JP5475598B2 - 基準電流発生回路 - Google Patents

基準電流発生回路 Download PDF

Info

Publication number
JP5475598B2
JP5475598B2 JP2010199693A JP2010199693A JP5475598B2 JP 5475598 B2 JP5475598 B2 JP 5475598B2 JP 2010199693 A JP2010199693 A JP 2010199693A JP 2010199693 A JP2010199693 A JP 2010199693A JP 5475598 B2 JP5475598 B2 JP 5475598B2
Authority
JP
Japan
Prior art keywords
current
circuit
reference current
resistor
current mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010199693A
Other languages
English (en)
Other versions
JP2012058891A (ja
Inventor
裕治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010199693A priority Critical patent/JP5475598B2/ja
Priority to US13/044,735 priority patent/US8760143B2/en
Publication of JP2012058891A publication Critical patent/JP2012058891A/ja
Application granted granted Critical
Publication of JP5475598B2 publication Critical patent/JP5475598B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Description

本発明の実施形態は、基準電流発生回路に関する。
従来、基準電流発生回路として、正の温度特性を有するPN接合ダイオードと、負の温度特性を有する抵抗とを組み合わせて温度特性を補償したBGR(Band Gap Reference)と呼ばれる回路によって基準電流を発生させていた(例えば、特許文献1参照。)。
然しながら、BGR回路では、1次の温度係数の補償は容易であるが、負の2次の温度係数の補償が難しいという問題がある。
これは、抵抗の温度特性が線形であるのに対して、PN接合ダイオードの温度特性が非線形であること、負の2次温度係数を有する基準電流に対応する正の2次温度係数を有する基準電流が容易に得られないことに起因している。
その結果、BGR回路では、温度と基準電流の線形性が損なわれ、所望の特性が得られなくなるという問題がある。例えばSoC(System on Chip)と呼ばれる種々の機能をワンチップに集積した集積回路では、信号処理の高性能化に伴い温度と基準電流に高い線形性が求められている。
従って、容易に正の2次温度係数を有する基準電流が生成できるとともに、正の2次温度係数を有する基準電流を負の2次温度係数を有する基準電流に加算して、2次温度係数が補償された基準電流発生回路が求められていた。
特開2007−200233号公報
本発明は、正の2次温度係数を有する基準電流を生成する基準電流発生回路を提供する。
一つの実施形態によれば、基準電流発生回路では、第1基準電流発生回路は、第1抵抗と第1ダイオードの第1直列回路と、前記第1直列回路に並列接続された第2抵抗を有する第1電流電圧変換回路と、第2ダイオードを有する第2電流電圧変換回路と、前記第1および第2電流電圧変換回路に等しい電流を供給する第1電流供給回路とを備え、負の2次温度係数を有する第1基準電流を発生する。第2基準電流発生回路は、第3抵抗と第3ダイオードの第2直列回路を有する第3電流電圧変換回路と、第4ダイオードを有する第4電流電圧変換回路と、第4抵抗を有する第5電流電圧変換回路と、前記第4電流電圧変換回路に供給する電流に等しい電流を前記第3および第5電流電圧変換回路に一定の比率で分流して供給する第2電流供給回路とを備え、絶対値が前記負の2次温度係数と略等しい正の2次温度係数を有する第2基準電流を生成する。電流出力回路は、前記第1基準電流と前記第2基準電流を加算した第3基準電流を出力する。
実施例1に係る基準電流発生回路を示す回路図。 実施例1に係る基準電流の温度特性を説明するための図。 実施例1に係る基準電流の温度特性モードを示す図。 実施例1に係る基準電流発生回路を用いた発振回路を示す図。 実施例1に係る基準電流発生回路を用いた別の発振回路を示す図。 実施例1に係る発振回路を用いた集積回路を示すブロック図。 実施例2に係る基準電流発生回路を示す回路図。 実施例2に係る基準電流の温度特性のシミュレーション結果を示す図。 実施例2に係る基準電流の温度特性のシミュレーション結果を示す図。 実施例3に係る基準電流発生回路を示す回路図。 実施例4に係る基準電流発生回路を示す回路図。 実施例4に係る別の基準電流発生回路を示す回路図。 実施例4に係る別の基準電流発生回路を示す回路図。 実施例4に係る別の基準電流発生回路を示す回路図。 実施例4に係る別の基準電流発生回路を示す回路図。
以下、本発明の実施例について図面を参照しながら説明する。
本実施例の基準電流発生回路について、図1乃至図5を参照して説明する。図1は本実施例の基準電流発生回路を示す回路図である。図1に示すように、本実施例の基準電流発生回路10では、第1基準電流発生回路11は、負の2次温度係数(a12)を有する第1基準電流I1を生成する。
第2基準電流発生回路12は、絶対値が第1基準電流I1の負の2次温度係数と略等しい正の2次温度係数(a22)を有する第2基準電流I2を生成する。
電流出力回路13は、第1基準電流I1と第2基準電流I2を加算した第3基準電流I3を出力する(I3=I1+I2)。
第1基準電流発生回路11は、第1抵抗R1と第1ダイオードD1の第1直列回路と第1直列回路に並列接続された第2抵抗R2を有する第1電流電圧変換回路14と、第2ダイオードD2を有する第2電流電圧変換回路15と、第1および第2電流電圧変換回路14、15に等しい電流を供給する第1電流供給回路16を有している。
第1電流供給回路16では、Pチャンネル(第1導電型)の第1カレントミラー回路17と、Nチャンネル(第2導電型)の第2カレントミラー回路18が直列接続されている。第1カレントミラー回路17が電源端子19に接続され、第2カレントミラー回路18が第1および第2電流電圧変換回路14、15に接続されている。
第1電流供給回路16は、Pチャンネルの第1カレントミラー回路17とNチャンネルの第2カレントミラー回路18を直列接続することにより、入力電流と出力電流の温度ドリフトを低減し、ミラー比が高精度に達成されるように構成されている。
第1カレントミラー回路17は、ゲート電極とドレイン電極が接続され、入力電流が流し込まれるPチャンネルの絶縁ゲート電界効果トランジスタ(以後、単にPMOSトランジスタという)20と、ゲート電極がPMOSトランジスタ20のゲート電極に接続され、出力電流が通過するPMOSトランジスタ21を有している。
第2カレントミラー回路18は、ゲート電極とドレイン電極が接続され、入力電流が流し込まれるNMOSトランジスタ22と、ゲート電極がNMOSトランジスタ22のゲート電極に接続され、出力電流が通過するNMOSトランジスタ23を有している。
PMOSトランジスタ20とNMOSトランジスタ23が接続され、PMOSトランジスタ21とNMOSトランジスタ22が接続されている。
第1カレントミラー回路17では、PMOSトランジスタ21のミラー比は1に設定されている。第2カレントミラー回路18では、NMOSトランジスタ23のミラー比は1に設定されている。
第1電流電圧変換回路14は、NMOSトランジスタ23と基準電位GNDの間に接続されている。第2電流電圧変換回路15は、NMOSトランジスタ22と基準電位GNDの間に接続されている。
第2基準電流発生回路12は、第3抵抗R3と第3ダイオードD3の第2直列回路を有する第3電流電圧変換回路24と、第4ダイオードD4を有する第4電流電圧変換回路25と、第4抵抗R4を有する第5電流電圧変換回路26と、第4電流電圧変換回路25に供給する電流に等しい電流を第3および第5電流電圧変換回路24、26に一定の比率(k:1−k)で分流して供給する第2電流供給回路27を有している。
第2電流供給回路27は、Pチャンネルの第3カレントミラー回路28と、Nチャンネルで多連出力型の第4カレントミラー回路29の直列回路を有している。第3カレントミラー回路28が電源端子19に接続され、第4カレントミラー回路29が第3乃至第5電流電圧変換回路24、25、26に接続されている。
第2電流供給回路27は、Pチャンネルの第3カレントミラー回路28とNチャンネルの第4カレントミラー回路29を直列接続することにより、入力電流と出力電流の温度ドリフトを低減し、ミラー比が高精度に達成されるように構成されている。
第3カレントミラー回路28は、ゲート電極とドレイン電極が接続され、入力電流が流し込まれるPMOSトランジスタ30と、ゲート電極がPMOSトランジスタ30のゲート電極に接続され、出力電流が通過するPMOSトランジスタ31を有している。
第4カレントミラー回路29は、ゲート電極とドレイン電極が接続され、入力電流が流し込まれるNMOSトランジスタ32と、ゲート電極がNMOSトランジスタ32のゲート電極に接続され、出力電流の一部(k)が通過するNMOSトランジスタ33と、ゲート電極がNMOSトランジスタ32のゲート電極に接続され、出力電流の残部(1−k)が通過するNMOSトランジスタ34を有している。
PMOSトランジスタ30とNMOSトランジスタ33、34が接続され、PMOSトランジスタ31とNMOSトランジスタ32が接続されている。
第3カレントミラー回路28では、PMOSトランジスタ31のミラー比は1に設定されている。第4カレントミラー回路29では、NMOSトランジスタ33のミラー比はkに設定され、NMOSトランジスタ34のミラー比は1−kに設定されている。
第3電流電圧変換回路24は、NMOSトランジスタ33と基準電位GNDの間に接続されている。第4電流電圧変換回路25は、NMOSトランジスタ32と基準電位GNDの間に接続されている。第5電流電圧変換回路26は、NMOSトランジスタ34と基準電位GNDの間に接続されている。
ここで、第1乃至第4ダイオードD1、D2、D3、D4は、例えば特性が揃ったダイオードである(D1=D3、D2=D4)。具体的には、順方向電圧、順方向電圧の温度依存性が略等しいダイオードである。
第1および第3抵抗R1、R3は、例えば特性が揃った抵抗である(R1=R3)。具体的には、抵抗値および抵抗の温度依存性が略等しい抵抗である。
電流出力回路13は、第1カレントミラー回路17に付加されて多連出力型のカレントミラー回路を構成するPMOSトランジスタ35と、第3カレントミラー回路28に付加されて多連出力型のカレントミラー回路を構成するPMOSトランジスタ36との並列回路を有している。
PMOSトランジスタ35のゲート電極がMOSトランジスタ20のゲート電極に接続され、PMOSトランジスタ36のゲート電極はPMOSトランジスタ30のゲート電極に接続されている。PMOSトランジスタ35、36のミラー比は、それぞれ1に設定されている。
上述した基準電流発生回路10では、負の2次温度係数は、第1および第2ダイオードD1、D2の非直線性の差に依存して第2抵抗R2に流れる電流I1bの温度特性に応じて生成され、正の2次温度係数は、第3および第4ダイオードD3、D4の非直線性の差に依存して第4抵抗R4に発生する電圧Vn5の温度特性に応じて生成されるように構成されている。
図2は第1乃至第3基準電流I1、I2、I3の温度特性を説明するための図である。第1乃至第3基準電流I1、I2、I3の温度特性は、温度Tを変数とする多項式近似により、下記式で表わされる。
I1(T)=a10+a11T+a12+a13+・・・・・ (1)
I2(T)=a20+a21T+a22+a23+・・・・・ (2)
I3(T)=(a10+a20)+(a11+a21)T
+(a13+a23)T+ ・・・・・ (3)
上記の温度係数axyは、定数項を除いて、特に正負の定めはないものである。
図2(a)に示すように、第1基準電流I1は負の温度特性を有しているが、2次の温度係数が負であるために、温度Tが上昇すると直線41より僅かに上凸状の曲線42のように減少する。
このため、温度Tと第1基準電流I1の線形性が損なわれ、曲線43で示すような第1誤差が生じる。曲線43は直線41と曲線42の差を示している。
一方、図2(b)に示すように、第2基準電流I2も負の温度特性を有しているが、2次の温度係数が正であるために、温度Tが上昇すると直線44より僅かに下凸状の曲線45のように減少する。
このため、温度Tと第21基準電流I2の線形性が損なわれ、曲線46で示すような第2誤差が生る。曲線46は直線44と曲線45の差を示している。
その結果、図2(c)に示すように、第1基準電流I1と第2基準電流I2が加算された第3基準電流I3も負の温度特性を有しているが、第1基準電流I1と第2基準電流I2の2次の温度係数が打ち消し合うために、温度Tが上昇すると直線47のように減少する。
従って、温度Tと第3基準電流I3の線形性を確保することが可能である。但し、S字状の曲線48で示すような僅かな第3誤差が残留している。これは、3次以上の温度係数が打ち消されていないためである。
次に、図1に戻って基準電流発生回路10の動作について詳しく説明する。第1乃至第5電圧電流変換回路14、15、24、25、26の電流入力側のノードをノードN1、N2、N3、N4、N5とし、ノードN1、N2、N3、N4、N5の電位をVn1、Vn2、Vn3、Vn4、Vn5とする。
第1基準電流発生回路11では、電位Vn1は第1抵抗R1と第1ダイオードD1の第1直列回路により決定され、電位Vn2は第2ダイオードD2により決定される。従って、ノードN1の電位Vn1とノードN2の電位Vn2は、恒常的に等しくなる(Vn1=Vn2)。
ここで、第1および第2ダイオードD1、D2の電圧をVd1、Vd2とすると、以下の式が成り立つ。
Vn1=I1aR1+Vd1 (4)
Vn2=Vd2 (5)
これにより、電流I1a、I1bは次式で表わされる。
I1a=(Vd2−Vd1)/R1 (6)
I1b=Vd2/R2 (7)
従って、第1基準電流I1は次式で表わされる。
I1=I1a+I1b=(Vd2−Vd1)/R1+Vd2/R2 (8)
例えば、R1がR2より十分小さいとすると(R2≫R1)、
I1=I1a=(Vd2−Vd1)/R1 (9)
が得られる。第1基準電流I1は、第1および第2ダイオードD1、D2の電圧Vd1、Vd2の非直線性の差に依存した温度係数を有している。
温度が上昇すると、第1および第2ダイオードD1、D2のPN接合の障壁が小さくなるので、ノードN1、N2の電位Vn1、Vn2はともに低下する。電位Vn1が低下すると、オームの法則に従い第2抵抗R2に流れる電流I1bは小さくなる。
同様に、第2基準電流発生回路12では、ノードN3の電位Vn3は第3ダイオードD3と第3抵抗R3の第2直列回路により決定され、ノードN4の電位Vn4は第4ダイオードD4により決定される。ノードN1の電位Vn1とノードN2の電位Vn2と同様に、ノードN3の電位Vn3とノードN4の電位Vn4は、恒常的に等しくなる(Vn3=Vn4)。
ここで、第3および第4ダイオードD3、D4の電圧をVd3、Vd4とすると、以下の式が成り立つ。
Vn3=I2aR3+Vd3 (10)
Vn4=Vd4 (11)
これにより、電流I2a、I2bは次式で表わされる。
I2a=(Vd4−Vd3)/R3 (12)
I2b=((Vd4−Vd3)/R3)(1−k)/k (13)
従って、第2基準電流I2は次式で表わされる。
I2=I2a+I2b=(Vd4−Vd3)/(kR3) (14)
また、ノードN5の電位Vn5=I2bR4は、次式で表わされる。
Vn5=((Vd4−Vd3)/R3)R4(1−k)/k (15)
第2基準電流I2は、第3および第4ダイオードD3、D4の電圧Vd3、Vd4の非直線性の差に依存した温度係数を有している。
温度が上昇すると、第3および第4ダイオードD3、D4のPN接合の障壁が小さくなるので、第4カレントミラー回路29のNMOSトランジスタ33のミラー比kにより決定されるNMOSトランジスタ33を通過する電流I2aが増加する。
同様に、第4カレントミラー回路29のNMOSトランジスタ34のミラー比(1−k)で決定されるNMOSトランジスタ34を通過する電流I2bも増加する。その結果、ノードN5の電位Vn5は上昇する。
ノードN5の電位Vn5が上昇すると、NMOSトランジスタ34のドレイン・ソース間電圧Vdsおよびゲート・ソース間電圧Vgsが減少するので、NMOSトランジスタ34のドレイン電流I2bは減少する。
MOSトランジスタの飽和領域におけるドレイン電流Idは、次式で表わされる。
Id∝(Vgs−Vth)(1+λVds) (16)
ここで、VthはMOSトランジスタの閾値、λはチャネル長変調係数である。
これにより、ドレイン・ソース間電圧Vdsおよびゲート・ソース間電圧Vgsが減少すると、ドレイン電流Idが減少することが示される。
従って、ノードN5の電位Vn5は、ノードN3において電流I2aが増加すると連動して電流I2bが増加し、電位Vn5が増加する第1の効果と、電位Vn5が増加するとNMOSトランジスタ34の動作特性により電流I2bが減少し、電位Vn5が減少する第2の効果の和により定まることになる。第1の効果と第2の効果の兼ね合いにより、電位Vn5の温度特性を反転させることが可能である。
温度が変化するとき、電流I1bによるノードN1の電位Vn1の振る舞いと、電流I2bによるノードN5の電位Vn5の振る舞いの違いにより、第1基準電流I1は負の2次温度係数を有し、第2基準電流I2は正の2次の温度係数を有する。
図3は第3基準電流I3の温度特性モードを示す図である。第3基準電流I3では、2次の温度係数が補償されており、温度Tに対する線形性は確保されている。然し、1次の温度係数については任意である。従って、3つの温度特性モードが可能である。
図3(a)は、正の温度特性を有する第3基準電流I3を示す図、図3(b)は0の温度特性を有する第3基準電流I3を示す図、図3(c)は負の温度特性を有する第3基準電流I3を示す図である。
温度特性モードの切り替えは、第1基準電流発生回路10においては、電流I1aとI1bの比率を調節することにより行う。電流I1aは第1ダイオードD1によって定まる正の温度係数に依存し、電流I2aは第2抵抗R2によって定まる負の温度係数に依存している。第2基準電流発生回路12においては、第3抵抗R3および第4抵抗R4により電流I2aと電流I2bの大きさを調節することにより行なう。
第1および第2電流I1、I2の1次温度係数a11、a21が負になるように調節することにより、図3(a)に示す負の1次温度係数を有する第3基準電流I3が得られる。この温度特性モードをNTAT(Negative To Absolute Temperature)と呼ぶ。
1次温度係数a11、a21が略ゼロになるように調節することにより、図3(b)に示す0の1次温度係数を有する第3基準電流I3が得られる。この温度特性モードをCONST(Constant To Absolute Temperature)と呼ぶ。
1次温度係数a11、a21が正になるように調節することにより、図3(c)に示す正の1次温度係数を有する第3基準電流I3が得られる。この温度特性モードをPTAT(Positive To Absolute Temperature)と呼ぶ。
図4は基準電流発生回路10を用いた発振回路を示す図である。図4に示すように、発振回路は、インバータ51によるリング発振回路50である。ここでは、3つのインバータ51がリング状に接続され、基準電流発生回路10から各インバータ51にNTATの温度特性モードを有する第3基準電流I3が供給されている。
リング発振回路50では、発振周波数fはインバータ51の伝播遅延時間τdと段数Nによって決まる(f ∝ 1/Nτd)。遅延時間τdはインバータ51の負荷容量Cに比例し、動作電流Iと動作温度Tに半比例するので、発振周波数fはf ∝ IT/Cで表わされる。
従って、NTATの温度特性モードを有する第3基準電流I3により、温度Tによる発振周波数の変化を打ち消して、温度変動の少ないリング発振回路50を得ることが可能である。
図5は基準電流発生回路10を用いた別のリング発振回路を示す図である。図5に示すように、リング発振回路60では、各インバータ51の出力端子にキャパシタ61が接続されている。キャパシタ61により負荷容量Cに容量ΔCが付加されるので、発振周波数が変化する。
NTATの温度特性モードを有する第3基準電流I3により、温度Tによる発振周波数の変化が補償されているので、容量ΔCによる周波数のチューニングを安定して行うことが可能である。
図6は上述した発振回路を用いた集積回路を示すブロック図である。図6に示すように、集積回路70は、例えば低消費電力で無線通信を行うための通信モジュール、例えばブルーツース(R)である。
集積回路70では、情報処理部71は例えばマイクロプロセッサとメモリを有し、情報処理装置、例えばセルラーフォン、パソコン等と情報をやり取りして処理する。
高周波処理部72は、情報処理部71で処理された情報を高周波信号で変調して外付けされたアンテナ73を介して外部に送信する。また、高周波処理部72は、外部から受信した高周波信号を復調して情報処理部71に引き渡す。
また、情報処理部71は、選択信号SLをクロック選択回路74に送出して第1発信器75のクロック信号CLK1または第2発振器76のクロック信号CLK2を選択し、選択されたクロック信号CLKで動作する。
第1発信器75は、外付けされた水晶振動子77を用いた発振器である。第2発信器76は、上述したリング発振器50またはリング発振器60を用いた発信器である。
第1発信器75では、高精度なクロック信号CLK1が得られるが、消費電力は大きくなる。一方、第2発信器76では、温度に対して安定したクロック信号CLK2が得られ、且つ第1発信器75に比べて消費電力が少なくて済む利点がある。
情報処理部71は、例えば高速に情報処理を行う場合にクロック信号CLK1を選択し、例えば処理待ち状態のときにクロック信号CLK2を選択する。これにより、集積回路70は、十分な信号処理能力と低消費電力性を備えることが可能である。
以上説明したように、本実施例の基準電流発生回路10では、第1基準電流発生回路11は、負の2次温度係数を有する第1基準電流I1を生成する。第2基準電流発生回路12は、絶対値が第1基準電流発生回路11の負の2次温度係数と略等しい正の2次温度係数を有する第2基準電流I2を生成する。電流出力回路13は、第1基準電流I1と第2基準電流I2を加算した第3基準電流I3=I1+I2を出力する。
その結果、第1、第2基準電流I1、12の2次温度係数が補償され、温度に対する直線性の優れた第3基準電流I3が得られる。従って、正の2次温度係数を有する基準電流を出力する基準電流発生回路が得られる。
ここでは、2次温度係数が補償された基準電流発生回路10について説明したが、同様の考えにより、3次以上の高次の温度係数が補償された基準電流発生回路を構成することも可能である。但し、高次の温度係数ほど外乱の影響を受け易くなるので、回路の構成には十分な対策が必要である。
本実施例に係る基準電流発生回路について図7を用いて説明する。図7は本実施例の基準電流発生回路を示す回路図である。本実施例において、上記実施例1と同一の構成部分には同一符号を付してその部分の説明は省略し、異なる部分について説明する。
本実施例が実施例1と異なる点は、抵抗を第2ダイオードに並列接続し、ドレイン電極とゲート電極が接続されたNMOSトランジスタと抵抗の直列回路を第4カレントミラー回路の電流入力ノードに接続しことにある。
即ち、図7に示すように、本実施例の基準電流発生回路80では、第5抵抗R5が第2ダイオードD2に並列接続され、且つドレイン電極とゲート電極が接続されたNMOSトランジスタ83と第6抵抗R6の直列回路が第4カレントミラー回路29の電流入力ノードN6に接続されている。
第5抵抗R5は、第1ダイオードD1と第2ダイオードD2の電流を一致させるために設けられている。第6抵抗R6は、第3ダイオードD3と第4ダイオードD4の電流を一致させるために設けられている。これにより第1および第2基準電流I1、I2の温度誤差を抑制することが可能である。
次に、第1乃至第3基準電流I1、I2、I3の温度特性のシミュレーション結果について図8および図9を用いて説明する。図8は第1および第2誤差を示す図、図9は第3誤差を示す図である。シミュレーションはモンテカルロ法により、MOSトランジスタのサイズ、閾値などをパラメータとして行なった。第1乃至第3誤差とは、上述したように温度特性から1次までの温度特性を差し引いた2次以上の温度特性を示している。
図8(a)に示すように、曲線86で示される第1誤差は、温度Tが−40℃から120℃の間で上凸状であり、略−2000ppmから略0ppmの値を示した。
一方、図8(b)に示すように、曲線87で示される第2誤差は、温度Tが−40℃から120℃の間で下凸状であり、略2300ppmから略−50ppmの値を示した。
その結果、図9に示すように、曲線88で示される第3誤差は、温度Tが−40℃から120℃の間でS字状であり、略−50ppmから略300ppmの値を示した。これから、第3誤差は、第1および第2誤差より略1桁減少することが確認された。
以上説明したように、本実施例の基準電流発生回路80では、第5抵抗R5が第2ダイオードD2に並列接続され、且つドレイン電極とゲート電極が接続されたNMOSトランジスタ83と第6抵抗R6の直列回路が第4カレントミラー回路29の電流入力ノードN6に接続されている。
これにより、第1および第2基準電流I1、I2の温度誤差を抑制することができる利点がある。
本実施例に係る基準電流発生回路について図10を用いて説明する。図10は本実施例の基準電流発生回路を示す回路図である。本実施例において、上記実施例1と同一の構成部分には同一符号を付してその部分の説明は省略し、異なる部分について説明する。本実施例が実施例1と異なる点は、第2基準電流発生回路を独立した基準電流発生回路としたことにある。
即ち、図10に示すように、本実施例の基準電流発生回路90は、第2基準電流発生回路12を有している。基準電流発生回路90は、負の2次温度係数を有する負荷91、例えば拡散抵抗、ポリシリコン抵抗などに正の2次温度係数を有する第2基準電流I2を供給することができる。
これにより、温度と負の2次温度係数を有する負荷に流れる電流の直線性を確保することが可能である。
以上説明したように、本実施例の基準電流発生回路90は、正の2次温度係数を有する第2基準電流I2を供給することができるので、負の2次温度係数を有する負荷91において、温度と負荷電流の直線性を確保したい場合に適している。
本実施例に係る基準電流発生回路について図11を用いて説明する。図11は本実施例の基準電流発生回路を示す回路図である。本実施例において、上記実施例1と同一の構成部分には同一符号を付してその部分の説明は省略し、異なる部分について説明する。本実施例が実施例1と異なる点は、第1乃至第4カレントミラー回路をそれぞれカスコード接続したことにある。
即ち、図11に示すように、本実施例の基準電流発生回路100は、第1基準電流発生回路101と、第2基準電流発生回路102と、電流出力回路103を有している。
第1基準電流発生回路101において、第1電流供給回路104は、第1カレントミラー回路17がカスコード接続された第1カスコード回路105と、第2カレントミラー回路18がカスコード接続された第2カスコード回路106の直列回路を有している。
第1カスコード回路105では、電源端子19に接続されるPMOSトランジスタ20aは、ゲート電極がカスコード接続されるPMOSトランジスタ20bのドレイン電極に接続されている。PMOSトランジスタ20bは、ゲート電極が抵抗R7を介してドレイン電極に接続されている。PMOSトランジスタ20bは、抵抗R7を介して第2カスコード回路106のNMOSトランジスタ23aに接続されている。
第2カスコード回路106では、第2ノードN2に接続されるNMOSトランジスタ22bは、ゲート電極がカスコード接続されるNMOSトランジスタ22aのドレイン電極に接続されている。NMOSトランジスタ22aは、ゲート電極が抵抗R8を介してドレイン電極に接続されている。NMOSトランジスタ22bは、抵抗R8を介して第1カスコード回路105のPMOSトランジスタ21bに接続されている。
抵抗R7、R8は、それぞれ第1カスコード回路105、第2カスコード回路106にバイアス電圧を与えるために設けられている。
第2基準電流発生回路102において、第2電流供給回路107は、第3カレントミラー回路27がカスコード接続された第3カスコード回路108と、第4カレントミラー回路28がカスコード接続された第4カスコード回路109の直列回路を有している。
第3および第4カスコード回路108、109における接続関係は、第1および第2カスコード回路105、106における接続関係と同様であり、その説明は省略する。
電流出力回路103は、第1および第2カスコード回路105、108に対応して、PMOSトランジスタ35a、35bの直列回路と、PMOSトランジスタ36a、36bの直列回路が並列接続されている。
PMOSトランジスタ35a、35bのゲート電極は、それぞれ第1カスコード回路105のPMOSトランジスタ20a、20bのゲート電極に接続されている。PMOSトランジスタ36a、36bのゲート電極は、それぞれ第3カスコード回路108のPMOSトランジスタ30a、30bのゲート電極に接続されている。
第1および第2電流供給回路104、107回路は、カレントミラー回路をカスコード接続することにより、電圧・電流特性が電源電圧Vddに対してロバストになるように構成されている。その結果、入力電流と出力電流の温度ドリフトをより低減し、ミラー比をより高精度に達成することが可能である。
以上説明したように、本実施例の基準電流発生回路100では、第1および第2電流供給回路104、107回路は、カレントミラー回路をカスコード接続して、インピーダンスを増加させることにより、電圧・電流特性が電源電圧Vddに対してロバストになるように構成されている。
その結果、入力電流と出力電流の温度ドリフトがより低減し、ミラー比がより高精度に達成される利点がある。
本実施例においても、図9に示す第2ダイオードD2に第5抵抗R5を並列接続し、第4カレントミラー回路29の電流入力ノードN6にドレイン電極とゲート電極が接続されたNMOSトランジスタ83と第6抵抗R6の直列回路を接続することができる。
また、第1乃至第4カレントミラー回路をそれぞれカスコード接続した場合について説明したが、第1乃至第4カレントミラー回路を部分的にカスコード接続することも可能である。
第1電流供給回路では、第1カレントミラー回路17および第2カレントミラー回路18の一方または両方をカスコード接続することができる。第2電流供給回路では、第3カレントミラー回路28および第4カレントミラー回路29の一方または両方をカスコード接続することができる。カスコード接続するカレントミラー回路は、特に限定されず、自由に選択することができる。
図12乃至図15はカレントミラー回路が部分的にカスコード接続された基準電流発生回路を示す回路図である。
図12は第1カレントミラー回路17および第3カレントミラー回路28がカスコード接続された基準電流発生回路110を示す回路図である。図13は基準電流発生回路110に第5抵抗R5およびドレイン電極とゲート電極が接続されたNMOSトランジスタ83と第6抵抗R6の直列回路を追加した基準電流発生回路120を示す回路図である。
図14は第2カレントミラー回路18および第4カレントミラー回路29がカスコード接続された基準電流発生回路130を示す回路図である。図15は基準電流発生回路130に第5抵抗R5およびドレイン電極とゲート電極が接続されたNMOSトランジスタ83と第6抵抗R6の直列回路を追加した基準電流発生回路140を示す回路図である。
回路構成、抵抗を用いたカスコード接続するためのバイアス電圧の生成方法、およびカスコード接続によるインピーダンス増加効果などは上述した通りである。
上述した実施形態は、単に例として示したもので、本発明の範囲を限定することを意図したものではない。実際、ここにおいて述べた新規な回路は、種々の他の形態に具体化されても良いし、さらに、本発明の主旨又はスピリットから逸脱することなくここにおいて述べた回路の形態における種々の省略、置き換えおよび変更を行っても良い。付随する請求項およびそれらの均等物は、本発明の範囲および主旨又はスピリットに入るようにそのような形態若しくは変形を含むことを意図している。
10、80、90、100、110、120、130、140 基準電流発生回路
11、81、101 第1基準電流発生回路
12、82、102 第2基準電流発生回路
13、103 電流出力回路
14 第1電流電圧変換回路
15 第2電流電圧変換回路
16、104 第1電流供給回路
17 第1カレントミラー回路
18 第2カレントミラー回路
19 電源端子
20、21、30、31、35、36 PMOSトランジスタ
22、23、32、33、34、83 NMOSトランジスタ
24 第3電流電圧変換回路
25 第4電流電圧変換回路
26 第5電流電圧変換回路
27、107 第2電流供給回路
28 第3カレントミラー回路
29 第4カレントミラー回路
50、60 リング発信器
51 インバータ
61 キャパシタ
70 通信モジュール
71 情報処理部
72 高周波処理部
73 アンテナ
74 クロック選択回路
75 第1発振回路
76 第2発振回路
77 水晶振動子
91 負荷
105 第1カスコード回路
106 第2カスコード回路
108 第3カスコード回路
109 第4カスコード回路
D1 第1ダイオード
D2 第2ダイオード
D3 第3ダイオード
D4 第4ダイオード
R1 第1抵抗
R2 第2抵抗
R3 第3抵抗
R4 第4抵抗

Claims (4)

  1. 第1抵抗と第1ダイオードの第1直列回路と、前記第1直列回路に並列接続された第2抵抗を有する第1電流電圧変換回路と、第2ダイオードを有する第2電流電圧変換回路と、前記第1および第2電流電圧変換回路に等しい電流を供給する第1電流供給回路とを備え、負の2次温度係数を有する第1基準電流を発生する第1基準電流発生回路と、
    第3抵抗と第3ダイオードの第2直列回路を有する第3電流電圧変換回路と、第4ダイオードを有する第4電流電圧変換回路と、第4抵抗を有する第5電流電圧変換回路と、前記第4電流電圧変換回路に供給する電流に等しい電流を前記第3および第5電流電圧変換回路に一定の比率で分流して供給する第2電流供給回路とを備え、絶対値が前記負の2次温度係数と略等しい正の2次温度係数を有する第2基準電流を生成する第2基準電流発生回路と、
    前記第1基準電流と前記第2基準電流を加算した第3基準電流を出力する電流出力回路と、
    を具備することを特徴とする基準電流発生回路。
  2. 前記第1電流供給回路は、第1導電型の第1カレントミラー回路と、前記第1カレントミラー回路に直列接続された第2導電型の第2カレントミラー回路を有し、
    前記第2電流供給回路は、第1導電型の第3カレントミラー回路と、前記第3カレントミラー回路に直列接続された第2導電型で多蓮出力型の第4カレントミラー回路を有し、
    前記電流出力回路は、前記第1カレントミラー回路に付加されて多連出力型のカレントミラー回路を形成する第1導電型の第1絶縁ゲート電界効果トランジスタと、前記第3カレントミラー回路に付加されて多連出力型のカレントミラー回路を形成する第1導電型の第2絶縁ゲート電界効果トランジスタの並列回路を有する
    ことを特徴とする請求項1に記載の基準電流発生回路。
  3. 第5抵抗が前記第2ダイオードに並列接続され、且つドレイン電極とゲート電極が接続された絶縁ゲート電界効果トランジスタと第6抵抗の直列回路が第4カレントミラー回路の電流入力ノードに接続されていることを特徴とする請求項2に記載の基準電流発生回路。
  4. 前記第1電流供給回路において、前記第1カレントミラー回路および前記第2カレントミラー回路の一方または両方がカスコード接続され、
    前記第2電流供給回路において、前記第3カレントミラー回路および前記第4カレントミラー回路の一方または両方がカスコード接続されている
    ことを特徴とする請求項2に記載の基準電流発生回路。
JP2010199693A 2010-09-07 2010-09-07 基準電流発生回路 Expired - Fee Related JP5475598B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010199693A JP5475598B2 (ja) 2010-09-07 2010-09-07 基準電流発生回路
US13/044,735 US8760143B2 (en) 2010-09-07 2011-03-10 Reference current generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199693A JP5475598B2 (ja) 2010-09-07 2010-09-07 基準電流発生回路

Publications (2)

Publication Number Publication Date
JP2012058891A JP2012058891A (ja) 2012-03-22
JP5475598B2 true JP5475598B2 (ja) 2014-04-16

Family

ID=45770230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199693A Expired - Fee Related JP5475598B2 (ja) 2010-09-07 2010-09-07 基準電流発生回路

Country Status (2)

Country Link
US (1) US8760143B2 (ja)
JP (1) JP5475598B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5554134B2 (ja) * 2010-04-27 2014-07-23 ローム株式会社 電流生成回路およびそれを用いた基準電圧回路
WO2012091777A2 (en) * 2010-10-04 2012-07-05 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Complementary biasing circuits and related methods
KR20120051442A (ko) * 2010-11-12 2012-05-22 삼성전기주식회사 선택적 온도 계수를 가지는 전류원 회로
JP5535154B2 (ja) 2011-09-02 2014-07-02 株式会社東芝 基準信号発生回路
US9274183B2 (en) 2012-06-22 2016-03-01 Infineon Technologies Ag Vertical hall device comprising first and second contact interconnections
US8981504B2 (en) 2012-06-22 2015-03-17 Infineon Technologies Ag Vertical hall sensor with series-connected hall effect regions
US8723515B2 (en) 2012-07-05 2014-05-13 Infineon Technologies Ag Vertical hall sensor circuit comprising stress compensation circuit
WO2014072763A1 (en) * 2012-11-07 2014-05-15 Freescale Semiconductor, Inc. Temperature coefficient factor circuit, semiconductor device, and radar device
US9618952B2 (en) * 2013-04-01 2017-04-11 Nxp Usa, Inc. Current generator circuit and method of calibration thereof
US9322840B2 (en) * 2013-07-01 2016-04-26 Infineon Technologies Ag Resistive element
CN103440014B (zh) * 2013-08-27 2014-11-05 电子科技大学 连续输出全集成开关电容带隙基准电路
JP6255212B2 (ja) * 2013-10-25 2017-12-27 昭和アルミニウム缶株式会社 缶体の製造方法、印刷装置、および、飲料用缶
CN105099367B (zh) * 2014-04-22 2018-02-06 中芯国际集成电路制造(上海)有限公司 一种振荡电路和电子装置
US9851740B2 (en) 2016-04-08 2017-12-26 Qualcomm Incorporated Systems and methods to provide reference voltage or current

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900772A (en) * 1997-03-18 1999-05-04 Motorola, Inc. Bandgap reference circuit and method
KR19990047008A (ko) * 1997-12-02 1999-07-05 구본준 외부조건 변화에 둔감한 기준전압 발생회로
JPH11231955A (ja) * 1998-02-19 1999-08-27 Fujitsu Ltd 基準電流源回路
US7375504B2 (en) * 2004-12-10 2008-05-20 Electronics And Telecommunications Research Institute Reference current generator
JP2007065831A (ja) 2005-08-30 2007-03-15 Sanyo Electric Co Ltd 定電流回路
JP2007200233A (ja) * 2006-01-30 2007-08-09 Nec Electronics Corp ダイオードの非直線性を補償した基準電圧回路
JP4787877B2 (ja) * 2006-09-13 2011-10-05 パナソニック株式会社 基準電流回路、基準電圧回路、およびスタートアップ回路
KR101483941B1 (ko) * 2008-12-24 2015-01-19 주식회사 동부하이텍 온도 독립형 기준 전류 발생 장치

Also Published As

Publication number Publication date
JP2012058891A (ja) 2012-03-22
US8760143B2 (en) 2014-06-24
US20120056609A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
JP5475598B2 (ja) 基準電流発生回路
KR101241378B1 (ko) 기준 바이어스 발생 회로
US8384462B2 (en) Delay element, variable delay line, and voltage controlled oscillator, as well as display device and system comprising the same
US8058863B2 (en) Band-gap reference voltage generator
CN109787559B (zh) 电阻电容rc振荡电路
JP2009098802A (ja) 基準電圧発生回路
US20130057246A1 (en) Reference signal generating circuit
US7821324B2 (en) Reference current generating circuit using on-chip constant resistor
US20230229186A1 (en) Bandgap reference circuit
JP2007052569A (ja) 定電流回路およびそれを用いたインバータならびに発振回路
JPWO2012160734A1 (ja) 基準電圧生成回路および基準電圧源
CN105099368B (zh) 振荡电路、电流生成电路以及振荡方法
US8456227B2 (en) Current mirror circuit
US20130176058A1 (en) Voltage comparison circuit
US20120249187A1 (en) Current source circuit
US9473148B2 (en) Method for compensating local oscillator frequency
US9523995B2 (en) Reference voltage circuit
JP2013110661A (ja) 半導体装置
US8638162B2 (en) Reference current generating circuit, reference voltage generating circuit, and temperature detection circuit
JPH1167931A (ja) 基準電圧発生回路
JP7292117B2 (ja) 基準電圧発生回路
US20080238517A1 (en) Oscillator Circuit and Semiconductor Device
US20130328621A1 (en) Semiconductor integrated circuit
CN110932670B (zh) 振荡器电路以及相关的振荡器装置
JP4440744B2 (ja) 温度補償型水晶発振器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R151 Written notification of patent or utility model registration

Ref document number: 5475598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees