-09-16 2011-03-31 Chubu Electric Power Co Inc Ground fault detection apparatus
US20110184671A1 (en) * 2010-01-25 2011-07-28 Aclara Power-Line Systems Inc. Transient detector and fault classifier for a power distribution system
JP2012249395A (en) * 2011-05-26 2012-12-13 Tokyo Electric Power Co Inc:The Power system accident waveform data search device, and recording medium
JP2019529927A (en) * 2016-10-11 2019-10-17 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation System, method, and computer program for fault detection and localization in a power grid
JP2022044207A (en) * 2020-09-07 2022-03-17 株式会社日立製作所 Power system monitoring device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480533A (en) * 1977-12-09 1979-06-27 Hitachi Ltd Protector for transformer
JPS60200722A (en) * 1984-03-23 1985-10-11 株式会社東芝 Device for discriminating defect of power system
JPS63287323A (en) * 1987-05-15 1988-11-24 Chugoku Electric Power Co Ltd:The Relay for detecting fault section in distribution line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5480533A (en) * 1977-12-09 1979-06-27 Hitachi Ltd Protector for transformer
JPS60200722A (en) * 1984-03-23 1985-10-11 株式会社東芝 Device for discriminating defect of power system
JPS63287323A (en) * 1987-05-15 1988-11-24 Chugoku Electric Power Co Ltd:The Relay for detecting fault section in distribution line

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096709A (en) * 2008-10-20 2010-04-30 Kinkei System Corp Detection device for warning sign of electrical installation accident and detection system for warning sign of electrical installation accident
JP2011064534A (en) * 2009-09-16 2011-03-31 Chubu Electric Power Co Inc Ground fault detection apparatus
US20110184671A1 (en) * 2010-01-25 2011-07-28 Aclara Power-Line Systems Inc. Transient detector and fault classifier for a power distribution system
US8336352B2 (en) * 2010-01-25 2012-12-25 Aclara Power-Line Systems, Inc. Transient detector and fault classifier for a power distribution system
JP2013518543A (en) * 2010-01-25 2013-05-20 アクララ パワー−ライン システムズ インコーポレイテッド Transient detectors and misclassifiers for power distribution systems.
JP2012249395A (en) * 2011-05-26 2012-12-13 Tokyo Electric Power Co Inc:The Power system accident waveform data search device, and recording medium
JP2019529927A (en) * 2016-10-11 2019-10-17 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation System, method, and computer program for fault detection and localization in a power grid
US11150639B2 (en) 2016-10-11 2021-10-19 International Business Machines Corporation System, method and computer program product for fault detection and location in power grid
JP2022044207A (en) * 2020-09-07 2022-03-17 株式会社日立製作所 Power system monitoring device and method

Similar Documents

Publication Publication Date Title
CA2614245C (en) An apparatus and method for identifying a loss of a current transformer signal in a power system
US8390302B2 (en) Apparatus and method for adaptive fault detection in MV distribution circuits
CN110110856B (en) Power grid fault diagnosis method and system based on multi-source information deep reasoning
WO2011011345A2 (en) Protective relay monitoring system and method of comparing behavior patterns
CN101718813B (en) Method for monitoring voltage acquisition circuit of electric power secondary system
CN104577999B (en) Bus bar protecting method and system based on transient zero-sequence current feature
US20160216308A1 (en) Diagnosis and position identification for remote capacitor banks
CN104515934A (en) HHT (Hilbert-Huang transform)-based microcomputer small-current earth-fault line selection device
KR20210043856A (en) TROUBLE DIAGNOSING and PROCESSING METHOD OF POWER NETWORK
JPH03251022A (en) Device for monitoring abnormal state of distribution line
CN102540012A (en) Method and device for judging single-phase earth fault of low-current grounding system
CN206962435U (en) Small resistance grounding system wireline inspection equipment and system
Pickett et al. Reducing outages through improved protection, monitoring, diagnostics, and autorestoration in transmission substations—(69 kV and above)
JPH0378420A (en) Device for monitoring abnormal state of distribution line
CN206020549U (en) The resonance early warning system of capacitor switching
JPH06217451A (en) Ground fault cause decision method for high voltage distribution line
Thomas et al. DC arc fault detection methods in MEA distribution systems
Ensina et al. Fault classification in transmission lines with generalization competence
CN109633376A (en) Handle the method and device of singlephase earth fault
CN114465236B (en) Self-healing method for power distribution network to cope with ground fault and power distribution network
TWI231079B (en) Insulation diagnostic device
Russell Computer relaying and expert systems: New tools for detecting high impedance faults
FIȘCĂ Automatic protection systems in supply networks of large consumers
KR100194553B1 (en) Expert guide for recovery of electrostatic system and its recovery guide
Bliznyuk Development and Implementation of Distribution Grid Control Automation Algorithms