JP5145498B2 - Manufacturing method of high strength, high sphericity shirasu balloon - Google Patents

Manufacturing method of high strength, high sphericity shirasu balloon Download PDF

Info

Publication number
JP5145498B2
JP5145498B2 JP2008230146A JP2008230146A JP5145498B2 JP 5145498 B2 JP5145498 B2 JP 5145498B2 JP 2008230146 A JP2008230146 A JP 2008230146A JP 2008230146 A JP2008230146 A JP 2008230146A JP 5145498 B2 JP5145498 B2 JP 5145498B2
Authority
JP
Japan
Prior art keywords
shirasu
sphericity
mass
shirasu balloon
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008230146A
Other languages
Japanese (ja)
Other versions
JP2010064903A (en
Inventor
研一 袖山
孝善 新村
和朗 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Original Assignee
Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken filed Critical Kagoshima-Ken Kagoshima-Shi Kagoshima-Ken
Priority to JP2008230146A priority Critical patent/JP5145498B2/en
Publication of JP2010064903A publication Critical patent/JP2010064903A/en
Application granted granted Critical
Publication of JP5145498B2 publication Critical patent/JP5145498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、シラスを原料として、高強度、高真球度の微細ガラス質中空球、すなわちガラスバルーンを製造する方法に関するものである。   The present invention relates to a method for producing a fine glassy hollow sphere having high strength and high sphericity, that is, a glass balloon, using shirasu as a raw material.

軽量フィラーの中で、ガラス質微小中空球、例えばシラスバルーンは、軽量で耐熱性である上、等方性を示すため、マトリックス材料に異方性を与えず、耐衝撃性を付与することができ、流動性やハンドリング性にも優れているため、セメント系建築材料、紙粘土、プラスチックのフィラーとして多用されている(非特許文献1参照)。   Among lightweight fillers, glassy hollow microspheres, such as Shirasu balloons, are lightweight and heat resistant, and exhibit isotropic properties, so they can impart impact resistance without imparting anisotropy to the matrix material. In addition, since it is excellent in fluidity and handling properties, it is frequently used as a filler for cement-based building materials, paper clay, and plastics (see Non-Patent Document 1).

このガラス質微小中空球の代表的なものであるシラスバルーンは、ガラス質火山噴出堆積物のシラスを焼成発泡させたものであるが、原料が容易に入手でき、比較的簡単に発泡できるため、開発されて以来、その製造方法が多数提案されている。   Shirasu balloon, which is representative of this glassy micro-hollow sphere, is made by firing and foaming shirasu of glassy volcanic eruption deposits, but since the raw materials are readily available and can be foamed relatively easily, Since its development, many manufacturing methods have been proposed.

このシラスバルーンの製造方法としては、最初、電気炉やロータリーキルンを用いて焼成する方法が行われ、例えばシラスを分級して微粒区分を分離し、これを電気炉や外熱式ロータリーキルンにより800〜1200℃で10秒〜10分間熱処理したのち、水中における比重分離(以下、浮水分離と称す)又は空気分級することによる微細中空ガラス球状体の製造方法(特許文献1参照)が知られている。   As a manufacturing method of this shirasu balloon, first, a method of firing using an electric furnace or a rotary kiln is performed. For example, shirasu is classified and fine particles are separated, and this is divided into 800 to 1200 by an electric furnace or an external heating rotary kiln. There is known a method for producing fine hollow glass spheres (see Patent Document 1) by performing specific gravity separation in water (hereinafter referred to as floating water separation) or air classification after heat treatment at 10 ° C. for 10 seconds to 10 minutes.

その後、高温流動層を用いて発泡物質を製造する方法が開発され(特許文献2参照)、これを利用した内燃式熱媒体流動床炉を用いたガラス質微小中空球の製造方法が主流を占めるようになり、これまでに、火山ガラス質堆積物の微粒子と、この微粒子の親水性を減少させる親水性減少剤との混合物を流動層式加熱炉を用いて900〜1200℃で熱処理する微粒中空ガラス球状体の製造方法(特許文献3参照)、平均粒径20μm以下であって、40μm以上の粒分を25%以上48%以下含む火山ガラス原料を内燃式流動床炉で発泡させて得られる中空ガラス球状体を含む気流を、直列に連結した複数のサイクロンに供給してタッピングかさ密度0.25g/cm3以下、平均粒径20μm以下の中空ガラス球状体及び平均粒径の異なる2種類以上の中空ガラス球状体を連続的に製造する方法(特許文献4参照)、内燃式流動床炉内のセラミックスボールを用い、このセラミックスボールに燃料ガスと空気との混合ガスを供給し、この燃料ガスの燃焼熱でセラミックスボールを900℃以上まで昇温し、設定温度±3℃以内で温度制御を行うと同時に微粒中空ガラス球状体の原料粉体を前記混合ガスに随伴させて供給することにより微粒中空ガラス球状体を製造する方法(特許文献5参照)、天然軽石を内燃式熱媒体流動床炉の排気側から流動床に供給し、900〜1100℃で焼成し、ゆるみ見掛比重0.18〜0.31の焼成発泡軽石の連続的製造方法(特許文献6参照)などがこれまでに提案されている。 Thereafter, a method for producing a foamed material using a high-temperature fluidized bed was developed (see Patent Document 2), and a method for producing glassy hollow microspheres using an internal combustion heat medium fluidized bed furnace using the same dominates. So far, fine hollow particles in which a mixture of fine particles of volcanic glassy deposits and a hydrophilic reducing agent that reduces the hydrophilicity of the fine particles is heat treated at 900 to 1200 ° C. using a fluidized bed heating furnace. A method for producing glass spheres (see Patent Document 3), obtained by foaming a volcanic glass raw material having an average particle diameter of 20 μm or less and containing particles of 40 μm or more in a range of 25% to 48% in an internal fluidized bed furnace. the air flow containing the hollow glass, tapping bulk density 0.25 g / cm 3 or less is supplied to the plurality of cyclones which are coupled in series, different average particle size 20μm or less of the hollow glass microspheres and the mean particle size of 2 A method for continuously producing spherical glass spheres of the kind or higher (see Patent Document 4), using ceramic balls in an internal fluidized bed furnace, supplying a mixed gas of fuel gas and air to the ceramic balls, The ceramic ball is heated to 900 ° C. or higher with the combustion heat of the fuel gas, and the temperature is controlled within the set temperature ± 3 ° C., and at the same time, the raw material powder of the fine hollow glass sphere is supplied along with the mixed gas. (See Patent Document 5), natural pumice is supplied to the fluidized bed from the exhaust side of the internal combustion heat medium fluidized bed furnace, calcined at 900 to 1100 ° C., and loose apparent specific gravity is 0 A continuous production method of fired foamed pumice stone of 18 to 0.31 (see Patent Document 6) has been proposed so far.

「工業材料」、日刊工業新聞社発行、第42巻、1994年、p.102−111“Industrial Materials”, published by Nikkan Kogyo Shimbun, Volume 42, 1994, p. 102-111 特公昭48−17645号公報(特許請求の範囲その他)Japanese Patent Publication No. 48-17645 (claims and others) 特公昭51−22922号公報(特許請求の範囲その他)Japanese Patent Publication No. 51-22922 (claims and others) 特開平7−24299号公報(特許請求の範囲その他)JP 7-24299 A (Claims and others) 特開2002−338280号公報(特許請求の範囲その他)JP 2002-338280 A (Claims and others) 特開平11−11960号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 11-11960 (Claims and others) 特開2004−91283号公報(特許請求の範囲その他)JP 2004-91283 A (Claims and others)

従来のシラスバルーンは、真球度が0.8未満と低く、等方性を欠く上、耐圧強度すなわち8MPaで1分間の静水圧浮揚度が41%以下と低いため、化粧料添加物や紙粘土、プラスチックのフィラーとして用いる場合、流動性や耐圧性が不十分で、その利用分野が制限されるのを免れなかった。   The conventional Shirasu balloon has a low sphericity of less than 0.8, lacks isotropy, and has a compressive strength, that is, a hydrostatic pressure levitation rate of 8% or less at 8 MPa, which is as low as 41% or less. When used as a filler for clay and plastic, fluidity and pressure resistance are insufficient, and it is inevitable that the field of use is limited.

そして、シラス原鉱からシラスバルーンを製造する場合に、高強度、高真球度の製品を得ようとすれば、原料の粒径ごとに焼成条件を厳格に制御しなければならないという煩わしさがある上に、収率が著しく低下するという不利を免れなかった。   And, when producing a Shirasu balloon from Shirasu ore, if you want to obtain a product with high strength and high sphericity, there is the annoyance that firing conditions must be strictly controlled for each particle size of the raw material In addition, there was an inconvenience that the yield was significantly reduced.

