JP5475425B2 - Hot water generator - Google Patents

Hot water generator Download PDF

Info

Publication number
JP5475425B2
JP5475425B2 JP2009284932A JP2009284932A JP5475425B2 JP 5475425 B2 JP5475425 B2 JP 5475425B2 JP 2009284932 A JP2009284932 A JP 2009284932A JP 2009284932 A JP2009284932 A JP 2009284932A JP 5475425 B2 JP5475425 B2 JP 5475425B2
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
circulation path
side circulation
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009284932A
Other languages
Japanese (ja)
Other versions
JP2011127803A (en
Inventor
武晃 多良
哲也 三角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA MANUFACTURING CO., LTD.
Original Assignee
SHOWA MANUFACTURING CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA MANUFACTURING CO., LTD. filed Critical SHOWA MANUFACTURING CO., LTD.
Priority to JP2009284932A priority Critical patent/JP5475425B2/en
Publication of JP2011127803A publication Critical patent/JP2011127803A/en
Application granted granted Critical
Publication of JP5475425B2 publication Critical patent/JP5475425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Description

本発明は、温水発生機に関し、詳しくはバーナの排気ガスの潜熱を回収する潜熱回収用熱交換器を備えた温水発生機に関する。   The present invention relates to a hot water generator, and more particularly to a hot water generator including a latent heat recovery heat exchanger that recovers the latent heat of exhaust gas from a burner.

従来、給湯器等に用いられる温水発生機では、燃費の向上を図るために、バーナを燃焼室で燃焼させてその燃焼熱により熱媒水や2次側の湯水を加温するだけではなく、バーナを燃焼させた後に発生する排気ガスの熱を利用して、熱媒水や2次側の湯水を予熱する方法があった。   Conventionally, in a hot water generator used for a water heater or the like, in order to improve fuel efficiency, not only does the burner burn in the combustion chamber and the heat of combustion heats the heat transfer water and secondary hot water, There has been a method of preheating heat transfer water and secondary hot water using heat of exhaust gas generated after burning the burner.

例えば、ボイラ等から排出される燃焼排気ガスの熱を有効活用するために、燃焼排気ガスの顕熱だけではなく潜熱をも最大限吸収して熱吸収量を増大させた潜熱回収用熱交換器(エコノマイザ)が提案されている(例えば、特許文献1を参照。)。   For example, in order to effectively use the heat of combustion exhaust gas discharged from boilers, etc., a heat exchanger for recovering latent heat that absorbs not only sensible heat of combustion exhaust gas but also latent heat to increase the amount of heat absorption (Economizer) has been proposed (see, for example, Patent Document 1).

かかる潜熱回収用熱交換器を利用した従来の温水発生機を、例えば銭湯などのような施設で給湯用に用いる場合、図4に示すような構成が採用されることが多い。   When a conventional hot water generator using such a heat exchanger for recovering latent heat is used for hot water supply in a facility such as a public bath, the configuration shown in FIG. 4 is often adopted.

図4に示すように、従来の温水発生機は、バーナ110が設けられた燃焼室120を備え、熱媒水200を収容可能とした温水発生機本体100と、温水発生機本体100に収容された熱媒水200を循環させる1次側循環路300と、給湯のために設けられたカラン410に2次湯水500を循環させる2次側循環路400と、1次側循環路300を循環する高温の熱媒水200と2次側循環路400を循環する低温の2次湯水500との熱交換を行う間接熱交換器600と、バーナ110の燃焼により発生した排気ガス130の熱(顕熱、潜熱)を回収する潜熱回収用熱交換器700と、により構成されている。図中、符号310で示したものは1次側循環路300に設けられた熱媒循環ポンプ、符号420で示したものは2次側循環路400に設けられた循環ポンプ、また、符号800で示したものは、潜熱回収用熱交換器700を介して燃焼室120に連通連結した煙道を示す。   As shown in FIG. 4, the conventional hot water generator includes a combustion chamber 120 provided with a burner 110 and can accommodate a heat transfer water 200, and is accommodated in the hot water generator main body 100. The primary side circulation path 300 that circulates the heat transfer water 200, the secondary side circulation path 400 that circulates the secondary hot water 500 in the currant 410 provided for hot water supply, and the primary side circulation path 300 are circulated. The heat (sensible heat) of the exhaust gas 130 generated by the combustion of the indirect heat exchanger 600 that exchanges heat between the high-temperature heat transfer water 200 and the low-temperature secondary hot water 500 that circulates in the secondary-side circulation path 400 and the burner 110. , Latent heat recovery heat exchanger 700 for recovering latent heat). In the figure, the reference numeral 310 indicates a heat medium circulation pump provided in the primary side circulation path 300, the reference numeral 420 indicates a circulation pump provided in the secondary side circulation path 400, and a reference numeral 800. Shown is a flue that is communicatively coupled to the combustion chamber 120 via a latent heat recovery heat exchanger 700.

上記構成の温水発生機は、ガス・油等の燃料をバーナ110により燃焼室120で燃焼して、その燃焼熱により温水発生機本体100に収容した熱媒水200を加温する。そして、熱媒循環ポンプ310により高温の熱媒水200を1次側循環路300に循環させ、同様に、循環ポンプ420により低温の2次湯水500を2次側循環路400に循環させて、間接熱交換器600により熱交換して2次側循環路400を循環する2次湯水500を加温している。   The hot water generator configured as described above burns fuel such as gas and oil in the combustion chamber 120 by the burner 110 and heats the heat transfer water 200 accommodated in the hot water generator main body 100 by the combustion heat. Then, the high-temperature heat medium water 200 is circulated to the primary-side circulation path 300 by the heat-medium circulation pump 310, and similarly, the low-temperature secondary hot water 500 is circulated to the secondary-side circulation path 400 by the circulation pump 420. The secondary hot water 500 circulating through the secondary side circulation path 400 is heated by exchanging heat with the indirect heat exchanger 600.

さらに、図示するように、2次側循環路400を循環する2次湯水500は、間接熱交換器600に供給されて加温される前に、潜熱回収用熱交換器700と熱交換することにより予熱されるようになっている。すなわち、従来の温水発生機においては、2次側循環路400を循環する2次湯水500を予熱するために潜熱回収用熱交換器700が用いられていた。   Further, as shown in the figure, the secondary hot water 500 circulating in the secondary side circulation path 400 is heat-exchanged with the latent heat recovery heat exchanger 700 before being supplied to the indirect heat exchanger 600 and heated. Is preheated. That is, in the conventional hot water generator, the latent heat recovery heat exchanger 700 is used to preheat the secondary hot water 500 circulating in the secondary side circulation path 400.

なお、図4に示す温水発生機は、複数の1次側循環路300とそれに応じた複数の間接熱交換器600及び複数の2次側循環路400を備えることにより、給湯のみならず、例えば、暖房、循環加熱などを同時に行うことができる構成としている。   In addition, the hot water generator shown in FIG. 4 includes not only hot water supply but also a plurality of primary side circulation paths 300 and a plurality of indirect heat exchangers 600 and a plurality of secondary side circulation paths 400 corresponding thereto, for example, , Heating, circulation heating and the like can be performed simultaneously.

特開平11−248105JP 11-248105 A

図4に示したように、2次側循環路400を循環する2次湯水500を予熱するために潜熱回収用熱交換器700を用いた従来の方式では、カラン410から出湯する場合、例えば、上記した銭湯などで用いられる業務用の給湯配管では、常時所定温度の2次湯水500を供給できることが望ましいため、常に2次湯水500を2次側循環路400内で循環させている。   As shown in FIG. 4, in the conventional system using the latent heat recovery heat exchanger 700 for preheating the secondary hot water 500 circulating in the secondary side circulation path 400, In the hot water supply pipe for business used in the above-mentioned public baths and the like, it is desirable that the secondary hot water 500 having a predetermined temperature can be always supplied, and therefore the secondary hot water 500 is always circulated in the secondary side circulation path 400.

そのため、カラン410から供給される2次湯水500の使用頻度が低下すると、2次側循環路400の内部を循環する2次湯水500の温度が必要以上に上昇してしまい、潜熱回収用熱交換器700へ高温の2次湯水500が入水されることになる。一般に、潜熱回収用熱交換器700に入水する2次湯水500の温度が高くなると、潜熱回収用熱交換器700の特性上、排気ガス130中の水分凝縮が生起されにくくなり、結果として潜熱回収用熱交換器700内における熱交換の効率が低下する。   For this reason, when the usage frequency of the secondary hot water 500 supplied from the currant 410 decreases, the temperature of the secondary hot water 500 circulating in the secondary side circulation path 400 rises more than necessary, and heat exchange for latent heat recovery is performed. The hot secondary hot water 500 enters the vessel 700. In general, when the temperature of the secondary hot water 500 entering the latent heat recovery heat exchanger 700 becomes high, moisture condensation in the exhaust gas 130 is less likely to occur due to the characteristics of the latent heat recovery heat exchanger 700, resulting in latent heat recovery. The heat exchange efficiency in the industrial heat exchanger 700 is reduced.

また、給湯のための温水発生機においては、カラン410の開閉頻度、つまり、給湯頻度により、潜熱回収用熱交換器700へ入水する2次湯水500の量や温度にばらつきが生じ、結果的に潜熱回収用熱交換器700内における熱交換の効率もばらついてしまう。さらに、潜熱回収用熱交換器700の能力は、2次側循環路400を循環する2次湯水500の量や温度に依存するため、例えば、循環する2次湯水500の量が少ないときや循環ポンプ420の発停制御を行っている場合、熱の受け渡しが十分でなければ、排気ガス130の熱により潜熱回収用熱交換器700の内部が過熱状態や圧力上昇する危険性がある。   Further, in the hot water generator for hot water supply, the amount and temperature of the secondary hot water 500 entering the latent heat recovery heat exchanger 700 vary depending on the opening / closing frequency of the currant 410, that is, the hot water supply frequency. The efficiency of heat exchange in the latent heat recovery heat exchanger 700 also varies. Furthermore, since the capacity of the latent heat recovery heat exchanger 700 depends on the amount and temperature of the secondary hot water 500 circulating in the secondary side circulation path 400, for example, when the amount of the secondary hot water 500 circulating is small or circulating When the start / stop control of the pump 420 is performed, if the heat transfer is not sufficient, there is a risk that the inside of the latent heat recovery heat exchanger 700 is overheated or the pressure rises due to the heat of the exhaust gas 130.

そのため、図4に示したように、1次側循環路、間接熱交換器及び2次側循環路とで構成された給湯、暖房、循環加熱などを同時に行う複数の回路が設けられた温水発生機とするためには、潜熱回収用熱交換器700と接続される2次側循環路400を循環する2次湯水500の流量及び循環ポンプ420の作動などを制御する条件を複数の回路毎に設定して、上述した潜熱回収用熱交換器700内における熱交換の効率の低下、過熱状態及び圧力上昇の発生を防止する必要があった。   Therefore, as shown in FIG. 4, hot water generation is provided with a plurality of circuits that simultaneously perform hot water supply, heating, circulation heating, etc., constituted by a primary side circulation path, an indirect heat exchanger, and a secondary side circulation path In order to obtain a machine, conditions for controlling the flow rate of the secondary hot water 500 circulating through the secondary side circulation path 400 connected to the latent heat recovery heat exchanger 700 and the operation of the circulation pump 420 are set for each of a plurality of circuits. It has been necessary to prevent the occurrence of a decrease in heat exchange efficiency, an overheated state, and a pressure increase in the latent heat recovery heat exchanger 700 described above.

本発明は、上記課題を解決し、複数の回路毎に条件を設定することなく簡易な構造で、かつ、安全性の高い潜熱回収用熱交換器700を具備する温水発生機を提供することを目的としている。   This invention solves the said subject, and provides a warm water generator which comprises the heat exchanger 700 for latent heat collection | recovery with a simple structure and high safety | security without setting conditions for every some circuit. It is aimed.

本発明においては上記課題を解決するために以下の手段を講じた。   In the present invention, the following means have been taken in order to solve the above problems.

(1)熱媒水を収容する温水発生機本体と、前記温水発生機本体内の熱媒水を加温する燃焼室と、前記燃焼室より排出される排気ガスを外部に排出するために当該燃焼室の外部伸延した煙道と、前記燃焼室と前記煙道との接続部に配設された潜熱回収用熱交換器と、前記温水発生機本体内の熱媒水を循環させる1次側循環路と、前記1次側循環路と独立して構成され、カランから給湯するための2次湯水を循環させる2次側循環路と、前記1次側循環路を循環する熱媒水と前記2次側循環路を循環する2次湯水との熱交換を行う間接熱交換器と、を備え、前記温水発生機本体の上部に前記1次側循環路の始端を連通接続し、当該1次側循環路の中途及び前記2次側循環路の中途に共通して前記間接熱交換器を介設し、前記間接熱交換器から伸延した前記1次側循環路は、前記潜熱回収用熱交換器の一端に連通接続し、前記潜熱回収用熱交換器の他端は、前記温水発生機本体に連通した前記1次側循環路の終端に連通接続し、前記間接熱交換器において、前記2次側循環路を循環する2次湯水と熱交換して温度が低下した状態で前記1次側循環路を循環する熱媒水を、前記間接熱交換器の下流側に設けた前記潜熱回収用熱交換器によって予熱して前記温水発生機本体内に環流させることを特徴とする温水発生機。 (1) and hot water generator body housing the heat medium water, a combustion chamber for heating the heat transfer water of the hot water generator body, said in order to discharge the exhaust gas discharged from the combustion chamber to the outside flue that external distraction combustion chamber, the combustion chamber and the flue and the connecting portions disposed in the latent heat recovery heat exchanger, the hot water generator 1 Ru is circulated heat transfer water in the body following and the side circulation path is constructed independently of the said primary circulation path, and the secondary side circulation path for circulating the secondary hot water for hot water supply from Curran, the heat medium water circulating the primary side circulation path An indirect heat exchanger for exchanging heat with the secondary hot water circulating through the secondary side circulation path, and connecting the start end of the primary side circulation path to the upper part of the hot water generator main body. The indirect heat exchanger is interposed in the middle of the secondary side circulation path and the middle of the secondary side circulation path, and extends from the indirect heat exchanger. The primary side circulation path is connected to one end of the latent heat recovery heat exchanger, and the other end of the latent heat recovery heat exchanger is connected to the hot water generator main body. In the indirect heat exchanger, heat transfer water circulating in the primary side circulation path in a state where the temperature is lowered by exchanging heat with the secondary hot water circulating in the secondary side circulation path in the indirect heat exchanger, A hot water generator, wherein the latent heat recovery heat exchanger provided on the downstream side of the indirect heat exchanger is preheated and circulated in the hot water generator body .

(2)上記(1)の温水発生機において、前記1次側循環路を循環する熱媒水と前記2次側循環路を循環する2次湯水との熱交換を行う第2の間接熱交換器を、前記潜熱回収用熱交換器の上流側に設けたことを特徴とする。   (2) In the warm water generator of (1) above, second indirect heat exchange for exchanging heat between the heat transfer water circulating through the primary circuit and the secondary hot water circulating through the secondary circuit. An apparatus is provided on the upstream side of the latent heat recovery heat exchanger.

(3)上記(1)又は(2)の温水発生機において、排気ガスが前記潜熱回収用熱交換器を通過する前の前記燃焼室と、排気ガスが前記潜熱回収用熱交換器を通過した後の前記煙道との間を連通して、前記燃焼室から排出される排気ガス前記潜熱回収用熱交換器を介さずに前記煙道に導出されるバイパスを設けると共に、前記バイパスの中途に設けた流量調節手段により、当該バイパスを通過する排気ガスの流量を調節可能に構成したことを特徴とする。 (3) In the hot water generator of (1) or (2) above, the combustion chamber before exhaust gas passes through the latent heat recovery heat exchanger, and the exhaust gas passes through the latent heat recovery heat exchanger. communicating between said flue after, Rutotomoni a bypass exhaust gas discharged from the combustion chamber Ru is derived in the flue without passing through the latent heat recovery heat exchanger, the bypass It is characterized in that the flow rate of the exhaust gas passing through the bypass can be adjusted by the flow rate adjusting means provided in the middle .

本発明によれば、潜熱回収用熱交換器に供給される熱媒水の温度を、比較的低温度とすることができるため、潜熱回収用熱交換器の過熱や圧力上昇を防止することができるので、安全性の高い潜熱回収用熱交換器を具備する温水発生機とすることができる。また、厳しい回路条件を設定することなく、複数の回路(給湯、暖房、循環加熱など)を接続可能な温水発生機とすることができる。   According to the present invention, since the temperature of the heat transfer water supplied to the latent heat recovery heat exchanger can be made relatively low, it is possible to prevent overheating and pressure increase of the latent heat recovery heat exchanger. Therefore, it can be set as the warm water generator which comprises the heat exchanger for latent heat recovery with high safety. Moreover, it can be set as the warm water generator which can connect a some circuit (hot water supply, heating, circulation heating, etc.), without setting a severe circuit condition.

本発明の一実施形態の温水発生機を示す概略構成図である。It is a schematic block diagram which shows the warm water generator of one Embodiment of this invention. 本発明の一実施形態の温水発生機を示す概略構成図である。It is a schematic block diagram which shows the warm water generator of one Embodiment of this invention. 本発明の一実施形態の温水発生機を示す概略構成図である。It is a schematic block diagram which shows the warm water generator of one Embodiment of this invention. 従来の温水発生機を示す概略構成図である。It is a schematic block diagram which shows the conventional warm water generator.

(第1実施形態)
以下、本発明の第1実施形態に係る温水発生機について、図面を参照しながら具体的に説明する。図1は本発明の第1実施形態に係る温水発生機10を示す概略構成図である。
(First embodiment)
Hereinafter, the hot water generator according to the first embodiment of the present invention will be specifically described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a hot water generator 10 according to the first embodiment of the present invention.

なお、第1実施形態における温水発生機10は、例えば、ビルや工場、あるいは銭湯施設などでの給湯や暖房などに好適に使用できるものであるが、給湯や暖房が必要な場所であれば如何なる場所にも設置できる。   In addition, although the hot water generator 10 in 1st Embodiment can be used conveniently for hot water supply, heating, etc. in a building, a factory, or a public bath facility, for example, what kind of place is required if hot water supply or heating is required? It can be installed at a place.

図1に示すように、第1実施形態に係る温水発生機10は、バーナ装置12が設けられた燃焼室13を備えるとともに、熱媒水を収容可能とした温水発生機本体11と、温水発生機本体11に収容された熱媒水を循環させる1次側循環路20と、この1次側循環路20とは独立して構成されるとともに、給湯のために設けられた出湯端末である複数のカラン32を備え、各カラン32から出湯される2次湯水を循環させる2次側循環路30と、1次側循環路20を循環する高温の熱媒水と2次側循環路30を循環する低温の2次湯水との熱交換を行う間接熱交換器50と、バーナ装置12の燃焼により発生した排気ガスの熱(顕熱、潜熱)を回収する潜熱回収用熱交換器40と、を具備している。すなわち、カラン32から出湯される2次湯水は、図示しない水源(上水など)から2次側循環路30に供給された水を、1次側循環路20を循環する高温の熱媒水と間接熱交換器50により熱交換して加温される。   As shown in FIG. 1, a hot water generator 10 according to the first embodiment includes a combustion chamber 13 provided with a burner device 12, and a hot water generator main body 11 that can accommodate heat transfer water, and hot water generation. A primary-side circulation path 20 that circulates the heat transfer water accommodated in the machine body 11 and the primary-side circulation path 20 are configured independently, and a plurality of outlet terminals provided for hot water supply. The secondary side circulation path 30 that circulates the secondary hot water discharged from each of the currants 32, the high-temperature heat transfer water that circulates through the primary side circulation path 20, and the secondary side circulation path 30 are provided. An indirect heat exchanger 50 that performs heat exchange with the low-temperature secondary hot water that is performed, and a latent heat recovery heat exchanger 40 that recovers the heat (sensible heat, latent heat) of the exhaust gas generated by the combustion of the burner device 12. It has. That is, the secondary hot water discharged from the currant 32 is a high-temperature heat transfer water that circulates water supplied from the water source (not shown) to the secondary side circulation path 30 through the primary side circulation path 20. Heat is exchanged by the indirect heat exchanger 50 and heated.

第1実施形態においては、図示するように、複数の1次側循環路20、複数の間接熱交換器50及び複数の2次側循環路30を有した構成としている。そして、一組の1次側循環路20、間接熱交換器50及び2次側循環路30により回路を構成し、例えば、給湯や暖房のための目的の異なる複数の回路(例えば、給湯回路、暖房回路など)を構成することができる。なお、以下の説明では、一組の1次側循環路20、間接熱交換器50及びカラン32を備えた2次側循環路30による給湯回路について説明する。   In the first embodiment, as illustrated, a plurality of primary side circulation paths 20, a plurality of indirect heat exchangers 50, and a plurality of secondary side circulation paths 30 are provided. And a circuit is constituted by a set of primary side circulation path 20, indirect heat exchanger 50, and secondary side circulation path 30, for example, a plurality of circuits (for example, hot water supply circuit, Heating circuit etc.). In addition, in the following description, the hot water supply circuit by the secondary side circulation path 30 provided with the set of primary side circulation path 20, the indirect heat exchanger 50, and the currant 32 is demonstrated.

温水発生機本体11内には、燃焼室13が設けられており、この燃焼室13の一端側にバーナ装置12を取付けてバーナ口を燃焼室13内に臨ませる一方、他端側に燃焼室13の外部に伸延させた煙道15の基端を連通連結している。そして、燃焼室13内での所定の燃料(ガス・油等)をバーナ装置12により燃焼させた燃焼熱により、温水発生機本体11内に収容されている熱媒水を加温する。   A combustion chamber 13 is provided in the hot water generator main body 11, and a burner device 12 is attached to one end side of the combustion chamber 13 so that the burner port faces the combustion chamber 13, while a combustion chamber is provided on the other end side. The base end of the flue 15 extended to the outside of 13 is connected in communication. And the heat transfer water accommodated in the hot water generator main body 11 is heated by the combustion heat which the predetermined fuel (gas, oil, etc.) in the combustion chamber 13 burned with the burner apparatus 12.

第1実施形態に係る温水発生機10は、潜熱回収用熱交換器40を、燃焼室13と煙道15の接続部に配設している、すなわち、この潜熱回収用熱交換器40は、1次側循環路20を循環する熱媒水を、燃焼室13で所定の燃料(ガス・油等)を燃焼させた後の排気ガスと熱交換して、1次側循環路20を循環する熱媒水を予熱するものである。   In the hot water generator 10 according to the first embodiment, the latent heat recovery heat exchanger 40 is disposed at the connection portion between the combustion chamber 13 and the flue 15, that is, the latent heat recovery heat exchanger 40 is: The heat transfer water circulating in the primary side circulation path 20 is exchanged with the exhaust gas after burning a predetermined fuel (gas, oil, etc.) in the combustion chamber 13 to circulate in the primary side circulation path 20. It preheats the heat transfer water.

なお、上述した熱媒水の熱交換を行う潜熱回収用熱交換器40及び間接熱交換器50については周知のものであるので説明は省略する。なお、潜熱回収用熱交換器40を用いて行われる熱交換の結果、排気ガスの中の水分が凝縮して酸性のドレンが発生するが、一般に、潜熱回収用熱交換器40には中和装置(図示せず)が付設されており、酸性のドレンはこの中和装置により処理された後に温水発生機10の外部に排水される。   Note that the latent heat recovery heat exchanger 40 and the indirect heat exchanger 50 that perform the heat exchange of the heat transfer medium described above are well known and will not be described. As a result of heat exchange performed using the latent heat recovery heat exchanger 40, moisture in the exhaust gas is condensed and acidic drain is generated. Generally, the latent heat recovery heat exchanger 40 is neutralized. A device (not shown) is attached, and the acidic drain is discharged to the outside of the hot water generator 10 after being treated by the neutralization device.

1次側循環路20には、温水発生機本体11の内部の熱媒体を循環させる1次側循環ポンプ21が配設されている。この1次側循環ポンプ21により、温水発生機本体11の上部に収容されている比較的高温の熱媒水を間接熱交換器50に供給して、熱媒水と2次側循環路30を循環する2次湯水との熱交換を行うことができる。   The primary side circulation path 20 is provided with a primary side circulation pump 21 that circulates the heat medium inside the hot water generator main body 11. By this primary side circulation pump 21, a relatively high temperature heat transfer water accommodated in the upper part of the hot water generator main body 11 is supplied to the indirect heat exchanger 50, and the heat transfer water and the secondary side circulation path 30 are supplied. Heat exchange with the circulating secondary hot water can be performed.

1次側循環ポンプ21を循環する熱媒水は、間接熱交換器50内で2次湯水と熱交換を行った後、間接熱交換器50から1次側循環路20に排出され下方に流下する。また、間接熱交換器50の下流の1次側循環路20には逆止弁22が配設されており、間接熱交換器50内で熱交換したあとの熱媒水が間接熱交換器50内に逆流することを防止している。   The heat transfer water circulating through the primary side circulation pump 21 is exchanged with the secondary hot water in the indirect heat exchanger 50 and then discharged from the indirect heat exchanger 50 to the primary side circulation path 20 and flows downward. To do. Further, a check valve 22 is disposed in the primary side circulation path 20 downstream of the indirect heat exchanger 50, and the heat transfer water after heat exchange in the indirect heat exchanger 50 is the indirect heat exchanger 50. Prevents backflow in.

逆止弁22を通過して1次側循環路20を循環する熱媒水は、集水路23を経由して、潜熱回収用熱交換器40に供給され、潜熱回収用熱交換器40内において、燃焼室13で発生した排気ガスと熱交換して予熱され、その後、潜熱回収用熱交換器40から排出されて温水発生機本体11の略中央部から温水発生機本体11内に還流される。   The heat transfer water that passes through the check valve 22 and circulates in the primary circulation path 20 is supplied to the latent heat recovery heat exchanger 40 via the water collection path 23, and in the latent heat recovery heat exchanger 40. The exhaust gas generated in the combustion chamber 13 is preheated by exchanging heat, and then discharged from the latent heat recovery heat exchanger 40 and returned to the hot water generator main body 11 from a substantially central portion of the hot water generator main body 11. .

一方、2次側循環路30には、2次湯水を循環させる2次側循環ポンプ31が配設されている。2次側循環ポンプ31により2次側循環路30内を循環する2次湯水は、間接熱交換器50に供給され、1次側循環路20を循環する熱媒水と熱交換した後、間接熱交換器50から排出される。そして、間接熱交換器50で加温された2次湯水は、2次側循環路30に配設されているカラン32から給湯される。   On the other hand, the secondary side circulation path 30 is provided with a secondary side circulation pump 31 for circulating the secondary hot water. The secondary hot water circulated in the secondary side circulation path 30 by the secondary side circulation pump 31 is supplied to the indirect heat exchanger 50 and exchanges heat with the heat transfer water circulating in the primary side circulation path 20 and then indirectly. It is discharged from the heat exchanger 50. The secondary hot water heated by the indirect heat exchanger 50 is supplied with hot water from a currant 32 disposed in the secondary side circulation path 30.

また、2次側循環路30には、カラン32から給湯された分の2次湯水を補給する給水口(図示せず)が設けられており、常に2次側循環路30内を所定量の2次湯水が循環するようにしている。   Further, the secondary side circulation path 30 is provided with a water supply port (not shown) for replenishing secondary hot water supplied from the currant 32, and always has a predetermined amount of water in the secondary side circulation path 30. Secondary hot water is circulated.

上述したように、第1実施形態においては、温水発生機本体11の燃焼室で加温された比較的高温の熱媒水を、1次側循環路20を循環させて間接熱交換器50に供給し、一方、給水などにより比較的低温の2次湯水を、1次側循環路20とは独立して配管されている2次側循環路30を循環させて間接熱交換器50に供給することで、1次側循環路20を循環する高温の熱媒水と2次側循環路30を循環する2次湯水との間で熱交換して2次湯水を加温する構成としている。   As described above, in the first embodiment, the relatively high temperature heat transfer water heated in the combustion chamber of the hot water generator main body 11 is circulated through the primary side circulation path 20 to the indirect heat exchanger 50. On the other hand, secondary water having a relatively low temperature is supplied to the indirect heat exchanger 50 through the secondary side circulation path 30 that is piped independently of the primary side circulation path 20 by supplying water or the like. Thus, heat is exchanged between the high-temperature heat transfer water circulating in the primary side circulation path 20 and the secondary hot water circulating in the secondary side circulation path 30 to heat the secondary hot water.

そして、2次側循環路30の2次湯水と熱交換して、温度の低下した1次側循環路20の熱媒水は、潜熱回収用熱交換器40において、排気ガスと熱交換して予熱される。このように、第1実施形態に係る温水発生機10は、1次側循環路20を循環する熱媒水を予熱するために潜熱回収用熱交換器40を用いる、所謂、1次側循環方式として構成されている。   Then, the heat transfer water of the primary side circulation path 20, whose temperature has been reduced by exchanging heat with the secondary hot water in the secondary side circulation path 30, exchanges heat with the exhaust gas in the latent heat recovery heat exchanger 40. Preheated. As described above, the hot water generator 10 according to the first embodiment uses a so-called primary side circulation system in which the heat exchanger water 40 for latent heat recovery is used to preheat the heat transfer medium circulating in the primary side circulation path 20. It is configured as.

上述した、1次側循環方式においては、1次側循環路20を循環する温度の低下した熱媒水が潜熱回収用熱交換器40に供給されて、排気ガスと熱交換して予熱された後に温水発生機本体11に還流されるため、バーナ装置12で燃焼させる燃料の燃費の向上を図れるとともに、排出される排気ガスの二酸化炭素の削減、温室効果の防止等環境に配慮した温水発生機10とすることができる。   In the primary side circulation system described above, the heat transfer water having a reduced temperature circulating through the primary side circulation path 20 is supplied to the latent heat recovery heat exchanger 40 and is preheated by exchanging heat with the exhaust gas. Since it is returned to the hot water generator main body 11 later, the fuel consumption of the fuel burned by the burner device 12 can be improved, and the environmentally friendly hot water generator such as the reduction of carbon dioxide in the exhaust gas discharged and the prevention of the greenhouse effect. 10 can be used.

また、1次側循環路20を循環する熱媒水は、間接熱交換器50において熱交換して、温度が低下した状態で潜熱回収用熱交換器40に供給されるため、低温の熱媒水が潜熱回収用熱交換器40に提供されて、潜熱回収用熱交換器40の内部が高温の排気ガスにより過熱状態になることを防ぐこともでき、常に効率の高い熱交換を潜熱回収用熱交換器40で行うことが可能である。   Further, since the heat transfer water circulating through the primary side circulation path 20 exchanges heat in the indirect heat exchanger 50 and is supplied to the latent heat recovery heat exchanger 40 in a state where the temperature is lowered, Water can be provided to the latent heat recovery heat exchanger 40 to prevent the inside of the latent heat recovery heat exchanger 40 from being overheated by the high-temperature exhaust gas, so that efficient heat exchange is always performed for the latent heat recovery. It is possible to carry out with the heat exchanger 40.

また、仮にカラン32の使用が無く、2次側循環路30内の2次湯水が高温状態で循環し、間接熱交換器50において十分な熱交換が行われなかった場合、1次側循環路20を循環する熱媒水も高温の状態で潜熱回収用熱交換器40に提供されることになるが、この場合においても、温水発生機10は無圧開放構造または真空構造であるので、潜熱回収用熱交換器40を通る熱媒水は100℃を超えることや圧力上昇が物理的に起こりえないため、安全性が高い。   Further, if the currant 32 is not used and the secondary hot water in the secondary side circulation path 30 circulates in a high temperature state and sufficient heat exchange is not performed in the indirect heat exchanger 50, the primary side circulation path. The heat transfer water circulating through 20 is also provided to the latent heat recovery heat exchanger 40 in a high temperature state, but in this case as well, the warm water generator 10 has a pressureless open structure or a vacuum structure. The heat transfer water passing through the recovery heat exchanger 40 has a high safety because it does not physically exceed 100 ° C. and a pressure increase cannot occur physically.

なお、この第1実施形態においては、温水発生機本体11の内部に収容されている熱媒水は、直接外部に供給されることはないため、補給も蒸発等に対応した少量で済むため、熱媒水の入れ替わりが少なく、繰り返し潜熱回収用熱交換器40の内部に供給されても、潜熱回収用熱交換器40の内部におけるスケール等の付着による伝熱効率の低下を防止することが可能である。   In the first embodiment, since the heat transfer water accommodated in the hot water generator main body 11 is not directly supplied to the outside, replenishment may be a small amount corresponding to evaporation, etc. Even if the heat transfer water is little replaced and repeatedly supplied to the inside of the latent heat recovery heat exchanger 40, it is possible to prevent a decrease in heat transfer efficiency due to adhesion of a scale or the like inside the latent heat recovery heat exchanger 40. is there.

(第2実施形態)
ここで、本発明の第2実施形態に係る温水発生機について、図面を参照しながら具体的に説明する。図2は本発明の第2実施形態に係る温水発生機10’を示す該略構成図である。なお、以下の第2実施形態においては、上述した第1実施形態と異なる箇所以外は、理解を容易とするため同じ符号を付して説明を省略する。
(Second Embodiment)
Here, the hot water generator according to the second embodiment of the present invention will be specifically described with reference to the drawings. FIG. 2 is a schematic diagram showing a hot water generator 10 ′ according to a second embodiment of the present invention. Note that, in the following second embodiment, the same reference numerals are given for the sake of easy understanding except for the portions different from the first embodiment described above, and the description is omitted.

図2に示すように、第2実施形態に係る温水発生機10’は、バーナ装置12が設けられた燃焼室13を備えるとともに、熱媒水を収容可能とした温水発生機本体11と、温水発生機本体11に収容された熱媒水を循環させる1次側循環路20と、この1次側循環路20とは独立して構成されるとともに、給湯のために設けられた出湯端末である複数のカラン32を備え、各カラン32から出湯される2次湯水を循環させる2次側循環路30と、1次側循環路20を循環する高温の熱媒水と2次側循環路30を循環する低温の2次湯水との熱交換を行う間接熱交換器50及び第2の間接熱交換器(以下、サブ熱交換器60という)と、バーナ装置12の燃焼により発生した排気ガスの熱(顕熱、潜熱)を回収する潜熱回収用熱交換器40と、を具備している。そして第1実施形態と同様に、カラン32から出湯される2次湯水は、図示しない水源(上水など)から2次側循環路30に供給された水を、1次側循環路20を循環する高温の熱媒水と間接熱交換器50及びサブ熱交換器60により熱交換して加温される。   As shown in FIG. 2, a hot water generator 10 ′ according to the second embodiment includes a combustion chamber 13 provided with a burner device 12, and a hot water generator main body 11 capable of accommodating heat transfer water, The primary-side circulation path 20 that circulates the heat transfer water accommodated in the generator body 11 and the primary-side circulation path 20 are configured independently of each other and are outlet terminals provided for hot water supply. A secondary-side circulation path 30 that includes a plurality of currants 32 and circulates secondary hot water discharged from each of the currants 32, a high-temperature heat transfer water that circulates in the primary-side circulation path 20, and a secondary-side circulation path 30 Heat of the exhaust gas generated by the combustion of the indirect heat exchanger 50 and the second indirect heat exchanger (hereinafter referred to as sub heat exchanger 60) that exchange heat with the circulating low-temperature secondary hot water and the burner device 12. A latent heat recovery heat exchanger 40 for recovering (sensible heat, latent heat); It is provided. Similarly to the first embodiment, the secondary hot water discharged from the currant 32 circulates the water supplied from the water source (not shown) to the secondary side circulation path 30 through the primary side circulation path 20. Heat is exchanged with the high-temperature heat transfer medium to be heated by the indirect heat exchanger 50 and the sub heat exchanger 60 and heated.

第2実施形態においては、上述した第1実施形態と同様に、複数の1次側循環路20、複数の間接熱交換器50及び複数のサブ熱交換器60を有しており、それに対応して複数の2次側循環路30が設けられている。そして、一組の1次側循環路20、間接熱交換器50、サブ熱交換器60及び2次側循環路30により回路を構成し、例えば、給湯や暖房のための目的の異なる複数の回路(例えば、給湯回路、暖房回路など)を構成することができる。なお、以下の説明では、一組の1次側循環路20、間接熱交換器50、サブ熱交換器60及びカラン32を備えた2次側循環路30による給湯回路について説明する。   In the second embodiment, as in the first embodiment described above, a plurality of primary circulation paths 20, a plurality of indirect heat exchangers 50, and a plurality of sub heat exchangers 60 are provided, and correspondingly. A plurality of secondary-side circulation paths 30 are provided. And a circuit is comprised by one set of the primary side circulation path 20, the indirect heat exchanger 50, the sub heat exchanger 60, and the secondary side circulation path 30, for example, the several circuit from which the objective for hot water supply or heating differs (For example, a hot water supply circuit, a heating circuit, etc.) can be configured. In the following description, a hot water supply circuit by the secondary side circulation path 30 provided with a set of the primary side circulation path 20, the indirect heat exchanger 50, the sub heat exchanger 60, and the currant 32 will be described.

また、この第2実施形態では、上述した第1実施形態と異なる点のみを説明する。なお、第2実施形態においては、第1実施形態と同様に1次側循環方式として、1次側循環路20を循環する熱媒水を加温するために潜熱回収用熱交換器40を用いている。   In the second embodiment, only differences from the first embodiment will be described. In the second embodiment, as in the first embodiment, the latent heat recovery heat exchanger 40 is used to heat the heat transfer medium circulating in the primary circulation path 20 as in the first embodiment. ing.

図2に示すように、第2実施形態では、1次側循環路20を循環する熱媒水と2次側循環路30を循環する2次湯水との熱交換を、間接熱交換器50に加えてさらにサブ熱交換器60で行っている。さらに、このサブ熱交換器60は、1次側循環路20を循環する熱媒水が潜熱回収用熱交換器40に供給される直前の上流に配設されている。   As shown in FIG. 2, in the second embodiment, the heat exchange between the heat transfer water circulating through the primary circuit 20 and the secondary hot water circulating through the secondary circuit 30 is transferred to the indirect heat exchanger 50. In addition, the sub heat exchanger 60 is used. Further, the sub heat exchanger 60 is disposed upstream immediately before the heat transfer water circulating in the primary side circulation path 20 is supplied to the latent heat recovery heat exchanger 40.

つまり、第2実施形態においては、温水発生機本体11の燃焼室で加温された比較的高温の熱媒水を、1次側循環路20を循環させて間接熱交換器50に供給し、一方、給水などにより比較的低温の2次湯水を、2次側循環路30を循環させて間接熱交換器50に供給することにより、高温の熱媒水と低温の2次湯水との間で熱交換して低温の2次湯水を加温するだけではなく、2次側循環路30を循環する2次湯水は、間接熱交換器50に供給される上流でサブ熱交換器60により予熱され、1次側循環路20を循環する熱媒水は潜熱回収用熱交換器40に供給される直前の上流で、さらにサブ熱交換器60によりその熱を奪われて温度が低下する。   That is, in the second embodiment, a relatively high-temperature heat transfer water heated in the combustion chamber of the hot water generator main body 11 is circulated through the primary side circulation path 20 and supplied to the indirect heat exchanger 50, On the other hand, a relatively low temperature secondary hot water is circulated through the secondary side circulation path 30 and supplied to the indirect heat exchanger 50 by supplying water or the like, so that a high temperature heat transfer water and a low temperature secondary hot water are used. The secondary hot water circulating in the secondary side circulation path 30 is preheated by the sub heat exchanger 60 upstream from the indirect heat exchanger 50 as well as heating the low temperature secondary hot water by heat exchange. The heat medium water circulating in the primary side circulation path 20 is immediately upstream of being supplied to the latent heat recovery heat exchanger 40 and further deprived of the heat by the sub heat exchanger 60, so that the temperature is lowered.

これにより、1次側循環路20を循環する熱媒水は、間接熱交換器50において熱交換し、さらにサブ熱交換器60によりその熱を奪われて温度が低下した状態で潜熱回収用熱交換器40に供給されるため、潜熱回収用熱交換器40の内部において、第1実施形態よりもさらに効率の高い熱交換を行うことが可能である。   As a result, the heat transfer water circulating in the primary side circulation path 20 is heat-exchanged in the indirect heat exchanger 50, and further, the heat is taken away by the sub heat exchanger 60, and the heat for latent heat recovery is reduced. Since the heat is supplied to the exchanger 40, it is possible to perform heat exchange more efficiently than in the first embodiment inside the heat exchanger 40 for recovering latent heat.

また、2次側循環路30を循環する2次湯水は、間接熱交換器50及びサブ熱交換器60により加温されることになるので、効率よく加温されることになり、加温時間も短縮することができる。   Moreover, since the secondary hot water circulating through the secondary side circulation path 30 is heated by the indirect heat exchanger 50 and the sub heat exchanger 60, it is efficiently heated, and the heating time is increased. Can also be shortened.

(第3実施形態)
ここで、本発明の第3実施形態に係る温水発生機について、図面を参照しながら具体的に説明する。図3は本発明の第3実施形態に係る温水発生機10”を示す該略構成図である。なお、以下の第3実施形態においては、上述した第1実施形態及び第2実施形態との異なる箇所以外は、理解を容易とするため同じ符号を付して説明を省略する。
(Third embodiment)
Here, the hot water generator according to the third embodiment of the present invention will be specifically described with reference to the drawings. FIG. 3 is a schematic diagram showing a hot water generator 10 ″ according to the third embodiment of the present invention. In the following third embodiment, the first embodiment and the second embodiment described above are compared. Except for the different parts, the same reference numerals are given for easy understanding, and the description is omitted.

図3に示すように、第3実施形態に係る温水発生機10”は、バーナ装置12が設けられた燃焼室13を備えるとともに、熱媒水を収容可能とした温水発生機本体11と、温水発生機本体11に収容された熱媒水を循環させる1次側循環路20と、この1次側循環路20とは独立して構成されるとともに、給湯のために設けられた出湯端末である複数のカラン32を備え、各カラン32から出湯される2次湯水を循環させる2次側循環路30と、1次側循環路20を循環する高温の熱媒水と2次側循環路30を循環する低温の2次湯水との熱交換を行う間接熱交換器50と、バーナ装置12の燃焼により発生した排気ガスの熱(顕熱、潜熱)を回収する潜熱回収用熱交換器40と、を具備している。そして、上述した第1実施形態及び第2実施形態と同様に、カラン32から出湯される2次湯水は、図示しない水源(上水など)から2次側循環路30に供給された水を、1次側循環路20を循環する高温の熱媒水と間接熱交換器50により熱交換して加温される。   As shown in FIG. 3, the hot water generator 10 ″ according to the third embodiment includes a combustion chamber 13 provided with a burner device 12, and a hot water generator main body 11 capable of accommodating heat transfer water, The primary-side circulation path 20 that circulates the heat transfer water accommodated in the generator body 11 and the primary-side circulation path 20 are configured independently of each other and are outlet terminals provided for hot water supply. A secondary-side circulation path 30 that includes a plurality of currants 32 and circulates secondary hot water discharged from each of the currants 32, a high-temperature heat transfer water that circulates in the primary-side circulation path 20, and a secondary-side circulation path 30 An indirect heat exchanger 50 that performs heat exchange with the circulating low-temperature secondary hot water, a latent heat recovery heat exchanger 40 that recovers heat (sensible heat, latent heat) of exhaust gas generated by the combustion of the burner device 12, and The first embodiment and the second embodiment described above are provided. Similarly to the embodiment, the secondary hot water discharged from the currant 32 is a high-temperature heat that circulates the water supplied from the water source (not shown) to the secondary side circulation path 30 through the primary side circulation path 20. Heat is exchanged with the medium water and the indirect heat exchanger 50 for heating.

さらに、第3実施形態に係る温水発生機10”は、燃焼室13と煙道15をつなぐバイパス16を備えている。そして、バイパス16の略中央内部には、バイパス16を通過する排気ガスの流量を調節可能な、流量調節手段としての煙道ダンパー17が設置されている。   Furthermore, the hot water generator 10 ″ according to the third embodiment includes a bypass 16 that connects the combustion chamber 13 and the flue 15. An exhaust gas that passes through the bypass 16 is disposed substantially inside the bypass 16. A flue damper 17 is installed as a flow rate adjusting means capable of adjusting the flow rate.

第3実施形態においては、上述した第1実施形態及び第2実施形態と同様に、複数の1次側循環路20、複数の間接熱交換器50を有しており、それに対応して複数の2次側循環路30が設けられている。そして、一組の1次側循環路20、間接熱交換器50及び2次側循環路30により回路を構成し、例えば、給湯や暖房のための目的の異なる複数の回路(例えば、給湯回路、暖房回路など)を構成することができる。   In the third embodiment, similarly to the first embodiment and the second embodiment described above, a plurality of primary-side circulation paths 20 and a plurality of indirect heat exchangers 50 are provided, and a plurality of corresponding ones are provided. A secondary side circulation path 30 is provided. And a circuit is constituted by a set of primary side circulation path 20, indirect heat exchanger 50, and secondary side circulation path 30, for example, a plurality of circuits (for example, hot water supply circuit, Heating circuit etc.).

以下の説明では、上述した第1実施形態及び第2次実施形態と異なる点のみを説明する。なお、第3次実施形態においては、第1実施形態及び第2実施形態と同様に1次側循環方式として、1次側循環路20を循環する熱媒水を加温するために潜熱回収用熱交換器40を用いている。   In the following description, only differences from the first embodiment and the second embodiment described above will be described. In the third embodiment, as in the first embodiment and the second embodiment, as the primary circulation system, the latent heat recovery is performed to heat the heat transfer water circulating through the primary circulation circuit 20. A heat exchanger 40 is used.

図3に示すように、第3実施形態における温水発生機10”には、燃焼室13の潜熱回収用熱交換器40を排気ガスが通過する前と、煙道15の潜熱回収用熱交換器40を排気ガスが通過した後を連通してバイパス16が設けられている。このバイパス16は、燃焼室13から煙道15に排出される排気ガスの一部をショートカットして煙道15に通過させるためのものである。   As shown in FIG. 3, the hot water generator 10 ″ in the third embodiment includes a heat exchanger for recovering latent heat in the flue 15 before exhaust gas passes through the heat exchanger 40 for recovering latent heat in the combustion chamber 13. A bypass 16 is provided in communication after the exhaust gas passes through 40. This bypass 16 shortcuts a part of the exhaust gas discharged from the combustion chamber 13 to the flue 15 and passes to the flue 15. It is for making it happen.

燃焼室13から煙道15に排出される排気ガスが、潜熱回収用熱交換器40により潜熱回収されて、所定温度(例えば、100℃)以下の結露し易い状態のままで、煙道15から外部に排出されると、外気による冷却で酸性の結露水が生成されてしまい、煙道15の排出口近傍に付着して金属腐食を起したり、煙道15の排出口近辺に生成する植物等の壊死を引き起こしたりする可能性がある。   The exhaust gas discharged from the combustion chamber 13 to the flue 15 is recovered with latent heat by the latent heat recovery heat exchanger 40 and remains in a state where it is likely to condense below a predetermined temperature (for example, 100 ° C.). When discharged outside, acidic condensation water is generated by cooling with the outside air, and adheres to the vicinity of the exhaust port of the flue 15 to cause metal corrosion, or a plant generated in the vicinity of the exhaust port of the flue 15 Or cause necrosis.

このため、燃焼室13から排出される潜熱回収前の湿度が低く高温の排気ガスの一部を煙道15に直接通過させることにより、潜熱回収用熱交換器40により潜熱を回収され湿度が高く(つまり、結露し易い)低温の排気ガスと混合させて、煙道15から外部に排出される排気ガスの湿度を低く温度を高温にして、煙道15から排出された排気ガスが外気と接触することによる酸性の結露水の生成を防止している。   For this reason, by passing a part of the high-temperature exhaust gas having a low humidity discharged from the combustion chamber 13 and having a low temperature directly through the flue 15, the latent heat is recovered by the latent heat recovery heat exchanger 40 and the humidity is high. Mixing with low temperature exhaust gas (that is easy to condense), the humidity of the exhaust gas discharged from the flue 15 is lowered to a high temperature, and the exhaust gas discharged from the flue 15 comes into contact with the outside air This prevents the formation of acidic condensed water.

バイパス16の略中央内部にはバルブ機構を有する煙道ダンパー17が設置されている。この煙道ダンパー17は、バイパス16を通過する排気ガスの流量を調節するためのものである。   A flue damper 17 having a valve mechanism is installed substantially inside the bypass 16. The flue damper 17 is for adjusting the flow rate of the exhaust gas passing through the bypass 16.

つまり、第3実施形態においては、煙道15の外部排出口(図示せず)近傍には、排出される排気ガスの湿度及び温度を測定するセンサ(図示せず)が設けられており、排出される排気ガスの湿度及び温度に応じて、バルブ機構を有する煙道ダンパー17によりバイパス16を通過する排気ガスの流量を多くしたり少なくしたり調節することにより、煙道15から排出される排気ガスの湿度及び温度を、外気による冷却で酸性の結露水が生成されないようにしている。   In other words, in the third embodiment, a sensor (not shown) for measuring the humidity and temperature of the exhaust gas to be discharged is provided in the vicinity of the external discharge port (not shown) of the flue 15. The exhaust gas discharged from the flue 15 is adjusted by increasing or decreasing the flow rate of the exhaust gas passing through the bypass 16 by the flue damper 17 having a valve mechanism in accordance with the humidity and temperature of the exhaust gas to be discharged. The humidity and temperature of the gas are set so that acidic condensed water is not generated by cooling with outside air.

具体的に説明すると、第3実施形態においては、排出される排気ガスの湿度及び温度が、酸性の結露水が生成されやすい数値の場合は、煙道ダンパー17のバルブ機構によりバイパス16を通過する排気ガスの流量を多くする。これにより、煙道15から排出される排気ガスは、湿度が低下し温度が上昇するため、外気による冷却で酸性の結露水が生成され難い状態で排出される。   Specifically, in the third embodiment, when the humidity and temperature of the exhaust gas to be discharged are numerical values at which acidic condensed water is easily generated, the exhaust gas passes through the bypass 16 by the valve mechanism of the flue damper 17. Increase the exhaust gas flow rate. As a result, the exhaust gas discharged from the flue 15 is discharged in a state in which it is difficult to generate acidic condensed water by cooling with the outside air because the humidity decreases and the temperature increases.

一方、排出される排気ガスの湿度及び温度が、酸性の結露水が生成されない数値の場合は、煙道ダンパー17のバルブ機構によりバイパス16を通過する排気ガスの流量を少なくする。これにより、潜熱回収用熱交換器40により潜熱を回収される排気ガスの量が多くなるので、潜熱回収用熱交換器40による熱交換率を向上させることができる。   On the other hand, when the humidity and temperature of the exhaust gas discharged are numerical values that do not generate acidic condensed water, the flow rate of the exhaust gas passing through the bypass 16 is reduced by the valve mechanism of the flue damper 17. As a result, the amount of exhaust gas whose latent heat is recovered by the latent heat recovery heat exchanger 40 increases, so that the heat exchange rate by the latent heat recovery heat exchanger 40 can be improved.

これにより、第3実施形態においては、上述した第1実施形態及び第2実施形態と同じ潜熱回収用熱交換器40を1次側循環方式として用いることで、第1実施形態及び第2実施形態と同様な効果を有するだけではなく、煙道15から排出される排気ガスによる酸性の結露水の生成を防止して、煙道15の排気ガスの排出口近傍の金属腐食やその近辺に生成する植物等の壊死を防ぐことができる。   Thereby, in 3rd Embodiment, 1st Embodiment and 2nd Embodiment are used by using the same heat exchanger 40 for latent heat collection | recovery as 1st Embodiment and 2nd Embodiment mentioned above as a primary side circulation system. In addition to having the same effect as the above, it prevents the generation of acidic condensed water by the exhaust gas exhausted from the flue 15 and generates it near or near the metal corrosion near the exhaust gas exhaust port of the flue 15. Necrosis of plants and the like can be prevented.

なお、第3実施形態においては、バルブ機構を有する煙道ダンパー17を用いてバイパス16を通過する排気ガスの流量調節手段として説明したが、流量調節手段としては、バイパス16を通過する排気ガスの流量を調節可能なものであれば、例えば、弁機構などを用いることもできる。   In the third embodiment, the flue gas damper 17 having a valve mechanism is used as the flow rate adjusting means for the exhaust gas passing through the bypass 16. However, as the flow rate adjusting means, the exhaust gas passing through the bypass 16 is controlled. For example, a valve mechanism or the like can be used as long as the flow rate can be adjusted.

以上、上述した各実施形態によれば、潜熱回収用熱交換器40を1次側循環方式で用いられることにより、潜熱回収用熱交換器40に供給される熱媒水の温度を安定した低温度とすることができるため、高温の排気ガスにより潜熱回収用熱交換器40の過熱を防止することができ、安全性の高い潜熱回収用熱交換器40を具備する温水発生機10(10’、10”)とすることができるとともに、潜熱回収用熱交換器40に低温の熱媒水を供給することで複数の回路(給湯、暖房、循環加熱など)を接続した場合でも、接続する回路の条件を設定する必要がない。   As mentioned above, according to each embodiment mentioned above, the temperature of the heat transfer water supplied to the latent heat recovery heat exchanger 40 is stably reduced by using the latent heat recovery heat exchanger 40 in the primary side circulation system. Therefore, the hot water generator 10 (10 ′) including the latent heat recovery heat exchanger 40 with high safety can prevent the latent heat recovery heat exchanger 40 from being overheated by the high-temperature exhaust gas. 10 ″) and a circuit to be connected even when a plurality of circuits (hot water supply, heating, circulation heating, etc.) are connected by supplying low-temperature heat transfer water to the latent heat recovery heat exchanger 40 There is no need to set the conditions.

なお、上述した第2実施形態では、第1実施形態にサブ熱交換器60を加えた構成とし、第3実施形態では、第1実施形態に煙道ダンパー17を具備するバイパス16を加えた構成として各々説明してきたが、第1実施形態にサブ熱交換器60と煙道ダンパー17を具備するバイパス16とを加えた構成としてもよい。   In addition, in 2nd Embodiment mentioned above, it is set as the structure which added the sub heat exchanger 60 to 1st Embodiment, and in 3rd Embodiment, the structure which added the bypass 16 which comprises the flue damper 17 to 1st Embodiment. As described above, the sub heat exchanger 60 and the bypass 16 including the flue damper 17 may be added to the first embodiment.

上述してきた各実施形態より、以下の温水発生機10(10’、10”)が実現できる。   From each of the embodiments described above, the following hot water generator 10 (10 ', 10 ") can be realized.

(1)熱媒水を収容する温水発生機本体11と、温水発生機本体11内の熱媒水を加温する燃焼室13と、燃焼室13より排出される排気ガスを外部に排出する煙道15と、燃焼室と煙道との接続部に配設された潜熱回収用熱交換器40と、温水発生機本体11内の熱媒水を循環させて潜熱回収用熱交換器40による排気ガスの潜熱と熱交換させる1次側循環路20と、1次側循環路20と独立して構成され、2次湯水を循環させる2次側循環路30と、1次側循環路20を循環する熱媒水と2次側循環路30を循環する2次湯水との熱交換を行う間接熱交換器50と、を備えた温水発生機10(10’、10”)。 (1) Hot water generator main body 11 that contains the heat transfer water, the combustion chamber 13 that heats the heat transfer water in the hot water generator main body 11, and the smoke that discharges the exhaust gas discharged from the combustion chamber 13 to the outside Exhaust by the latent heat recovery heat exchanger 40 by circulating the heat transfer water in the hot water generator main body 11 by circulating the heat transfer water 40 in the hot water generator main body 11 and the heat exchanger 40 disposed in the connection portion between the passage 15 and the combustion chamber and the flue. The primary side circulation path 20 that exchanges heat with the latent heat of the gas, the secondary side circulation path 30 that is configured independently of the primary side circulation path 20 and circulates the secondary hot water and the primary side circulation path 20 circulate. A hot water generator 10 (10 ′, 10 ″), which includes an indirect heat exchanger 50 that performs heat exchange between the heat transfer medium that performs heat exchange with the secondary hot water circulating through the secondary-side circulation path 30.

かかる構成の温水発生機10(10’、10”)を用いて、例えば、給湯を行う場合に、比較的高温の1次側循環路20を循環する熱媒水を用いて、比較的低温の2次側循環路30を循環する熱媒水を間接熱交換器50により熱交換して加温して給湯し、さらに、熱交換で温度の低下した1次側循環路20を循環する熱媒水を潜熱回収用熱交換器40により予熱して温水発生機本体11に還流させることができるので、排気ガスの熱を有効に活用して、燃費の向上を図るとともに、二酸化炭素の削減、温室効果の防止等環境に配慮した温水発生機10(10’、10”)とすることができる。   When the hot water generator 10 (10 ′, 10 ″) having such a configuration is used, for example, when hot water is supplied, a relatively low temperature is used by using heat transfer water circulating through the relatively high temperature primary side circulation path 20. Heat medium water circulating through the secondary side circulation path 30 is heat-exchanged by the indirect heat exchanger 50 and heated to supply hot water, and further, the heat medium circulating through the primary side circulation path 20 whose temperature has decreased due to heat exchange The water can be preheated by the latent heat recovery heat exchanger 40 and recirculated to the hot water generator main body 11, so that the heat of the exhaust gas can be effectively utilized to improve fuel consumption, reduce carbon dioxide, It can be set as the warm water generator 10 (10 ', 10 ") in consideration of environment, such as prevention of an effect.

(2)1次側循環路20を循環する熱媒水と2次側循環路30を循環する2次湯水との熱交換を行う第2の間接熱交換器(サブ熱交換器60)を、潜熱回収用熱交換器40の上流側に設けた温水発生機10’。このとき、第2の間接熱交換器(サブ熱交換器60)は、1次側循環路20を循環する熱媒水が潜熱回収用熱交換器40に供給される直前の位置に設けられている。 (2) a second indirect heat exchanger (sub heat exchanger 60) that performs heat exchange between the heat transfer water circulating through the primary circuit 20 and the secondary hot water circulating through the secondary circuit 30; A hot water generator 10 ′ provided upstream of the latent heat recovery heat exchanger 40. At this time, the second indirect heat exchanger (sub heat exchanger 60) is provided at a position immediately before the heat transfer water circulating in the primary side circulation path 20 is supplied to the latent heat recovery heat exchanger 40. Yes.

かかる構成により、1次側循環路20を循環する熱媒水により、2次側循環路30を循環する2次湯水を、さらにサブ熱交換器60により効率よく加温して、1次側循環路20を循環して潜熱回収用熱交換器40に供給される熱媒水の温度を低下させることができるため、潜熱回収用熱交換器40内部での伝熱効率を向上させることが可能となる。   With such a configuration, the secondary hot water circulating in the secondary circulation path 30 is further efficiently heated by the sub heat exchanger 60 by the heat medium water circulating in the primary circulation path 20, and the primary circulation. Since the temperature of the heat transfer water supplied to the latent heat recovery heat exchanger 40 through the passage 20 can be lowered, the heat transfer efficiency inside the latent heat recovery heat exchanger 40 can be improved. .

(3)燃焼室13から排出される排気ガスを、潜熱回収用熱交換器40を介さずに煙道15に導出するバイパス16を設けた温水発生機10”。   (3) A hot water generator 10 ″ provided with a bypass 16 for leading the exhaust gas discharged from the combustion chamber 13 to the flue 15 without passing through the latent heat recovery heat exchanger 40.

かかる構成により、煙道15から排出された湿度が高く温度の低い排気ガスが、外気により冷却されて酸性の結露水が生成されることを防止することができるので、煙道15の排気ガスの排出口近傍の金属腐食やその近辺に生成する植物等の壊死を防ぐことができる。   With this configuration, it is possible to prevent the exhaust gas having a high humidity and a low temperature exhausted from the flue 15 from being cooled by the outside air to generate acidic condensed water. It is possible to prevent metal corrosion in the vicinity of the discharge port and necrosis of plants generated in the vicinity thereof.

(4)バイパス16に、通過する排気ガスの流量を調節可能な流量調節手段としての煙道ダンパー17を設けた温水発生機10”。   (4) A hot water generator 10 ″ provided with a flue damper 17 as a flow rate adjusting means capable of adjusting the flow rate of exhaust gas passing through the bypass 16.

かかる構成により、煙道15から排出された排気ガスの湿度や温度に応じて、バイパス16を通過させる排気ガスの流量を調整することができるので、効率のよい潜熱回収用熱交換器40を用いた熱交換を行うことができる。   With this configuration, the flow rate of the exhaust gas passing through the bypass 16 can be adjusted according to the humidity and temperature of the exhaust gas discharged from the flue 15, so that an efficient latent heat recovery heat exchanger 40 is used. Heat exchange.

以上、実施例を説明したが、本発明の具体的な構成は前記実施例に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。   Although the embodiments have been described above, the specific configuration of the present invention is not limited to the above-described embodiments, and design changes and the like within a scope not departing from the gist of the invention are included in the present invention.

10 温水発生機
11 温水発生機本体
12 バーナ装置
13 燃焼室
15 煙道
16 バイパス
17 煙道ダンパー
20 1次側循環路
21 1次側循環ポンプ
22 逆止弁
23 集水路
30 2次側循環路
31 2次側循環ポンプ
32 カラン
40 潜熱回収用熱交換器
50 間接熱交換器
60 サブ熱交換器
DESCRIPTION OF SYMBOLS 10 Hot water generator 11 Hot water generator main body 12 Burner apparatus 13 Combustion chamber 15 Flue 16 Bypass 17 Flue damper 20 Primary side circulation path 21 Primary side circulation pump 22 Check valve 23 Water collection path 30 Secondary side circulation path 31 Secondary circulation pump 32 Karan 40 Heat exchanger for latent heat recovery 50 Indirect heat exchanger 60 Sub heat exchanger

Claims (3)

熱媒水を収容する温水発生機本体と、
前記温水発生機本体内の熱媒水を加温する燃焼室と、
前記燃焼室より排出される排気ガスを外部に排出するために当該燃焼室の外部に伸延した煙道と、
前記燃焼室と前記煙道との接続部に配設された潜熱回収用熱交換器と、
前記温水発生機本体内の熱媒水を循環させる1次側循環路と、
前記1次側循環路と独立して構成され、カランから給湯するための2次湯水を循環させる2次側循環路と、
前記1次側循環路を循環する熱媒水と前記2次側循環路を循環する2次湯水との熱交換を行う間接熱交換器と、
を備え
前記温水発生機本体の上部に前記1次側循環路の始端を連通接続し、当該1次側循環路の中途及び前記2次側循環路の中途に共通して前記間接熱交換器を介設し、
前記間接熱交換器から伸延した前記1次側循環路は、前記潜熱回収用熱交換器の一端に連通接続し、
前記潜熱回収用熱交換器の他端は、前記温水発生機本体に連通した前記1次側循環路の終端に連通接続し、
前記間接熱交換器において、前記2次側循環路を循環する2次湯水と熱交換して温度が低下した状態で前記1次側循環路を循環する熱媒水を、前記間接熱交換器の下流側に設けた前記潜熱回収用熱交換器によって予熱して前記温水発生機本体内に環流させることを特徴とする温水発生機。
A hot water generator main body for storing heat transfer water,
A combustion chamber for heating the heat transfer water in the hot water generator body;
A flue extended outside the combustion chamber to discharge the exhaust gas discharged from the combustion chamber to the outside ;
A latent heat recovery heat exchanger disposed at a connection between the combustion chamber and the flue;
A primary side circulation path Ru circulating the heat transfer water of the hot water generator body,
Is constructed independently of the primary side circulation path, and the secondary side circulation path for circulating the secondary hot water for hot water supply from Curran,
An indirect heat exchanger that performs heat exchange between the heat transfer water circulating through the primary circuit and the secondary hot water circulating through the secondary circuit;
Equipped with a,
The starting end of the primary side circulation path is connected to the upper part of the hot water generator main body, and the indirect heat exchanger is interposed in the middle of the primary side circulation path and the middle of the secondary side circulation path. And
The primary side circulation path extended from the indirect heat exchanger is connected to one end of the latent heat recovery heat exchanger,
The other end of the latent heat recovery heat exchanger is connected to the end of the primary side circulation path communicating with the hot water generator body,
In the indirect heat exchanger, the heat transfer water circulating in the primary side circulation path in a state where the temperature is lowered by heat exchange with the secondary hot water circulating in the secondary side circulation path, A warm water generator preheated by the latent heat recovery heat exchanger provided on the downstream side and circulated in the warm water generator main body .
前記1次側循環路を循環する熱媒水と前記2次側循環路を循環する2次湯水との熱交換を行う第2の間接熱交換器を、前記潜熱回収用熱交換器の上流側に設けたことを特徴とする請求項1記載の温水発生機。   A second indirect heat exchanger for exchanging heat between the heat transfer water circulating in the primary side circulation path and the secondary hot water circulating in the secondary side circulation path, upstream of the latent heat recovery heat exchanger; The hot water generator according to claim 1, wherein the hot water generator is provided. 排気ガスが前記潜熱回収用熱交換器を通過する前の前記燃焼室と、排気ガスが前記潜熱回収用熱交換器を通過した後の前記煙道との間を連通して、前記燃焼室から排出される排気ガス前記潜熱回収用熱交換器を介さずに前記煙道に導出するバイパスを設けると共に、前記バイパスの中途に設けた流量調節手段により、当該バイパスを通過する排気ガスの流量を調節可能に構成したことを特徴とする請求項1又は2に記載の温水発生機。 The exhaust chamber communicates between the combustion chamber before passing through the latent heat recovery heat exchanger and the flue after the exhaust gas passes through the latent heat recovery heat exchanger, and then from the combustion chamber. Rutotomoni a bypass exhaust gas discharged derives said flue without passing through the latent heat recovery heat exchanger, the flow rate adjusting means provided in the middle of the bypass, the flow rate of the exhaust gas passing through the bypass The hot water generator according to claim 1 or 2, characterized in that it can be adjusted .
JP2009284932A 2009-12-16 2009-12-16 Hot water generator Active JP5475425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009284932A JP5475425B2 (en) 2009-12-16 2009-12-16 Hot water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009284932A JP5475425B2 (en) 2009-12-16 2009-12-16 Hot water generator

Publications (2)

Publication Number Publication Date
JP2011127803A JP2011127803A (en) 2011-06-30
JP5475425B2 true JP5475425B2 (en) 2014-04-16

Family

ID=44290573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009284932A Active JP5475425B2 (en) 2009-12-16 2009-12-16 Hot water generator

Country Status (1)

Country Link
JP (1) JP5475425B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355377B2 (en) * 2014-03-24 2018-07-11 株式会社日本サーモエナー Vacuum water heater
JP6355394B2 (en) * 2014-04-08 2018-07-11 株式会社日本サーモエナー Vacuum water heater

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07117292B2 (en) * 1987-12-28 1995-12-18 東京瓦斯株式会社 Water heater
JP2002267103A (en) * 2001-03-12 2002-09-18 Showa Mfg Co Ltd Flue tube structure of boiler
JP2008180401A (en) * 2007-01-23 2008-08-07 Matsushita Electric Ind Co Ltd Hot water supply device
JP2009264663A (en) * 2008-04-25 2009-11-12 Miura Co Ltd Economizer and boiler

Also Published As

Publication number Publication date
JP2011127803A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP5630084B2 (en) Boiler water supply system
JP6280213B2 (en) Waste heat exchange water temperature control system and method using mixing valve
WO2012114981A1 (en) Boiler plant and boiler plant operating method
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
KR100868997B1 (en) That the economizer attached the efficient boiler
CN103380329B (en) Boiler plant
JP5636955B2 (en) Heat recovery system
GB2450414A (en) Exhaust gas water heating system
KR100711788B1 (en) High efficiency of Power Supply and Power Generation System
JP5475425B2 (en) Hot water generator
JP5406001B2 (en) Latent heat recovery unit
JP2007248018A (en) Control system for supply water preheater of reheat boiler
KR101104350B1 (en) System for Reclaiming Waste Heat From Boiler
JP2007187352A (en) Starting method of boiler
JP2007248017A (en) Temperature controller for fuel economizer of reheat boiler
KR200423080Y1 (en) Warm water supply apparatus of heating medium boiler
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP4437987B2 (en) Hot water circulation system
JP5164580B2 (en) Control method of power generator when power generation is stopped
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
KR101657877B1 (en) Industrial vapor boiler system
JP2007120867A (en) Hot water supply system
KR101965756B1 (en) Waste heat recovery apparatus of steam boiler
KR102151468B1 (en) Water supply temperature maintenance system of industrial condensing boiler
CN215570570U (en) Air-powder heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5475425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250