JP6355394B2 - Vacuum water heater - Google Patents

Vacuum water heater Download PDF

Info

Publication number
JP6355394B2
JP6355394B2 JP2014079228A JP2014079228A JP6355394B2 JP 6355394 B2 JP6355394 B2 JP 6355394B2 JP 2014079228 A JP2014079228 A JP 2014079228A JP 2014079228 A JP2014079228 A JP 2014079228A JP 6355394 B2 JP6355394 B2 JP 6355394B2
Authority
JP
Japan
Prior art keywords
hot water
vacuum
heat exchanger
water supply
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014079228A
Other languages
Japanese (ja)
Other versions
JP2015200455A (en
Inventor
訓央 林
訓央 林
孝幸 正野
孝幸 正野
Original Assignee
株式会社日本サーモエナー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本サーモエナー filed Critical 株式会社日本サーモエナー
Priority to JP2014079228A priority Critical patent/JP6355394B2/en
Publication of JP2015200455A publication Critical patent/JP2015200455A/en
Application granted granted Critical
Publication of JP6355394B2 publication Critical patent/JP6355394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、真空式温水機、特に給湯温水と暖房温水の温水2回路を備える真空式温水機に関する。   The present invention relates to a vacuum water heater, and more particularly to a vacuum water heater provided with two hot water hot water and hot water hot water circuits.

従来、図4に示すように、バーナー50、燃焼室51、減圧蒸気室52、熱媒水H、熱交換器53、水管54、抽気ポンプ(不図示)等を備え、缶体55内を抽気ポンプにより減圧して真空に近い状態とすることにより、熱媒水Hを100℃以下の温度で沸騰させ、その蒸気が熱交換器53の表面で凝縮することで熱交換器53内の給水を加熱し、温水をつくる真空式温水機が知られている(たとえば特許文献1等)。この種の真空式温水機は、要求される温度の温水を素早く負荷側へ供給できるというメリットがある。   Conventionally, as shown in FIG. 4, a burner 50, a combustion chamber 51, a decompression steam chamber 52, a heat transfer water H, a heat exchanger 53, a water pipe 54, an extraction pump (not shown) and the like are provided, and the inside of the can body 55 is extracted. By reducing the pressure by the pump to a state close to vacuum, the heat transfer water H is boiled at a temperature of 100 ° C. or less, and the steam condenses on the surface of the heat exchanger 53 to supply water in the heat exchanger 53. A vacuum water heater that heats and produces hot water is known (for example, Patent Document 1). This type of vacuum hot water machine has the advantage of being able to quickly supply hot water at the required temperature to the load side.

特開平11−337002号公報JP-A-11-337002

しかしながら、従来の真空式温水機は、排ガスの保有熱を、熱媒を介して温水へ二段階で熱交換されており、一般的に熱媒温度を80〜90℃で制御しているため、缶体出口の排ガス温度を低減させ熱効率を向上させるには限界があった。   However, in the conventional vacuum hot water machine, the heat held in the exhaust gas is heat-exchanged in two stages to the hot water via the heating medium, and generally the heating medium temperature is controlled at 80 to 90 ° C. There was a limit to reducing the exhaust gas temperature at the can outlet and improving the thermal efficiency.

そこで、本発明は、給湯温水だけでなく暖房温水との温水2回路の真空式温水機において、排ガス温度を低減し、熱効率を向上させ得る真空式温水機を提供する。   Therefore, the present invention provides a vacuum water heater that can reduce exhaust gas temperature and improve thermal efficiency in a two-circuit vacuum water heater with hot water as well as hot water hot water.

上記目的を達成するために、本発明に係る真空式温水機は、熱媒加熱用バーナー、第1給湯用熱交換器、及び第1暖房用熱交換器を備える第1真空式温水機と、第2給湯用熱交換器及び第2暖房用熱交換器を備えるとともに前記第1真空式温水機の排ガスによって熱媒を加熱するように構成された第2真空式温水機と、を備え、前記第1給湯用熱交換器は、前記第2給湯用熱交換器から給水されるように、前記第2給湯用熱交換器に直列接続され、前記第1暖房用熱交換器は、前記第2暖房用熱交換器から給水されるように、前記第2暖房用熱交換器に直列接続され、更に、前記第2給湯用熱交換器をバイパスする第2給湯用バイパス管と、該第2給湯用バイパス管を流れるバイパス流量を制御する第2給湯用流量制御弁と、前記第2暖房用熱交換器をバイパスする暖房用バイパス管と、該暖房用バイパス管を流れるバイパス流量を制御する暖房用流量制御弁と、前記第2真空式温水機の熱媒温度が前記第1真空式温水機の熱媒温度より低い第3設定温度となるように前記第2給湯用流量制御弁を制御する制御系統と、給湯用温水負荷が減少または遮断し前記第2真空式温水機の熱媒温度が前記第3設定温度より高い第2設定温度に達したときに前記暖房用流量制御弁により前記暖房用バイパス管への流量を減少または停止させて前記第2暖房用熱交換器への給水を増加させる制御系統と、前記第2真空式温水機の熱媒温度が前記第2設定温度より上昇して第1設定温度に達したときに、該第2真空式温水機の熱媒温度に基づいて該熱媒温度が前記第1設定温度を超えないように前記バーナーの燃料流量を制御するための第2バーナー用制御出力を、前記第1真空式温水機の熱媒温度が前記第1設定温度になるように前記バーナーの燃料流量を制御するための第1バーナー用制御出力と比較し、いずれか小さいほうの制御出力により前記バーナーの燃料流量を制御する制御系統と、を備えていることを特徴とする。 In order to achieve the above object, a vacuum water heater according to the present invention includes a first vacuum water heater provided with a heat medium heating burner, a first hot water heat exchanger, and a first heating heat exchanger; A second hot water heater provided with a second hot water supply heat exchanger and a second heating heat exchanger and configured to heat the heat medium with the exhaust gas of the first vacuum hot water machine, The first hot water supply heat exchanger is connected in series to the second hot water supply heat exchanger so that water is supplied from the second hot water supply heat exchanger, and the first heating heat exchanger is connected to the second heat supply heat exchanger. A second hot water supply bypass pipe that is connected in series to the second heating heat exchanger and bypasses the second hot water supply heat exchanger so that water is supplied from the heating heat exchanger, and the second hot water supply A second hot water supply flow rate control valve for controlling a bypass flow rate flowing through the bypass pipe, and for the second heating A heating bypass pipe that bypasses the exchanger, a heating flow control valve that controls a bypass flow rate that flows through the heating bypass pipe, and a heat medium temperature of the second vacuum water heater is that of the first vacuum water heater. A control system for controlling the second hot water supply flow rate control valve so as to have a third set temperature lower than the heat transfer medium temperature, and the hot water supply hot water load is reduced or cut off, so that the heat transfer medium temperature of the second vacuum hot water heater is When the second set temperature higher than the third set temperature is reached, the flow rate to the heating bypass pipe is decreased or stopped by the heating flow control valve to increase the water supply to the second heating heat exchanger. When the heat medium temperature of the control system and the second vacuum water heater rises from the second set temperature and reaches the first set temperature, the heat medium temperature of the second vacuum water heater is based on the heat medium temperature of the second vacuum water heater. Before the heating medium temperature does not exceed the first set temperature A second burner control output for controlling the fuel flow rate of the burner is a first output for controlling the fuel flow rate of the burner so that the heat medium temperature of the first vacuum hot water machine becomes the first set temperature. And a control system for controlling the fuel flow rate of the burner by a smaller control output as compared with the control output for the burner .

前記第1給湯用熱交換器をバイパスする第1給湯用バイパス管と、該第1給湯用バイパス管の流量を制御する第1給湯用流量制御弁とを更に備えることが好ましい。   It is preferable to further include a first hot water supply bypass pipe that bypasses the first hot water supply heat exchanger, and a first hot water flow control valve that controls the flow rate of the first hot water bypass pipe.

給湯温水負荷の減少により前記第1給湯用熱交換器の出口の給湯温水温度が上昇して給湯上限設定温度に達すると、前記第1給湯用流量制御弁により前記第1給湯用バイパス管の流量を制御することにより、給湯温水温度を前記給湯上限設定温度に調節する制御系統を含むことが好ましい。 When the hot water supply temperature of hot water at the outlet of the heat exchanger for the first hot water supply by a reduction in the supplying hot water load reaches elevated hot water limit set temperature of the first hot-water bypass pipe by the first hot-water flow control valve It is preferable to include a control system that adjusts the hot water supply hot water temperature to the hot water supply upper limit set temperature by controlling the flow rate.

本発明によれば、給湯と暖房の2回路を有する真空式温水機において、缶体からの排ガス温度を低減し、高熱効率を実現することができる。   According to the present invention, in a vacuum hot water machine having two circuits of hot water supply and heating, the exhaust gas temperature from the can can be reduced and high thermal efficiency can be realized.

本発明に係る真空式温水機の第1実施形態を示す概略構成図である。It is a schematic structure figure showing a 1st embodiment of a vacuum type hot water machine concerning the present invention. 熱媒(水)の温度と真空度との関係を示す線図である。It is a diagram which shows the relationship between the temperature of a heat medium (water), and a vacuum degree. 本発明に係る真空式温水機の第2実施形態を示す概略構成図である。It is a schematic block diagram which shows 2nd Embodiment of the vacuum type hot water machine which concerns on this invention. 従来の真空式温水機を示す概略構成図である。It is a schematic block diagram which shows the conventional vacuum hot water machine.

本発明に係る真空式温水機の実施形態について、以下に図面を参照しつつ説明する。なお、全図及び全実施形態を通じて同一または類似の構成部分には同符号を付している。   An embodiment of a vacuum hot water machine according to the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or similar component through all drawings and all embodiment.

図1は、本発明に係る真空式温水機の第1実施形態を示す概略構成図である。図1に示すように、真空式温水機1は、熱媒加熱用バーナー2、第1給湯用熱交換器3、及び第1暖房用熱交換器4を備える第1真空式温水機5と、第2給湯用熱交換器6及び第2暖房用熱交換器7を備えるとともに第1真空式温水機5の燃焼排ガスによって熱媒を加熱するように構成された第2真空式温水機8と、を備えている。   FIG. 1 is a schematic configuration diagram showing a first embodiment of a vacuum water heater according to the present invention. As shown in FIG. 1, a vacuum hot water machine 1 includes a first vacuum hot water machine 5 including a heat medium heating burner 2, a first hot water supply heat exchanger 3, and a first heating heat exchanger 4; A second vacuum water heater 8 provided with a second hot water supply heat exchanger 6 and a second heating heat exchanger 7 and configured to heat the heat medium by the combustion exhaust gas of the first vacuum water heater 5; It has.

第1給湯用熱交換器3は、第2給湯用熱交換器6から給水されるように、第2給湯用熱交換器6に直列接続されている。第1暖房用熱交換器4は、第2暖房用熱交換器7から給水されるように、第2暖房用熱交換器7に直列接続されている。   The first hot water supply heat exchanger 3 is connected in series to the second hot water supply heat exchanger 6 so that water is supplied from the second hot water supply heat exchanger 6. The first heating heat exchanger 4 is connected in series to the second heating heat exchanger 7 so that water is supplied from the second heating heat exchanger 7.

第1真空式温水機5は、従来の真空式温水機と同様の基本構造を有しており、熱媒加熱用バーナー2、第1給湯用熱交換器3及び第1暖房用熱交換器4の他に、缶体9内に水没された燃焼室10、燃焼室10を上下に貫通する水管群11、缶体9内に封入された熱媒H1の上部に設けられ熱交換器3、4が組み込まれた減圧蒸気室12、減圧蒸気室12を減圧する抽気ポンプ(図示せず)、等が備えられている。   The first vacuum hot water machine 5 has the same basic structure as a conventional vacuum hot water machine, and is a heating medium heating burner 2, a first hot water supply heat exchanger 3, and a first heating heat exchanger 4. In addition, the combustion chamber 10 submerged in the can 9, the water tube group 11 penetrating the combustion chamber 10 up and down, and the heat exchangers 3, 4 provided above the heat medium H <b> 1 sealed in the can 9. Are incorporated, a decompression steam chamber 12 in which is installed, a bleed pump (not shown) for decompressing the decompression steam chamber 12, and the like.

第2真空式温水機8は、バーナーが付設されていないため缶体13内に燃焼室を備えておらず、缶体13内に封入された熱媒H2が第1真空式温水機5から排出された燃焼排ガスGと熱交換するように構成されている。   Since the second vacuum hot water machine 8 is not provided with a burner, it does not have a combustion chamber in the can body 13 and the heat medium H2 enclosed in the can body 13 is discharged from the first vacuum hot water machine 5. It is configured to exchange heat with the generated combustion exhaust gas G.

第2真空式温水機8の缶体13は、第1真空式温水機5の燃焼室10の水管群11と同様に、水管群14を備えており、水管群14が排ガスGの煙道15内に配設されている。第2真空式温水機8の缶体13内の熱媒H2上部には、図外の抽気ポンプで減圧される減圧蒸気室16が形成され、減圧蒸気室16に第2給湯用熱交換器6及び第2暖房用熱交換器7が組み込まれている。   The can 13 of the second vacuum hot water machine 8 is provided with a water pipe group 14 like the water pipe group 11 of the combustion chamber 10 of the first vacuum hot water machine 5, and the water pipe group 14 is a flue 15 of the exhaust gas G. It is arranged in the inside. A decompression steam chamber 16 that is decompressed by an extraction pump (not shown) is formed above the heat medium H2 in the can 13 of the second vacuum hot water machine 8, and the second hot water supply heat exchanger 6 is provided in the decompression steam chamber 16. And the heat exchanger 7 for 2nd heating is integrated.

第1真空式温水機5には、缶体9内に熱媒として水(熱媒水)が封入されている。第1真空式温水機5の缶体9内は、抽気ポンプにより減圧されているため、100℃未満で熱媒水が沸騰して蒸発し、この減圧蒸気の保有する潜熱が、缶体9上部の減圧蒸気室12内に組み込まれた第1給湯用熱交換器3及び第1暖房用熱交換器4内の温水へ伝熱され、減圧蒸気は伝熱後、凝縮して再び水となり滴下して熱媒水となる。   In the first vacuum hot water machine 5, water (heat medium water) is sealed in the can 9 as a heat medium. Since the inside of the can 9 of the first vacuum hot water machine 5 is decompressed by the extraction pump, the heat transfer water boils and evaporates below 100 ° C., and the latent heat possessed by the decompressed steam is Heat is transferred to the hot water in the first hot water supply heat exchanger 3 and the first heating heat exchanger 4 incorporated in the reduced pressure steam chamber 12, and the reduced pressure steam condenses and drops again as water after the heat transfer. It becomes heat transfer water.

第1真空式温水機5の熱媒は、100℃以下、通常は80℃〜90℃の温度で制御され、この温度範囲で、熱媒水は、沸騰、蒸発、伝熱、凝縮のサイクルを繰り返す。第1真空式温水機5の熱媒温度は、バーナー2の出力を調整することによって制御され得る。   The heat medium of the first vacuum water heater 5 is controlled at a temperature of 100 ° C. or less, usually 80 ° C. to 90 ° C., and in this temperature range, the heat medium water undergoes a cycle of boiling, evaporation, heat transfer, and condensation. repeat. The heat medium temperature of the first vacuum hot water machine 5 can be controlled by adjusting the output of the burner 2.

第2真空式温水機5も熱媒H2として水が用いられている。第2真空式温水機8の熱媒H2は、第1真空式温水機5の熱媒温度より低い温度で制御される。第2真空式温水機8の熱媒温度を第1真空式温水機5の熱媒温度より低く保つことにより、真空式温水機であっても従来に比して缶体13から出る排ガス温度の低減が可能となり、熱効率を向上させることができる
一般に、真空式温水機では、缶体内で発生した非凝縮性ガスを抽気ポンプで抽出し、真空を保持して、大気圧を超えないようにしなければならない。特に非凝縮性ガスである水素ガスは、微量であっても極端に熱伝達を阻害するため、これを抽出する必要がある。
The second vacuum hot water machine 5 also uses water as the heat medium H2. The heat medium H <b> 2 of the second vacuum hot water machine 8 is controlled at a temperature lower than the heat medium temperature of the first vacuum hot water machine 5. By keeping the heat medium temperature of the second vacuum type hot water machine 8 lower than the heat medium temperature of the first vacuum type hot water machine 5, the temperature of the exhaust gas coming out of the can 13 can be reduced even in the case of a vacuum type hot water machine. In general, in a vacuum water heater, the non-condensable gas generated in the can must be extracted with a bleed pump to maintain the vacuum so that it does not exceed atmospheric pressure. I must. In particular, hydrogen gas, which is a non-condensable gas, extremely inhibits heat transfer even in a very small amount, and thus needs to be extracted.

第2真空式温水機8の熱媒温度を第1真空式温水機5の熱媒温度より低くした場合、熱媒H2の温度が極端に低下して缶体11内の真空度が高くなると、抽気ポンプの仕様能力を超えて抽気できなくなるおそれがある。そのため、第2真空式温水機8の熱媒温度は、抽気ポンプ(不図示)が第2真空式温水機8の缶体13内の非凝縮性ガスを排出可能な真空度に保てるように、真空度を考慮して、60℃〜70℃の範囲で設定することが望ましい。図2に、熱媒水の温度と真空度との関係を示す。また、第2真空式温水機8の熱媒温度は、熱媒H2と熱交換する排ガスGが凝縮する温度以上に制御することにより、缶体13や煙道15の低温腐食や白煙発生を防止することができる。   When the heat medium temperature of the second vacuum hot water machine 8 is lower than the heat medium temperature of the first vacuum water heater 5, when the temperature of the heat medium H2 is extremely lowered and the degree of vacuum in the can 11 is increased, There is a possibility that the air cannot be extracted beyond the specification capacity of the air extraction pump. Therefore, the heat medium temperature of the second vacuum hot water machine 8 is maintained at a degree of vacuum that allows the extraction pump (not shown) to discharge the non-condensable gas in the can 13 of the second vacuum hot water machine 8. In consideration of the degree of vacuum, it is desirable to set in the range of 60 ° C to 70 ° C. FIG. 2 shows the relationship between the temperature of the heat transfer water and the degree of vacuum. In addition, the temperature of the heat medium of the second vacuum hot water machine 8 is controlled to be higher than the temperature at which the exhaust gas G exchanging heat with the heat medium H2 is condensed, so that low-temperature corrosion and white smoke generation of the can 13 and the flue 15 are prevented. Can be prevented.

第2給湯用熱交換器6の熱交換能力は、第2真空式温水機8の熱媒H2を設定温度まで速やかに下げやすくするために、第1真空式温水機5と第2真空式温水機8の熱交換量の比率から算出される第2真空式温水機8の交換熱量より大きめの熱交換能力を備えるものを選定することが好ましい。   The heat exchange capacity of the second hot water supply heat exchanger 6 is such that the heat medium H2 of the second vacuum hot water machine 8 can be easily lowered to the set temperature so that the first vacuum hot water machine 5 and the second vacuum hot water are used. It is preferable to select one having a heat exchange capacity larger than the exchange heat quantity of the second vacuum hot water machine 8 calculated from the ratio of the heat exchange quantity of the machine 8.

第2暖房用熱交換器7の熱交換能力は、給水負荷が暖房負荷のみとなり、後述する設定温度T1による燃料流量制御を行う場合に、第1真空式温水機5の熱媒温度による制御出力MV1と第2真空式温水機8の熱媒温度による制御出力MV2がほぼ同じとなり、燃料流量の制御が不安定とならないようにするため、第1真空式温水機5と第2真空式温水機8の熱交換量の比率から算出される第2真空式温水機8に交換熱量と同等の熱交換能力を備えるものを選定することが好ましい。   The heat exchange capacity of the second heating heat exchanger 7 is a control output based on the heat medium temperature of the first vacuum hot water heater 5 when the water supply load is only the heating load and the fuel flow rate control is performed at a set temperature T1 described later. The control output MV2 according to the heat medium temperature of the MV1 and the second vacuum water heater 8 is substantially the same, so that the control of the fuel flow rate does not become unstable, the first vacuum water heater 5 and the second vacuum water heater It is preferable to select the second vacuum water heater 8 calculated from the ratio of the heat exchange amount of 8 that has a heat exchange capability equivalent to the exchange heat amount.

第2真空式温水機8は、バーナーを備えていないため、第2給湯用熱交換器6及び第2暖房用熱交換器7への給水Wの流量を制御することにより、熱媒H2の温度を制御することができる。   Since the second vacuum water heater 8 does not include a burner, the temperature of the heat medium H2 is controlled by controlling the flow rate of the water supply W to the second hot water supply heat exchanger 6 and the second heating heat exchanger 7. Can be controlled.

第2給湯用熱交換器6及び第2暖房用熱交換器7への給水Wの流量を制御するため、第2給湯用熱交換器6をバイパスする第2給湯用バイパス管17と、第2給湯用バイパス管17を流れるバイパス流量を制御する第2給湯用流量制御弁18と、第2暖房用熱交換器7をバイパスする暖房用バイパス管19と、暖房用バイパス管19を流れるバイパス流量を制御する暖房用流量制御弁20とが設けられている。   In order to control the flow rate of the feed water W to the second hot water supply heat exchanger 6 and the second heating heat exchanger 7, a second hot water supply bypass pipe 17 that bypasses the second hot water supply heat exchanger 6; The second hot water flow control valve 18 for controlling the bypass flow through the hot water bypass pipe 17, the heating bypass pipe 19 that bypasses the second heating heat exchanger 7, and the bypass flow through the heating bypass pipe 19 A heating flow control valve 20 to be controlled is provided.

第2給湯用流量制御弁18は、図示例では比例動作の三方弁として、バイパス流量を調節すると同時に温水入口側配管6aの流量を調節することができる。暖房用流量制弁20は、図示例では、暖房用バイパス管19と熱交換側の温水入口側配管7aとを切り換え可能な切換弁(ON−OFF弁)が用いられている。なお、バイパス管17、19のバイパス流量を調節することにより第2給湯用熱交換器6及び第2暖房用熱交換器7の給水量を調節できるものであれば、接続位置や弁の種類、数等は限定されない。   In the illustrated example, the second hot water flow rate control valve 18 is a proportional three-way valve that can adjust the flow rate of the hot water inlet side pipe 6a at the same time as adjusting the bypass flow rate. In the illustrated example, the heating flow control valve 20 is a switching valve (ON-OFF valve) that can switch between the heating bypass pipe 19 and the hot water inlet side pipe 7a on the heat exchange side. In addition, as long as the water supply amount of the second hot water supply heat exchanger 6 and the second heating heat exchanger 7 can be adjusted by adjusting the bypass flow rate of the bypass pipes 17 and 19, the connection position, the type of valve, The number is not limited.

第1暖房用熱交換器4は、第1給湯用熱交換器3と同等の熱交換能力のものが使用され得る。また、第2暖房用熱交換器7は、第2給湯用熱交換器6と同等の熱交換能力のものが使用され得る。   The first heating heat exchanger 4 may have a heat exchange capacity equivalent to that of the first hot water supply heat exchanger 3. The second heating heat exchanger 7 may have a heat exchange capacity equivalent to that of the second hot water supply heat exchanger 6.

上記構成を備える真空式温水機1は、給湯回路の暖房回路の2回路であっても、排ガス温度を低減し、高熱効率を得ることができる。   The vacuum water heater 1 having the above configuration can reduce the exhaust gas temperature and obtain high thermal efficiency even if it is two circuits of the heating circuit of the hot water supply circuit.

また、第1真空式温水機5と第2真空式温水機8の何れか一方が破損した場合に、破損した方のみを交換することで修復可能なため、修復費用を低減することができる。   Further, when either one of the first vacuum hot water machine 5 and the second vacuum hot water machine 8 is damaged, it can be repaired by replacing only the damaged one, so that the repair cost can be reduced.

また、第2真空式温水機8の主要材料を状況に応じて変更することが可能であり、その材料の耐熱温度により、第1真空式温水機5の出口排ガス温度を決定することができる。例えば、熱吸収のよいアルミ材を用いた缶体とすれば小型化が可能であり、腐食性凝縮水が発生する場合はステンレス鋼を用いた缶体とすれば長寿命化を図ることができる。   Moreover, it is possible to change the main material of the 2nd vacuum hot water machine 8 according to a condition, and the exit waste gas temperature of the 1st vacuum hot water machine 5 can be determined with the heat-resistant temperature of the material. For example, if a can body using an aluminum material with good heat absorption can be downsized, and if corrosive condensed water is generated, a can body using stainless steel can extend the life. .

また、真空式温水機1の起動時には、第2給湯用熱交換器6への給湯温水の供給を第2給湯用流量制御弁18により遮断して、給湯用バイパス管17から第1給湯用熱交換器3へ給湯温水を全て流すことにより、素早い立ち上がりと、第2真空式温水機8の起動時に排ガスGの凝縮水発生を抑制することができる。   In addition, when the vacuum hot water machine 1 is started, the supply of hot water to the second hot water supply heat exchanger 6 is shut off by the second hot water flow control valve 18, and the first hot water supply heat is supplied from the hot water bypass pipe 17. By flowing all the hot water supply hot water to the exchanger 3, it is possible to suppress the quick start-up and the generation of condensed water of the exhaust gas G when the second vacuum hot water machine 8 is started.

次に、上記構成の真空式温水機1の制御について、図1を参照して説明する。なお、図1において点線は制御系統を示す。   Next, the control of the vacuum water heater 1 having the above configuration will be described with reference to FIG. In FIG. 1, a dotted line indicates a control system.

図示例において、第1真空式温水機5及び第2真空式温水機8の熱媒は、制御装置21によって温度制御される。   In the illustrated example, the temperature of the heating medium of the first vacuum hot water machine 5 and the second vacuum hot water machine 8 is controlled by the control device 21.

第1真空式温水機5では、サーミスタセンサ等の温度検出器TT1によって熱媒H1の温度が検出され、温度検出器TT1の検出温度が第1設定温度T1になるように演算器22で演算した燃料流量制御用の制御出力MV1を燃料流量調整機構23に送り、バーナー2へ供給する燃料Fの流量を調整することにより、第1真空式温水機5の熱媒H1が第1設定温度T1に調節される。   In the first vacuum water heater 5, the temperature of the heat medium H1 is detected by a temperature detector TT1 such as a thermistor sensor, and the calculator 22 calculates the detected temperature of the temperature detector TT1 to be the first set temperature T1. By sending a control output MV1 for controlling the fuel flow rate to the fuel flow rate adjusting mechanism 23 and adjusting the flow rate of the fuel F supplied to the burner 2, the heating medium H1 of the first vacuum hot water machine 5 reaches the first set temperature T1. Adjusted.

第2暖房用流量制御弁20を構成している切換弁は、ノーマル状態では、バイパス側に切り換えられていて第2暖房用熱交換器7へは給水せずに第1暖房用熱交換器4にのみ給水する構造の切換弁が用いられている。第2暖房用流量制御弁は、オンオフ切換弁に限らず、暖房用バイパス管19への給水流量を制御することにより第2暖房用熱交換器7への給水流量も制御できるものであればよく、バイパス側がノーマルオープンの比例動作式三方弁、その他の制御弁を用いることもできる。   In the normal state, the switching valve constituting the second heating flow control valve 20 is switched to the bypass side, and does not supply water to the second heating heat exchanger 7, and the first heating heat exchanger 4. A switching valve having a structure for supplying water only to the tank is used. The second heating flow rate control valve is not limited to the on / off switching valve, but may be any one that can also control the feed water flow rate to the second heating heat exchanger 7 by controlling the feed water flow rate to the heating bypass pipe 19. A proportionally operated three-way valve whose bypass side is normally open, and other control valves can also be used.

そして、第2真空式温水機8では、サーミスタセンサ等の温度検出器TT2によって熱媒H2の温度が検出され、その検出温度が第3設定温度T3になるように演算器24で演算したバイパス流量制御用の制御出力MV3が第2給湯用流量制御弁18に送られ、第2給湯用バイパス管17を流れるバイパス流量を調整することで第2給湯用熱交換器6への給水流量を加減することにより、第2真空式温水機8の熱媒H2が第3設定温度T3に温度調節される。   In the second vacuum hot water machine 8, the temperature of the heat medium H2 is detected by the temperature detector TT2 such as a thermistor sensor, and the bypass flow rate calculated by the calculator 24 so that the detected temperature becomes the third set temperature T3. The control output MV3 for control is sent to the second hot water supply flow rate control valve 18, and the flow rate of the water supply to the second hot water supply heat exchanger 6 is adjusted by adjusting the bypass flow rate flowing through the second hot water supply bypass pipe 17. Thus, the temperature of the heat medium H2 of the second vacuum hot water machine 8 is adjusted to the third set temperature T3.

第2暖房用流量制御弁20がノーマル状態でバイパス側に開いているため、通常の運転状態では、第2真空式温水機8の第2暖房用熱交換器7へは給水されず、第2真空式温水機8の熱媒温度は、もっぱら第2給湯用流量制御弁18によって制御される。   Since the second heating flow control valve 20 is open to the bypass side in the normal state, the water is not supplied to the second heating heat exchanger 7 of the second vacuum hot water heater 8 in the normal operation state, and the second The temperature of the heat medium of the vacuum hot water machine 8 is controlled exclusively by the second hot water supply flow control valve 18.

暖房温水と給湯温水の負荷が同時にあっても、第1真空式温水機5では暖房温水との熱交換を主として行い、第2真空式温水機8では給湯温水との熱交換を行うことでき、第2真空式温水機8の熱媒温度を第3設定温度T3に保つことができ、排ガス温度の低減が可能となる。   Even if heating hot water and hot water supply hot water are simultaneously loaded, the first vacuum water heater 5 can mainly perform heat exchange with heating hot water, and the second vacuum water heater 8 can perform heat exchange with hot water supply hot water. The heat medium temperature of the second vacuum hot water machine 8 can be maintained at the third set temperature T3, and the exhaust gas temperature can be reduced.

暖房温水の負荷がある状態で給湯温水が遮断されると、第2真空式温水機8は第3設定温度T3を保つことができなくなり、熱媒H2の温度が上昇し始めるが、制御装置21には、第2設定温度T2(T1>T2>T3)が設定されており、熱媒H2の検出温度を比較器25で比較し、熱媒H2の温度が第2設定温度T2以上のときに、比較器25からの指令により、第2暖房用流量制御弁20を構成する切換弁を第2暖房用熱交換器7の側へ切り換えて第2暖房用熱交換器7へ給水し、熱媒H2の温度を下げる。   When the hot water supply hot water is shut off with the heating hot water load, the second vacuum water heater 8 cannot maintain the third set temperature T3, and the temperature of the heat medium H2 starts to rise. Is set to a second set temperature T2 (T1> T2> T3), the detected temperature of the heat medium H2 is compared by the comparator 25, and the temperature of the heat medium H2 is equal to or higher than the second set temperature T2. In response to a command from the comparator 25, the switching valve constituting the second heating flow control valve 20 is switched to the second heating heat exchanger 7 side to supply water to the second heating heat exchanger 7. Reduce the temperature of H2.

第2暖房用流量制御弁20を構成する切換弁を第2暖房用熱交換器7の側へ切り換えても、熱媒H2の温度が第2設定温度T2から更に上昇する場合が想定される。そのため、制御装置21では、第2真空式温水機8の熱媒H2の温度が第1設定温度T1に達したときに、第2真空式温水機8の温度検出器TT2で検知された熱媒温度に基づいて熱媒H2の温度が第1設定温度T1を超えないように演算器26で演算されたバーナー2の燃料流量を制御するための第2バーナー用制御出力MV2を比較器27に出力し、第1真空式温水機5の温度検知器TT1で検知された熱媒温度が第1設定温度T1になるように演算器22で演算されたバーナー2の燃料流量を制御するための第1バーナー用制御出力MV1を比較器27に出力し、第2バーナー用制御信号MV2と第1バーナー用制御出力MV1とを比較し、いずれか小さいほうの制御出力(MV1またはMV2)を燃料流量調整機構23に送信し、バーナー2の燃料流量を制御し、バーナー2の火力を調整する。   Even when the switching valve constituting the second heating flow control valve 20 is switched to the second heating heat exchanger 7 side, it is assumed that the temperature of the heat medium H2 further rises from the second set temperature T2. Therefore, in the control device 21, when the temperature of the heat medium H2 of the second vacuum hot water machine 8 reaches the first set temperature T1, the heat medium detected by the temperature detector TT2 of the second vacuum hot water machine 8 Based on the temperature, a second burner control output MV2 for controlling the fuel flow rate of the burner 2 calculated by the calculator 26 so that the temperature of the heating medium H2 does not exceed the first set temperature T1 is output to the comparator 27. Then, a first flow rate control for controlling the fuel flow rate of the burner 2 calculated by the calculator 22 so that the temperature of the heat medium detected by the temperature detector TT1 of the first vacuum water heater 5 becomes the first set temperature T1. The burner control output MV1 is output to the comparator 27, the second burner control signal MV2 and the first burner control output MV1 are compared, and the smaller control output (MV1 or MV2) is the fuel flow rate adjustment mechanism. 23. And controlling fuel flow toner 2, to adjust the heating power of the burner 2.

上記のように、温水(給水)の負荷が暖房温水と給湯温水の両方ある場合は、暖房温水は第1真空式温水機5で熱交換を行い、給湯温水は主として第2真空式温水機8で熱交換を行わせ、温水の負荷が暖房温水のみの場合は第1真空式温水機5と第2真空式温水機8の両方で熱交換させることで、排ガスの保有熱を有効に温水へ熱交換することが可能となる。
また、給湯負荷が急減または遮断しても、第2真空式温水機8の熱媒温度の急激な温度上昇を緩和し、より安全に且つより速やかに給湯負荷に対して応答させることができる。
As described above, when the load of hot water (water supply) is both the heating hot water and the hot water supply hot water, the heating hot water exchanges heat with the first vacuum hot water heater 5, and the hot water supply hot water is mainly the second vacuum hot water heater 8. If the load of hot water is only heating hot water, heat exchange is performed by both the first vacuum hot water machine 5 and the second vacuum hot water machine 8 so that the retained heat of the exhaust gas is effectively converted into hot water. Heat exchange can be performed.
In addition, even if the hot water supply load is suddenly reduced or cut off, the rapid temperature increase of the heat medium temperature of the second vacuum hot water machine 8 can be alleviated, and a safer and more prompt response can be made to the hot water supply load.

次に、本発明に係る真空式温水機の第2実施形態について、図3を参照しつつ説明する。なお、上記第1実施形態と同様の同一または類似の構成部分については同符号を付した。   Next, a second embodiment of the vacuum hot water machine according to the present invention will be described with reference to FIG. In addition, the same code | symbol was attached | subjected about the same or similar component similar to the said 1st Embodiment.

第2実施形態は、上記第1実施形態の真空式温水機の第1給湯用熱交換器3の温水入口側配管3aと温水出口側配管3bとを接続し、第1給湯用熱交換器3をバイパスする第1給湯用バイパス管28を配管するとともに、第1給湯用バイパス管28の流量を制御する第1給湯用流量制御弁29と、第1給湯用熱交換器3の出口温度を検出する温度検知器30と、温度検知器30の温度検知信号を受けて、給湯上限設定温度T4以上にならないように演算器31で演算した制御出力MV4を第1給湯用流量制御弁29に送信するように構成されている。その他の構成は、上記第1実施形態と同様である。図示例の第1給湯用流量制御弁29は、比例制御の三方弁が用いられているが、他の形式の制御弁を用いることもできる。   In the second embodiment, the hot water inlet side pipe 3a and the hot water outlet side pipe 3b of the first hot water supply heat exchanger 3 of the vacuum hot water machine of the first embodiment are connected, and the first hot water supply heat exchanger 3 is connected. The first hot water supply bypass pipe 28 that bypasses the first hot water supply bypass pipe 28 and the outlet temperature of the first hot water supply heat exchanger 3 are detected. The temperature detector 30 and the temperature detection signal of the temperature detector 30 are received, and the control output MV4 calculated by the calculator 31 so as not to exceed the hot water supply upper limit set temperature T4 is transmitted to the first hot water flow control valve 29. It is configured as follows. Other configurations are the same as those in the first embodiment. As the first hot water supply flow control valve 29 in the illustrated example, a proportional control three-way valve is used, but other types of control valves may be used.

温水の負荷が暖房温水と給湯温水の両方ある場合において給湯温水の負荷が極端に少ない場合は、第1給湯用熱交換器3の出口の給湯温水温度が必要以上に上昇する場合があるため、そのような場合には、第2実施形態の上記構成により、第1給湯用熱交換器3の出口温水温度が給湯上限設定温度T4に達すると、第1給湯用流量制御弁29を構成する比例制御式三方弁によって第1給湯用バイパス管28を流れるバイパス流量をコントロールし、第1給湯用熱交換器3の出口温水温度が給湯上限設定温度T4を超えないように制御して、給湯上限設定温度T4を保ち、給湯温度が給湯上限設定温度より上昇することを防止する。   When the load of hot water is both heating hot water and hot water supply hot water, when the load of hot water supply hot water is extremely small, the hot water supply hot water temperature at the outlet of the first hot water supply heat exchanger 3 may rise more than necessary. In such a case, according to the above-described configuration of the second embodiment, when the outlet hot water temperature of the first hot water supply heat exchanger 3 reaches the hot water supply upper limit temperature T4, the proportionality constituting the first hot water supply flow control valve 29 is configured. The bypass flow rate flowing through the first hot water supply bypass pipe 28 is controlled by a control type three-way valve, and the hot water temperature at the outlet of the first hot water supply heat exchanger 3 is controlled so as not to exceed the hot water supply upper limit set temperature T4. The temperature T4 is maintained, and the hot water supply temperature is prevented from rising above the hot water supply upper limit set temperature.

第2実施形態の制御を行うことにより、第1真空式温水機5は暖房温水との熱交換、第2真空式温水機8は主として給湯温水との熱交換という役割分担を上記第1実施形態より更に明確にし、第1真空式温水機5での給湯温水との無駄な熱交換を削減することで、更なる高効率化が図られ得る。   By performing the control of the second embodiment, the first vacuum hot water machine 5 shares the role of heat exchange with the heating hot water, and the second vacuum hot water machine 8 mainly shares the role of heat exchange with the hot water supply hot water. By further clarifying and reducing wasteful heat exchange with the hot water supply hot water in the first vacuum hot water heater 5, further higher efficiency can be achieved.

1 真空式温水機
2 バーナー
3 第1給湯用熱交換器
4 第1暖房用熱交換器
5 第1真空式温水機
6 第2給湯用熱交換器
7 第2暖房用熱交換器
8 第2真空式温水機
17 第2給湯用バイパス管
18 第2給湯用流量制御弁
19 暖房用バイパス管
20 暖房用流量制御弁
21 制御装置
23 燃料流量調整機構
28 第1給湯用バイパス管
29 第1給湯用流量制御弁

DESCRIPTION OF SYMBOLS 1 Vacuum hot water machine 2 Burner 3 1st hot water supply heat exchanger 4 1st heating heat exchanger 5 1st vacuum hot water machine 6 2nd hot water supply heat exchanger 7 2nd heating heat exchanger 8 2nd vacuum Type hot water heater 17 Second hot water supply bypass pipe 18 Second hot water supply flow control valve 19 Heating bypass pipe 20 Heating flow control valve 21 Controller 23 Fuel flow rate adjusting mechanism 28 First hot water supply bypass pipe 29 First hot water supply flow rate Control valve

Claims (3)

熱媒加熱用バーナー、第1給湯用熱交換器、及び第1暖房用熱交換器を備える第1真空式温水機と、
第2給湯用熱交換器及び第2暖房用熱交換器を備えるとともに前記第1真空式温水機の排ガスによって熱媒を加熱するように構成された第2真空式温水機と、を備え、
前記第1給湯用熱交換器は、前記第2給湯用熱交換器から給水されるように、前記第2給湯用熱交換器に直列接続され、
前記第1暖房用熱交換器は、前記第2暖房用熱交換器から給水されるように、前記第2暖房用熱交換器に直列接続され、更に、
前記第2給湯用熱交換器をバイパスする第2給湯用バイパス管と、
該第2給湯用バイパス管を流れるバイパス流量を制御する第2給湯用流量制御弁と、
前記第2暖房用熱交換器をバイパスする暖房用バイパス管と、
該暖房用バイパス管を流れるバイパス流量を制御する暖房用流量制御弁と、
前記第2真空式温水機の熱媒温度が前記第1真空式温水機の熱媒温度より低い第3設定温度となるように前記第2給湯用流量制御弁を制御する制御系統と、
給湯用温水負荷が減少または遮断し前記第2真空式温水機の熱媒温度が前記第3設定温度より高い第2設定温度に達したときに前記暖房用流量制御弁により前記暖房用バイパス管への流量を減少または停止させて前記第2暖房用熱交換器への給水を増加させる制御系統と、
前記第2真空式温水機の熱媒温度が前記第2設定温度より上昇して第1設定温度に達したときに、該第2真空式温水機の熱媒温度に基づいて該熱媒温度が前記第1設定温度を超えないように前記バーナーの燃料流量を制御するための第2バーナー用制御出力を、前記第1真空式温水機の熱媒温度が前記第1設定温度になるように前記バーナーの燃料流量を制御するための第1バーナー用制御出力と比較し、いずれか小さいほうの制御出力により前記バーナーの燃料流量を制御する制御系統と、
を備えていることを特徴とする真空式温水機。
A first vacuum water heater comprising a heat medium heating burner, a first hot water supply heat exchanger, and a first heating heat exchanger;
A second hot water heater provided with a second hot water supply heat exchanger and a second heating heat exchanger, and configured to heat the heat medium with the exhaust gas of the first vacuum hot water machine,
The first hot water supply heat exchanger is connected in series to the second hot water supply heat exchanger so that water is supplied from the second hot water supply heat exchanger,
The first heating heat exchanger is connected in series to the second heating heat exchanger so that water is supplied from the second heating heat exchanger ,
A second hot water supply bypass pipe for bypassing the second hot water supply heat exchanger;
A second hot water supply flow rate control valve for controlling a bypass flow rate flowing through the second hot water supply bypass pipe;
A heating bypass pipe that bypasses the second heating heat exchanger;
A heating flow control valve for controlling a bypass flow rate flowing through the heating bypass pipe;
A control system for controlling the second hot water supply flow rate control valve so that the heat medium temperature of the second vacuum water heater becomes a third set temperature lower than the heat medium temperature of the first vacuum water heater;
When the hot water load for hot water supply is reduced or shuts down and the heat medium temperature of the second vacuum hot water machine reaches a second set temperature higher than the third set temperature, the heating flow control valve causes the heating bypass pipe to enter the heating bypass pipe. A control system that decreases or stops the flow rate of the second heating unit to increase the amount of water supplied to the second heating heat exchanger;
When the heat medium temperature of the second vacuum water heater rises above the second set temperature and reaches the first set temperature, the heat medium temperature is set based on the heat medium temperature of the second vacuum water heater. The second burner control output for controlling the fuel flow rate of the burner so as not to exceed the first set temperature is set such that the heat medium temperature of the first vacuum hot water machine becomes the first set temperature. A control system for controlling the fuel flow rate of the burner by the smaller control output compared to the control output for the first burner for controlling the fuel flow rate of the burner;
Vacuum hot press, characterized in that it comprises a.
前記第1給湯用熱交換器をバイパスする第1給湯用バイパス管と、該第1給湯用バイパス管の流量を制御する第1給湯用流量制御弁とを更に備えることを特徴とする請求項に記載の真空式温水機。 Claim 1, wherein the first hot water bypass pipe that bypasses the heat exchanger for the first hot water supply, further comprising a first hot-water flow control valve for controlling the flow rate of the first hot water supply bypass pipe A vacuum water heater as described in 1. 給湯温水負荷の減少により前記第1給湯用熱交換器の出口の給湯温水温度が上昇して給湯上限設定温度に達すると、前記第1給湯用流量制御弁により前記第1給湯用バイパス管の流量を制御することにより、給湯温水温度を前記給湯上限設定温度に調節する制御系統を含むことを特徴とする請求項に記載の真空式温水機。 When the hot water supply temperature of hot water at the outlet of the heat exchanger for the first hot water supply by a reduction in the supplying hot water load reaches elevated hot water limit set temperature of the first hot water bypass pipe by the first hot-water flow control valve The vacuum hot water machine according to claim 2 , further comprising a control system for adjusting a hot water supply hot water temperature to the hot water supply upper limit set temperature by controlling a flow rate.
JP2014079228A 2014-04-08 2014-04-08 Vacuum water heater Active JP6355394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014079228A JP6355394B2 (en) 2014-04-08 2014-04-08 Vacuum water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014079228A JP6355394B2 (en) 2014-04-08 2014-04-08 Vacuum water heater

Publications (2)

Publication Number Publication Date
JP2015200455A JP2015200455A (en) 2015-11-12
JP6355394B2 true JP6355394B2 (en) 2018-07-11

Family

ID=54551866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014079228A Active JP6355394B2 (en) 2014-04-08 2014-04-08 Vacuum water heater

Country Status (1)

Country Link
JP (1) JP6355394B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE756304A (en) * 1969-10-29 1971-03-01 Vaillant Joh Kg WATER HEATER OPERATING ACCORDING TO THE PRINCIPLE OF VACUUM EVAPORATION. (
JPS6469898A (en) * 1987-09-11 1989-03-15 Tokyo Gas Co Ltd Lng gasification apparatus
JP2005226957A (en) * 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd Heating device
JP5475425B2 (en) * 2009-12-16 2014-04-16 昭和鉄工株式会社 Hot water generator
JP5406001B2 (en) * 2009-12-16 2014-02-05 昭和鉄工株式会社 Latent heat recovery unit
JP5604267B2 (en) * 2010-11-08 2014-10-08 株式会社日本サーモエナー Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same
JP5710453B2 (en) * 2011-11-24 2015-04-30 株式会社日本サーモエナー Heat recovery apparatus for exhaust gas from vacuum hot water machine and heat recovery method using the same

Also Published As

Publication number Publication date
JP2015200455A (en) 2015-11-12

Similar Documents

Publication Publication Date Title
JP5630084B2 (en) Boiler water supply system
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
JP5034367B2 (en) Heat pump water heater
JP6359321B2 (en) Vacuum water heater
KR20160039179A (en) Energy storage system
TW201604381A (en) Oxy boiler power plant oxygen feed system heat integration
JP6355394B2 (en) Vacuum water heater
JP6277683B2 (en) Boiler system
JP6355377B2 (en) Vacuum water heater
JP2006250367A (en) Heat pump water heater
JP4893218B2 (en) Heat pump system for hot water supply
JP6209940B2 (en) Boiler system
JP5560515B2 (en) Steam production system and startup control method for steam production system
JP2005140439A (en) Heat pump water heater
JP4876114B2 (en) Steam supply method and system for steamer
JP2014112018A (en) Power generation unit, and method of recovering flash tank drain in starting power generation unit
JP2005133973A (en) Heat pump water heater
JP5653861B2 (en) Water heater
JP2009079845A (en) Feed water heater and power generation plant
EP3473820A1 (en) Method and installation of cogenertion in heat plants, especially those equipped with water-tube boilers
JP5475425B2 (en) Hot water generator
JP4811185B2 (en) Heat pump water heater
JP7390186B2 (en) Vacuum water heater
US20230175685A1 (en) Steam boiler system and method of circulating water and steam in a steam boiler system
JP7024380B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180612

R150 Certificate of patent or registration of utility model

Ref document number: 6355394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250