本発明は、原料の組成、粒径ごとにそれぞれ対応して焼成条件や焼成手段を変えることなく、しかも収率の低下なしにシラスバルーンを容易に得ることができるシラスバルーンの製造方法を提供することを目的としてなされたものである。   The present invention provides a method for producing a shirasu balloon, which can easily obtain a shirasu balloon without changing the firing conditions and firing means corresponding to the composition and particle size of the raw material, and without reducing the yield. It was made for the purpose.

本発明方法においては、原料として、シラスとして知られている火山噴出物堆積物が用いられるが、このシラスの主成分は火山ガラスであり、さらに微量の水分が含まれている。そして、このシラス粒子を急速に加熱すると、軟らかくなったガラス粒子内でその水分がガス化して発泡し、微細中空球すなわちガラスバルーンを形成する。したがって、シラス中の水分の量がシラスバルーンの品質を左右する大きなファクターとなってくる。   In the method of the present invention, a volcanic eruption deposit known as Shirasu is used as a raw material, and the main component of Shirasu is volcanic glass and further contains a trace amount of water. When the shirasu particles are rapidly heated, the moisture is gasified and foamed in the softened glass particles to form fine hollow spheres, that is, glass balloons. Therefore, the amount of moisture in the shirasu becomes a large factor that affects the quality of the shirasu balloon.

ところで、シラスの水分は、低温含水量と高温含水量の和とした水分は通常4.5〜15.0質量%の範囲内である。高温含水量で比較すると、その産出地や噴出年代により高温含水量が3.0質量%未満の比較的少ない水分のものと、3.0質量%以上の比較的多い水分のものに大別される。   By the way, the water | moisture content of shirasu is the sum of the low temperature water content and the high temperature water content, and the water | moisture content is in the range of 4.5-15.0 mass% normally. Compared with the high-temperature water content, the high-temperature water content is roughly divided into those with relatively low water content of less than 3.0% by mass and those with relatively high water content of 3.0% by mass or more, depending on the origin and eruption age. The

本発明者らは、耐圧強度が大きく、真球度の良好なシラスバルーンを収率よく製造する方法を開発するために種々研究を重ねた結果、上記の比較的水分の多いシラスについては、350〜500℃において高温含水量1.46〜2.90質量%まで高温乾燥したのち、980〜1090℃において焼成することにより、また上記の比較的水分の少ないシラスについては、350〜500℃において、高温含水量0.90〜2.45質量%まで高温乾燥したのち、980〜1130℃において焼成することにより、高耐圧強度で良好な真球度のシラスバルーンを収率よく得られることを見出し、この知見に基づいて本発明をなすに至った。   The present inventors have conducted various studies in order to develop a method for producing a shirasu balloon having a high pressure strength and a good sphericity with high yield. After drying at a high temperature to a high water content of 1.46 to 2.90% by mass at ˜500 ° C. and then firing at 980 to 1090 ° C. After high-temperature drying to a high-temperature water content of 0.90 to 2.45% by mass, by calcination at 980 to 1130 ° C., it has been found that a high-pressure strength and good sphericity shirasu balloon can be obtained in high yield. The present invention has been made based on this finding.

ここで、高温含水量とは、低温含水量に対応する含水量であり、熱重量分析において昇温速度10℃/分で、室温から200℃までに蒸散する脱水量を低温含水量とし、同じく200℃から800℃までに蒸散する脱水量を高温含水量としたものである。そして、シラスバルーンの発泡に際しては、低温含水量はほとんど寄与せず、高温含水量が大きく寄与することを見出した。   Here, the high-temperature water content is the water content corresponding to the low-temperature water content, and the dehydration amount that evaporates from room temperature to 200 ° C. at a temperature rising rate of 10 ° C./min in thermogravimetric analysis is the low-temperature water content. The amount of dehydration that evaporates from 200 ° C. to 800 ° C. is the high-temperature water content. The present inventors have found that the low temperature water content hardly contributes to the foaming of the shirasu balloon, and the high temperature water content greatly contributes.

すなわち、本発明は、高温含水量3.0質量%以上のシラス原鉱粉末を350〜500℃において、高温含水量1.46〜2.90質量%まで高温乾燥し、次いで内燃式媒体流動床炉を用いて980〜1090℃の温度範囲内で焼成することを特徴とする、8MPaで1分間の静水加圧後の静水圧浮揚率50%以上に相当する耐圧強度及び0.80以上の真球度を有する高強度、高真球度シラスバルーンの製造方法、及び高温含水量3.0質量%未満のシラス原鉱粉末を350〜500℃において、高温含水量0.90〜2.45質量%まで高温乾燥し、次いで内燃式媒体流動床炉を用いて980〜1130℃の温度範囲内で焼成することを特徴とする、8MPaで1分間の静水加圧後の静水圧浮揚率50%以上に相当する耐圧強度及び0.80以上の真球度を有する高強度、高真球度シラスバルーンの製造方法を提供するものである。   That is, the present invention is to dry a Shirasu ore powder having a high-temperature water content of 3.0% by mass or higher at 350 to 500 ° C. to a high-temperature water content of 1.46 to 2.90% by mass, and then to an internal combustion medium fluidized bed. It is fired within a temperature range of 980 to 1090 ° C. using a furnace, and has a pressure strength equivalent to a hydrostatic levitation rate of 50% or more after hydrostatic pressing at 8 MPa for 1 minute and a true strength of 0.80 or more. A high strength, high sphericity shirasu balloon manufacturing method having a sphericity, and a shirasu ore powder having a high temperature water content of less than 3.0% by mass at 350 to 500 ° C., a high temperature water content of 0.90 to 2.45 mass The hydrostatic levitation rate is 50% or more after hydrostatic pressing at 8 MPa for 1 minute, characterized in that it is dried at a high temperature up to 50% and then fired in a temperature range of 980 to 1130 ° C. using an internal medium fluidized bed furnace. Pressure resistance and 0. 0 or more high strength having sphericity, there is provided a process for producing a high sphericity Shirasu balloons.

ここで、8MPaで1分間の静水加圧後の静水圧浮揚率(%)とは、VSI研究会発行「新時代を築く火山噴出物」のVSI研究会規格に記載されているシラスバルーンの耐圧強度を示すファクターであって、シラスバルーンの耐圧強度を表わす実用化されている規格として唯一のものである。以下の方法により測定されるものである。   Here, the hydrostatic levitation rate (%) after hydrostatic pressurization at 8 MPa for 1 minute is the pressure resistance of the shirasu balloon described in the VSI Study Group standard published by the VSI Study Group It is a factor indicating the strength, and is the only standard that has been put into practical use and represents the pressure resistance strength of the Shirasu balloon. It is measured by the following method.

内径20.0±0.5mm、高さ70.0±0.5mm、透明プラスチックパイプの上下に、JIS Z 8801の呼び寸法32μm網ふるいを当接して形成された試料容器に、所定量の試料を装入し、これを試料容器の1.2倍以上の有効高さを有する水を満たした耐圧容器中に沈める。
次いで、耐圧容器を密閉し、1分間以上かけて、その内部圧力を8MPaまで昇圧し、そのまま1分間以上保持したのち、耐圧容器を開放し、試料容器を取り出す。次に試料容器の内容物すべてを浮沈分離器に移し、浮揚物と沈降物が完全に分離した後、浮揚物を、るつぼ形ガラスろ過器に流し入れ、吸引ろ過する。次いで、このるつぼ形ガラスろ過器を105±2℃で8時間以上乾燥する。この操作を2回繰り返す。それぞれについて次の式に従って、静水圧浮揚率H(質量%)を求め、2回の測定値を平均して8MPaで1分間の静水加圧後の静水圧浮揚率とする。
H=[(m1−m0)/S]×100
ただし、m1は、ガラスろ過器及び水中浮揚試料の全質量(g)、m0は空のガラスろ過器の質量(g)、Sは試料の質量である。
A predetermined amount of sample is placed in a sample container formed by contacting a mesh sieve of JIS Z 8801 with a nominal size of 32 μm on the top and bottom of a transparent plastic pipe with an inner diameter of 20.0 ± 0.5 mm and a height of 70.0 ± 0.5 mm. Is submerged in a pressure vessel filled with water having an effective height of 1.2 times or more of the sample vessel.
Next, the pressure vessel is sealed, the internal pressure is increased to 8 MPa over 1 minute or more, and the pressure vessel is held for 1 minute or more. Then, the pressure vessel is opened and the sample vessel is taken out. Next, the entire contents of the sample container are transferred to a floatation / sink separator, and after the floated material and sediment are completely separated, the floated material is poured into a crucible glass filter and suction filtered. Next, the crucible glass filter is dried at 105 ± 2 ° C. for 8 hours or more. This operation is repeated twice. The hydrostatic levitation rate H (mass%) is obtained according to the following formula for each, and the two measurements are averaged to obtain the hydrostatic buoyancy after hydrostatic pressing for 1 minute at 8 MPa.
H = [(m 1 −m 0 ) / S] × 100
Here, m 1 is the total mass (g) of the glass filter and the floating sample in water, m 0 is the mass (g) of the empty glass filter, and S is the mass of the sample.

本発明方法においては、シラス原鉱粉末を、例えばジェットミルを用いて粉砕して粉末とし、そのまま原料として用いる。従来の方法においては、前述したように、目的とする製品の品質に応じて粒度調整を行い、それぞれに対応した処理条件で処理する必要があったが、本発明方法においては、そのような粒度調整は必ずしも行う必要はない。
しかし、所望ならば、ふるい分け、空気分級などによって粒度調整してもよい。
In the method of the present invention, the shirasu ore powder is pulverized using, for example, a jet mill to obtain a powder, which is directly used as a raw material. In the conventional method, as described above, it is necessary to adjust the particle size according to the quality of the target product and to perform processing under the corresponding processing conditions. In the method of the present invention, such a particle size is required. Adjustment is not necessarily required.
However, if desired, the particle size may be adjusted by sieving or air classification.

本発明方法においては、上記のシラス原鉱粉末を、先ず350〜500℃という比較的高温に加熱することによって乾燥する。この際の乾燥条件は、シラス原鉱粉末中に含まれる水分の割合によって変える必要がある。すなわち、シラス原鉱粉末中の高温含水量が3.0質量%以上の場合には、高温含水量が1.46〜2.90質量%になるまで行い、シラス原鉱粉末中の高温含水量が3.0質量%未満の場合には、高温含水量が0.90〜2.45質量%になるまで行う。高温含水量がこの範囲よりも低くなってもまた高くなっても焼成後に得られるシラスバルーンの耐圧強度は著しく低下する。
乾燥後の好ましい高温含水量は、シラス原鉱の高温含水量が3.0質量%以上の場合、1.6〜2.7質量%、特に1.95〜2.15質量%であり、シラス原鉱の高温含水量が3.0質量%未満の場合、1.3〜2.4質量%、特に1.80〜2.38質量%である。
In the method of the present invention, the Shirasu ore powder is first dried by heating to a relatively high temperature of 350 to 500 ° C. The drying conditions at this time need to be changed depending on the proportion of moisture contained in the Shirasu ore powder. That is, when the high-temperature water content in the Shirasu ore powder is 3.0% by mass or more, the high-temperature water content in the Shirasu ore powder is performed until the high-temperature water content becomes 1.46 to 2.90% by mass. Is less than 3.0% by mass, the hot water content is 0.90 to 2.45% by mass. Whether the high-temperature moisture content is lower or higher than this range, the pressure resistance of the shirasu balloon obtained after firing is significantly reduced.
The preferable high-temperature water content after drying is 1.6 to 2.7% by mass, particularly 1.95 to 2.15% by mass when the high-temperature water content of the Shirasu ore is 3.0% by mass or more. When the high-temperature water content of the ore is less than 3.0% by mass, it is 1.3 to 2.4% by mass, particularly 1.80 to 2.38% by mass.

この高温乾燥に要する時間は、乾燥温度が高いほど、また原料鉱物粉末の粒径が小さいほど短くなるので、できるたけ細かく粉砕したものを、できるだけ高温で乾燥するのが有利である。
したがって、シラス原鉱粉末を平均粒径20〜100μmまで粉砕し、400〜500℃の温度で乾燥する。このような条件における乾燥時間は、だいたい20分間〜1時間の範囲である。
上記の高温乾燥は、電気炉、熱風乾燥炉などを用いて行われる。
The time required for this high-temperature drying becomes shorter as the drying temperature is higher and the particle size of the raw mineral powder is smaller. Therefore, it is advantageous to dry the finely pulverized product as high as possible.
Therefore, the shirasu ore powder is pulverized to an average particle size of 20 to 100 μm and dried at a temperature of 400 to 500 ° C. The drying time under such conditions is generally in the range of 20 minutes to 1 hour.
The high temperature drying is performed using an electric furnace, a hot air drying furnace, or the like.

このようにして高温乾燥したシラス原鉱粉末は、そのまま若しくは所望に応じ、ふるい分け、空気分級により粒径7〜210μm、好ましくは10〜150μmの画分として捕集し、後続の焼成工程に送る。   The shirasu ore powder dried at high temperature in this way is screened as it is or as desired, collected as a fraction having a particle size of 7 to 210 μm, preferably 10 to 150 μm by air classification, and sent to the subsequent firing step.

本発明方法においては、シラス原鉱の高温含水量が3.0質量%以上の場合には高温乾燥により高温含水量1.46〜2.90質量%に調整したシラス原鉱粉末を980〜1090℃の温度範囲で、また、シラス原鉱の高温含水量が3.0質量%未満の場合には高温含水量0.90〜2.45質量%に調整したシラス原鉱粉末を980〜1130℃の温度範囲でそれぞれ焼成する。
980℃よりも低い温度では発泡が十分に行われないため収率が低下するし、また、前述2者における温度範囲を超える高い温度では、過発泡により耐圧強度の低いシラスバルーンが生成し易くなり,所望の高強度シラスバルーンを得ることができない。1130℃より高温にすると、シラス原料鉱物粉末を大量に供給した場合、炉内で融着し易くなり反応装置内での閉塞の原因となるので、大量生産を行うことができない。
In the method of the present invention, when the high-temperature water content of the shirasu ore is 3.0% by mass or more, the shirasu ore powder adjusted to a high-temperature water content of 1.46 to 2.90% by high-temperature drying is obtained from 980 to 1090. When the high temperature water content of the Shirasu ore is less than 3.0% by mass, the Shirasu ore powder adjusted to a high temperature water content of 0.90 to 2.45% by mass is 980 to 1130 ° C. Each is fired in the temperature range.
When the temperature is lower than 980 ° C., the foaming is not sufficiently performed, so that the yield is lowered. At a high temperature exceeding the above-described temperature range, a shirasu balloon having a low pressure strength is easily generated due to excessive foaming. , The desired high-strength shirasu balloon cannot be obtained. When the temperature is higher than 1130 ° C., when a large amount of shirasu raw material mineral powder is supplied, it is easy to fuse in the furnace and cause clogging in the reactor, and mass production cannot be performed.

次に、添付図面により本発明方法における焼成工程の1例を説明する。
図1は、内燃式媒体流動床炉を用いて焼成を行う場合の略解説明図であり、高温乾燥された原料鉱物粉末は、導入口1より供給され、流動床炉2より排出管3を通って排出される排ガスと混合され、管路4、逆サイクロン5及び大容量サイクロン6を経由してスクリューフィーダ7に送られる。次いで、スクリューフィーダ7により原料供給管8に供給された原料鉱物粉末は、コンプレッサ9から送られる空気と原料供給管8に設けられた燃料ガス導入口10から導入される燃料ガスと混合され、流動床炉2の下部に圧入される。この際、大容量サイクロン6で分離された細粒画分は、排ガスと共に吸引ブロア11により吸引され、管路12を経て小容量サイクロン13により分離回収される。
Next, an example of the firing step in the method of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic explanatory diagram in the case of firing using an internal combustion medium fluidized bed furnace. The raw material mineral powder dried at high temperature is supplied from an inlet 1 and passes through a discharge pipe 3 from a fluidized bed furnace 2. The exhaust gas is mixed with the exhaust gas and then sent to the screw feeder 7 via the pipe 4, the reverse cyclone 5 and the large-capacity cyclone 6. Next, the raw material mineral powder supplied to the raw material supply pipe 8 by the screw feeder 7 is mixed with the air sent from the compressor 9 and the fuel gas introduced from the fuel gas introduction port 10 provided in the raw material supply pipe 8 to flow. It is press-fitted into the lower part of the floor furnace 2. At this time, the fine-grain fraction separated by the large-capacity cyclone 6 is sucked by the suction blower 11 together with the exhaust gas, and separated and collected by the small-capacity cyclone 13 via the pipe line 12.

上記の内燃式媒体流動床炉2は、縦長円筒体14とその内部を上部の流動層形成部と下部の風箱部に区画する分散板15と上部の区画に装填された熱媒体から構成されている。縦長円筒体14は、ステンレス鋼のような耐食性、耐熱性材料で作られ、そのサイズは、通常、内径50〜1000mm、高さ1〜10mの範囲内で選ばれるが、特に制限はない。   The internal combustion medium fluidized bed furnace 2 includes a vertically long cylindrical body 14, a dispersion plate 15 that divides the inside of the vertically long cylindrical body 14 into an upper fluidized bed forming portion and a lower wind box portion, and a heat medium loaded in the upper compartment. ing. The vertically long cylindrical body 14 is made of a corrosion-resistant and heat-resistant material such as stainless steel, and its size is usually selected within a range of an inner diameter of 50 to 1000 mm and a height of 1 to 10 m, but is not particularly limited.

分散板としては、耐食、耐熱性の金属、例えばステンレス鋼の厚さ2〜8mmの板に、直径1.5〜5mmの孔を開孔比2〜5%の割合で穿孔した多孔板が用いられている。熱媒体としては、直径1.5〜3.5mmの耐熱性セラミックボール例えばムライト製ボールが用いられる。また、シラスに含まれる粒径1mm以上の重鉱物も熱媒体として用いることができる。   As the dispersion plate, a perforated plate in which holes having a diameter of 1.5 to 5 mm are drilled in a ratio of 2 to 5% in a plate of corrosion resistant and heat resistant metal such as stainless steel having a thickness of 2 to 8 mm is used. It has been. As the heat medium, a heat-resistant ceramic ball having a diameter of 1.5 to 3.5 mm, for example, a mullite ball is used. A heavy mineral having a particle diameter of 1 mm or more contained in shirasu can also be used as a heat medium.

この流動床炉の温度は、上記のコンプレッサ9から圧送される空気と燃料ガスの混合物の供給量及び燃料ガスと空気との混合割合を調節することにより950〜1130℃の範囲内に制御する。内燃式媒体流動床炉2で生成したシラスバルーンは排出管3を通って中空球分離用サイクロン16に送られ回収される。   The temperature of the fluidized bed furnace is controlled within a range of 950 to 1130 ° C. by adjusting the supply amount of the mixture of air and fuel gas fed from the compressor 9 and the mixing ratio of the fuel gas and air. The shirasu balloon generated in the internal-combustion medium fluidized bed furnace 2 is sent to the cyclone 16 for separating the hollow sphere through the discharge pipe 3 and collected.

また、本発明方法においては、流動床の静止層高を50〜300mm、ガス流量30〜80Nm3/時の条件下で、かつ原料鉱物粉末の供給量5〜40kg/hrで操作するのが好ましい。 In the method of the present invention, it is preferable to operate the fluidized bed at a static bed height of 50 to 300 mm, a gas flow rate of 30 to 80 Nm 3 / hour, and a feed rate of the raw mineral powder of 5 to 40 kg / hr. .

本発明によると、上記のようにして、平均粒径10〜300μmの90質量%以上すなわちほとんどが単泡構造を有する高強度、高真球度のシラスバルーンが得られる。
一般に多泡構造のシラスバルーンは、強度が低いと考えられているが、本発明方法により得られるシラスバルーンは、多泡構造であっても、8MPaで1分間の静水加圧後の静水圧浮揚率50%以上に相当する高い耐圧強度を示す。
また、シラスバルーンの製造に際しては、高強度、高真球度の製品を得ようとすれば、収率が著しく低下するのを免れないが、本発明方法によると8MPaで1分間の静水加圧後の静水圧浮揚率が50%以上、真球度が0.80以上という高強度、高真球度の製品を原料鉱物粉末の質量に基づき、28%以上、場合によっては50%以上という高い収率で得ることができる。
According to the present invention, as described above, a high-strength, high-sphericity shirasu balloon having an average particle diameter of 10 to 300 μm or more, ie, most having a single-bubble structure can be obtained.
In general, it is thought that the strength of the shirasu balloon having a multi-bubble structure is low, but the shirasu balloon obtained by the method of the present invention has a hydrostatic levitation after hydrostatic pressure at 8 MPa for 1 minute even if it has a multi-bubble structure. A high pressure strength corresponding to a rate of 50% or more is exhibited.
Further, in the production of a shirasu balloon, if it is intended to obtain a product with high strength and high sphericity, the yield is inevitably lowered. However, according to the method of the present invention, hydrostatic pressure is applied at 8 MPa for 1 minute. High hydrostatic pressure levitation rate of 50% or higher and sphericity of 0.80 or higher, and high strength and high sphericity products based on the mass of raw mineral powder, 28% or higher, and in some cases 50% or higher The yield can be obtained.

次に、実施例により本発明を実施するための最良の形態を説明するが、本発明はこれによりなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described by way of examples, but the present invention is not limited thereto.

参考例1
宮崎県えびの市加久藤産シラス粉末(高温含水量4.16質量%、平均粒径62.2μm)を、電気炉により350〜450℃の温度で高温乾燥したのち、ジェットミルで粉砕することにより、1.25質量%ないし3.19質量%の範囲の異なった高温含水量をもつシラス粉末サンプルを調製した。
次に、これらのサンプルを図1に示すシステムにおいて粒径1.7〜2.8mmのムライト破砕物3.2kgを熱媒体として用い、熱媒体の静止層高164mm、原料供給量8.3kg/時、ガス流量50Nm3/時の条件下で焼成温度を1050℃において30分間連続焼成し、シラスバルーンを製造した。
得られたシラスバルーンの8MPaで1分間の静水加圧後の静水圧浮揚率(%)を測定し、シラス乾燥粉末の高温含水量(質量%)と静水圧浮揚率(%)との関係をグラフとして図2(△印)に示す。
この図より分かるように、高温含水量1.46質量%と2.90質量%の範囲内で静水圧浮揚率50%以上の高強度シラスバルーンが得られる。
Reference example 1
Shirasu powder from Kakuto, Ebino-shi, Miyazaki Prefecture (high temperature water content 4.16% by mass, average particle size 62.2 μm) is dried at high temperature at a temperature of 350 to 450 ° C. in an electric furnace, and then pulverized by a jet mill. Shirasu powder samples with different hot water contents ranging from 1.25 wt% to 3.19 wt% were prepared.
Next, in these systems, 3.2 kg of mullite crushed material having a particle size of 1.7 to 2.8 mm was used as a heating medium in the system shown in FIG. 1, the stationary layer height of the heating medium was 164 mm, the raw material supply amount was 8.3 kg / When the gas flow rate was 50 Nm 3 / hour, the firing temperature was continuously fired at 1050 ° C. for 30 minutes to produce a shirasu balloon.
The hydrostatic pressure levitation rate (%) of the obtained shirasu balloon after hydrostatic pressing for 1 minute at 8 MPa was measured, and the relationship between the high-temperature water content (mass%) of the shirasu dry powder and the hydrostatic pressure levitation rate (%) A graph is shown in FIG. 2 (Δ mark).
As can be seen from this figure, a high-strength shirasu balloon having a hydrostatic levitation rate of 50% or more can be obtained within the range of the high-temperature water content of 1.46% by mass and 2.90% by mass.

参考例2
鹿児島県曽於郡大崎町産シラス粉末(高温含水量2.65質量%、平均粒径290.0μm)を、400℃において高温熱風乾燥したのち、サイクロンにより気流分級して高温含水量0.75質量%ないし2.50質量%のシラス乾燥粉末を調製した。
次に、これらのシラス乾燥粉末を参考例1と同様に処理してシラスバルーンを製造し、
得られたシラスバルーンについて8MPaで1分間の静水加圧後の静水圧浮揚率(%)を測定し、シラス乾燥粉末の高温含水量(質量%)と静水圧浮揚率(%)との関係をグラフとして図2(○印)に示す。
この図より分かるように、高温含水量0.90質量%と2.45質量%との範囲内で静水圧浮揚率50%以上の高強度シラスバルーンが得られる。
Reference example 2
Shirasu powder (high water content 2.65% by mass, average particle size 290.0μm) from Osaki-cho, Kagoshima Prefecture, dried at 400 ° C in high temperature hot air, and then classified by air flow with a cyclone to obtain a high temperature water content of 0.75%. % To 2.50% by weight of Shirasu dry powder was prepared.
Next, these shirasu dry powders were processed in the same manner as in Reference Example 1 to produce shirasu balloons,
About the obtained shirasu balloon, the hydrostatic pressure levitation rate (%) after hydrostatic pressing for 1 minute at 8 MPa was measured, and the relationship between the high-temperature water content (mass%) of the shirasu dry powder and the hydrostatic pressure levitation rate (%) A graph is shown in FIG.
As can be seen from this figure, a high-strength shirasu balloon with a hydrostatic levitation rate of 50% or more can be obtained within the range of high-temperature water content of 0.90% by mass and 2.45% by mass.

参考例3
参考例1で得た高温含水量1.96質量%のシラス乾燥粉末を用い、焼成温度を950〜1150℃までの範囲で変える以外は、参考例1と同じ条件で焼成し、シラスバルーンを製造した。
得られたシラスバルーンの8MPaで1分間の静水加圧後の静水圧浮揚率(%)を測定し、焼成温度と静水圧浮揚率(%)との関係をグラフとして図3(△印)に示す。
この図より分かるように、高温含水量3.0重量%以上のシラス原料粉末(高温含水量4.16質量%)を用いた場合、焼成温度985〜1086℃の範囲内で静水圧浮揚率50%以上の高強度シラスバルーンが得られる。
Reference example 3
Shirasu balloons were produced by firing under the same conditions as in Reference Example 1 except that the dried Shirasu powder with a high water content of 1.96% by mass obtained in Reference Example 1 was used and the firing temperature was changed in the range of 950 to 1150 ° C. did.
The obtained shirasu balloon was measured for hydrostatic pressure levitation rate (%) after hydrostatic pressing for 1 minute at 8 MPa, and the relationship between the firing temperature and hydrostatic pressure levitation rate (%) is shown as a graph in FIG. Show.
As can be seen from this figure, when a shirasu raw material powder having a high-temperature water content of 3.0% by weight or more (high-temperature water content of 4.16% by mass) is used, a hydrostatic levitation rate of 50 within a firing temperature range of 985 to 1086 ° C. % Of high strength shirasu balloon can be obtained.

参考例4
参考例2で得た高温含水量1.79質量%のシラス乾燥粉末を用い、参考例3と同様にして焼成温度を変えてシラスバルーンを製造した。
得られたシラスバルーンの8MPaで1分間の静水加圧後の静水圧浮揚率(%)を測定し、焼成温度と静水圧浮揚率(%)との関係をグラフとして図3(○印)に示す。
この図より分かるように、高温含水量3.0重量%未満のシラス原料粉末(高温含水量2.65質量%)を用いた場合、焼成温度985〜1127℃の範囲内で静水圧浮揚率50%以上の高強度シラスバルーンが得られる。
Reference example 4
A shirasu balloon was produced using the dried shirasu powder having a high water content of 1.79% by mass obtained in Reference Example 2 and changing the firing temperature in the same manner as in Reference Example 3.
The obtained shirasu balloon was measured for hydrostatic pressure levitation rate (%) after hydrostatic pressing for 1 minute at 8 MPa, and the relationship between the firing temperature and hydrostatic pressure levitation rate (%) is shown as a graph in FIG. Show.
As can be seen from this figure, when a shirasu raw material powder having a high-temperature water content of less than 3.0% by weight (high-temperature water content of 2.65% by mass) is used, a hydrostatic levitation rate of 50 within a range of a firing temperature of 985 to 1127 ° C % Of high strength shirasu balloon can be obtained.

装置としては、図1に示す装置を用い、シラス原料としては、宮崎県えびの市加久藤産シラス(高温含水量4.16質量%、平均粒径62.2μm)を用いてシラスバルーンを製造した。
すなわち、シラス原料鉱物粉末を、電気炉で350℃にて1時間加熱したのち、乾燥物をジェットミルで粉砕して、平均粒径26.4μm、高温含水量2.64質量%のシラス原料を調製した。
このシラス原料は、図1の導入口1から原料供給部に送入した。この原料供給部は、後出の内燃式媒体流動床炉2から排出された排ガスが送られる排出管3と導入口1と、中空球分離用サイクロン16によりガラス質中空球と分離された排ガスとシラス原料との混合物を原料分画帯域へ供給する管路4から構成されている。
The apparatus shown in FIG. 1 was used as the apparatus, and a shirasu balloon was manufactured using shirasu from Kakuto, Ebino-shi, Miyazaki (high water content 4.16% by mass, average particle size 62.2 μm) as the shira material.
That is, the shirasu material mineral powder was heated in an electric furnace at 350 ° C. for 1 hour, and then the dried product was pulverized with a jet mill to obtain a shirasu material having an average particle size of 26.4 μm and a high-temperature water content of 2.64% by mass. Prepared.
This shirasu raw material was fed into the raw material supply section from the inlet 1 of FIG. This raw material supply unit includes an exhaust pipe 3 and an inlet 1 through which exhaust gas discharged from an internal combustion medium fluidized bed furnace 2 described later is sent, and exhaust gas separated from glassy hollow spheres by a cyclone 16 for separating hollow spheres. It is comprised from the pipe line 4 which supplies the mixture with a shirasu raw material to a raw material fractionation zone.

この原料供給部を通過したシラス原料と排ガス(中空球分離用サイクロン16から排出)との混合物は、逆サイクロン5で粗粒画分が除去され、原料分画帯域に送られ、気流中で乾燥されながら分級され、粒径7〜210μmの範囲の中粒画分のみが、大容量サイクロン6により回収される。その原料がスクリューフィーダ7及び原料供給管8を介して流動床炉の下部へ送られ、コンプレッサ9により供給される空気と燃料ガスとの混合ガスで圧送された。   The mixture of the shirasu raw material and the exhaust gas (discharged from the hollow sphere separation cyclone 16) that has passed through this raw material supply section is removed from the coarse fraction by the reverse cyclone 5, sent to the raw material fractionation zone, and dried in the air stream. As a result, only the medium fraction having a particle size in the range of 7 to 210 μm is recovered by the large-capacity cyclone 6. The raw material was sent to the lower part of the fluidized bed furnace through the screw feeder 7 and the raw material supply pipe 8 and was pressure-fed by a mixed gas of air and fuel gas supplied by the compressor 9.

内燃式媒体流動床炉2は、耐熱ステンレス鋼製の縦長円筒体14(内径129mm、高さ1.8m)とその内部を上部の流動層形成部と下部の風箱部に区画する分散板15と上部の区画に装填された熱媒体から構成されている。   The internal combustion medium fluidized bed furnace 2 includes a vertically long cylindrical body 14 (inner diameter 129 mm, height 1.8 m) made of heat-resistant stainless steel, and a dispersion plate 15 that divides the inside into an upper fluidized bed forming portion and a lower wind box portion. And a heat medium loaded in the upper compartment.

分散板15としては、厚さ4mmのステンレス鋼板に、直径1.7mmの孔を開孔比2.9%の割合で穿孔した多孔板を用いた。熱媒体としては、伊藤忠セラテック製の粒径1.7〜2.8mmのムライト破砕物3.2kgを用いた。   As the dispersion plate 15, a perforated plate in which holes having a diameter of 1.7 mm were drilled in a stainless steel plate having a thickness of 4 mm at an opening ratio of 2.9% was used. As the heat medium, 3.2 kg of mullite crushed material having a particle size of 1.7 to 2.8 mm manufactured by ITOCHU CERATECH was used.

この流動床炉の温度は、上記のコンプレッサ9から圧送される空気と燃料ガスの混合物の供給量及び燃料ガスと空気との混合割合を調節することにより1025℃±5℃で温度制御した。流動床の静止層高を164mmで、スクリューフィーダ7のシラス原料供給量9.3kg/hrで操作した。   The temperature of the fluidized bed furnace was controlled at 1025 ° C. ± 5 ° C. by adjusting the supply amount of the mixture of air and fuel gas fed from the compressor 9 and the mixing ratio of the fuel gas and air. The fluidized bed was operated at a stationary bed height of 164 mm and a shirasu feed rate of 9.3 kg / hr in the screw feeder 7.

シラス原料粉末は、内燃式媒体流動床炉2を経て発泡しシラスバルーンとなり、排気ガスに搬送されてシラスバルーン分離用サイクロン16で排気ガスと分離した。回収したシラスバルーンを浮水分離して得られた高強度シラスバルーンの収率は37.8%であり、平均粒径50.2μm、ゆるみ見掛比重0.60、8MPaで1分間の静水加圧後の静水圧浮揚率は63.0%であった。ゆるみ見掛比重は、ホソカワミクロン製パウダーテスタPT−E型を用いて、専用の金属製カップ(内容積100ml)に専用の振動ふるいを通して20〜30秒で試験粉体を堆積させて、比重を測定した。   The shirasu raw material powder was foamed through the internal-combustion medium fluidized bed furnace 2 to become a shirasu balloon, conveyed to the exhaust gas, and separated from the exhaust gas by the cyclone 16 for shirasu balloon separation. The yield of high-strength shirasu balloons obtained by separating the collected shirasu balloons with water is 37.8%, the average particle size is 50.2 μm, the loose apparent specific gravity is 0.60, and hydrostatic pressure is applied for 1 minute at 8 MPa. The subsequent hydrostatic levitation rate was 63.0%. Loose apparent specific gravity is measured by depositing the test powder in a dedicated metal cup (internal volume 100 ml) through a dedicated vibrating screen in 20-30 seconds using a powder tester PT-E made by Hosokawa Micron. did.

このようにして得た高強度、高真球度シラスバルーンの電子顕微鏡写真(日本電子製JSM−840使用、加速電圧15kV、二次電子像)を図4に示す。その真球度は0.87であった。真球度は、電子顕微鏡倍率150倍の写真を撮影し、最大径MDと、これに直行する径BDの比(BD/MD)で表され、真球度が1に近いほど真球に近くなる。本実施例では測定数20個の平均値を真球度の数値とした。   FIG. 4 shows an electron micrograph (using JSM-840 manufactured by JEOL Ltd., acceleration voltage 15 kV, secondary electron image) of the high-intensity, high sphericity shirasu balloon thus obtained. Its sphericity was 0.87. The sphericity is taken as a ratio of the maximum diameter MD and the diameter BD (BD / MD) perpendicular to this by taking a photograph with an electron microscope magnification of 150 times. The closer the sphericity is to 1, the closer to the sphere. Become. In this example, the average value of 20 measurements was taken as the value of sphericity.

また、このものの粒子断面の電子顕微鏡写真を図5に示す。粒子断面から、高強度シラスバルーンのほとんどが単泡状バルーンからなることが分かる。断面観察は、シラスバルーンを冷間埋込エポキシ系樹脂に分散して24時間室温で硬化させ、320番の耐水研磨紙で粗研磨後、2400番の耐水研磨紙で精密研磨して、乾燥後、金蒸着したものを電子顕微鏡で観察した。   Moreover, the electron micrograph of the particle | grain cross section of this thing is shown in FIG. From the particle cross section, it can be seen that most of the high-strength shirasu balloons consist of single-bubble balloons. For cross-sectional observation, shirasu balloon was dispersed in a cold-embedded epoxy resin, cured at room temperature for 24 hours, coarsely polished with No. 320 water-resistant abrasive paper, precision polished with No. 2400 water-resistant abrasive paper, and dried. The gold-deposited material was observed with an electron microscope.

図1に示すシステムに従い、シラスバルーンを製造した。シラス原料粉末としては、実施例1と同じものを用いた。シラス原料を導入口1から原料供給部に送った。この原料供給部は、後出の内燃式媒体流動床炉2から排出された排ガスが送られる排出管3と導入口1と、シラスバルーン分離用サイクロン16によりシラスバルーンと分離された排ガスとシラス原料との混合物を原料分画帯域へ供給する管路4から構成されている。   A shirasu balloon was manufactured according to the system shown in FIG. As the shirasu raw material powder, the same powder as in Example 1 was used. The Shirasu material was sent from the inlet 1 to the material supply section. This raw material supply unit includes an exhaust pipe 3 and an introduction port 1 through which exhaust gas discharged from an internal combustion medium fluidized bed furnace 2 which will be described later is sent, and exhaust gas and shirasu material separated from a shirasu balloon by a cyclone 16 for shirasu balloon separation. And a conduit 4 for supplying the mixture to the raw material fractionation zone.

この原料供給部を通過したシラス原料と排ガス(シラスバルーン分離用サイクロン16から排出)との混合物は、逆サイクロン5で粗粒画分が除去され、原料分画帯域に送られ、気流中で乾燥されながら分級され、粒径7〜210μmの範囲の中粒画分のみが、大容量サイクロン6により回収される。その原料がスクリューフィーダ7及び原料供給管8を介して流動床炉の下部へ、コンプレッサ9により供給される空気と燃料ガスとの混合ガスによって圧送された。他の焼成条件は、実施例1と同様にして行った。ただし、スクリューフィーダ7の原料供給量を9.1kg/時に変えて、内燃式媒体流動床炉2の温度を1050℃±5℃で温度制御した。図1のシラスバルーン分離用サイクロン16で回収したシラスバルーンを浮水分離して得られた単泡中空球構造を有する高強度シラスバルーンの収率は54.3%であり、平均粒径は50.0μm、8MPaで1分間の静水加圧後の静水圧浮揚率は55.3%であった。このようにして得た高強度、高真球度シラスバルーンの電子顕微鏡写真を図6に示す。このものの真球度は0.90であった。また、このものの粒子断面の電子顕微鏡写真を図7に示す。粒子断面から、高強度シラスバルーンのほとんどが単泡状バルーンからなることが分かる。   The mixture of the shirasu raw material and the exhaust gas (discharged from the shirasu balloon separation cyclone 16) that has passed through this raw material supply section is removed from the coarse fraction by the reverse cyclone 5, sent to the raw material fractionation zone, and dried in the air stream. As a result, only the medium fraction having a particle size in the range of 7 to 210 μm is recovered by the large-capacity cyclone 6. The raw material was pumped to the lower part of the fluidized bed furnace through the screw feeder 7 and the raw material supply pipe 8 by a mixed gas of air and fuel gas supplied by the compressor 9. Other firing conditions were the same as in Example 1. However, the temperature of the internal combustion medium fluidized bed furnace 2 was controlled at 1050 ° C. ± 5 ° C. by changing the feed rate of the screw feeder 7 to 9.1 kg / hour. The yield of the high-strength shirasu balloon having a single-bubble hollow sphere structure obtained by floating and separating the shirasu balloon recovered by the cyclone 16 for separating the shirasu balloon of FIG. 1 is 54.3%, and the average particle size is 50. The hydrostatic levitation rate after hydrostatic pressing for 1 minute at 0 μm and 8 MPa was 55.3%. FIG. 6 shows an electron micrograph of the high strength, high sphericity shirasu balloon thus obtained. The sphericity of this product was 0.90. Moreover, the electron micrograph of the particle | grain cross section of this thing is shown in FIG. From the particle cross section, it can be seen that most of the high-strength shirasu balloons consist of single-bubble balloons.

実施例1で用いたのと同じシラス原料粉末を、400℃の電気炉で1時間高温乾燥したのち、ジェットミルで粉砕し、平均粒径27.9μm、高温含水量2.05質量%の原料シラスを調製した。
次いで、このシラスを用い、原料供給量を9.2kg/時に変えた以外は、実施例1と同じ条件下で30分間連続焼成することにより、8MPaで1分間の静水加圧後の静水圧浮揚率62.2%、真球度0.91、平均粒径48.0μmの単泡及び多泡構造を有するシラスバルーンを28.8%の収率で得た。このようにして得た高強度、高真球度シラスバルーンの電子顕微鏡写真を図8に、また粒子断面の電子顕微鏡写真を図9に示す。
The same shirasu raw material powder used in Example 1 was dried at a high temperature for 1 hour in an electric furnace at 400 ° C. and then pulverized by a jet mill, and a raw material having an average particle size of 27.9 μm and a high temperature water content of 2.05% by mass. Shirasu was prepared.
Next, using this shirasu, hydrostatic flotation after hydrostatic pressing for 1 minute at 8 MPa was performed by continuous firing for 30 minutes under the same conditions as in Example 1 except that the raw material supply amount was changed to 9.2 kg / hour. A shirasu balloon having a single-bubble and multi-bubble structure with a rate of 62.2%, a sphericity of 0.91, and an average particle size of 48.0 μm was obtained in a yield of 28.8%. An electron micrograph of the high-intensity, high sphericity shirasu balloon thus obtained is shown in FIG. 8, and an electron micrograph of the particle cross section is shown in FIG.

実施例1で用いたのと同じシラス原料粉末を、450℃の電気炉で1時間高温乾燥したのち、ジェットミルで粉砕し、平均粒径28.4μm、高温含水量1.96質量%の原料シラスを調製した。
次いで、このシラスを用い、原料供給量を20.0kg/時に変えた以外は、実施例1と同じ条件下で30分間連続焼成することにより、8MPaで1分間の静水加圧後の静水圧浮揚率62.0%、真球度0.90、平均粒径51.3μmのほとんど単泡構造からなるシラスバルーンを32.7%の収率で得た。このようにして得た高強度、高真球度シラスバルーンの電子顕微鏡写真を図10に、また粒子断面の電子顕微鏡写真を図11に示す。
The same shirasu raw material powder used in Example 1 was dried at a high temperature for 1 hour in an electric furnace at 450 ° C. and then pulverized by a jet mill, and a raw material having an average particle size of 28.4 μm and a high temperature water content of 1.96% by mass. Shirasu was prepared.
Then, using this shirasu, hydrostatic flotation after hydrostatic pressing for 1 minute at 8 MPa by continuous firing for 30 minutes under the same conditions as in Example 1 except that the raw material supply rate was changed to 20.0 kg / hour. A shirasu balloon consisting of an almost single-bubble structure with a rate of 62.0%, a sphericity of 0.90 and an average particle size of 51.3 μm was obtained in a yield of 32.7%. FIG. 10 shows an electron micrograph of the high strength, high sphericity shirasu balloon thus obtained, and FIG. 11 shows an electron micrograph of the particle cross section.

実施例1で用いたのと同じシラス原料粉末を、ジェットミルで粉砕したのち、350℃の電気炉で1時間高温乾燥し、平均粒径32.2μm、高温含水量1.72質量%の原料シラスを調製した。
次いで、このシラスを用い、原料供給量を6.1kg/時、焼成温度を1100℃±5℃に変えた以外は、実施例1と同じ条件下で焼成することにより、8MPaで1分間の静水加圧後の静水圧浮揚率50.0%、真球度0.96、平均粒径64.1μmのほとんど単泡構造からなるシラスバルーンを36.8%の収率で得た。このようにして得た高強度、高真球度シラスバルーンの電子顕微鏡写真を図12に、また粒子断面の電子顕微鏡写真を図13に示す。
The same shirasu raw material powder used in Example 1 was pulverized with a jet mill and then dried at a high temperature in an electric furnace at 350 ° C. for 1 hour to obtain a raw material having an average particle size of 32.2 μm and a high temperature water content of 1.72% by mass. Shirasu was prepared.
Next, by using this shirasu, by firing under the same conditions as in Example 1 except that the raw material supply rate was changed to 6.1 kg / hour and the firing temperature was changed to 1100 ° C. ± 5 ° C., still water at 8 MPa for 1 minute A shirasu balloon having an almost single-bubble structure having a hydrostatic levitation rate of 50.0% after pressurization, a sphericity of 0.96, and an average particle size of 64.1 μm was obtained in a yield of 36.8%. An electron micrograph of the high-intensity, high sphericity shirasu balloon thus obtained is shown in FIG. 12, and an electron micrograph of the particle cross section is shown in FIG.

参考例2で用いたのと同じシラス原料粉末を、400℃の高温熱風で乾燥したのち、サイクロンによる空気分級で分級することにより、平均粒径56.9μm、高温含水量1.79質量%の原料シラスを調製した。
次いで、このシラスを用い、原料供給量を9.0kg/時、熱媒体量を3.1kg、熱媒体の静止層高を160mm、焼成温度を1000℃±5℃に変えた以外は、実施例1と同じ条件下で焼成することにより、ほとんどが多泡構造を有する、8MPaで1分間の静水加圧後の静水圧浮揚率54.0%、真球度0.81、平均粒径101.8μmの高強度、高真球度シラスバルーンを33.2%の収率で得た。このものの電子顕微鏡写真を図14に、また粒子断面の電子顕微鏡写真を図15に示す。
The same shirasu raw material powder used in Reference Example 2 was dried with high-temperature hot air at 400 ° C. and then classified by air classification with a cyclone, so that the average particle size was 56.9 μm and the high-temperature water content was 1.79% by mass. A raw material shirasu was prepared.
Then, using this shirasu, except that the raw material supply rate was 9.0 kg / hour, the heating medium amount was 3.1 kg, the stationary layer height of the heating medium was 160 mm, and the firing temperature was changed to 1000 ° C. ± 5 ° C. By firing under the same conditions as in No. 1, the hydrostatic levitation rate after hydrostatic pressing at 8 MPa for 1 minute is 54.0%, the sphericity is 0.81, and the average particle size is 101. An 8 μm high strength, high sphericity shirasu balloon was obtained with a yield of 33.2%. The electron micrograph of this is shown in FIG. 14, and the electron micrograph of the particle cross section is shown in FIG.

比較例
実施例1で用いたのと同じシラス原料粉末を高温乾燥せず、単に振動ミルで粉砕後、粒径30μm以上のものを除いて原料として用いた。このものの平均粒径は17.0μm、高温含水量は4.16質量%であった。
このものを、原料供給量7.3kg/時、熱媒体量2.8kg、熱媒体の静止層高143mm、焼成温度900℃±5℃の条件下で焼成した。このようにして得られたシラスバルーンは、8MPaで1分間の静水加圧後の静水圧浮揚率25.3%、真球度0.78、平均粒径55.7μmをもち、ほとんど多泡構造からなっていた。このようにして得たシラスバルーンの電子顕微鏡写真を図16に、また粒子断面の電子顕微鏡写真を図17に示す。
Comparative Example The same shirasu raw material powder used in Example 1 was not dried at high temperature, but was simply pulverized by a vibration mill and used as a raw material except for particles having a particle size of 30 μm or more. This had an average particle size of 17.0 μm and a high-temperature water content of 4.16% by mass.
This was fired under the conditions of a raw material supply rate of 7.3 kg / hour, a heat medium amount of 2.8 kg, a heat medium static layer height of 143 mm, and a firing temperature of 900 ° C. ± 5 ° C. The shirasu balloon thus obtained has a hydrostatic pressure levitation rate of 25.3% after hydrostatic pressing at 8 MPa for 1 minute, a sphericity of 0.78, an average particle size of 55.7 μm, and has almost a multi-bubble structure. It was made up of. An electron micrograph of the shirasu balloon thus obtained is shown in FIG. 16, and an electron micrograph of the particle cross section is shown in FIG.

本発明方法は、軽量フィラー材料として好適な高強度、高真球度のシラスバルーンの製造方法として利用することができる。   The method of the present invention can be used as a method for producing a high strength, high sphericity shirasu balloon suitable as a lightweight filler material.

内燃式媒体流動床炉を用いて焼成を行う場合の略解説明図。Brief explanation drawing in the case of baking using an internal combustion medium fluidized bed furnace. 参考例1及び参考例2で得たシラス乾燥粉末の高温含水量(質量%)と静水圧浮揚率(%)との関係を示すグラフ。The graph which shows the relationship between the high-temperature water content (mass%) of the shirasu dry powder obtained by the reference example 1 and the reference example 2, and a hydrostatic pressure floating rate (%). 参考例3及び参考例4で得たシラスバルーンの焼成温度(℃)と静水圧浮揚率(%)との関係を示すグラフ。The graph which shows the relationship between the calcination temperature (degreeC) of a shirasu balloon obtained in the reference example 3 and the reference example 4, and a hydrostatic pressure levitation rate (%). 実施例1で得た高強度、高真球度シラスバルーンの電子顕微鏡写真図。4 is an electron micrograph of a high-strength, high-sphericity shirasu balloon obtained in Example 1. FIG. 実施例1で得た高強度、高真球度シラスバルーンの粒子断面の電子顕微鏡写真図。The electron micrograph figure of the particle cross section of the high intensity | strength and high sphericity shirasu balloon obtained in Example 1. FIG. 実施例2で得た高強度、高真球度シラスバルーンの電子顕微鏡写真図。The electron micrograph figure of the high intensity | strength and high sphericity shirasu balloon obtained in Example 2. FIG. 実施例2で得た高強度、高真球度シラスバルーンの粒子断面の電子顕微鏡写真図。The electron micrograph figure of the particle cross section of the high intensity | strength and high sphericity shirasu balloon obtained in Example 2. FIG. 実施例3で得た高強度、高真球度シラスバルーンの電子顕微鏡写真図。The electron microscope photograph figure of the high intensity | strength and high sphericity shirasu balloon obtained in Example 3. FIG. 実施例3で得た高強度、高真球度シラスバルーンの粒子断面の電子顕微鏡写真図。The electron micrograph figure of the particle section of the high intensity and high sphericity shirasu balloon obtained in Example 3. 実施例4で得た高強度、高真球度シラスバルーンの電子顕微鏡写真図。The electron microscope photograph figure of the high intensity | strength and high sphericity shirasu balloon obtained in Example 4. FIG. 実施例4で得た高強度、高真球度シラスバルーンの粒子断面の電子顕微鏡写真図。The electron micrograph figure of the particle cross section of the high intensity | strength and high sphericity shirasu balloon obtained in Example 4. FIG. 実施例5で得た高強度、高真球度シラスバルーンの電子顕微鏡写真図。The electron microscope photograph figure of the high intensity | strength and high sphericity shirasu balloon obtained in Example 5. FIG. 実施例5で得た高強度、高真球度シラスバルーンの粒子断面の電子顕微鏡写真図。The electron microscope photograph figure of the particle | grain cross section of the high intensity | strength and high sphericity shirasu balloon obtained in Example 5. FIG. 実施例6で得た高強度、高真球度シラスバルーンの電子顕微鏡写真図。The electron microscope photograph figure of the high intensity | strength and high sphericity shirasu balloon obtained in Example 6. FIG. 実施例6で得た高強度、高真球度シラスバルーンの粒子断面の電子顕微鏡写真図。The electron microscope photograph figure of the particle | grain cross section of the high intensity | strength and high sphericity shirasu balloon obtained in Example 6. FIG. 比較例で得たシラスバルーンの電子顕微鏡写真図。The electron microscope photograph figure of the shirasu balloon obtained in the comparative example. 比較例で得たシラスバルーンの粒子断面の電子顕微鏡写真図。The electron micrograph figure of the particle | grain cross section of the shirasu balloon obtained by the comparative example.

符号の説明Explanation of symbols

1 導入口
2 流動床炉
3 排出管
4,12 管路
5 逆サイクロン
6 大容量サイクロン
7 スクリューフィーダ
8 原料供給管
9 コンプレッサ
10 燃料ガス導入口
11 吸引ブロア
13 小容量サイクロン
14 縦長円筒体
15 分散板
16 中空球分離用サイクロン
DESCRIPTION OF SYMBOLS 1 Inlet 2 Fluidized bed furnace 3 Discharge pipes 4, 12 Pipe line 5 Reverse cyclone 6 Large capacity cyclone 7 Screw feeder 8 Raw material supply pipe 9 Compressor 10 Fuel gas inlet 11 Suction blower 13 Small capacity cyclone 14 Long cylindrical body 15 Dispersion plate 16 Cyclone for hollow sphere separation

Claims (4)

高温含水量3.0質量%以上のシラス原鉱粉末を350〜500℃において、高温含水量1.46〜2.90質量%まで高温乾燥し、次いで内燃式媒体流動床炉を用いて980〜1090℃の温度範囲内で焼成することを特徴とする、8MPaで1分間の静水加圧後の静水圧浮揚率50%以上に相当する耐圧強度及び0.80以上の真球度を有する高強度、高真球度シラスバルーンの製造方法。   Shirasu ore powder having a high-temperature water content of 3.0% by mass or more is dried at 350 to 500 ° C. to a high-temperature water content of 1.46 to 2.90% by mass, and then 980 to 980 using an internal combustion medium fluidized bed furnace. High strength having a compressive strength equivalent to a hydrostatic pressure levitation rate of 50% or more after hydrostatic pressing at 8 MPa for 1 minute and a sphericity of 0.80 or more, characterized by firing within a temperature range of 1090 ° C. The manufacturing method of a high sphericity shirasu balloon. 高温含水量3.0質量%未満のシラス原鉱粉末を350〜500℃において、高温含水量0.90〜2.45質量%まで高温乾燥し、次いで内燃式媒体流動床炉を用いて980〜1130℃の温度範囲内で焼成することを特徴とする、8MPaで1分間の静水加圧後の静水圧浮揚率50%以上に相当する耐圧強度及び0.80以上の真球度を有する高強度、高真球度シラスバルーンの製造方法。   Shirasu ore powder having a high temperature water content of less than 3.0% by mass is dried at 350 to 500 ° C. to a high temperature water content of 0.90 to 2.45% by mass, and then 980 to 980 using an internal medium fluidized bed furnace. High strength having a compressive strength equivalent to 50% or higher hydrostatic pressure levitation rate after hydrostatic pressing at 8 MPa for 1 minute and a sphericity of 0.80 or higher, characterized by firing within a temperature range of 1130 ° C. The manufacturing method of a high sphericity shirasu balloon. 得られる高強度シラスバルーンの90質量%以上が単泡状バルーンである請求項1記載の高強度、高真球度シラスバルーンの製造方法。   The method for producing a high strength, high sphericity shirasu balloon according to claim 1, wherein 90% by mass or more of the obtained high strength shirasu balloon is a single-bubble balloon. 真球度0.85以上の高強度シラスバルーンを得る請求項1又は2記載の高強度、高真球度シラスバルーンの製造方法。   The method for producing a high strength, high sphericity shirasu balloon according to claim 1 or 2, wherein a high strength shirasu balloon having a sphericity of 0.85 or more is obtained.
JP2008230146A 2008-09-08 2008-09-08 Manufacturing method of high strength, high sphericity shirasu balloon Active JP5145498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230146A JP5145498B2 (en) 2008-09-08 2008-09-08 Manufacturing method of high strength, high sphericity shirasu balloon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230146A JP5145498B2 (en) 2008-09-08 2008-09-08 Manufacturing method of high strength, high sphericity shirasu balloon

Publications (2)

Publication Number Publication Date
JP2010064903A JP2010064903A (en) 2010-03-25
JP5145498B2 true JP5145498B2 (en) 2013-02-20

Family

ID=42190817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230146A Active JP5145498B2 (en) 2008-09-08 2008-09-08 Manufacturing method of high strength, high sphericity shirasu balloon

Country Status (1)

Country Link
JP (1) JP5145498B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076197B2 (en) * 2008-09-12 2012-11-21 株式会社プリンシプル Method for producing high-strength glassy hollow sphere
JP2012116690A (en) * 2010-11-30 2012-06-21 Taiheiyo Materials Corp High durability perlite and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5210664B2 (en) * 1973-06-15 1977-03-25
JP3028474B2 (en) * 1997-06-25 2000-04-04 鹿児島県 Method and apparatus for producing fine hollow glass spheres
JP2007320805A (en) * 2006-05-31 2007-12-13 Taiheiyo Material Kk Hard foamed pearlite and its manufacturing method

Also Published As

Publication number Publication date
JP2010064903A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5077848B2 (en) High-strength glassy lightweight filler material
Bahrami et al. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives
JP5576510B2 (en) Method for refining stainless steel slag and steel slag for metal recovery
JP6756951B2 (en) Fine aggregate, pumice stone, volcanic glass, mixed cement and perlite
CN102083540A (en) Upgraded combustion ash and its method of production
CN112119050A (en) Particulate mixture comprising regenerated aluminum silicate material
CA2621615C (en) Separation of cenospheres from fly ash
JP5194202B2 (en) Manufacturing method of high-strength glassy balloon
KR20140079818A (en) Method for granulation of sintering raw material
JP5145498B2 (en) Manufacturing method of high strength, high sphericity shirasu balloon
CN104550026B (en) Method for sorting limestone chips by utilizing fluidized bed
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
US6528446B1 (en) Process for making clay spheroids
JP5035563B2 (en) Manufacturing method of high strength, high sphericity glassy fine hollow sphere
JP2648116B2 (en) Method for producing fine hollow glass sphere
JP5070505B2 (en) Manufacturing method of high sphericity shirasu balloon and high sphericity shirasu balloon obtained thereby
US10167423B2 (en) Granulated slag products and processes for their production
JP4730689B2 (en) Waste landfill structure, slag sand for fine-grained layer of waste landfill structure, and production method thereof
AU2008246566B2 (en) Process for production of low-specific-gravity hollow particles
JP2019006610A (en) Volcanic ejecta compound, method of producing the same, concrete composition, and cured product
RU2212276C2 (en) Method of separation of cenospheres of fly ashes of thermal power stations
JP6912696B2 (en) Hydraulic lime and its manufacturing method
JP5467669B2 (en) PERLITE AND MANUFACTURING METHOD THEREOF
TWI499456B (en) Method for upgrading combustion ash
JP5702638B2 (en) Impact-resistant perlite and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110901

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

R150 Certificate of patent or registration of utility model

Ref document number: 5145498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250