JP5477739B2 - Abrasive mixed fluid polishing apparatus and polishing method - Google Patents

Abrasive mixed fluid polishing apparatus and polishing method Download PDF

Info

Publication number
JP5477739B2
JP5477739B2 JP2009221001A JP2009221001A JP5477739B2 JP 5477739 B2 JP5477739 B2 JP 5477739B2 JP 2009221001 A JP2009221001 A JP 2009221001A JP 2009221001 A JP2009221001 A JP 2009221001A JP 5477739 B2 JP5477739 B2 JP 5477739B2
Authority
JP
Japan
Prior art keywords
mixed fluid
abrasive
polishing
abrasive mixed
polishing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009221001A
Other languages
Japanese (ja)
Other versions
JP2011067902A (en
Inventor
隆司 上田
達明 古本
晃 細川
隆太郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa University NUC
Original Assignee
Kanazawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa University NUC filed Critical Kanazawa University NUC
Priority to JP2009221001A priority Critical patent/JP5477739B2/en
Publication of JP2011067902A publication Critical patent/JP2011067902A/en
Application granted granted Critical
Publication of JP5477739B2 publication Critical patent/JP5477739B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、金属内部、例えば金型等の冷却又は温調等を目的に形成される流路内部を研磨するのに効果的な研磨装置及び研磨方法に関する。   The present invention relates to a polishing apparatus and a polishing method effective for polishing a metal interior, for example, a flow path formed for the purpose of cooling or temperature control of a mold or the like.

水等の流体に遊離砥粒等の研磨材を混合したスラリー状の混合流体を金属部品やセラミック部品の内部に形成した貫通孔等に高速流動させて、その内面を研磨する方法は公知である(特許文献1)。   A method is known in which a slurry-like mixed fluid obtained by mixing abrasives such as free abrasive grains in a fluid such as water is flowed at high speed into a through-hole formed in a metal part or ceramic part, and the inner surface thereof is polished. (Patent Document 1).

しかし、従来の高速流動研磨の対象となる製品は、ステンレス鋼製細管やセラミックフエルール細管等の比較的直線状の孔の内面の研磨を対象するものであり、金型等に形式された3次元的な流路内面の研磨には有効でなかった。   However, conventional products subject to high-speed fluidized polishing are intended for polishing inner surfaces of relatively straight holes such as stainless steel capillaries and ceramic ferrule capillaries. It was not effective for polishing the inner surface of the three-dimensional channel.

特開2003−300148号公報JP 2003-300148 A

本発明は、金型等の金属部材の内部に連通して形式された中空部の内面研磨に効果的な安価で研磨性に優れた研磨材混合流体研磨装置及びそれを用いた研磨方法の提供を目的とする。   The present invention provides an inexpensive and mixed abrasive polishing apparatus and polishing method using the same that is effective for polishing an inner surface of a hollow portion formed in communication with a metal member such as a mold. With the goal.

本発明に係る研磨材混合流体研磨装置は、金属部材内部に連通して形成された中空部の内面研磨装置であって、連通した中空部の一方の開口部と他方の開口部にそれぞれ連結する一対の、研磨材混合流体の貯留タンクと、当該一対の貯留タンクの内圧を交互に増圧する増圧手段とを有し、研磨材混合流体が前記中空部内部を、往復流入出することで中空部内面が研磨されることを特徴とする。   An abrasive mixed fluid polishing apparatus according to the present invention is an inner surface polishing apparatus for a hollow portion formed in communication with a metal member, and is connected to one opening and the other opening of the communicating hollow portion, respectively. A pair of storage tanks for the abrasive mixed fluid and a pressure increasing means for alternately increasing the internal pressure of the pair of storage tanks, and the abrasive mixed fluid reciprocally flows into and out of the hollow portion The inner surface of the part is polished.

前記研磨材混合流体研磨装置を用いることで、レーザー光造形にて製作された焼結製の金属部材内部に連通して形成された中空部に研磨材混合流体を強制流入し、中空部内面を研磨することができる。
ここで本発明は、金属粉末をレーザー光にて焼結しながら薄い膜状に積層し、3次元的に焼結させた金属光造形金型に好適である。
By using the abrasive mixed fluid polishing apparatus, the abrasive mixed fluid is forced to flow into the hollow portion formed in communication with the inside of the sintered metal member manufactured by laser beam modeling, and the inner surface of the hollow portion is Can be polished.
Here, the present invention is suitable for a metal stereolithography mold in which metal powder is laminated in a thin film shape while being sintered with laser light and is three-dimensionally sintered.

本発明は3次元的な中空部の内面研磨に有効で、特にレーザー光を用いた光造形焼結金型等の金属部材の内部に形成した3次元中空部の内部表面の研磨に、研磨材混合流体を強制流入するだけで容易に表面仕上げができる。   The present invention is effective for polishing the inner surface of a three-dimensional hollow portion, and particularly for polishing the inner surface of a three-dimensional hollow portion formed inside a metal member such as an optical molding sintered mold using laser light. The surface finish can be easily done by forcibly flowing the mixed fluid.

本発明に係る研磨装置の構成例を模式的に示す。An example of composition of a polisher concerning the present invention is typically shown. 遊離砥粒による研削、研磨の原理図を示す。The principle diagram of grinding and polishing with loose abrasive grains is shown. 研磨試験・評価に用いた金型の構造を示す。The structure of the mold used for the polishing test and evaluation is shown. 研磨時間による流路内面の表面粗さの変化例を示す。An example of change in surface roughness of the inner surface of the flow path depending on the polishing time is shown. 研磨時間による表面粗さRa[μm]の変化を測定したグラフを示す。The graph which measured the change of surface roughness Ra [micrometer] by polishing time is shown. 研磨時間の経過に伴う流路表面の観察結果を示す。The observation result of the flow-path surface accompanying progress of grinding | polishing time is shown. 遊離砥粒の大きさ及び濃度と流路表面粗さ変化を示す。The size and concentration of loose abrasive grains and the change in flow path surface roughness are shown. (a)は遊離砥粒の大きさと表面粗さの関係を示し、(b)は遊離砥粒の濃度と表面粗さの関係を示す。(A) shows the relationship between the size of free abrasive grains and surface roughness, and (b) shows the relationship between the concentration of free abrasive grains and surface roughness.

本発明に係る、研磨材混合流体を用いた研磨装置の構成例を示す。
金型等の金属部材からなるワークWに連通して設けた流路等の中空部の一方の開口部と他方の開口部に配管部材等の連結具11aを介して、一対の貯留タンク11をそれぞれ連結する。
貯留タンク11は水、油等の流体21に、研磨材としての遊離砥粒20を混合してある。
貯留タンク11は、遊離砥粒20と流体21との混合流体をワークWの内部に形成した流路に強制流入できるように増圧手段に連結されている。
ここで増圧手段は、研磨材混合流体をワークWの連通流路に高速強制流入できるものであれば特に構造が限定されるものでないが、本実施例にあっては、シリンダー状の増圧部12に配設したピストン13aを、油圧、エアー圧、電動等にて往復運動させるシリンダー13に連結した例になっている。
このシリンダー13も図1において左右の増圧部12を交互に増圧できれば手段、構造に限定がない。
例えば、油圧シリンダーに対して油圧ポンプ14、エアー圧シリンダーに対してエアーポンプ14を用いることができ、また電動シリンダーを採用することもできる。
本実施例では、貯留タンク11と増圧部12とを分離して設けた例になっているが増圧部を貯留タンクに一体的に形成してもよい。
The structural example of the grinding | polishing apparatus using the abrasives mixed fluid based on this invention is shown.
A pair of storage tanks 11 are connected to one opening of a hollow portion such as a flow path provided in communication with a workpiece W made of a metal member such as a mold and the other opening via a connector 11a such as a piping member. Connect each one.
In the storage tank 11, free abrasive grains 20 as an abrasive are mixed with a fluid 21 such as water or oil.
The storage tank 11 is connected to the pressure increasing means so that the mixed fluid of the loose abrasive grains 20 and the fluid 21 can be forced into a flow path formed inside the workpiece W.
Here, the structure of the pressure increasing means is not particularly limited as long as the abrasive mixed fluid can be forced to flow into the communication channel of the workpiece W at a high speed. In this example, the piston 13a disposed in the portion 12 is connected to a cylinder 13 that is reciprocated by hydraulic pressure, air pressure, electric drive, or the like.
The cylinder 13 is not limited in its means and structure as long as the pressure increase portions 12 on the left and right sides can be alternately increased in FIG.
For example, the hydraulic pump 14 can be used for the hydraulic cylinder, the air pump 14 can be used for the air pressure cylinder, and an electric cylinder can also be used.
In the present embodiment, the storage tank 11 and the pressure increasing portion 12 are provided separately, but the pressure increasing portion may be formed integrally with the storage tank.

図1にてワークWの左右に連結した貯留タンク11の一方を増圧し、研磨材混合流体をワークWに形成した流路内に強制流入させ、他方の貯留タンク11に戻るようになっていて、一対の貯留タンク11を交互に増圧することで流路内を研磨材混合流体が往復流入出する。   In FIG. 1, one of the storage tanks 11 connected to the left and right of the work W is increased in pressure, and the abrasive mixed fluid is forced to flow into the flow path formed in the work W and returns to the other storage tank 11. The abrasive mixed fluid reciprocates in and out of the flow path by alternately increasing the pressure of the pair of storage tanks 11.

遊離砥粒にて研削・研磨できる原理図を図2に示す。
遊離砥粒とは、個々の研磨材粒子が遊離状態になっているものをいい、水や油等の流体に混合するとスラリー状になり、混合流体に強制的な流れを生じさせると、砥粒が加工物(ワーク)の表面に接触し、この表面を研削・研磨する。
砥粒材質には特に制限はなく、アルミナ系砥粒、炭化ケイ素系砥粒、ジルコニアアルミナ系砥粒が例として挙げられ、安価に入手しやすい点ではアルミナ砥粒がよい。
FIG. 2 shows a principle diagram that can be ground and polished with loose abrasive grains.
Free abrasive grains are those in which individual abrasive particles are in a free state. When mixed with a fluid such as water or oil, it becomes a slurry, and when a forced flow is generated in the mixed fluid, the abrasive grains Comes into contact with the surface of the workpiece (work), and this surface is ground and polished.
There is no restriction | limiting in particular in an abrasive grain material, An alumina type abrasive grain, a silicon carbide type abrasive grain, a zirconia alumina type abrasive grain is mentioned as an example, and an alumina abrasive grain is good at the point which is easy to obtain cheaply.

研磨材混合流体による研磨条件を検討するために用いた金型の構造例を図3に示す。
実際に研磨が必要とする金型等は内部に設けた、冷却又は温調用の媒体を流すための流路等、3次元的な流路である。
近年、金型の冷却効率、温調効率を高めるのに3次元流路を形成することが検討されている。
そのような流路を形成する手段として、鉄粉等焼結が可能な金属粉末を薄い膜状に積層し、YAGレーザー、COレーザー等のレーザー光をプログラミングに基づいて焦点照射することで3次元的に焼結形成する方法が検討されている。
このような金属光造形法では、焼結によるものであるために表面粗さが粗いことから、キャビティ面等は切削加工等で仕上げ加工するが、冷却用、温調用等の媒体流路は工具が入らず、従来のような切削加工ができない。
そこで図3に示した金型A,Bの分離型を用いて試験評価した。
FIG. 3 shows an example of the structure of a mold used for examining the polishing conditions with the abrasive mixed fluid.
A mold or the like actually required for polishing is a three-dimensional flow path such as a flow path for flowing a cooling or temperature control medium provided inside.
In recent years, it has been studied to form a three-dimensional flow path in order to increase the cooling efficiency and temperature control efficiency of a mold.
As a means for forming such a flow path, a metal powder that can be sintered, such as iron powder, is laminated in a thin film shape, and a laser beam such as a YAG laser or a CO 2 laser is focused on the basis of programming. A method of dimensionally forming a sintered body has been studied.
In such a metal stereolithography method, since the surface roughness is rough because it is due to sintering, the cavity surface is finished by cutting or the like, but the medium flow path for cooling, temperature control, etc. is a tool The conventional cutting process cannot be performed.
Therefore, a test evaluation was performed using the separated molds of molds A and B shown in FIG.

金型A,Bはそれぞれ金属粉末を用いて、レーザー光焼結による光造形金型であり、図3(b)に示すようにR=2.5mm、L=80mmの半円溝を金型A,Bの対向面に形成し、パッキン材でシールすることで擬似的な流路を形成した。   The molds A and B are stereolithography molds by laser light sintering using metal powder, respectively. As shown in FIG. 3B, the semicircular grooves with R = 2.5 mm and L = 80 mm are molded. A pseudo flow path was formed by forming on the facing surfaces of A and B and sealing with a packing material.

このような試験型を用いて、砥粒アルミナ、粒度#150(平均粒径97.5μm)、砥粒濃度2.0vol%、流速20m/sec、1往復当たりの研磨距離40mの条件にて研磨した結果を図4のグラフに示す。
この結果、焼結したままの研磨前の表面粗さが図4(a)に示すように算術平均粗さRa=24μm、最大高さRy=115μmであったものが、500sec後はRa=10μm、Ry=41μm、9000sec後は、Ra=3.2μm、Ry=14μmとなっていた。
この際の表面粗さRaの時間経過を図5のグラフに示し、表面写真を図6に示す。
Using such a test mold, polishing was performed under the conditions of abrasive alumina, particle size # 150 (average particle size 97.5 μm), abrasive concentration 2.0 vol%, flow rate 20 m / sec, polishing distance 40 m per reciprocation. The results are shown in the graph of FIG.
As a result, as shown in FIG. 4A, the as-sintered surface roughness as-sintered was arithmetic average roughness Ra = 24 μm and maximum height Ry = 115 μm, but after 500 sec Ra = 10 μm After Ry = 41 μm and 9000 sec, Ra = 3.2 μm and Ry = 14 μm.
The time course of the surface roughness Ra at this time is shown in the graph of FIG. 5, and the surface photograph is shown in FIG.

次にアルミナ砥粒のうち、粒度#60(平均粒径302.5μm),#150(平均粒径97.5μm),#320(平均粒径72.5μm)の3種を用いて、それぞれの砥粒の体積濃度での研磨時間と表面粗さ変化を調査した結果を図7のグラフに示す。
この結果、砥粒の平均粒径が大きいものの方が速く研磨できることは想定できたが、意外にも砥粒の平均粒径が大きくても表面粗さが小さく仕上がることが判明した。
Next, among the alumina abrasive grains, three types of particle sizes # 60 (average particle size 302.5 μm), # 150 (average particle size 97.5 μm), and # 320 (average particle size 72.5 μm) were used, The result of investigating the polishing time and the surface roughness change with the volume concentration of the abrasive grains is shown in the graph of FIG.
As a result, it was assumed that the abrasive grains having a larger average particle diameter can be polished faster, but it was surprisingly found that even if the average grain diameter of the abrasive grains is large, the surface roughness is small.

そこで、同一の研磨時間にて表面粗さに対する粒度及び濃度の影響を調査した結果を図8に示す。
この結果、表面粗さを小さく仕上げるには、相対的に粗い粒度#60が最もよく、砥粒の濃度の影響は比較的小さいことが明らかになった。
従って、金属粉末をレーザー光造形した焼結金型にあっては砥粒材質がアルミナである場合に砥粒の平均粒径が90〜350μmの範囲がよいことが明らかになった。
また、砥粒濃度は少なくとも2〜16vol%の範囲で影響が小さかった。
Therefore, FIG. 8 shows the results of investigating the influence of the particle size and concentration on the surface roughness at the same polishing time.
As a result, in order to finish the surface roughness small, it was found that the relatively coarse particle size # 60 is the best, and the influence of the abrasive concentration is relatively small.
Therefore, it has been clarified that the average particle diameter of the abrasive grains is preferably in the range of 90 to 350 μm when the abrasive grain material is alumina in the sintered mold obtained by laser beam shaping of the metal powder.
Further, the influence of the abrasive grain concentration was at least in the range of 2 to 16 vol%.

次に上記に示した砥粒平均粒径90〜350μmの範囲及び2〜16vol%の濃度範囲、流速10〜30m/secの範囲の条件にて3次元形状の流路や分枝状の流路を形成した焼結金型の研磨を実施した結果、充分に実用的な表面に仕上がった。   Next, a three-dimensional channel or a branched channel under the conditions of the abrasive grain average particle size of 90 to 350 μm, the concentration range of 2 to 16 vol%, and the flow rate of 10 to 30 m / sec shown above. As a result of polishing the sintered mold formed, a sufficiently practical surface was obtained.

11 貯留タンク
12 増圧部
13 シリンダー
14 ポンプ
21 流体
W ワーク
11 Storage tank 12 Pressure increasing part 13 Cylinder 14 Pump 21 Fluid W Workpiece

Claims (1)

金属部材内部に連通して形成された中空部の内面研磨装置であって、
連通した中空部の一方の開口部と他方の開口部にそれぞれ連結する一対の、研磨材混合流体の貯留タンクと、当該一対の貯留タンクの内圧を交互に増圧する増圧手段とを有し、研磨材混合流体が前記中空部内部を、往復流入出することで中空部内面が研磨される研磨材混合流体研磨装置を用いて、
レーザー光造形にて製作された焼結製の光造形金型内部に連通して形成された3次元形状の中空部に研磨材混合流体を強制流入し、中空部内面を研磨するものであり、
前記研磨材混合流体中に混合されている砥粒はアルミナであり、平均粒径が90〜350μm,砥粒濃度が2〜16vol%の範囲であることを特徴とする光造形金型の研磨材混合流体による研磨方法。
A hollow surface inner surface polishing apparatus formed in communication with the inside of a metal member,
A pair of storage tanks of the abrasive mixed fluid respectively connected to one opening and the other opening of the communicating hollow portion, and a pressure increasing means for alternately increasing the internal pressure of the pair of storage tanks, Using an abrasive mixed fluid polishing apparatus in which the inner surface of the hollow part is polished by flowing out and flowing in and out of the hollow part, the abrasive mixed fluid ,
The abrasive mixed fluid is forcibly flowed into the hollow part of the three-dimensional shape formed in communication with the inside of the sintered optical shaping mold produced by laser stereolithography, and the hollow part inner surface is polished .
The abrasive mixed in the abrasive mixed fluid is alumina, the average particle diameter is 90 to 350 μm, and the abrasive concentration is in the range of 2 to 16 vol%. Polishing method with mixed fluid.
JP2009221001A 2009-09-25 2009-09-25 Abrasive mixed fluid polishing apparatus and polishing method Active JP5477739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009221001A JP5477739B2 (en) 2009-09-25 2009-09-25 Abrasive mixed fluid polishing apparatus and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009221001A JP5477739B2 (en) 2009-09-25 2009-09-25 Abrasive mixed fluid polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2011067902A JP2011067902A (en) 2011-04-07
JP5477739B2 true JP5477739B2 (en) 2014-04-23

Family

ID=44013710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009221001A Active JP5477739B2 (en) 2009-09-25 2009-09-25 Abrasive mixed fluid polishing apparatus and polishing method

Country Status (1)

Country Link
JP (1) JP5477739B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311230A (en) * 2016-06-13 2019-02-05 西门子股份公司 Surface is handled for the method for increasing material manufacturing, component and equipment
CN109311231A (en) * 2016-06-13 2019-02-05 西门子股份公司 The method that the method for grading material device is provided and manufactures component with increasing material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016179515A (en) * 2015-03-23 2016-10-13 パナソニックIpマネジメント株式会社 Method and device for polishing penetration passage of three-dimensional structure
JP2016179514A (en) * 2015-03-23 2016-10-13 パナソニックIpマネジメント株式会社 Method and device for polishing penetration passage of three-dimensional structure
JP6681584B2 (en) * 2016-05-24 2020-04-15 パナソニックIpマネジメント株式会社 Method and device for polishing through channels of a three-dimensional structure
JP6741977B2 (en) * 2016-05-24 2020-08-19 パナソニックIpマネジメント株式会社 Method and device for polishing through channels of a three-dimensional structure
WO2018003881A1 (en) * 2016-06-29 2018-01-04 パナソニックIpマネジメント株式会社 Sprue bush and manufacturing method therefor
JP7083213B2 (en) * 2017-10-18 2022-06-10 三光合成株式会社 Abrasive mixed liquid polishing device, polishing method using it, and laminated wire mesh filter for abrasive grain separation of abrasive mixed liquid polishing device
JP7408580B2 (en) * 2018-06-01 2024-01-05 ビーエーエスエフ ソシエタス・ヨーロピア How to determine the geometry of green parts that are formed into finished parts using water-erosive polishing methods
JP7194996B2 (en) * 2019-03-13 2022-12-23 株式会社松井製作所 Fluid polisher
TW202100263A (en) * 2019-06-25 2021-01-01 天陽航太科技股份有限公司 Processing apparatus for reducing internal surface roughness of workpiece

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196964A (en) * 1989-12-22 1991-08-28 Kanai Hiroyuki Workpiece polishing method and device
JP3711250B2 (en) * 2001-05-30 2005-11-02 株式会社堀場エステック Pipe inner surface polishing equipment
JP3933572B2 (en) * 2002-12-25 2007-06-20 オリンパス株式会社 Mold equipment
JP2005059115A (en) * 2003-08-08 2005-03-10 Nec Tokin Corp Polishing method of inner peripheral surface of metal pipe
JP4032017B2 (en) * 2003-09-02 2008-01-16 株式会社不二越 Fluid processing device for the inner surface of a ramp-shaped workpiece
JP4983768B2 (en) * 2008-10-06 2012-07-25 沖電気工業株式会社 Modeling method by stereolithography

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311230A (en) * 2016-06-13 2019-02-05 西门子股份公司 Surface is handled for the method for increasing material manufacturing, component and equipment
CN109311231A (en) * 2016-06-13 2019-02-05 西门子股份公司 The method that the method for grading material device is provided and manufactures component with increasing material
CN109311230B (en) * 2016-06-13 2021-01-15 西门子股份公司 Method, component and apparatus for treating a surface for additive manufacturing
US11033964B2 (en) 2016-06-13 2021-06-15 Siemens Energy Global GmbH & Co. KG Method of providing an abrasive means and of additively manufacturing a component
CN109311231B (en) * 2016-06-13 2021-06-18 西门子股份公司 Method of providing an abrasive device and method of additively manufacturing a component
US11104063B2 (en) 2016-06-13 2021-08-31 Siemens Energy Global GmbH & Co. KG Method of processing a surface for additive manufacturing, component and apparatus

Also Published As

Publication number Publication date
JP2011067902A (en) 2011-04-07

Similar Documents

Publication Publication Date Title
JP5477739B2 (en) Abrasive mixed fluid polishing apparatus and polishing method
Jia et al. Experimental evaluation of surface topographies of NMQL grinding ZrO 2 ceramics combining multiangle ultrasonic vibration
KR100812717B1 (en) Abrasive blasting machine for cutting tool
EP3349942B1 (en) Method for machining a component
CN105773092B (en) The manufacturing method of gluing hard alloy die cutter roller
CN111390660B (en) Ultrasonic isostatic pressing viscoelastic abrasive polishing device and polishing method for integral impeller parts
CN106271902A (en) A kind of material that increases manufactures aluminium alloy pipeline accessory inner surface finishing method
Zhang et al. Experimental investigations on the impact of different laser macro-structured diamond grinding wheels on alumina ceramic
KR20180008731A (en) Method for manufacturing three-dimensional sculpture
Lesyk et al. Surface polishing of laser powder bed fused superalloy components by magnetic post-treatment
Dehghanghadikolaei et al. Abrasive machining techniques for biomedical device applications
Nadolny et al. Regeneration of grinding wheel active surface using high-pressure hydro-jet
Bae et al. Finishing characteristics of Inconel alloy 625 bars in ultra-precision magnetic abrasive finishing using CNC machine center
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
Li et al. Generating mechanism of surface morphology finished by abrasive jet with grinding wheel as restraint
JP6018728B2 (en) Super finishing method
CN111975621B (en) Polishing device for inner surface of tiny complex hole and control method thereof
Isobe et al. Ultrasonically assisted grinding for mirror surface finishing of dies with electroplated diamond tools
Shi et al. Deep profiled slot grinding on a nickel-based alloy with electroplated CBN wheels
KR200424064Y1 (en) Abrasive blasting machine for cutting tool
Barman et al. Fundamental understanding and latest developments in magnetic field assisted finishing processes
杜建华 et al. The grinding technology of engineering ceramics
JP4376127B2 (en) Manufacturing method of mold for vacuum casting
Singh et al. 9 Advanced Finishing
Kumari et al. Advanced abrasive-based nano-finishing process parameter study for biomedical implants

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140131

R150 Certificate of patent or registration of utility model

Ref document number: 5477739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250