JP5479668B2 - Surface treated copper foil - Google Patents
Surface treated copper foil Download PDFInfo
- Publication number
- JP5479668B2 JP5479668B2 JP2006348880A JP2006348880A JP5479668B2 JP 5479668 B2 JP5479668 B2 JP 5479668B2 JP 2006348880 A JP2006348880 A JP 2006348880A JP 2006348880 A JP2006348880 A JP 2006348880A JP 5479668 B2 JP5479668 B2 JP 5479668B2
- Authority
- JP
- Japan
- Prior art keywords
- copper foil
- nickel
- layer
- molybdenum
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/08—PCBs, i.e. printed circuit boards
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
Description
本発明は、プリント配線板、FPC、COF等に用いる表面処理銅箔に関し、特に耐熱性、耐薬品性に優れ、ポリイミドフィルムとの密着性にも優れる表面処理銅箔に関するものである。 The present invention relates to a surface-treated copper foil used for printed wiring boards, FPCs, COFs, and the like, and particularly relates to a surface-treated copper foil having excellent heat resistance and chemical resistance and excellent adhesion to a polyimide film.
最近、各種の家電製品、電子製品群、コンピュータ等に組み込まれるプリント配線の微細化、複雑化に伴い、過酷な条件に耐えられるプリント配線板が要望されるようになり、かかるプリント配線板に用いられる銅箔に対しても、配線板作成後の銅箔部分と基板との接着強度が大きいこと、耐薬品性に優れていること、加熱時の耐熱性に優れていること等の特性向上が求められている。 Recently, with the miniaturization and complexity of printed wiring incorporated in various home appliances, electronic products, computers, etc., printed wiring boards that can withstand harsh conditions have been demanded and used for such printed wiring boards. Even for copper foils that are produced, characteristics such as high adhesion strength between the copper foil part after wiring board creation and the substrate, excellent chemical resistance, excellent heat resistance during heating, etc. It has been demanded.
銅張積層板を用いてプリント配線板を作製する場合には、酸洗工程やめっき前処理の各種活性化処理工程で銅箔と基板との接着境界層が塩酸を含む溶液に晒され、また、レジスト塗布後、回路をパターンエッチングする際にはエッチング液に晒される。このとき、耐塩酸性やエッチング液に対する耐性に劣る銅箔では回路部分の銅箔とその下の基板との接合面に塩酸溶液やエッチング液が侵入し、その部分を侵食する、いわゆるアンダーカット現象が起こる。
また、プリント配線板の用途が拡大するに伴いプリント配線板が高温下で用いられる場合があり、プリント配線板が長時間加熱されると、プリント配線板において回路部分の銅が基板樹脂に対して触媒として作用し、該基板樹脂が銅箔との接合面で分解して銅箔−基板間の剥離強度が劣化する現象が起こる。
When a printed wiring board is produced using a copper clad laminate, the adhesive boundary layer between the copper foil and the substrate is exposed to a solution containing hydrochloric acid in various activation treatment processes such as a pickling process and a plating pretreatment. After applying the resist, the circuit is exposed to an etching solution when pattern etching is performed. At this time, in the copper foil having poor resistance to hydrochloric acid and etching solution, the so-called undercut phenomenon that the hydrochloric acid solution and the etching solution invade into the bonding surface between the copper foil of the circuit portion and the substrate below it and erodes the portion. Occur.
Also, as the use of printed wiring boards expands, printed wiring boards may be used at high temperatures. When the printed wiring board is heated for a long time, the copper in the circuit portion of the printed wiring board is less than the substrate resin. A phenomenon occurs in which the substrate resin is decomposed at the joint surface with the copper foil and the peel strength between the copper foil and the substrate is deteriorated by acting as a catalyst.
これらの問題点を解決すべく銅箔表面に、耐薬品性をもたせ、且つ耐熱劣化性を有する金属層を設ける提案がなされ、耐薬品性、耐熱劣化性を有する金属層の一例として、ニッケル層にクロムを含有させる技術などが提案されている(例えば特許文献1参照)。しかし、ニッケルにクロムを含有させた金属層は耐酸性、耐熱性の向上には優れるものの、十分なポリイミドとの密着性が得られるまでには至っていない。
本発明は、プリント配線板、COF及びFPC用銅箔において、該銅箔と樹脂基板との接合面が耐熱性・耐薬品性に優れ、かつ、樹脂基板、特にポリイミドフィルムとの密着性を向上させた表面処理銅箔を提供することを目的とする。 The present invention is a printed wiring board, copper foil for COF and FPC, and the bonding surface between the copper foil and the resin substrate is excellent in heat resistance and chemical resistance, and improves the adhesion to the resin substrate, particularly the polyimide film. An object is to provide a surface-treated copper foil.
本発明の第1の表面処理銅箔は、銅箔の少なくとも一方の面に、ニッケル−コバルト合金またはニッケル−リン合金からなる第1層が形成され、該第1層上にモリブデンからなる第2層が形成され、前記ニッケル−コバルト合金またはニッケル−リン合金に含まれるコバルトまたはリンの含有量がニッケルに対し0.1〜40%であることを特徴とする。 The first surface treatment copper foil of the present invention, on at least one surface of the copper foil, nickel - cobalt alloy or nickel - is a first layer consisting of phosphorus alloy formation, the molybdenum in the first layer on the Two layers are formed, and the content of cobalt or phosphorus contained in the nickel-cobalt alloy or nickel-phosphorus alloy is 0.1 to 40 % with respect to nickel.
本発明の第2の表面処理銅箔は、銅箔の少なくとも一方の面に、ニッケル−コバルト合金またはニッケル−リン合金からなる第1層が形成され、該第1層上にモリブデン−コバルト合金またはモリブデン−クロム合金からなる第2層が形成されている表面処理銅箔であって、前記ニッケル−コバルト合金またはニッケル−リン合金、及びモリブデン−コバルト合金またはモリブデン−クロム合金に含まれるコバルト、リン、クロムの含有量がニッケル合金及びモリブデン合金の全体量の50%以下であることを特徴とする。 The second surface treatment copper foil of the present invention, on at least one surface of the copper foil, nickel - cobalt alloy or nickel - is a first layer consisting of phosphorus alloy is formed, and molybdenum in the first layer on the - cobalt alloy Or a surface-treated copper foil on which a second layer made of a molybdenum-chromium alloy is formed, wherein the nickel-cobalt alloy or nickel-phosphorus alloy, and the cobalt-phosphorus contained in the molybdenum- cobalt alloy or molybdenum-chromium alloy The chromium content is 50% or less of the total amount of the nickel alloy and the molybdenum alloy .
好ましくは、前記第2層のモリブデン量は、0.002〜0.5mg/dm2である。 Preferably, the molybdenum content of the second layer is a 0.002~0.5mg / dm 2.
好ましくは、前記第2層を形成するモリブデン合金に含有されるモリブデン量は、表面金属付着量の3〜75%である。 Preferably, the amount of molybdenum contained in the molybdenum alloy forming the second layer is 3 to 75% of the surface metal adhesion amount.
好ましくは、前記銅箔が電解銅箔であり、該電解銅箔のM面(電解製膜時にドラムに接していない方の面)に前記第1層と第2層を形成した表面処理銅箔であり、該電解銅箔のM面の表面粗さが、Rz:1.5μm以下であり、且つRa:0.3μm以下であり、箔厚が5〜35μmである。 Preferably, the copper foil is an electrolytic copper foil, and the surface-treated copper foil in which the first layer and the second layer are formed on the M surface of the electrolytic copper foil (the surface that is not in contact with the drum during electrolytic film formation). The surface roughness of the M surface of the electrolytic copper foil is Rz: 1.5 μm or less, Ra: 0.3 μm or less, and the foil thickness is 5 to 35 μm.
好ましくは、前記銅箔は、その断面結晶が粒状晶である。 Preferably, the copper foil has a granular crystal in cross section.
本発明は、プリント配線板、COF及びFPC用銅箔において、該銅箔と樹脂基板との接合面の耐熱性・耐薬品性が優れ、かつ、樹脂基板、特にポリイミドフィルムとの密着性が向上した表面処理銅箔を提供することができる。 The present invention is a printed wiring board, a copper foil for COF and FPC, and has excellent heat resistance and chemical resistance at the joint surface between the copper foil and the resin substrate, and improved adhesion to the resin substrate, particularly a polyimide film. The surface-treated copper foil can be provided.
以下、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
本発明は銅箔の表面に表面処理層を設けた表面処理銅箔である。表面処理を実施する前の銅箔(以下単に銅箔、又は未処理銅箔という)としては、プリント配線板、COF及びFPC用として使用される電解銅箔、圧延箔を用いる。
基板に形成する回路のファインパターン化から考慮すると銅箔の厚さは薄い方が良く、情報量を多く短時間で流すためには、高周波特性が良い厚い方が好まれ、銅箔の用途に応じて箔厚は変わる。
本発明の銅箔厚さは、5〜35μmが望ましい。また、未処理銅箔の樹脂と密着させる側の表面粗さは、Rz:0.1~1.5μmが好ましい。粗さRzが1.5μmより大きい箔はファインパターン化に不向きであり、また貼り付けた樹脂の表面を粗くするため、視認性を悪くするためである。
銅箔表面の粗さについては、表面のうねりなどを考慮する必要があり、Raの値は0.3μm以下が好ましい。Rzが1.5μmであっても、Raが0.3μm以上であると上記同様の不具合を招く恐れがあるためである。
なお、上記Rz、RaはJISに基づく測定法で測定した数値である。
The present invention is a surface-treated copper foil in which a surface treatment layer is provided on the surface of the copper foil. As the copper foil before the surface treatment (hereinafter simply referred to as copper foil or untreated copper foil), an electrolytic copper foil and a rolled foil used for printed wiring boards, COF and FPC are used.
Considering the fine patterning of the circuit formed on the substrate, the thickness of the copper foil is better, and in order to flow a large amount of information in a short time, the thicker one with better high-frequency characteristics is preferred. The foil thickness changes accordingly.
As for the copper foil thickness of this invention, 5-35 micrometers is desirable. Further, the surface roughness of the side of the untreated copper foil that is in close contact with the resin is preferably Rz: 0.1 to 1.5 μm. This is because a foil having a roughness Rz larger than 1.5 μm is unsuitable for fine patterning, and the surface of the attached resin is roughened, so that the visibility is deteriorated.
Regarding the roughness of the copper foil surface, it is necessary to consider surface undulations, and the value of Ra is preferably 0.3 μm or less. This is because even if Rz is 1.5 μm, if Ra is 0.3 μm or more, the same problem as described above may be caused.
The Rz and Ra are numerical values measured by a measurement method based on JIS.
上記銅箔の表面処理は、まず耐熱性及び耐薬品性の観点から、銅箔表面に第1層としてニッケルまたはニッケル合金を形成させる。ニッケルまたはニッケル合金の金属ニッケルとしての付着量は、0.05mg/dm2以上であることが好ましい。特にエッチング性を考えると、0.05mg/dm2以上1.0mg/dm2以下であることが望ましい。
ニッケル合金を構成するニッケル以外の金属としては、リン、コバルトが好ましく、その含有量はニッケルに対し、0.1%〜40%が好ましい。ニッケルに含有させる金属量が多いとエッチング性は向上するが、本発明の目的である耐熱性・耐薬品性を悪くするため、上記範囲にて合金を形成することが適している。後述するが(比較例1参照)、銅箔表面に上記ニッケルまたはニッケル合金からなる第1層を形成した表面処理銅箔をサンプルとし、これにポリイミドフィルムを貼り付け、大気中で150℃、168時間加熱したサンプルのピール強度の劣化率は、初期ピールと比較し40%も低下する。
In the surface treatment of the copper foil, first, nickel or a nickel alloy is formed as a first layer on the surface of the copper foil from the viewpoint of heat resistance and chemical resistance. The adhesion amount of nickel or nickel alloy as metallic nickel is preferably 0.05 mg / dm 2 or more. Considering the etching property in particular, it is preferably 0.05 mg / dm 2 or more and 1.0 mg / dm 2 or less.
As the metal other than nickel constituting the nickel alloy, phosphorus and cobalt are preferable, and the content thereof is preferably 0.1% to 40% with respect to nickel. When the amount of metal contained in nickel is large, the etching property is improved. However, in order to deteriorate the heat resistance and chemical resistance which are the objects of the present invention, it is suitable to form an alloy in the above range. As will be described later (see Comparative Example 1), a surface-treated copper foil in which a first layer made of nickel or a nickel alloy is formed on the surface of the copper foil is used as a sample, and a polyimide film is pasted on the surface. The degradation rate of the peel strength of the time-heated sample is reduced by 40% compared to the initial peel.
上記ニッケルまたはニッケル合金からなる第1層の上にモリブデンまたはモリブデン合金からなる第2層を形成する。第2層はモリブデン単体またはモリブデン合金浴を使用し、モリブデン金属が、0.5mg/dm2以下の範囲で付着するようめっきで形成する。モリブデン金属を、0.5mg/dm2以上付着させることは、ピール強度を上げる効果に限界が見られ、また、めっきし難い金属であるため厚くすると表面にムラが生じることから好ましくない。
第1層のニッケルまたはニッケル合金上に付着させる第2層としてのモリブデン合金としては、モリブデン金属の含有比率が3〜75%の範囲であることが好ましく、20〜60%の範囲が更に好ましい。
A second layer made of molybdenum or a molybdenum alloy is formed on the first layer made of nickel or a nickel alloy. The second layer uses molybdenum alone or a molybdenum alloy bath, and is formed by plating so that molybdenum metal adheres in the range of 0.5 mg / dm 2 or less. It is not preferable to deposit molybdenum metal in an amount of 0.5 mg / dm 2 or more because there is a limit to the effect of increasing the peel strength, and since it is a metal that is difficult to plate, uneven thickness will occur on the surface.
The molybdenum alloy as the second layer to be deposited on the nickel or nickel alloy of the first layer preferably has a molybdenum metal content of 3 to 75%, more preferably 20 to 60%.
エッチング性とエッチングにおける台形化、並びに耐熱性を考慮して、第1層と第2層を形成する金属の組み合わせと、その付着量について考察する。
第1層がニッケルであり、その上に形成する第2層がモリブデンの場合には、ニッケルの付着量は0.05〜0.3mg/dm2が好ましい。
第1層がニッケル合金であり第2層がモリブデンである場合には、ニッケル付着量は0.1〜1.0mg/dm2 が好ましく、更に、エッチング時の台形化またはエッチングのくわれを抑えるためには、ニッケル及びモリブデン金属以外の金属量が、ニッケル及びモリブデンの全体量の40%以下が好ましい。
第1層がニッケル合金であり、第2層がモリブデン合金の場合、上記同様ニッケル付着量は0.1〜1.0mg/dm2が好ましく、更に、エッチング時の台形化またはエッチングのくわれを抑えるためには、ニッケル及びモリブデン金属以外の金属量が、ニッケル及びモリブデンの全体量の50%以下が好ましい。
Considering the etching property, trapezoidal etching, and heat resistance, the combination of the metal forming the first layer and the second layer and the amount of adhesion thereof will be considered.
The first layer is nickel, when the second layer formed thereon is molybdenum, deposited amount of nickel is preferably from 0.05~0.3mg / dm 2.
When the first layer is a nickel alloy and the second layer is molybdenum, the nickel adhesion amount is preferably 0.1 to 1.0 mg / dm 2 , and further suppresses trapezoidal formation during etching or etching damage. Therefore, the amount of metal other than nickel and molybdenum metal is preferably 40% or less of the total amount of nickel and molybdenum.
When the first layer is a nickel alloy and the second layer is a molybdenum alloy, the nickel adhesion amount is preferably 0.1 to 1.0 mg / dm 2 as described above. In order to suppress, the amount of metal other than nickel and molybdenum metal is preferably 50% or less of the total amount of nickel and molybdenum.
上記表面処理層の形成は、電気めっき法、無電解めっき法、真空蒸着法、スパッタリング法等のいずれの方法によっても良いが量産性等を考慮すると電気めっきによる方法が実用上最も適している。
表面処理層(第1層、第2層)をめっきで形成する場合、即ち、ニッケル単体またはニッケル合金、モリブデン単体またはモリブデン合金を銅箔上にめっきする場合は、通常の浴(市販浴)を使用することができる。
The surface treatment layer may be formed by any method such as an electroplating method, an electroless plating method, a vacuum deposition method, or a sputtering method. However, in consideration of mass productivity, the method by electroplating is most suitable in practice.
When the surface treatment layer (first layer, second layer) is formed by plating, that is, when nickel simple substance or nickel alloy, molybdenum simple substance or molybdenum alloy is plated on copper foil, a normal bath (commercial bath) is used. Can be used.
未処理銅箔に上記表面処理を行った後、表面処理層上に防錆処理を施すことが好ましい。防錆処理は、クロメート処理あるいは亜鉛皮膜形成とクロメート処理を併用する。これらの処理は、銅箔表面の耐食性を高める働きをする。クロムはピール強度に効果を示す場合もある。クロメート処理の場合は、銅箔表面の耐塩酸性を高める効果がある。クロメート処理は、クロム酸処理液中で陰極電解を行うことにより施すことができ、被処理面にクロムの酸化物あるいはクロム水和酸化物を析出させる。ここで用いるクロム酸処理液は、クロム酸単独の水溶液のほか、クロム酸又は重クロム酸のアルカリ金属塩又はアンモニウム塩の水溶液である。
亜鉛皮膜とクロメート処理の場合は、主として、樹脂基板と銅箔をプレスする時の銅箔の基板と接合していない面の加熱変色を防ぐ目的で施される。また一方で、銅箔−樹脂基板間における加熱時のビール強度低下を防ぐ役割も果たす。しかし、必要以上に亜鉛皮膜を厚くすると耐塩酸性が悪くなるので注意が必要である。
After performing the said surface treatment to untreated copper foil, it is preferable to give a rust prevention process on a surface treatment layer. For rust prevention treatment, chromate treatment or zinc film formation and chromate treatment are used in combination. These treatments serve to increase the corrosion resistance of the copper foil surface. Chromium may have an effect on peel strength. In the case of chromate treatment, there is an effect of increasing the hydrochloric acid resistance of the copper foil surface. The chromate treatment can be performed by cathodic electrolysis in a chromic acid treatment solution, and chromium oxide or chromium hydrated oxide is deposited on the surface to be treated. The chromic acid treatment liquid used here is an aqueous solution of an alkali metal salt or ammonium salt of chromic acid or dichromic acid in addition to an aqueous solution of chromic acid alone.
In the case of the zinc film and the chromate treatment, it is mainly performed for the purpose of preventing heat discoloration of the surface not bonded to the copper foil substrate when the resin substrate and the copper foil are pressed. On the other hand, it also serves to prevent a reduction in beer strength during heating between the copper foil and the resin substrate. However, care should be taken because the hydrochloric acid resistance deteriorates if the zinc film is made thicker than necessary.
シランカップリング剤処理は、ピール強度の向上を目的とする。シランカップリング剤としては、エポキシ、アミノ、ビニル系などがあげられ、塗布又は貼り付ける樹脂材質によって一番効果のあるものを選定し表面処理層上又は防錆処理層上に塗布する。 The silane coupling agent treatment aims to improve peel strength. Examples of the silane coupling agent include epoxy, amino, and vinyl. The most effective silane coupling agent is selected depending on the resin material to be applied or pasted, and is applied on the surface treatment layer or the rust prevention treatment layer.
次に、表面処理層の処理を行うめっき浴及びめっき条件の一例を説明する。 Next, an example of a plating bath and plating conditions for treating the surface treatment layer will be described.
<Ni及びNi合金めっき浴条件>
(条件1)ニッケルめっきの条件
NiSO4・6H2O 10〜500g/l
H3BO3 1〜50g/l
電流密度 1〜50A/dm2
浴温 10〜70℃
<Ni and Ni alloy plating bath conditions>
(Condition 1) Nickel plating conditions
NiSO 4 · 6H 2 O 10~500g / l
H 3 BO 3 1-50 g / l
Current density 1-50A / dm 2
Bath temperature 10-70 ° C
(条件2)ニッケル−コバルトめっき条件
NiSO4・6H2O 10〜500g/l
CoSO4・7H2O 5〜100g/l
温度 10〜60℃
電流密度 1〜20A/dm2
時間 1〜60秒
(Condition 2) Nickel-cobalt plating conditions
NiSO 4 · 6H 2 O 10~500g / l
CoSO 4 · 7H 2 O 5-100 g / l
Temperature 10-60 ° C
Current density 1-20A / dm 2
Time 1-60 seconds
(条件3)ニッケル−リンめっき条件
NiSO4・6H2O 10〜500g/l
NaPH2O2・H2O 0.1〜30g/l
温度 10〜60℃
電流密度 1〜20A/dm2
時間 1〜60秒
(Condition 3) Nickel-phosphorus plating conditions
NiSO 4 · 6H 2 O 10~500g / l
NaPH 2 O 2 · H 2 O 0.1~30g / l
Temperature 10-60 ° C
Current density 1-20A / dm 2
Time 1-60 seconds
<MoまたはMo合金めっき>
(条件4)モリブデンめっき条件
Na2MoO4・2H2O 1〜50g/l
H3PO4 5〜40g/l
PH 1〜3
温度 60℃
時間 0〜120秒
電流密度 0.05〜2A/dm2
<Mo or Mo alloy plating>
(Condition 4) Molybdenum plating conditions
Na 2 MoO 4 · 2H 2 O 1~50g / l
H 3 PO 4 5-40 g / l
PH 1-3
60 ° C
Time 0-120 seconds
Current density 0.05-2A / dm 2
(条件5)モリブデン−コバルトめっきの条件
Na2MoO4・2H2O 1〜200g/l
CoSO4・7H2O 1〜100g/l
クエン酸3ナトリム2水和物 30〜300g/l
電流密度 1〜50A/dm2
浴温 10〜70℃
(Condition 5) Molybdenum-cobalt plating conditions
Na 2 MoO 4 · 2H 2 O 1 to 200 g / l
CoSO 4 · 7H 2 O 1-100 g / l
3 sodium citrate dihydrate 30-300 g / l
Current density 1-50A / dm 2
Bath temperature 10-70 ° C
(条件6)モリブデン−クロムめっきの条件
Na2MoO4・2H2O 1〜50g/l
無水クロム酸 1〜50g/l
クエン酸3ナトリム2水和物 30〜200g/l
電流密度 1〜50A/dm2
浴温 10〜70℃
(Condition 6) Molybdenum-chromium plating conditions
Na 2 MoO 4 · 2H 2 O 1~50g / l
Chromic anhydride 1-50g / l
3 sodium citrate dihydrate 30-200 g / l
Current density 1-50A / dm 2
Bath temperature 10-70 ° C
下記の銅箔に各実施例、各比較例に記載の条件で表面処理を施した。
<電解銅箔>
銅箔: 電解銅箔(結晶;粒状晶)
箔厚: 12μm
表面処理を施す面:M面((電解銅箔製造時、ドラムに密着している面(S面)と反対側の面))
表面処理を施す面の粗さ:Rzが0.7μm、Raが0.18μmである。
The following copper foil was subjected to surface treatment under the conditions described in each example and each comparative example.
<Electrolytic copper foil>
Copper foil: Electrolytic copper foil (crystal; granular crystal)
Foil thickness: 12μm
Surface to which surface treatment is applied: M surface ((the surface opposite to the surface (S surface) that is in close contact with the drum during the production of electrolytic copper foil))
Roughness of the surface to be surface-treated: Rz is 0.7 μm, and Ra is 0.18 μm.
実施例1
電解銅箔のM面に、条件1の条件範囲内にて8秒めっきし、ニッケルを成膜し(第1層)、その上に条件4の条件範囲内にて10秒めっきし、モリブデンを付着(第2層)させ、その後防錆金属Zn・Crを付着させ、シラン処理を行った。
銅箔表面に析出した各金属の付着量を表1に示す。
Example 1
On the M surface of the electrolytic copper foil, plating was performed for 8 seconds within the condition range of condition 1, nickel was formed (first layer), and plating was performed for 10 seconds within the condition range of condition 4 thereon, and molybdenum was coated. It was made to adhere (2nd layer), the rust prevention metal Zn * Cr was made to adhere after that, and the silane process was performed.
Table 1 shows the amount of each metal deposited on the surface of the copper foil.
実施例2
電解銅箔のM面に、条件2の条件範囲内にて15秒めっきしてニッケル−コバルト層を製膜し、その上に条件5の条件範囲内にて8秒めっきし、モリブデン−コバルト合金を付着させ、その後防錆金属Zn・Crを付着させ、シラン処理を行った。
銅箔表面に析出した各金属の付着量を表1に示す。このときのニッケル−コバルトとモリブデン−コバルトの総金属量に対しコバルトは、41%であった。
Example 2
On the M surface of the electrolytic copper foil, a nickel-cobalt layer is formed by plating for 15 seconds within the condition range of condition 2, and then plated for 8 seconds within the condition range of condition 5, and then a molybdenum-cobalt alloy. Then, a rust preventive metal Zn · Cr was attached, and silane treatment was performed.
Table 1 shows the amount of each metal deposited on the surface of the copper foil. Cobalt was 41% of the total amount of nickel-cobalt and molybdenum-cobalt at this time.
実施例3
電解銅箔のM面に、条件3の条件範囲内にて、12秒めっきして燐を含有するニッケル層を成膜し、その上に、条件4の条件範囲内にて14秒めっきしてモリブデン層を成膜し、その上に防錆金属Zn・Crを付着させ、シラン処理を行った。
銅箔表面に析出した各金属の付着量を表1に示す。このときリンを含有するニッケル金属とモリブデン金属の総金属量に対しリンは、8.1%であった。
Example 3
On the M surface of the electrolytic copper foil, a nickel layer containing phosphorus is formed by plating for 12 seconds within the condition range of condition 3, and then plated for 14 seconds within the condition range of condition 4 thereon. A molybdenum layer was formed, and a rust preventive metal Zn · Cr was adhered thereon, and silane treatment was performed.
Table 1 shows the amount of each metal deposited on the surface of the copper foil. At this time, phosphorus was 8.1% based on the total amount of nickel metal and molybdenum metal containing phosphorus.
実施例4
電解銅箔のM面に、条件3の条件範囲内にて15秒めっきしてリンを含有するニッケル層を成膜し、その上に、条件5の条件範囲内にて20秒めっきしてモリブデン−コバルト層を成膜し、その上に防錆金属Zn・Crを付着させ、シラン処理を行った。
銅箔表面に析出した各金属の付着量を表1に示す。このときニッケル−リンとモリブデン−コバルト金属の総金属量に対しリンとコバルトの合計量は、30.5%であった。
Example 4
On the M surface of the electrolytic copper foil, a nickel layer containing phosphorus was formed for 15 seconds within the condition range of condition 3, and then a molybdenum layer was plated thereon for 20 seconds within the condition range of condition 5. -A cobalt layer was formed, and a rust preventive metal Zn · Cr was adhered thereon, and silane treatment was performed.
Table 1 shows the amount of each metal deposited on the surface of the copper foil. At this time, the total amount of phosphorus and cobalt with respect to the total amount of nickel-phosphorus and molybdenum-cobalt metal was 30.5% .
実施例5
電解銅箔のM面に、条件1の条件範囲内にて10秒めっきしてニッケル層を成膜し、その上に、条件6の条件範囲内にて8秒めっきしてモリブデン−クロム層を成膜し、その上に防錆金属Zn・Crを付着させ、シラン処理を行った。
銅箔表面に析出した各金属の付着量を表1に示す。このときニッケル金属とモリブデン−クロムの総金属量に対しクロムは、19.5%であった。
Example 5
On the M surface of the electrolytic copper foil, a nickel layer was formed by plating for 10 seconds within the condition range of Condition 1, and then a molybdenum-chromium layer was formed thereon by plating for 8 seconds within the condition range of Condition 6. A film was formed, and a rust preventive metal Zn · Cr was adhered thereon, and silane treatment was performed.
Table 1 shows the amount of each metal deposited on the surface of the copper foil. At this time, chromium was 19.5% with respect to the total metal amount of nickel metal and molybdenum-chromium.
比較例1
ニッケルめっき条件
NiSO4・6H2O 60〜180g/l
NaCI 15g/l
温度 20℃
電流密度 1〜5A/dm2
時間 1〜15秒
の条件下にて電解銅箔のM面にニッケル層を成膜し、その上に亜鉛・クロム、シランの順番にて表面処理を行った。銅箔表面に析出した金属の付着量を表1に併記する。
Comparative Example 1
Nickel plating conditions
NiSO 4 · 6H 2 O 60~180g / l
NaCI 15g / l
Temperature 20 ° C
Current density 1-5A / dm 2
A nickel layer was formed on the M surface of the electrolytic copper foil under conditions of time 1 to 15 seconds, and surface treatment was performed in this order of zinc / chromium and silane. Table 1 shows the amount of metal deposited on the copper foil surface.
比較例2
ニッケル−Pめっき条件
燐を含有するニッケルめっき条件
NiSO4・6H2O 10〜500g/l
H3BO3 1〜50g/l
NaPH2O2・H2O 0.1〜30g/l
電流密度 3A/dm2
浴温 30℃
時間 4秒
の条件下にて電解銅箔のM面にニッケル−りん合金層を成膜し、その上に、亜鉛・クロム、シランの順番にて表面処理を行った。銅箔表面に析出した各金属の付着量を表1に併記する。
Comparative Example 2
Nickel-P plating condition Nickel plating condition containing phosphorus
NiSO 4 · 6H 2 O 10~500g / l
H 3 BO 3 1-50 g / l
NaPH 2 O 2 · H 2 O 0.1~30g / l
Current density 3A / dm 2
Bath temperature 30 ° C
A nickel-phosphorus alloy layer was formed on the M surface of the electrolytic copper foil under the condition of time 4 seconds, and surface treatment was performed in that order in the order of zinc / chromium and silane. Table 1 shows the amount of each metal deposited on the copper foil surface.
比較例3
ニッケル−コバルトめっき条件
NiSO4・6H2O 60〜180g/l
CoSO4・7H2O 5〜35g/l
NaCL 15g/l
温度 20℃
電流密度 1〜5A/dm2
時間 1〜15秒
の条件下にて電解銅箔のM面にニッケル−コバルト合金層を成膜し、その上に、亜鉛・クロム、シランの順番にて表面処理を行った。銅箔表面に析出した各金属の付着量を表1に併記する。
Comparative Example 3
Nickel-cobalt plating conditions
NiSO 4 · 6H 2 O 60~180g / l
CoSO 4 · 7H 2 O 5 to 35 g / l
NaCL 15g / l
Temperature 20 ° C
Current density 1-5A / dm 2
A nickel-cobalt alloy layer was formed on the M surface of the electrolytic copper foil under conditions of time 1 to 15 seconds, and surface treatment was performed in this order in the order of zinc / chromium and silane. Table 1 shows the amount of each metal deposited on the copper foil surface.
参考例1
電解銅箔のM面に、条件3の条件範囲内にて10秒めっきしてリンを含有するニッケル層を成膜し、その上に、条件5の条件範囲内にて40秒めっきしてモリブデン−コバルト層を成膜し、その上に防錆金属Zn・Crを付着させ、シラン処理を行った。
銅箔表面に析出した各金属の付着量を表1に併記する。このときニッケル−リンとモリブデン−コバルト金属の総金属量に対し、モリブデンが93%以上であった。
Reference example 1
A nickel layer containing phosphorus is formed on the M surface of the electrolytic copper foil within the condition range of condition 3 for 10 seconds to form a nickel layer, and then plated for 40 seconds within the condition range of condition 5 to form molybdenum. -A cobalt layer was formed, and a rust preventive metal Zn · Cr was adhered thereon, and silane treatment was performed.
Table 1 shows the amount of each metal deposited on the copper foil surface. At this time, molybdenum was 93% or more based on the total amount of nickel-phosphorus and molybdenum-cobalt metal.
<評価用サンプルの作成>
各実施例、各比較例、参考例で作成した表面処理銅箔にポリイミド樹脂を塗り(厚さ50μm)、温度300℃、窒素雰囲気中で硬化させ、評価用銅貼フィルムを作成し評価用サンプルとした。
<Creation of sample for evaluation>
A polyimide resin is applied to the surface-treated copper foil prepared in each example, each comparative example, and reference example (thickness 50 μm), cured at a temperature of 300 ° C. in a nitrogen atmosphere, and a copper film for evaluation is prepared to give an evaluation sample. It was.
<初期ピールの測定>
各評価用サンプルをJISC6511に規定する方法に準拠して、測定試料幅10mmのピール強度を測定した。測定結果を表2に示す。
<Measurement of initial peel>
In accordance with the method specified in JISC6511 for each evaluation sample, the peel strength with a measurement sample width of 10 mm was measured. The measurement results are shown in Table 2.
<耐熱劣化試験>
各評価用サンプルを温度150℃、168時間、大気中に放置後、JISC6511に規定する方法に準拠して、測定試料幅10mmのピール強度を測定した。測定結果を表2に示す。
<Heat resistance degradation test>
Each sample for evaluation was allowed to stand in the atmosphere at a temperature of 150 ° C. for 168 hours, and then the peel strength with a measurement sample width of 10 mm was measured according to the method specified in JISC6511. The measurement results are shown in Table 2.
<エッチング性の評価>
エッチング溶液に塩銅を使用し、各評価用サンプルから銅を溶解し、フィルム上に金属等がのっていない状態を、目視で確認できるまでに要した時間を測定した。測定結果を表2に示す。
<Etching evaluation>
Copper salt was used for the etching solution, copper was dissolved from each sample for evaluation, and the time required to visually confirm that no metal or the like was on the film was measured. The measurement results are shown in Table 2.
<耐酸性の確認>
評価用サンプルに1mm幅のテープを貼り1mmの回路を形成後、50g/l硫酸に5分間浸漬させフィルムと銅層の接合部に侵食等が起きていないかどうかを、顕微鏡を使用して観察した。
また、断面形状の確認は、断面観察の結果を、エッチング前の理論面積を100とした時の割合で求め、確認した。
<Confirmation of acid resistance>
1mm wide tape is applied to the sample for evaluation to form a 1mm circuit, and then immersed in 50g / l sulfuric acid for 5 minutes to observe whether or not erosion has occurred at the joint between the film and the copper layer using a microscope. did.
In addition, the cross-sectional shape was confirmed by obtaining the cross-sectional observation result at a ratio when the theoretical area before etching was 100.
〔表1〕 各実施例、比較例の表面処理層における金属組成
注1) 表内の金属組成(金属付着量)は、Zn Cr防錆処理以外の量である。
[Table 1] Metal composition in surface treatment layer of each example and comparative example
Note 1) The metal composition (metal adhesion amount) in the table is an amount other than the Zn Cr rust prevention treatment.
〔表2〕 評価結果
<劣化率>
劣化率(%)=((常態ピール)−(耐熱ピール))×100/(常態ピール)
[Table 2] Evaluation results
<Deterioration rate>
Deterioration rate (%) = ((normal peel) − (heat-resistant peel)) × 100 / (normal peel)
表2から明らかなように、各実施例では、ピール強度は1〜1.4であり、加熱によるピール強度の劣化率は7.5%以下であり、エッチング時間は比較例に比べて長くならず、耐酸性は充分であり、エッチング後の面積割合は90%以上と満足するものであった。
本実施例に比較して、ニッケルからなる第1層のみである比較例1では劣化率が40%と大きく、耐酸性が充分ではなかった。
ニッケル−リンからなる第1層のみの比較例2では、劣化率が37%と大きく、耐酸性が充分ではなく、エッチング後の面積割合も90%以下であった。
ニッケル−コバルトからなる第1層のみの比較例3では、劣化率が40%と大きく、耐酸性がなく、エッチング後の面積割合も90%以下であった。
As is clear from Table 2, in each example, the peel strength is 1 to 1.4, the deterioration rate of peel strength by heating is 7.5% or less, and the etching time is longer than that of the comparative example. In addition, the acid resistance was sufficient, and the area ratio after etching was 90% or more.
Compared to this example, in Comparative Example 1, which is only the first layer made of nickel, the deterioration rate was as large as 40%, and the acid resistance was not sufficient.
In Comparative Example 2 having only the first layer made of nickel-phosphorus, the deterioration rate was as large as 37%, the acid resistance was not sufficient, and the area ratio after etching was 90% or less.
In Comparative Example 3 having only the first layer made of nickel-cobalt, the deterioration rate was as large as 40%, there was no acid resistance, and the area ratio after etching was 90% or less.
参考例1では、ニッケル−リンからなる第1層にモリブデン−コバルトの第2層を設けているが、モリブデン合金に対するモリブデンの組成割合が93%と多いためにエッチング時間が長くなり、エッチング時間が長くなるためにエッチング後の面積割合が悪くなっている。
モリブデンはエッチングし難い金属である。したがって、モリブデンを合金とすることでエッチングのし易さを調整することが必要となる場合がある。表2に示す参考例1ではピール強度、劣化率については満足している。しかし、エッチング特性は満足できるものではない。したがって、エッチング特性が無視でき、ピール強度のみを要求される用途にはモリブデンを多く含有する合金を用い、エッチング特性を重視する用途については実施例1に示すようにモリブデンの量をピール強度が最低限満足できる範囲に抑えてエッチング特性を上げるようにモリブデンの含有量を調整する。
このように、本発明では、モリブデン単体で金属を付着させる時には、実施例1のようにピール強度、劣化率を満足する最低限の付着量としてエッチング性に悪影響を及ばさないようにしている。一方、エッチング特性を無視できる場合にはモリブデンの割合を多くしてピール強度、劣化率を重視した配合とする。このように、モリブデン合金を付着させた場合でも、付着量が多いとエッチング時間がかかるようになるため、その配合量を適宜調整し、ピール強度、エッチング特性の両面で満足する配合量を選択する。
In Reference Example 1, the second layer of molybdenum-cobalt is provided in the first layer made of nickel-phosphorus, but the etching time becomes longer because the composition ratio of molybdenum to the molybdenum alloy is as large as 93%, and the etching time becomes longer. Since the length becomes longer, the area ratio after etching becomes worse.
Molybdenum is a metal that is difficult to etch. Therefore, it may be necessary to adjust the ease of etching by using molybdenum as an alloy. In Reference Example 1 shown in Table 2, the peel strength and the deterioration rate are satisfied. However, the etching characteristics are not satisfactory. Therefore, an alloy containing a large amount of molybdenum is used for applications that require negligible etching characteristics and only peel strength is required. For applications that place importance on etching characteristics, the amount of molybdenum is set to the lowest peel strength as shown in Example 1. The molybdenum content is adjusted so as to improve the etching characteristics while keeping the range to a limit satisfactory.
As described above, in the present invention, when a metal is deposited with molybdenum alone, as in Example 1, the minimum deposition amount that satisfies the peel strength and the deterioration rate is not adversely affected. On the other hand, when the etching characteristics can be ignored, the proportion of molybdenum is increased so that the peel strength and deterioration rate are emphasized. As described above, even when a molybdenum alloy is adhered, since it takes an etching time if the adhesion amount is large, the blending amount is appropriately adjusted, and a blending amount satisfying both peel strength and etching characteristics is selected. .
以上詳述したように、本発明表面処理銅箔は、銅箔の少なくとも一方の面に、ニッケル(またはニッケル合金)からなる第1層が形成され、該第1層上にモリブデン(またはモリブデン合金)からなる第2層が形成されていることにより、該銅箔と樹脂基板との接合面が耐熱性・耐薬品性に優れ、かつ、樹脂基板、特にポリイミドフィルムとの密着性が向上する等の効果を有する。
したがって、本発明の表面処理銅箔は、プリント配線板、COF及びFPC用銅箔として好適に使用することができる。
As described above in detail, in the surface-treated copper foil of the present invention, a first layer made of nickel (or nickel alloy) is formed on at least one surface of the copper foil, and molybdenum (or molybdenum alloy) is formed on the first layer. ) Is formed, the bonding surface between the copper foil and the resin substrate is excellent in heat resistance and chemical resistance, and the adhesion to the resin substrate, particularly the polyimide film is improved. It has the effect of.
Therefore, the surface-treated copper foil of the present invention can be suitably used as a printed wiring board, a copper foil for COF and FPC.
Claims (6)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006348880A JP5479668B2 (en) | 2006-12-26 | 2006-12-26 | Surface treated copper foil |
TW096144092A TWI415540B (en) | 2006-12-26 | 2007-11-21 | Surface treatment of copper foil |
KR1020070123882A KR20080060145A (en) | 2006-12-26 | 2007-11-30 | Surface treated copper foil |
CN2007103054732A CN101209605B (en) | 2006-12-26 | 2007-12-25 | Surface processing copper foil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006348880A JP5479668B2 (en) | 2006-12-26 | 2006-12-26 | Surface treated copper foil |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008156727A JP2008156727A (en) | 2008-07-10 |
JP5479668B2 true JP5479668B2 (en) | 2014-04-23 |
Family
ID=39609945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006348880A Active JP5479668B2 (en) | 2006-12-26 | 2006-12-26 | Surface treated copper foil |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5479668B2 (en) |
KR (1) | KR20080060145A (en) |
CN (1) | CN101209605B (en) |
TW (1) | TWI415540B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6111017B2 (en) * | 2012-02-03 | 2017-04-05 | Jx金属株式会社 | Copper foil for printed wiring board, laminate using the same, printed wiring board, and electronic component |
JP6687409B2 (en) * | 2016-02-09 | 2020-04-22 | 福田金属箔粉工業株式会社 | High chroma treated copper foil, copper clad laminate using the treated copper foil, and method for producing the treated copper foil |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07832B2 (en) * | 1987-01-23 | 1995-01-11 | 日本電解株式会社 | Copper foil for printed circuit and manufacturing method thereof |
JPH0437042A (en) * | 1990-06-01 | 1992-02-07 | Hitachi Ltd | Film carrier, semiconductor device using film carrier and its manufacture |
JP3142259B2 (en) * | 1998-11-30 | 2001-03-07 | 三井金属鉱業株式会社 | Copper foil for printed wiring board excellent in chemical resistance and heat resistance and method for producing the same |
US6489034B1 (en) * | 2000-02-08 | 2002-12-03 | Gould Electronics Inc. | Method of forming chromium coated copper for printed circuit boards |
TW595280B (en) * | 2000-04-25 | 2004-06-21 | Nippon Denkai Kk | Copper foil for TAB tape carrier, TAB tape carrier using the copper foil and TAB carrier tape |
CN1217564C (en) * | 2001-05-14 | 2005-08-31 | 日本电解株式会社 | Roughened copper foil and making method thereof |
JP2003051673A (en) * | 2001-08-06 | 2003-02-21 | Mitsui Mining & Smelting Co Ltd | Printed wiring board copper foil and copper-plated laminated board using the same |
JP4767517B2 (en) * | 2004-09-14 | 2011-09-07 | 三菱瓦斯化学株式会社 | Resin composite copper foil, copper-clad laminate and printed wiring board using the same |
JP2006103189A (en) * | 2004-10-06 | 2006-04-20 | Furukawa Circuit Foil Kk | Surface-treated copper foil and circuit board |
JP2006173549A (en) * | 2004-11-18 | 2006-06-29 | Nikko Metal Manufacturing Co Ltd | Metallic material for printed-circuit board |
JP2006210689A (en) * | 2005-01-28 | 2006-08-10 | Fukuda Metal Foil & Powder Co Ltd | Copper foil for high frequency printed wiring board and its production method |
-
2006
- 2006-12-26 JP JP2006348880A patent/JP5479668B2/en active Active
-
2007
- 2007-11-21 TW TW096144092A patent/TWI415540B/en active
- 2007-11-30 KR KR1020070123882A patent/KR20080060145A/en not_active Application Discontinuation
- 2007-12-25 CN CN2007103054732A patent/CN101209605B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101209605A (en) | 2008-07-02 |
TWI415540B (en) | 2013-11-11 |
JP2008156727A (en) | 2008-07-10 |
CN101209605B (en) | 2013-10-23 |
TW200836604A (en) | 2008-09-01 |
KR20080060145A (en) | 2008-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6023848B2 (en) | Copper foil and copper clad laminate for printed circuit | |
JP5638952B2 (en) | Surface treated copper foil and copper clad laminate | |
JP6479254B2 (en) | Copper foil and copper-clad laminate having the same | |
WO2011090175A1 (en) | Roughened copper foil, method for producing same, and copper clad laminate and printed circuit board | |
JP4492434B2 (en) | Copper foil for printed wiring board, method for producing the same, and trivalent chromium chemical conversion treatment solution used for the production | |
TWI610605B (en) | Rolled copper foil or electrolytic copper foil for electronic circuits and method of forming electronic circuit using the same | |
TW201800242A (en) | Surface-treated copper foil and copper-clad laminate produced using same | |
JP2013155415A (en) | Surface-treated copper foil for high frequency transmission, laminated plate for high frequency transmission, and printed wiring board for high frequency transmission | |
JP4978456B2 (en) | Copper foil for printed circuit | |
JP2015124426A (en) | Surface-treated copper foil and laminate | |
JP2010180454A (en) | Surface-treated copper foil, method for manufacturing the same and copper-clad laminate | |
JP5136383B2 (en) | Rolled copper foil for printed wiring boards | |
JP5137341B2 (en) | Surface treated copper foil | |
JP2006028635A (en) | Method for manufacturing surface treated copper foil for microfabrication circuit substrate | |
JP5479668B2 (en) | Surface treated copper foil | |
JP3429290B2 (en) | Manufacturing method of copper foil for fine wiring | |
JP4660819B2 (en) | Copper foil for flexible printed wiring boards for COF | |
JP5728118B1 (en) | Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil | |
JP6140480B2 (en) | Copper foil with carrier, method for producing copper foil with carrier, printed wiring board, printed circuit board, copper-clad laminate, and method for producing printed wiring board | |
JP5506368B2 (en) | Copper foil for environmentally friendly printed wiring boards | |
JP2004124214A (en) | Electrolytic copper foil with carrier foil and its producing method, and copper clad laminated board using the electrolytic copper foil with carrier foil | |
JP2022161636A (en) | Surface-treated copper foil, copper clad laminate sheet employing surface-treated copper foil, and printed circuit board | |
JP3768619B2 (en) | Copper foil for printed wiring boards | |
TW201212753A (en) | Copper foil for printed circuit board with excellent etching property and laminate using the same | |
JP2004162143A (en) | Method for manufacturing copper foil for printed circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080624 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080801 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A073 Effective date: 20090127 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090413 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090701 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120807 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121002 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130219 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130416 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130806 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131105 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20131112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140213 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5479668 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |