JP5467669B2 - PERLITE AND MANUFACTURING METHOD THEREOF - Google Patents

PERLITE AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP5467669B2
JP5467669B2 JP2010072857A JP2010072857A JP5467669B2 JP 5467669 B2 JP5467669 B2 JP 5467669B2 JP 2010072857 A JP2010072857 A JP 2010072857A JP 2010072857 A JP2010072857 A JP 2010072857A JP 5467669 B2 JP5467669 B2 JP 5467669B2
Authority
JP
Japan
Prior art keywords
bulk density
pearlite
particles
foamed
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010072857A
Other languages
Japanese (ja)
Other versions
JP2011201751A (en
Inventor
雅朗 野口
秀樹 和知
庄次郎 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2010072857A priority Critical patent/JP5467669B2/en
Publication of JP2011201751A publication Critical patent/JP2011201751A/en
Application granted granted Critical
Publication of JP5467669B2 publication Critical patent/JP5467669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高耐久性を有するパーライトとその製造方法に関し、より詳しくは、製造後の輸送中や取扱いの際に破壊され難く、優れた耐久性を有するパーライトおよびその製造方法を提供する。 The present invention relates to a highly durable pearlite and a method for producing the same, and more particularly, to provide a pearlite having excellent durability that is hardly destroyed during transportation and handling after production, and a method for producing the pearlite.

パーライトは真珠岩や黒曜石等などの原料粒子を加熱して発泡させた中空粒子であり、軽量化材料として広く用いられている。例えば、モルタル、瓦、外壁材にパーライトを混合して軽量化する材料として用いられている。 Perlite is a hollow particle obtained by heating and foaming raw material particles such as pearlite and obsidian, and is widely used as a material for weight reduction. For example, it is used as a material for reducing weight by mixing pearlite into mortar, roof tiles, and outer wall materials.

パーライトは、原料粒子に対して直径比で通常1.5倍〜5倍程度に発泡しており、表面の殻の厚さが数ミクロンであり非常に薄いため破損しやすく、パーライトを製造した後に、保管、輸送、最終製品製造などの取扱い中に部分的に壊れ、製造中の嵩密度が次第に大きくなる。 Perlite is foamed in a diameter ratio of about 1.5 to 5 times with respect to the raw material particles, and the surface shell is a few microns, so it is very thin and easily damaged. It is partially broken during handling such as storage, transportation and final product production, and the bulk density during production gradually increases.

このようなパーライトの破壊を防止する対策として、低温焼成して発泡倍率を小さくすることによってパーライトの強度を高めることが考えられるが、低温焼成すると未発泡粒子が発生し、発泡したパーライトと未発泡粒子が混在することになる。このような未発泡粒子が混在すると、未発泡粒子は重いので周囲の発泡粒子に衝撃を与え、輸送中や製品の取扱いの際に、発泡粒子が破壊される割合が多くなると云う問題がある。このような未発泡粒子を少なくするには、高温で焼成して原料粒子全体を十分に加熱すればよいが、高温焼成すると発泡過多となり、外殻の厚さが薄くなるため発泡体の強度が低下する。 As a measure to prevent such destruction of pearlite, it is conceivable to increase the strength of pearlite by firing at low temperature and reducing the expansion ratio. However, when fired at low temperature, unfoamed particles are generated. Particles will be mixed. When such unexpanded particles are mixed, the unexpanded particles are heavy, so that there is a problem that impact is given to the surrounding expanded particles, and the ratio of the expanded particles is increased during transportation and handling of the product. In order to reduce such unfoamed particles, the entire raw material particles may be heated sufficiently by firing at a high temperature. However, when fired at a high temperature, excessive foaming occurs, and the thickness of the outer shell becomes thin. descend.

パーライトの強度を高める他の方法として、原料粉末を余熱した後に加熱発泡させる方法が知られている。具体的には、真珠岩を原料とするパーライトは、真珠岩に含まれる水分が発泡剤として作用し、加熱によって水分が気化し、融点以上の温度になると気化した水蒸気によって発泡する。このとき水分量が多すぎると発泡過多になり、殻の厚さが薄く強度が弱くなる。そこで、あらかじめ余熱して真珠岩中の水分量をコントロールした後に発泡温度に加熱することによって過剰な発泡を防止する方法が知られている(特許文献1、2)。 As another method for increasing the strength of pearlite, there is known a method of heating and foaming after preheating the raw material powder. Specifically, in pearlite made from nacre, the moisture contained in nacre acts as a foaming agent, the moisture evaporates by heating, and foams by the vaporized vapor when the temperature reaches the melting point or higher. If the amount of water is too large at this time, excessive foaming occurs, and the shell becomes thin and the strength is weakened. Therefore, a method is known in which excessive foaming is prevented by heating in advance to the foaming temperature after preheating to control the amount of water in the pearlite (Patent Documents 1 and 2).

また、原料粉末を予備加熱して含有水分量を調整した後に、この原料粉末を高融点微粉末に混合して発泡させた後に、生成した発泡体(パーライト)を高融点微粉末から分離する製造方法も知られている(特許文献3)。この製造方法は予備加熱した原料粉末を高融点微粉末に混合して発泡させることによって均一に発泡させ表面の凹凸が少ない球状のパーライトを製造する方法である。 In addition, after the raw material powder is preheated to adjust the moisture content, this raw material powder is mixed with the high melting point fine powder and foamed, and then the resulting foam (perlite) is separated from the high melting point fine powder. A method is also known (Patent Document 3). This production method is a method of producing spherical pearlite with less surface irregularities by uniformly foaming a preheated raw material powder into a high melting point fine powder and foaming.

特開平7−277851号公報JP-A-7-277851 特開2007−320805号公報JP 2007-320805 A 特許第3528390号公報Japanese Patent No. 3528390

原料を予備加熱するには、発泡用の加熱炉のほかに予備加熱炉が必要であり、製造設備が大掛かりになると云う問題がある。また、予備加熱した原料粉末を高融点微粉末に混合して加熱発泡させる方法では、高融点微粉末の供給設備や分離設備が必要になり、工程も多くなるので手間がかかり製造コストも嵩む問題がある。さらに、何れの製造方法においても未発泡体の混入は避けられない。未発泡粒子が混在すると、未発泡粒子は発泡粒子よりも重いので、輸送中や製品の取扱いの際に、振動などの外力を受けると未発泡粒子が周囲の発泡粒子に衝撃を与えて破壊する割合が多くなると云う問題がある。 In order to preheat the raw material, a preheating furnace is required in addition to the foaming heating furnace, and there is a problem that the manufacturing equipment becomes large. Also, the method of mixing preheated raw material powder with high melting point fine powder and heating and foaming requires supply equipment and separation equipment for high melting point fine powder, which increases the number of processes and increases the manufacturing cost. There is. Furthermore, in any production method, the unfoamed material cannot be avoided. When unexpanded particles are mixed, the unexpanded particles are heavier than the expanded particles, so when subjected to external forces such as vibration during transportation or product handling, the unexpanded particles will impact the surrounding expanded particles and break them. There is a problem that the ratio increases.

本発明は、このような問題を解決したものであり、製造後の輸送中や取扱いの際に破損し難い、優れた耐久性を有するパーライトと、その製造方法を提供する。 The present invention solves such a problem, and provides a pearlite having excellent durability that is not easily damaged during transportation and handling after production, and a method for producing the same.

本発明は、以下の構成を有するパーライトの製造方法、および該方法によって製造されたパーライトに関する。
〔1〕鉱物質原料を加熱し発泡させてパーライトを製造する方法であって、加熱発泡工程において発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させた後に、嵩密度が目標嵩密度になるように発泡粒子を粉砕することを特徴とするパーライトの製造方法。
〔2〕加熱発泡工程において、発泡粒子の嵩密度が目標嵩密度0.18g/cm 3 〜0.35g/cm 3 に対して嵩密度0.15g/cm 3 以下の割合になるように原料を加熱発泡させる上記[1]に記載するパーライトの製造方法。
〔3〕加熱発泡工程において、発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させた後に、発泡粒子の嵩密度が目標嵩密度になり、かつ浮水率が70%以上になるように発泡粒子を粉砕する請求項1または請求項2に記載するパーライトの製造方法。
〔4〕発泡粒子を粉砕した後に、粉砕物の一部または全部を除去する上記[1]〜上記[3]に記載するパーライトの製造方法。
〔5〕真珠岩粉末からなる原料を、嵩密度0.15g/cm3以下に加熱し発泡させた後に、嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕する上記[1]〜上記[4]の何れかに記載するパーライトの製造方法。
〔6〕真珠岩粉末からなる原料を、嵩密度0.15g/cm3以下に加熱し発泡させた後に、嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕し、さらに見掛比重1.0g/cm3以上の一部または全部を除去する上記[4]に記載するパーライトの製造方法。
〔7〕上記[4]または上記[6]に記載する方法で製造され、篩目(孔径)0.3mmの篩で篩分けした残留分と通過分の嵩密度の差が0.2g/cm3以下であることを特徴とするパーライト。
The present invention relates to a method for producing pearlite having the following configuration, and pearlite produced by the method.
[1] A method for producing pearlite by heating and foaming a mineral raw material, and after the raw material is heated and foamed so that the bulk density of the foamed particles is smaller than the target bulk density in the heat foaming step, the bulk density is A method for producing pearlite, comprising crushing expanded particles so as to achieve a target bulk density.
[2] In heating and foaming step, the raw material as the bulk density of the expanded beads is the following proportions bulk density 0.15 g / cm 3 with respect to the target bulk density of 0.18g / cm 3 ~0.35g / cm 3 The method for producing pearlite according to [1] above, wherein the foam is heated and foamed.
[3] In the heating and foaming step, after the raw material is heated and foamed so that the bulk density of the foamed particles is smaller than the target bulk density, the bulk density of the foamed particles becomes the target bulk density and the floating rate is 70% or more. The method for producing pearlite according to claim 1 or 2, wherein the expanded particles are pulverized so as to be.
[4] The method for producing pearlite according to the above [1] to [3], wherein after the foamed particles are pulverized, part or all of the pulverized product is removed.
[5] The raw material consists of perlite powder, after heated to be foamed in the following bulk density 0.15 g / cm 3, above pulverized so that bulk density 0.18g / cm 3 ~0.35g / cm 3 [1] to the method for producing pearlite according to any one of [4] above.
[6] The raw material consists of perlite powder, after heated to be foamed in the following bulk density 0.15 g / cm 3, was ground so that the bulk density 0.18g / cm 3 ~0.35g / cm 3 , The method for producing pearlite according to the above [4], wherein a part or all of the apparent specific gravity of 1.0 g / cm 3 or more is further removed.
[7] The difference between the bulk density of the residue and the residue produced by the method described in [4] or [6] above and sieved with a sieve having a sieve mesh (pore diameter) of 0.3 mm is 0.2 g / cm Perlite characterized by being 3 or less.

本発明の製造方法によれば、加熱温度を高くして未発泡粒子の発生を防止しているので、未発泡粒子によって発泡粒子が破壊されることがない。また、高温加熱によって生じた嵩密度が小さ過ぎて破壊されやすい発泡粒子は予め粉砕されるので、このような発泡粒子の破壊による嵩密度の変化も防止される。さらに、予め粉砕することによって生じた破砕片は軽量微細であるので周囲の発泡粒子に衝撃を与えてこれを破壊することがない。従って、製造後の輸送中や取扱いの際に破損し難く、製造後に嵩密度の大幅な変化を生じない優れた耐久性を有するパーライトを得ることができる。 According to the manufacturing method of the present invention, since the heating temperature is increased to prevent the generation of unexpanded particles, the expanded particles are not destroyed by the unexpanded particles. In addition, since the foamed particles which are generated by high-temperature heating and are too small to be destroyed are pulverized in advance, the change in the bulk density due to the destruction of the foamed particles is prevented. Furthermore, since the crushed pieces produced by pulverization in advance are lightweight and fine, they do not damage the foamed particles by impacting the surrounding foam particles. Therefore, it is possible to obtain a pearlite having excellent durability that is not easily damaged during transportation or handling after production and does not cause a significant change in bulk density after production.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の製造方法は、鉱物質原料を加熱し発泡させてパーライトを製造する方法であって、加熱発泡工程において発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させた後に、嵩密度が目標嵩密度になるように発泡粒子を粉砕することを特徴とするパーライトの製造方法である。
Hereinafter, the present invention will be specifically described based on embodiments.
The production method of the present invention is a method for producing pearlite by heating and foaming a mineral material, and after heating and foaming the raw material so that the bulk density of the expanded particles is smaller than the target bulk density in the heating and foaming step. The method for producing pearlite is characterized in that foamed particles are pulverized so that a bulk density becomes a target bulk density.

パーライトを製造する鉱物質原料は、加熱して発泡する岩石質粉末などからなる原料であり、具体的には、内部に水を有する真珠岩、松脂岩、黒曜石、シラス等が用いられる。その他、シリカガラス原料粉末にSiCなどの発泡剤を添加して造粒したものや、内部に未燃カーボンが含有しているフライアッシュ等が用いられる。 The mineral material for producing pearlite is a raw material composed of a rocky powder that is foamed by heating. Specifically, pearlite, pine stone, obsidian, shirasu, and the like having water inside are used. In addition, granulated by adding a foaming agent such as SiC to silica glass raw material powder or fly ash containing unburned carbon inside is used.

原料を加熱する手段(加熱炉等)は限定されない。通常のロータリーキルンやトンネルキルン等のキルン、気流焼成炉、流動層焼成炉などを用いることができる。また、加熱炉等に供給する手段や方法、排出する手段や方法も限定されない。 The means (heating furnace etc.) for heating the raw material is not limited. A kiln such as a normal rotary kiln or tunnel kiln, an airflow firing furnace, a fluidized bed firing furnace, or the like can be used. Further, the means and method for supplying to the heating furnace and the like and the means and method for discharging are not limited.

原料を加熱発泡させる工程において、発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させる。具体的には、例えば、発泡粒子の嵩密度が目標嵩密度0.18g/cm 3 〜0.35g/cm 3 に対して嵩密度0.15g/cm 3 以下の割合になるように原料を加熱発泡させる。原料の種類によって加熱温度に対する発泡程度は異なるので、原料の種類や加熱設備などの条件に応じて加熱温度を調整すればよい。
In the step of heating and foaming the raw material, the raw material is heated and foamed so that the bulk density of the expanded particles is smaller than the target bulk density. Specifically heating, for example, the raw material as the bulk density of the expanded beads is the following proportions bulk density 0.15 g / cm 3 with respect to the target bulk density of 0.18g / cm 3 ~0.35g / cm 3 Foam. Since the degree of foaming with respect to the heating temperature varies depending on the type of raw material, the heating temperature may be adjusted according to conditions such as the type of raw material and heating equipment.

発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させるには目標嵩密度より高い温度で加熱する。高温度で加熱することによって未発泡粒子を少なくすることができる。なお、未発泡粒子とは発泡しない粒子および発泡不十分な粒子を云う。 In order to heat and foam the raw material so that the bulk density of the expanded particles is smaller than the target bulk density, the raw material is heated at a temperature higher than the target bulk density. Unexpanded particles can be reduced by heating at a high temperature. The unexpanded particles refer to particles that do not expand and particles that are insufficiently expanded.

また目標嵩密度とは、本発明の製造方法においてパーライトが最終的に有する嵩密度の範囲であり、原料の種類や製造設備などの条件に応じて定められる。具体的には、真珠岩を原料とし、例えば、目標嵩密度を0.18g/cm3〜0.35g/cm3に定めた場合には、この目標嵩密度より小さくなるように原料を加熱発泡させる。
The target bulk density is a range of bulk density that pearlite finally has in the production method of the present invention, and is determined according to conditions such as the type of raw material and production equipment. Specifically, the perlite as a raw material, for example, in the case where the target bulk density was determined to 0.18g / cm 3 ~0.35g / cm 3, the heat-foamable raw material thus consisting of the target bulk density less Let

真珠岩の粉末(平均粒径0.2mm)を原料とし、これを800℃で加熱焼成したときに、嵩密度が約0.2g/cm3の発泡粒子になる場合、本発明の製造方法では、原料を加熱して、例えば、嵩密度0.15g/cm3以下、好ましくは、嵩密度0.10〜0.15g/cm3になるように発泡させる。 When the powder of pearlite (average particle size of 0.2 mm) is used as a raw material, and when this is heated and fired at 800 ° C., it becomes foamed particles having a bulk density of about 0.2 g / cm 3 , the production method of the present invention , the raw material is heated, for example, bulk density 0.15 g / cm 3 or less, preferably, foaming so that bulk density 0.10~0.15g / cm 3.

上記加熱発泡工程の後に、嵩密度が目標嵩密度になるように発泡粒子を粉砕する。例えば、真珠岩の粉末を嵩密度0.15g/cm3以下に加熱発泡し、目標嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕すればよい。実施例のB1〜B3はこのような試料に相当する。
After the heating and foaming step, the foamed particles are pulverized so that the bulk density becomes the target bulk density. For example, the heat-foamable powder perlite below bulk density 0.15 g / cm 3, may be pulverized so that the target bulk density 0.18g / cm 3 ~0.35g / cm 3 . B1 to B3 in the examples correspond to such samples.

さらに、好ましくは、粉砕後の浮水率が70%以上になるように粉砕する。パーライト全体の浮水率が70%より小さいと軽量性が低下するので好ましくない。粉砕したパーライトを水中に入れ、全体の体積に対する浮揚した粒子の体積割合を浮水率として測定することができる。なお、粉砕し過ぎると多くの独立空洞が破壊されてパーライトとしての軽量性を損なうので、浮水率70%以上となるように粉砕することが好ましい。 Furthermore, it is preferably pulverized so that the floating rate after pulverization is 70% or more. If the floating rate of the whole pearlite is smaller than 70%, the lightness is lowered, which is not preferable. The pulverized pearlite can be put into water, and the volume ratio of the floated particles with respect to the total volume can be measured as the floating rate. In addition, since many independent cavities will be destroyed if it grind | pulverizes too much and the lightweight property as pearlite will be impaired, it is preferable to grind | pulverize so that it may become 70% or more of a floating rate.

なお、パーライトは内部に数ミクロンから数十ミクロンの独立した空洞を多数有するため、粉砕の程度によっては、内部に独立空洞が残り、粉砕された粒子でも水中に浮く状態を維持するものがかなりの割合になる。一般に、見掛比重1.0g/cm3未満の粒子は水中で浮揚する。従って、浮水率によって見掛比重1.0g/cm3未満の粒子割合を判別することができる。 In addition, since pearlite has many independent cavities of several microns to several tens of microns inside, depending on the degree of pulverization, there are many independent cavities that remain inside, and even if the pulverized particles remain floating in water. Become a proportion. In general, particles with an apparent specific gravity of less than 1.0 g / cm 3 float in water. Therefore, the ratio of particles having an apparent specific gravity of less than 1.0 g / cm 3 can be determined from the floating rate.

破壊手段は限定されない。例えば、圧縮、衝撃、摩擦、せん断などの粉砕手段を使用することができる。具体的にはジョークラッシャー、ボールミル、ピンミル、ジェットミル、ローラーミル、一軸圧縮機などを利用することができる。 The destruction means is not limited. For example, pulverizing means such as compression, impact, friction, and shear can be used. Specifically, a jaw crusher, a ball mill, a pin mill, a jet mill, a roller mill, a single screw compressor, or the like can be used.

上記粉砕工程の後に、粉砕物の一部または全部を除去してもよい。粉砕物もパーライトと同成分であるので、粉砕物を含むパーライトをモルタルや壁材などに混合して使用することができる。また、粉砕物を除去することによって、より浮水率の高いパーライトを得ることができる。 After the pulverization step, a part or all of the pulverized product may be removed. Since the pulverized product is the same component as pearlite, the pearlite containing the pulverized product can be used by mixing it with mortar or wall material. Further, by removing the pulverized product, pearlite having a higher floating rate can be obtained.

具体的には、例えば、真珠岩粉末からなる原料を、嵩密度0.15g/cm3以下に加熱し発泡させた後に、嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕した後に、見掛比重1.0g/cm3以上の一部または全部を除去してもよい。なお、実施例の試料B4はこの場合に相当する。 Specifically, for example, a material consisting of perlite powder, after heating to less bulk density 0.15 g / cm 3 was foamed, so that the bulk density 0.18g / cm 3 ~0.35g / cm 3 After the pulverization, part or all of the apparent specific gravity of 1.0 g / cm 3 or more may be removed. The sample B4 of the example corresponds to this case.

本発明の製造方法によって得られるパーライトは、優れた耐久性を有し、輸送中や使用時の取扱いによって破壊され難く、従って、嵩密度の変化が小さい。例えば、未発泡粒子を含む嵩密度約0.2g/cm3の一般的なパーライトを、風速50m3/minで空気輸送すると、嵩密度は約0.40g/cm3に増加する。一方、本発明の方法によって製造したパーライト嵩密度約0.2g/cm3 のとき、これを同条件で空気輸送したときの嵩密度は約0.23〜0.29g/cm3であり、安定な品質を有する。
The pearlite obtained by the production method of the present invention has excellent durability, is not easily broken during transportation or handling during use, and therefore has a small change in bulk density. For example, when general pearlite containing unexpanded particles and having a bulk density of about 0.2 g / cm 3 is pneumatically transported at a wind speed of 50 m 3 / min, the bulk density increases to about 0.40 g / cm 3 . On the other hand, when the bulk density of the pearlite produced by the method of the present invention is about 0.2 g / cm 3 , the bulk density when pneumatically transported under the same conditions is about 0.23 to 0.29 g / cm 3 . Have a stable quality.

本発明の製造方法によって得られるパーライトは均一な嵩密度を有している。具体的には、例えば、平均粒径0.2mmの真珠岩を嵩密度0.15g/cm3以下に加熱し発泡させた後に、嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕して得たパーライトは、篩目(孔径)0.3mmの篩で篩分けした残留分と通過分の嵩密度の差が0.2g/cm3以下である。加熱発泡によって平均粒径0.2mmの真珠岩粒子は粒径が約0.15mm〜0.5mm程度の粒子に発泡するので、発泡後の粒径の中間的な大きさの篩目(0.3mm)を有する篩を用いて篩い分けしたときに、篩上の残留分と篩を通過した分の嵩密度の差は小さく、概ね0.2g/cm3以下であり、パーライト全体として均一な嵩密度を有している。 The pearlite obtained by the production method of the present invention has a uniform bulk density. Specifically, for example, after being heated perlite having an average particle diameter of 0.2mm below the bulk density 0.15 g / cm 3 foam, the bulk density of 0.18g / cm 3 ~0.35g / cm 3 The pearlite obtained by pulverizing in such a manner has a difference in bulk density between the residue and the passing portion obtained by sieving with a sieve having a sieve mesh (pore diameter) of 0.3 mm of 0.2 g / cm 3 or less. Pearlite particles having an average particle size of 0.2 mm are foamed into particles having a particle size of about 0.15 mm to 0.5 mm by heating and foaming. 3 mm), the difference in bulk density between the residue on the sieve and the amount passed through the sieve is small and is generally 0.2 g / cm 3 or less. It has a density.

篩目0.3mmの篩を用いて篩い分けしたときに、篩上の残留分をさらに粉砕して目標嵩密度にしてもよい。実施例の試料B5はこの場合に相当する。 When sieving using a sieve having a mesh size of 0.3 mm, the residue on the sieve may be further pulverized to a target bulk density. Sample B5 in the example corresponds to this case.

本発明のパーライトは、未発泡の粒子が少なく、均一な嵩密度を有する発泡粒子であるため、高品質のパーライトである。未発泡粒子は発泡粒子に比べて密度が大きく重いため、未発泡粒子が多いとパーライト全体で材料分離を生じやすい。このため、パーライトを混合して瓦や壁材などの製品を加工するときに、製品毎に質量のばらつきが生じるなどの問題が生じる。本発明のパーライトは均一な嵩密度を有する発泡粒子によって形成されているのでパーライト全体で材料分離を生じることがなく、このような問題を生じない。 The pearlite of the present invention is a high-quality pearlite because it is a foamed particle having few unexpanded particles and a uniform bulk density. Since unexpanded particles are larger in density and heavier than expanded particles, if there are many unexpanded particles, material separation is likely to occur in the entire pearlite. For this reason, when products such as tiles and wall materials are processed by mixing pearlite, problems such as variations in mass occur between products. Since the pearlite of the present invention is formed of expanded particles having a uniform bulk density, material separation does not occur in the entire pearlite, and such a problem does not occur.

本発明の製造方法に係るパーライトは、未発泡粒子が少ないので、未発泡粒子によって発泡粒子が破壊される割合が大幅に低減される。従って、輸送中や製品の製造中などに発泡粒子が破壊され難く、従って、嵩密度の変化が少なく優れた耐久性を有する。 Since the pearlite according to the production method of the present invention has few unexpanded particles, the ratio of the expanded particles to be destroyed by the unexpanded particles is greatly reduced. Therefore, the foamed particles are not easily destroyed during transportation or manufacture of the product, and therefore the durability is excellent with little change in bulk density.

一般に、製造したパーライトは製品サイロ等に保管されるが、サイロへの輸送は主に空気輸送によって行われている。空気輸送はパーライトを圧縮空気によって輸送管内を流すので、管内を流れるパーライトは空気圧を受ける。また、経路の途中には垂直ま部分や湾曲した部分があるので、管内を流れるパーライトはしばしば管壁に接触して摩擦される。さらにサイロへの積込み時や保管時、トラックやローリー車による運搬等によってパーライトに衝撃や圧力が加わる。 In general, manufactured pearlite is stored in a product silo or the like, and transportation to the silo is mainly performed by pneumatic transportation. In pneumatic transportation, pearlite flows through the transport pipe by compressed air, so the pearlite flowing in the pipe receives air pressure. Further, since there is a vertical part or a curved part in the middle of the path, the pearlite flowing in the pipe is often rubbed against the pipe wall. Furthermore, impact and pressure are applied to the pearlite during loading into the silo, storage, and transportation by truck or lorry vehicle.

パーライトに未発泡粒子が混在すると、未発泡粒子は発泡粒子よりも重いので、輸送中や積込み時、保管中などに衝撃や圧力が加わると、未発泡粒子が軽量な発泡粒子に衝突して、これを破壊する。従来のパーライトは未発泡粒子が比較的多いので、輸送中などに発泡粒子が破壊される割合が高く、嵩密度が大幅に高くなる。一方、本発明のパーライトは高温で焼成することによって未発泡粒子を大幅に少なくしているので、未発泡粒子による破壊が殆ど生じない。 When unexpanded particles are mixed in pearlite, unexpanded particles are heavier than expanded particles.If impact or pressure is applied during transportation, loading, storage, etc., unexpanded particles collide with lightweight expanded particles, Destroy this. Since conventional pearlite has a relatively large number of unexpanded particles, the ratio of the expanded particles to be broken during transportation is high, and the bulk density is significantly increased. On the other hand, the pearlite of the present invention significantly reduces the number of unexpanded particles by firing at a high temperature, so that the destruction by the unexpanded particles hardly occurs.

また、本発明は、加熱発泡工程において未発泡粒子が少なくなるように、目標嵩密度よりも小さい嵩密度に発泡させ、その後、破壊されやすい発泡粒子を予め粉砕するので、輸送中などに未発泡粒子によって発泡粒子が破壊されることが少なく、しかも破砕片は軽量微細であるので破砕片が存在しても発泡粒子を破壊することがなく、従って製造後の輸送中や取扱いにおいても嵩密度の変化が小さく、優れた耐久性を有することができる。 In addition, the present invention foams to a bulk density lower than the target bulk density so that the number of unfoamed particles is reduced in the heating foaming process, and then pulverizes foamed particles that are easily destroyed, so that the foam is not foamed during transportation. The foamed particles are rarely destroyed by the particles, and the crushed pieces are lightweight and fine, so even if the crushed pieces are present, the foamed particles are not broken. The change is small and it can have excellent durability.

以下、本発明の実施例を比較例と共に示す。なお、パーライトの嵩密度、浮水率は以下の方法によって測定した。 Examples of the present invention are shown below together with comparative examples. In addition, the bulk density and the floating rate of pearlite were measured by the following methods.

〔嵩密度〕一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を嵩密度とした。
〔浮水率〕浮水率は、約10gの試料を200mlメスシリンダーに入れて水を入れ、十分に攪拌した後に静置し、水の濁りがなくなるまで置き、浮いた試料Vaと沈んだ試料の容積Vbを測定しVa/(Va+Va)×100から浮水率を算出した。
[Bulk density] Fill a container with a constant volume S (cm 3 ), grind the portion protruding from the opening, measure the total weight G1, subtract the weight G2 of the container from this, and weight the powder G3 (g) The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the bulk density.
[Floating rate] The floating rate is about 10 g of sample placed in a 200 ml graduated cylinder, filled with water, left to stand after being sufficiently stirred, placed until there is no turbidity in water, and the volume of the floated sample Va and the sinked sample Vb was measured and the floating rate was calculated from Va / (Va + Va) × 100.

〔実施例1(発泡工程)〕
真珠岩の粒子(平均粒径0.2mm)を表1に示す温度に加熱してパーライトを製造した。焼成温度と製造したパーライトの嵩密度および浮水率を表1に示す。A1の試料は800℃で加熱して全体の嵩密度を0.2g/cm3にした一般的なパーライトであり、浮水率86%であるので、浮水率100%−86%=14%に相当する未発泡粒子(見掛比重1.0g/cm3以上)を含んでいる。一方、A2、A3の試料はおのおの900℃、1000℃で加熱し、嵩密度をおのおの0.15g/cm3、0.12g/cm3にしたものであり、目標嵩密度を0.18g/cm3〜0.35g/cm3とするときに、目標嵩密度より低く発泡させたものである。
[Example 1 (foaming step)]
Pearlite was produced by heating the pearlite particles (average particle size 0.2 mm) to the temperatures shown in Table 1. Table 1 shows the firing temperature and the bulk density and floating rate of the manufactured pearlite. The A1 sample is a general pearlite heated at 800 ° C. to a total bulk density of 0.2 g / cm 3 and has a floating rate of 86%, which corresponds to a floating rate of 100% -86% = 14%. Unexpanded particles (apparent specific gravity of 1.0 g / cm 3 or more). On the other hand, the samples A2 and A3 were heated at 900 ° C. and 1000 ° C., respectively, and the bulk densities were 0.15 g / cm 3 and 0.12 g / cm 3 , respectively, and the target bulk density was 0.18 g / cm. When it is 3 to 0.35 g / cm 3 , it is foamed lower than the target bulk density.

Figure 0005467669
Figure 0005467669

〔実施例2(粉砕工程)〕
表1の試料A1〜A3をピンミルで粉砕し、表2に示す嵩密度にした。粉砕後の嵩密度および浮水率を表2に示す。
[Example 2 (grinding step)]
Samples A1 to A3 in Table 1 were pulverized with a pin mill to obtain the bulk density shown in Table 2. Table 2 shows the bulk density and the floating rate after pulverization.

Figure 0005467669
Figure 0005467669

〔実施例3(空気輸送)〕
表1および表2の試料を風速50m3/minで貯蔵サイロに空気輸送した。空気輸送後の嵩密度、浮水率、0.3mmで篩った場合の篩残留分と通過分の嵩密度差を表3に示す。
[Example 3 (pneumatic transportation)]
The samples of Table 1 and Table 2 were pneumatically transported to a storage silo at a wind speed of 50 m 3 / min. Table 3 shows the bulk density after air transportation, the floating rate, and the bulk density difference between the sieve residue and the passage when sieving with 0.3 mm.

Figure 0005467669
Figure 0005467669

本発明に係る試料A2およびA3は、目標嵩密度より小さく、具体的には目標嵩密度0.18g/cm 3 〜0.35g/cm 3 に対して0.15/0.18〜0.15/0.35(A2)、0.12/0.18〜0.12/0.35(A3)である。A2およびA3を用いて調製したB1〜B4は何れも輸送前と輸送後の嵩密度の差が0.03〜0.09g/cm3 である。
Samples A2 and A3 according to the present invention is smaller than the target bulk density, the specific targets bulk density 0.18g / cm 3 ~0.35g / cm 3 with respect to 0.15 / 0.18 to 0.15 /0.35 (A2) and 0.12 / 0.18 to 0.12 / 0.35 (A3). B1 to B4 prepared using A2 and A3 each have a difference in bulk density before and after transportation of 0.03 to 0.09 g / cm 3 .

一方、B6はA3を粉砕して調製した試料であるが、目標嵩密度が大きすぎて浮水率が70%より低いため軽量性を失っている。A1は輸送前後の嵩密度の変化が大きく、従って、輸送後は浮水率が大幅に低下し、軽量性を失っている。 On the other hand, although B6 is a sample prepared by pulverizing A3, the target bulk density is too large and the floating rate is lower than 70%, so that the lightness is lost. A1 has a large change in bulk density before and after transportation. Therefore, after transportation, the floating rate is greatly reduced and lightness is lost.

A1とB1およびB2を比較すると、これらは何れも輸送前の嵩密度は0.2g/cm3であるが、A1は浮水率14%に相当する未発泡粒子(比較的重い粒子)を含んでいるので、輸送中にこの未発泡粒子が周囲の発泡粒子を破壊し、輸送後の嵩密度が大幅に高くなる(輸送後の嵩密度0.39g/cm3)。一方、B1およびB2の輸送前の嵩密度はA1と同等であり、浮水率はおのおの82%、80%であって、浮水率18%〜20%に相当する非浮水部分を含んでおり、非浮水部分はA1よりも多い。しかし、この非浮水部分は発泡粒子の破砕片であり、A1に含まれる未発泡粒子よりは格段に軽く、従って、輸送中や取扱中などに外力を受けても周囲の発泡粒子に衝撃を与えて破壊することが殆どない。このため、B1およびB2の輸送後の嵩密度は0.26g/cm3〜0.29g/cm3であり、輸送前後の嵩密度の差は0.06〜0.09g/cm3 であり、嵩密度の変化はA1よりも格段に小さい。

When A1 is compared with B1 and B2, these all have a bulk density of 0.2 g / cm 3 before transportation, but A1 contains unexpanded particles (relatively heavy particles) corresponding to a floating rate of 14%. Therefore, during transportation, the unfoamed particles destroy surrounding foamed particles, and the bulk density after transportation is significantly increased (bulk density after transportation 0.39 g / cm 3 ). On the other hand, the bulk density before transport of B1 and B2 is equivalent to that of A1, the floating rates are 82% and 80%, respectively, and the non-floating portion corresponding to the floating rate of 18% to 20% is included. There are more floating parts than A1. However, this non-floating part is a fragment of foamed particles, which is much lighter than the unfoamed particles contained in A1, and therefore impacts the surrounding foamed particles even when subjected to external forces during transportation or handling. Almost never destroy. Therefore, the bulk density after transport of B1 and B2 are 0.26g / cm 3 ~0.29g / cm 3 , the difference in the bulk density before and after the transport is 0.06~0.09g / cm 3, The change in bulk density is much smaller than A1.

また、B3、B5は浮水率が75%〜70%であり、非浮水部分がB1、B2より多いが、この非浮水部分は発泡粒子の破砕片であるので、輸送前後の嵩密度の変化はA1よりも格段に小さい。B1〜B5の結果に示すように、本発明のパーライトは、従来と同等程度の嵩密度を有していても、嵩密度の変化が大幅に小さい利点を有する。 B3 and B5 have a floating rate of 75% to 70% and more non-floating parts than B1 and B2, but these non-floating parts are crushed pieces of foamed particles. It is much smaller than A1. As shown in the results of B1 to B5, the pearlite of the present invention has an advantage that the change in the bulk density is significantly small even if the pearlite of the present invention has a bulk density equivalent to the conventional one.

Claims (7)

鉱物質原料を加熱し発泡させてパーライトを製造する方法であって、加熱発泡工程において発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させた後に、嵩密度が目標嵩密度になるように発泡粒子を粉砕することを特徴とするパーライトの製造方法。
A method for producing pearlite by heating and foaming a mineral material, and after the raw material is heated and foamed so that the bulk density of the foamed particles is smaller than the target bulk density in the heating and foaming step, the bulk density is the target bulk density. A process for producing pearlite, characterized in that foamed particles are pulverized so that
加熱発泡工程において、発泡粒子の嵩密度が目標嵩密度0.18g/cm 3 〜0.35g/cm 3 に対して嵩密度0.15g/cm 3 以下の割合になるように原料を加熱発泡させる請求項1に記載するパーライトの製造方法。
In heating and foaming step, raw material is heat-foamable so that the following proportions bulk density 0.15 g / cm 3 with respect to the target bulk density bulk density of 0.18g / cm 3 ~0.35g / cm 3 of expanded beads The manufacturing method of the pearlite of Claim 1.
加熱発泡工程において、発泡粒子の嵩密度が目標嵩密度より小さくなるように原料を加熱発泡させた後に、発泡粒子の嵩密度が目標嵩密度になり、かつ浮水率が70%以上になるように発泡粒子を粉砕する請求項1または請求項2に記載するパーライトの製造方法。
In the heating and foaming process, after the raw material is heated and foamed so that the bulk density of the foamed particles is smaller than the target bulk density, the bulk density of the foamed particles becomes the target bulk density and the floating rate becomes 70% or more. The method for producing pearlite according to claim 1 or 2, wherein the expanded particles are pulverized.
発泡粒子を粉砕した後に、粉砕物の一部または全部を除去する請求項1〜請求項3に記載するパーライトの製造方法。
The method for producing pearlite according to claim 1, wherein a part or all of the pulverized product is removed after pulverizing the expanded particles.
真珠岩粉末からなる原料を、嵩密度0.15g/cm3以下に加熱し発泡させた後に、嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕する請求項1〜請求項4の何れかに記載するパーライトの製造方法。
The raw material consists of perlite powder, after heated to be foamed in the following bulk density 0.15 g / cm 3, claim pulverized so that bulk density 0.18g / cm 3 ~0.35g / cm 3 1~ The manufacturing method of the pearlite in any one of Claim 4.
真珠岩粉末からなる原料を、嵩密度0.15g/cm3以下に加熱し発泡させた後に、嵩密度0.18g/cm3〜0.35g/cm3になるように粉砕し、さらに見掛比重1.0g/cm3以上の一部または全部を除去する請求項5に記載するパーライトの製造方法。
The raw material consists of perlite powder, and heated to less bulk density 0.15 g / cm 3 after foamed, ground to become a bulk density 0.18g / cm 3 ~0.35g / cm 3 , further apparent The method for producing pearlite according to claim 5, wherein a part or all of the specific gravity of 1.0 g / cm 3 or more is removed.
請求項5または請求項6に記載する方法で製造され、篩目(孔径)0.3mmの篩で篩分けした残留分と通過分の嵩密度の差が0.2g/cm3以下であることを特徴とするパーライト。 The difference between the bulk density of the residual portion and the passage portion manufactured by the method according to claim 5 or 6 and sieved with a sieve having a mesh size (pore diameter) of 0.3 mm is 0.2 g / cm 3 or less. Perlite characterized by.
JP2010072857A 2010-03-26 2010-03-26 PERLITE AND MANUFACTURING METHOD THEREOF Expired - Fee Related JP5467669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072857A JP5467669B2 (en) 2010-03-26 2010-03-26 PERLITE AND MANUFACTURING METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072857A JP5467669B2 (en) 2010-03-26 2010-03-26 PERLITE AND MANUFACTURING METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2011201751A JP2011201751A (en) 2011-10-13
JP5467669B2 true JP5467669B2 (en) 2014-04-09

Family

ID=44878837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072857A Expired - Fee Related JP5467669B2 (en) 2010-03-26 2010-03-26 PERLITE AND MANUFACTURING METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP5467669B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702638B2 (en) * 2010-03-26 2015-04-15 太平洋マテリアル株式会社 Impact-resistant perlite and method for producing the same

Also Published As

Publication number Publication date
JP2011201751A (en) 2011-10-13

Similar Documents

Publication Publication Date Title
EP3186210B1 (en) Method for producing a carbonate bonded, press-moulded article
CN105924140B (en) A kind of method that rolling molding prepares high resistance to compression aluminum oxide milling media
WO2013054471A1 (en) Method for granulation of sintering raw material
JP5077848B2 (en) High-strength glassy lightweight filler material
Khamidulina et al. Foam glass production from waste glass by compression
JP2007320805A (en) Hard foamed pearlite and its manufacturing method
GB2560027A (en) Forming evaporite mineral products
GB2560026A (en) Forming evaporite mineral products
JP5467669B2 (en) PERLITE AND MANUFACTURING METHOD THEREOF
JP2012091978A (en) Method for manufacturing perlite
US20170226410A1 (en) Proppant Material Incorporating Fly Ash and Method of Manufacture
JP4910756B2 (en) Method for manufacturing perlite
US10167423B2 (en) Granulated slag products and processes for their production
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
WO2012015066A1 (en) Method for producing starting material for sintering
JP2008189994A (en) Method for manufacturing pelletized raw material for sintering
JP5636143B2 (en) Manufacturing method of high-strength pearlite
JP5145498B2 (en) Manufacturing method of high strength, high sphericity shirasu balloon
JP6153722B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JP5702638B2 (en) Impact-resistant perlite and method for producing the same
JP2010037164A (en) Method for producing high strength and high sphericity glassy fine hollow sphere
KR100905957B1 (en) Artificial silica and method of preparation thereof
KR100270122B1 (en) Lightwegiht aggregates and a method for manufacturing
JP2007112941A (en) Method for producing coke
GB2517098A (en) A method of producing refractory material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140125

R150 Certificate of patent or registration of utility model

Ref document number: 5467669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees