JP2007320805A - Hard foamed pearlite and its manufacturing method - Google Patents

Hard foamed pearlite and its manufacturing method Download PDF

Info

Publication number
JP2007320805A
JP2007320805A JP2006152780A JP2006152780A JP2007320805A JP 2007320805 A JP2007320805 A JP 2007320805A JP 2006152780 A JP2006152780 A JP 2006152780A JP 2006152780 A JP2006152780 A JP 2006152780A JP 2007320805 A JP2007320805 A JP 2007320805A
Authority
JP
Japan
Prior art keywords
firing
pearlite
firing temperature
less
compressive strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006152780A
Other languages
Japanese (ja)
Inventor
Yoshiji Nishi
芳次 西
Hideki Wachi
秀樹 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIHEIYO PERLITE KK
Taiheiyo Materials Corp
Original Assignee
TAIHEIYO PERLITE KK
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIHEIYO PERLITE KK, Taiheiyo Materials Corp filed Critical TAIHEIYO PERLITE KK
Priority to JP2006152780A priority Critical patent/JP2007320805A/en
Publication of JP2007320805A publication Critical patent/JP2007320805A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • C04B14/185Perlite expanded

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and stably manufacturing hard foamed pearlite being fine, spherical and highly strong where non-granulated rock grains are used as a raw material and to provide the hard pearlite. <P>SOLUTION: Rhyolitic non-granulated rock grains having an average grain diameter of 5 mm or less and a moisture content of 6 wt.% or less, favorably 3 wt.% or less, are used as the raw material. Different baking processes corresponding to the average grain diameter and the moisture content of the rock grains are performed. Specifically, the hard foamed pearlite having an average grain diameter of 5 mm or less, a sphericity of 0.7 or more and a compressive strength of 25 N/mm<SP>2</SP>or more is manufactured by one-stage combustion for raw material rock grains having an average grain diameter of 0.6-5 mm and by two-stage combustion for raw material rock grains having an average grain diameter of 50 μm-0.6 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微細な高強度の球状硬質発泡パーライトとその製造方法に関する。より詳しくは、本発明は従来品よりも高強度であって真球度の高い硬質発泡パーライトとその製造方法に関する。 The present invention relates to a fine high-strength spherical hard foam pearlite and a method for producing the same. More specifically, the present invention relates to a hard foam pearlite having higher strength and higher sphericity than conventional products and a method for producing the same.

塗料、樹脂、建材の軽量増量材として微細な高強度の発泡体が望まれている。現在、軽量増量材としてパーライトやシラス質発泡体などが多く用いられている。軽量発泡体として用いられているパーライトは、真珠岩、黒曜石、松脂岩などのガラス質流紋岩類を粉砕して高温で焼成発泡させたものであり、シラス質発泡体は軽石などのガラス質を含む火山噴出物を高温処理して発泡させたものである。しかし、従来のパーライトやシラス質発泡体は強度が低かったり、形状が変形しているものが多い。 Fine, high-strength foams are desired as light weight extenders for paints, resins, and building materials. At present, pearlite, shirasu foam, and the like are often used as light weight extenders. Perlite used as a lightweight foam is made by crushing vitreous rhyolites such as nacre, obsidian, and pine sebite, and firing and firing them at high temperatures. The volcanic ejecta containing is foamed by high-temperature treatment. However, many conventional perlite and shirasu foams have low strength or deformed shapes.

例えば、従来の発泡パーライトにおいて、球状に近いものの圧縮強度(静水圧)は概ね10N/mm2以下であり、高強度のものは形状が歪であり、球形とはほど遠い。また市販されているシラス質発泡体の圧縮強度は例えば80〜100kg/cm2(静水圧)程度である。 For example, in conventional foamed pearlite, the compressive strength (hydrostatic pressure) of a nearly spherical shape is approximately 10 N / mm 2 or less, and the high strength one is distorted in shape and far from a spherical shape. The compressive strength of a commercially available shirasu foam is, for example, about 80 to 100 kg / cm 2 (hydrostatic pressure).

一方、球形であって高強度の軽量体としてフライアッシュバルーン(以下FAB)が知られている。しかし、FABは発電等の石炭燃焼の際に発生するアッシュ中に含まれる極微量の発泡体を分離回収した副産物であり、数量が少なく、しかも粒径等のコントロールができないと云う問題がある。 On the other hand, a fly ash balloon (hereinafter referred to as FAB) is known as a spherical and high-strength lightweight body. However, FAB is a byproduct obtained by separating and recovering a very small amount of foam contained in ash generated during coal combustion such as power generation, and there is a problem that the quantity is small and the particle size cannot be controlled.

従来、発泡パーライトの製造方法として、粒度調整した真珠岩粒子等を100〜400℃で予備加熱した後に三段階に加熱焼成して発泡させる製造方法が知られている(特許文献1)。しかし、この製造方法で得られる発泡パーライトは20kg/cm2の圧縮強度下での残留率が概ね40%以下であり、強度が低い。また、真珠岩等の天然ガラス質岩石粒を600〜900℃で予備加熱した後に900〜1000℃で発泡加熱する製造方法が知られている(特許文献2)。この方法は予備加熱することによって発泡倍率を高めることを意図しているが、原料粉体の粒径および含水量に応じた焼成温度の制御を行うものではないので、製造される発泡体の強度は低い。 Conventionally, as a method for producing foamed pearlite, a production method in which pearlite particles adjusted in particle size are preheated at 100 to 400 ° C. and then fired and fired in three stages is known (Patent Document 1). However, the foamed pearlite obtained by this production method has a residual rate of approximately 40% or less under a compressive strength of 20 kg / cm 2 and is low in strength. In addition, a production method is known in which natural glassy rock particles such as pearlite are preheated at 600 to 900 ° C. and then foamed and heated at 900 to 1000 ° C. (Patent Document 2). Although this method is intended to increase the expansion ratio by preheating, it does not control the firing temperature according to the particle size and water content of the raw material powder, so the strength of the foam produced Is low.

また、成分調整した造粒物を用い、本焼成による発泡後に、さらに仕上げ焼成によって表面にガラス質層(溶融焼結層)を形成させる発泡軽量体の製造方法が知られている(特許文献3)。この製造方法によれば、圧壊強度800〜1100Nの発泡体を得ることができるが、直径5〜15mmの造粒物を原料とする方法であり、非造粒物を原料とするものではなく、また5mm以下の微細な発泡体を製造する方法とは異なる。
特開平07−277851号公報 特開昭58−099128号公報 特願2001−19504号公報
Further, a method for producing a lightweight foam body is known in which a granulated product having components adjusted is used, and after the foaming by main firing, a glassy layer (melted sintered layer) is formed on the surface by finish firing (Patent Document 3). ). According to this production method, a foam having a crushing strength of 800 to 1100 N can be obtained, but this is a method using a granulated material having a diameter of 5 to 15 mm as a raw material, and not using a non-granulated material as a raw material. Moreover, it differs from the method of manufacturing a fine foam of 5 mm or less.
Japanese Patent Application Laid-Open No. 07-277851 JP 58-099128 A Japanese Patent Application No. 2001-19504

本発明は、従来の発泡軽量体とその製造方法における上記問題を解決したものであり、非造粒岩石粒を原料として微細な球状の高強度硬質発泡パーライトを効率よく安定に製造する製造方法とその硬質パーライトを提供する。 The present invention solves the above-mentioned problems in the conventional foamed lightweight body and its production method, and a production method for efficiently and stably producing fine spherical high-strength hard foamed pearlite using non-granulated rock grains as a raw material, and The hard perlite is provided.

本発明は、以下の構成によって上記課題を解決した微細な高強度の球状硬質発泡パーライトとその製造方法に関する。
(1)流紋岩質の非造粒岩石粒を原料とした発泡体であって、平均粒径5mm以下、真球度0.7以上、圧縮強度25N/mm2以上であることを特徴とする硬質発泡パーライト。
(2)平均粒径0.6mm〜5mm、含水量6wt%以下の流紋岩質の非造粒岩石粒を一段焼成して発泡硬質パーライトを製造する方法であって、焼成後の発泡パーライトの圧縮強度に応じて以下の温度範囲で焼成を行うことを特徴とする硬質発泡パーライトの製造方法。
(イ)圧縮強度25N/mm2〜40N/mm2の場合:焼成温度970℃〜1030℃
(ロ)圧縮強度40N/mm2〜55N/mm2の場合:焼成温度950℃〜1010℃
(ハ)圧縮強度55N/mm2以上の場合:焼成温度900℃〜970℃
(3)流紋岩質の非造粒岩石粒を仮焼成および本焼成の二段焼成して発泡硬質パーライトを製造する方法であり、平均粒径0.1mm以下であって含水量3〜6wt%の岩石粒を用い、または平均粒径50μm〜0.6mmであって含水量3%以下の岩石粒を用い、本焼成温度T1が900℃〜1000℃であり、仮焼成温度T0が本焼成温度T1よりも50℃〜200℃低い温度〔T0=T1−(20〜200℃)〕であることを特徴とする硬質発泡パーライトの製造方法。
(4)上記(3)の製造方法において、焼成後の発泡パーライトの圧縮強度に応じて以下に示す温度範囲で二段焼成を行う硬質発泡パーライトの製造方法。
(ニ)圧縮強度25N/mm2〜40N/mm2の場合:一次焼成温度900℃〜800℃、二次焼成温度970℃〜1020℃
(ホ)圧縮強度40N/mm2〜55N/mm2の場合:一次焼成温度850℃〜950℃、二次焼成温度950℃〜1010℃
(ヘ)圧縮強度55N/mm2以上の場合:一次焼成温度850℃〜970℃、二次焼成温度970℃〜1020℃
The present invention relates to a fine high-strength spherical hard foam pearlite and a method for producing the same, which have solved the above-described problems with the following configuration.
(1) A foam made from rhyolite non-granulated rock particles, characterized by an average particle size of 5 mm or less, a sphericity of 0.7 or more, and a compressive strength of 25 N / mm 2 or more. Hard foam perlite.
(2) A method of producing foamed hard pearlite by firing one stage of rhyolite non-granulated rock grains having an average particle size of 0.6 mm to 5 mm and a water content of 6 wt% or less. A method for producing a hard foam pearlite, comprising firing in the following temperature range according to the compressive strength.
(B) In the case of compressive strength 25N / mm 2 ~40N / mm 2 : firing temperature 970 ℃ ~1030 ℃
(B) if the compression strength 40N / mm 2 ~55N / mm 2 : firing temperature 950 ℃ ~1010 ℃
(C) When the compressive strength is 55 N / mm 2 or more: firing temperature 900 ° C. to 970 ° C.
(3) A method for producing foamed hard pearlite by pre-firing and main-firing two-stage firing of rhyolite-like non-granulated rock grains, having an average particle diameter of 0.1 mm or less and a water content of 3 to 6 wt. % Rock grains, or rock grains having an average particle size of 50 μm to 0.6 mm and a water content of 3% or less, the main firing temperature T 1 is 900 ° C. to 1000 ° C., and the temporary firing temperature T 0 is A method for producing hard foamed pearlite, which is a temperature [T 0 = T 1 − (20 to 200 ° C.)] lower than the main firing temperature T 1 by 50 ° C. to 200 ° C.
(4) The method for producing rigid foamed pearlite in the production method of (3), wherein the two-stage firing is performed in the temperature range shown below according to the compressive strength of the foamed perlite after firing.
(D) For compressive strength of 25 N / mm 2 to 40 N / mm 2 : primary firing temperature 900 ° C. to 800 ° C., secondary firing temperature 970 ° C. to 1020 ° C.
(E) if the compression strength 40N / mm 2 ~55N / mm 2 : primary firing temperature 850 ° C. to 950 ° C., the secondary firing temperature 950 ℃ ~1010 ℃
(F) When the compressive strength is 55 N / mm 2 or more: primary firing temperature 850 ° C. to 970 ° C., secondary firing temperature 970 ° C. to 1020 ° C.

本発明の硬質発泡パーライトは、流紋岩質の非造粒岩石粒を原料とした平均粒径5mm以下の微細発泡体であり、真球度0.7以上の球形を有し、圧縮強度25N/mm2以上の高強度軽量体であるので、塗料、樹脂、建材などの軽量増量材として好適であり、上記分野を含む広い用途において軽量材料として広範に使用することができる。 The hard foamed pearlite of the present invention is a fine foam having an average particle size of 5 mm or less made of rhyolite-like non-granulated rock grains, has a spherical shape with a sphericity of 0.7 or more, and a compressive strength of 25 N. Since it is a high-strength lightweight body of / mm 2 or more, it is suitable as a lightweight extender such as paints, resins, and building materials, and can be widely used as a lightweight material in a wide range of applications including the above fields.

本発明の製造方法は、流紋岩質の非造粒岩石粒を原料として用い、原料岩石粒の平均粒径および含水量に応じて焼成プロセスを制御することによって、真球度および強度を高めた硬質発泡パーライトを製造する方法であり、本発明の製造方法によれば、上記真球度および圧縮強度の硬質発泡パーライトを製造することができる。 The production method of the present invention uses rhyolitic non-granulated rock grains as a raw material, and increases the sphericity and strength by controlling the firing process according to the average particle diameter and water content of the raw rock grains. According to the manufacturing method of the present invention, it is possible to manufacture a hard foam pearlite having the above sphericity and compressive strength.

以下、本発明を具体的に説明する。
本発明は、平均粒径5mm以下、および含水量6wt%以下の流紋岩質の非造粒岩石粒を原料として用い、この原料岩石粒の平均粒径および含水量に応じて焼成プロセスを制御することによって、真球度および強度を高めた硬質発泡パーライトを提供するものであり、具体的には、平均粒径5mm以下の微細発泡体であり、真球度0.7以上の球形を有し、圧縮強度25N/mm2以上の高強度硬質発泡パーライトを提供する。
The present invention will be specifically described below.
In the present invention, rhyolitic non-granulated rock grains having an average particle diameter of 5 mm or less and a water content of 6 wt% or less are used as raw materials, and the firing process is controlled according to the average particle diameter and water content of the raw rock grains. Thus, a hard foam pearlite with improved sphericity and strength is provided. Specifically, it is a fine foam having an average particle size of 5 mm or less, and has a spherical shape with a sphericity of 0.7 or more. In addition, a high-strength hard foam pearlite having a compressive strength of 25 N / mm 2 or more is provided.

本発明の硬質発泡パーライトは流紋岩質の非造粒岩石粒を原料として用いたものである。原料として造粒物を用いないので、造粒工程が不要であり、粉砕した流紋岩質岩石粒を篩い分けなどによって粒度調整すれば良い。流紋岩質岩石は真珠岩、黒曜石、松脂岩などのガラス質成分を含む岩石であり、岩石種に応じた構造水を含有している。 The hard foam pearlite of the present invention uses rhyolite non-granulated rock grains as a raw material. Since a granulated material is not used as a raw material, a granulation step is unnecessary, and the particle size may be adjusted by sieving the crushed rhyolite rock particles. Rhyolite rocks are rocks containing vitreous components such as pearlite, obsidian, and pine stone, and contain structural water according to the rock type.

本発明において原料として用いる流紋岩質の非造粒岩石粒は、平均粒径5mm以下であって含水量6wt%以下、好ましくは含水量3%以下のものである。平均粒径が5mmを上回ると粒子内部のクラック等のために発泡体が歪み、球状になり難い。また、含水量が6wt%より多いと過剰発泡して強度が低下すると共に形状が歪み、真球度の高い球状発泡体を得るのが難しい。 Rhyolite non-granulated rock grains used as a raw material in the present invention have an average particle diameter of 5 mm or less and a water content of 6 wt% or less, preferably a water content of 3% or less. When the average particle size exceeds 5 mm, the foam is distorted due to cracks inside the particles, and it is difficult to form a spherical shape. On the other hand, if the water content is more than 6 wt%, excessive foaming causes a decrease in strength and distortion of the shape, making it difficult to obtain a spherical foam having a high sphericity.

一般に黒曜石の含水量は2wt%以下であるので、基本的に黒曜石は原料として適する。また、真珠岩の含水量は一般に3〜6wt%であるので、真珠岩も原料として用いることができる。黒曜石と真珠岩の中間的な組織を有するマレカナイト等も原料として用いることができる。一方、松脂岩の含水量は概ね4〜10wt%であるので、含水量が少ないものを用いると良い。 In general, obsidian has a water content of 2 wt% or less, and obsidian is basically suitable as a raw material. Further, since the water content of nacre is generally 3 to 6 wt%, nacre can also be used as a raw material. Malecanite having an intermediate structure between obsidian and pearlite can also be used as a raw material. On the other hand, since the water content of pine sebum is approximately 4 to 10 wt%, it is preferable to use a material having a low water content.

本発明の製造方法は、平均粒径5mm以下および含水量6wt%以下、好ましくは含水量3wt%以下の流紋岩質の非造粒岩石粒について、平均粒径および含水量に応じて異なった焼成プロセスを行う。具体的には、平均粒径0.6mm〜5mmの原料岩石粒について一段焼成を行い、平均粒径50μm〜0.6mmの原料岩石粒については二段焼成を行う。 The production method of the present invention varied depending on the average particle size and water content of rhyolite non-granulated rock particles having an average particle size of 5 mm or less and a water content of 6 wt% or less, preferably 3 wt% or less. Perform the firing process. Specifically, one-stage firing is performed on raw rock particles having an average particle diameter of 0.6 mm to 5 mm, and two-stage firing is performed on raw rock grains having an average particle diameter of 50 μm to 0.6 mm.

原料として平均粒径0.6mm〜5mmの原料岩石粒を用いる場合の一段焼成は、発泡パーライトの圧縮強度の各段階に応じて、以下の温度範囲で焼成を行うと良い。各場合において以下に示す焼成温度範囲を外れると目的の圧縮強度を有する発泡パーライトを得るのが難しい。焼成時間は5〜10分が適当である。 In the case of using raw material rock grains having an average particle diameter of 0.6 mm to 5 mm as a raw material, it is preferable to perform the firing in the following temperature range according to each stage of the compressive strength of the foamed pearlite. In each case, it is difficult to obtain foamed pearlite having the desired compressive strength if it is outside the firing temperature range shown below. The firing time is suitably 5 to 10 minutes.

(イ)圧縮強度25N/mm2〜40N/mm2の場合:焼成温度970℃〜1030℃
(ロ)圧縮強度40N/mm2〜55N/mm2の場合:、焼成温度950℃〜1010℃
(ハ)圧縮強度55N/mm2以上の場合:焼成温度900℃〜970℃
(B) In the case of compressive strength 25N / mm 2 ~40N / mm 2 : firing temperature 970 ℃ ~1030 ℃
(B) if the compression strength 40N / mm 2 ~55N / mm 2 :, firing temperature 950 ℃ ~1010 ℃
(C) When the compressive strength is 55 N / mm 2 or more: firing temperature 900 ° C. to 970 ° C.

上記一段焼成においては、原料岩石粒の粒径が大きいほど上記各焼成温度範囲内において焼成温度を大きく下げるのが好ましい。例えば、圧縮強度25N/mm2〜40N/mm2の発泡パーライトを製造する場合〔上記(1)〕、原料岩石粒の平均粒径が5mmに近いほど、焼成温度は970℃に近いほうが好ましく、一方、原料岩石粒の平均粒径が0.6mmに近いほど、焼成温度は1030℃に近いほうが好ましい。上記(2)および上記(3)の場合も同様である。 In the one-stage firing, it is preferable that the firing temperature is greatly lowered within the above firing temperature ranges as the particle size of the raw material rock grains increases. For example, when producing foamed pearlite with a compressive strength of 25 N / mm 2 to 40 N / mm 2 [above (1)], the closer the average particle diameter of the raw rock particles is to 5 mm, the closer the firing temperature is to 970 ° C., On the other hand, the closer the average particle size of the raw rock particles is to 0.6 mm, the closer the firing temperature is to 1030 ° C. The same applies to the cases (2) and (3).

原料として平均粒径50μm〜0.6mmの岩石粒については、含水量に応じた平均粒径の岩石粒を用いる。具体的には、含水量3wt%以下の場合には平均粒径50μm〜0.6mmの岩石粒を用いることができ、以下の焼成プロセスを適用することによって圧縮強度および真球度の高い硬質発泡パーライトを得ることができる。一方、含水量が3〜6wt%の場合には平均粒径0.1mm以下の岩石粒を用いる。含水量が3〜6wt%の場合、平均粒径0.1mmより大きい岩石粒を用いると形状が歪み、真球度の高い硬質発泡パーライトを得るのが難しい。 For rock particles having an average particle size of 50 μm to 0.6 mm as a raw material, rock particles having an average particle size according to the water content are used. Specifically, when the water content is 3 wt% or less, rock grains having an average particle size of 50 μm to 0.6 mm can be used, and a hard foam having high compressive strength and high sphericity by applying the following firing process. Perlite can be obtained. On the other hand, when the water content is 3 to 6 wt%, rock grains having an average particle diameter of 0.1 mm or less are used. When the water content is 3 to 6% by weight, the use of rock grains having an average particle size of more than 0.1 mm makes the shape distorted, making it difficult to obtain hard foamed pearlite having a high sphericity.

上記二段焼成においては、本焼成温度T1が900℃〜1000℃であり、仮焼成温度T0が本焼成温度T1よりも50℃〜200℃低い温度T0=T1−(20〜200℃)であることが好ましい。従来の製造方法では、二段焼成の焼成温度を段階的に定めていても、各段階の焼成温度が重複範囲を含んでいるため、例えば、連続焼成を行う場合には、仮焼成と本焼成との限界が不明瞭になり、焼成プロセスの十分な制御を行うことができないと云う問題がある。 In the above-described two-stage firing, the main firing temperature T 1 is 900 ° C. to 1000 ° C., and the temporary firing temperature T 0 is a temperature T 0 = T 1 − (20 to 20 ° C.) lower than the main firing temperature T 1. 200 ° C.). In the conventional manufacturing method, even if the firing temperature of the two-stage firing is determined in stages, the firing temperature at each stage includes an overlapping range. For example, when performing continuous firing, provisional firing and main firing are performed. However, there is a problem in that the firing process cannot be sufficiently controlled.

上記二段焼成の時間は、一次焼成5〜10分、二次焼成7〜10分が適当である。また、この二段焼成は、一段目の焼成後に温度を下げて冷却した後に再び昇温して二段目の焼成を行う方法でも良く、または中間の冷却工程を設けずに、一段目の焼成後に更に昇温して二段目の焼成を行う連続焼成でも良い。 The time for the second firing is suitably 5 to 10 minutes for primary firing and 7 to 10 minutes for secondary firing. In addition, this two-stage baking may be a method in which the temperature is lowered and cooled after the first stage baking and then heated again to perform the second stage baking, or the first stage baking is performed without providing an intermediate cooling step. Continuous firing may be performed in which the temperature is further increased and the second-stage firing is performed later.

本発明の二段焼成方法では、具体的な本焼成温度T1に基づき、所定の温度差を設けた仮焼成温度T0によって仮焼成を行うことによって、焼成プロセスを十分に制御することができる。本焼成温度T1が900℃より低いと十分な発泡状態にならず、1000℃より高いと過剰発泡になりやすい。 In the two-stage firing method of the present invention, the firing process can be sufficiently controlled by performing the preliminary firing at the temporary firing temperature T 0 with a predetermined temperature difference based on the specific main firing temperature T 1. . When the main firing temperature T 1 is lower than 900 ° C., a sufficient foaming state is not achieved, and when it is higher than 1000 ° C., excessive foaming is likely to occur.

本発明の二段焼成方法においても、発泡パーライトの圧縮強度の各段階に応じた焼成温度範囲で焼成を行うのが好ましい。具体的には、以下の温度範囲で二段焼成を行うと良い。各場合において以下に示す焼成温度範囲を外れると目的の圧縮強度を有する発泡パーライトを得るのが難しい。 Also in the two-stage firing method of the present invention, firing is preferably performed in a firing temperature range corresponding to each stage of the compressive strength of the foamed pearlite. Specifically, the two-stage baking is preferably performed in the following temperature range. In each case, it is difficult to obtain foamed pearlite having the desired compressive strength if it is outside the firing temperature range shown below.

(ニ)圧縮強度25N/mm2〜40N/mm2の場合:一次焼成温度900℃〜800℃、二次焼成温度970℃〜1020℃
(ホ)圧縮強度40N/mm2〜55N/mm2の場合:一次焼成温度850℃〜950℃、二次焼成温度950℃〜1010℃
(ヘ)圧縮強度55N/mm2以上の場合:一次焼成温度850℃〜970℃、二次焼成温度970℃〜1020℃
(D) For compressive strength of 25 N / mm 2 to 40 N / mm 2 : primary firing temperature 900 ° C. to 800 ° C., secondary firing temperature 970 ° C. to 1020 ° C.
(E) if the compression strength 40N / mm 2 ~55N / mm 2 : primary firing temperature 850 ° C. to 950 ° C., the secondary firing temperature 950 ℃ ~1010 ℃
(F) When the compressive strength is 55 N / mm 2 or more: primary firing temperature 850 ° C. to 970 ° C., secondary firing temperature 970 ° C. to 1020 ° C.

上記一段焼成ないし二段焼成の後に、焼成発泡体を水選、篩分け、気流分級などの選別手段によって未発泡体などを除去し、目的の高強度球状軽量発泡パーライトを得る。 After the one-stage baking or the two-stage baking, the unfoamed material and the like are removed from the fired foam by a selection means such as water selection, sieving, airflow classification, and the desired high-strength spherical lightweight foam perlite is obtained.

本発明の上記製造方法によれば、平均粒径5mm以下、真球度0.7以上、圧縮強度25N/mm2以上の硬質発泡パーライトを安定に効率よく製造することができる。なお、真球度は球体を平面投影して得られる円形投影図の最大径MDと、これに直交する径BDの比(BD/MD)で表され、真球度が1に近いほど真球に近い。また、圧縮強度は発泡パーライトを水中に浸して静水圧を加え、40wt%が圧壊せずに残存するときの圧力である。 According to the production method of the present invention, hard foam pearlite having an average particle size of 5 mm or less, a sphericity of 0.7 or more, and a compressive strength of 25 N / mm 2 or more can be produced stably and efficiently. The sphericity is represented by a ratio (BD / MD) of the maximum diameter MD of a circular projection obtained by projecting a sphere onto a plane and the diameter BD orthogonal to the maximum diameter MD (BD / MD). Close to. The compressive strength is a pressure at which 40 wt% remains without being crushed by applying hydrostatic pressure by immersing foamed pearlite in water.

本発明の実施例を比較例と共に以下に示す。
〔実施例A〕
含水量2wt%以下の黒曜石を用い、岩石粒を表1に示す粒度に調整し、表1に示す温度で焼成して発泡パーライトを得た。製造した発泡パーライトの物性を表1に示した。
Examples of the present invention are shown below together with comparative examples.
[Example A]
Obsidian having a water content of 2 wt% or less was used, the rock grain was adjusted to the particle size shown in Table 1, and fired at the temperature shown in Table 1 to obtain foamed perlite. Table 1 shows the physical properties of the foamed perlite produced.

表1に示すように、本発明の条件下で製造した実施例1〜16の発泡パーライトは何れも圧縮強度(静水圧法による40wt%残存時の圧力)が35N/mm2以上であり、真球度は0.7以上、好ましくは7.5以上、さらに好ましくは0.8以上である。一方、本発明の製造条件を外れる比較例21〜25の発泡パーライトは何れも圧縮強度が10N/mm2以下であり、比較例26の発泡パーライトでは、圧縮強度は高いが歪んだ形状であり、球形のものが得られない。 As shown in Table 1, each of the foamed pearlites of Examples 1 to 16 produced under the conditions of the present invention has a compressive strength (pressure at 40 wt% remaining by hydrostatic pressure method) of 35 N / mm 2 or more. The sphericity is 0.7 or more, preferably 7.5 or more, and more preferably 0.8 or more. On the other hand, all of the foamed pearlite of Comparative Examples 21 to 25 outside the production conditions of the present invention has a compressive strength of 10 N / mm 2 or less, and the foamed pearlite of Comparative Example 26 has a distorted shape with high compressive strength, I can't get a spherical one.

〔実施例B〕
含水量3〜6wt%の真珠岩を用い、岩石粒を表2に示す粒度に調整し、表2に示す温度で焼成して発泡パーライトを得た。製造した発泡パーライトの物性を表2に示した。この結果から明らかなように、原料岩石粒の粒径が0.1mmより大きいものは二段焼成し、焼成温度を下げても発泡体の形状が歪み球形発泡体が得られない。一方、平均粒径0.1mm以下の岩石粒を原料としたものは、真球度0.7以上、圧縮強度30N/mm2以上の球形発泡体である。
[Example B]
Pearlite with a water content of 3 to 6 wt% was used, the rock grains were adjusted to the particle size shown in Table 2, and fired at the temperature shown in Table 2 to obtain foamed perlite. The physical properties of the foamed perlite produced are shown in Table 2. As is apparent from this result, when the grain size of the raw material rock particles is larger than 0.1 mm, the foam is deformed in two stages, and even if the firing temperature is lowered, the shape of the foam cannot be obtained as a distorted spherical foam. On the other hand, those made from rock grains having an average particle size of 0.1 mm or less are spherical foams having a sphericity of 0.7 or more and a compressive strength of 30 N / mm 2 or more.

Figure 2007320805
Figure 2007320805

Figure 2007320805
Figure 2007320805

Claims (4)

流紋岩質の非造粒岩石粒を原料とした発泡体であって、平均粒径5mm以下、真球度0.7以上、圧縮強度25N/mm2以上であることを特徴とする硬質発泡パーライト。
A hard foam made from rhyolite non-granulated rock grains, having an average particle size of 5 mm or less, a sphericity of 0.7 or more, and a compressive strength of 25 N / mm 2 or more. Perlite.
平均粒径0.6mm〜5mm、含水量3wt%以下の流紋岩質の非造粒岩石粒を一段焼成して発泡硬質パーライトを製造する方法であって、焼成後の発泡パーライトの圧縮強度に応じて以下の温度範囲で焼成を行うことを特徴とする硬質発泡パーライトの製造方法。
(イ)圧縮強度25N/mm2〜40N/mm2の場合:焼成温度970℃〜1030℃
(ロ)圧縮強度40N/mm2〜55N/mm2の場合:焼成温度950℃〜1010℃
(ハ)圧縮強度55N/mm2以上の場合:焼成温度900℃〜970℃
A method for producing foamed hard pearlite by firing one stage of rhyolite non-granulated rock grains having an average particle size of 0.6 mm to 5 mm and a water content of 3 wt% or less. Accordingly, a method for producing hard foamed pearlite, characterized by firing in the following temperature range.
(B) In the case of compressive strength 25N / mm 2 ~40N / mm 2 : firing temperature 970 ℃ ~1030 ℃
(Ii) if the compression strength 40N / mm 2 ~55N / mm 2 : firing temperature 950 ℃ ~1010 ℃
(C) When the compressive strength is 55 N / mm 2 or more: firing temperature 900 ° C. to 970 ° C.
流紋岩質の非造粒岩石粒を仮焼成および本焼成の二段焼成して発泡硬質パーライトを製造する方法であり、平均粒径0.1mm以下であって含水量3〜6wt%の岩石粒を用い、または平均粒径50μm〜0.6mmであって含水量3%以下の岩石粒を用い、本焼成温度T1が900℃〜1000℃であり、仮焼成温度T0が本焼成温度T1よりも50℃〜200℃低い温度〔T0=T1−(20〜200℃)〕であることを特徴とする硬質発泡パーライトの製造方法。
This is a method for producing foamed hard pearlite by pre-firing and main-firing two-stage firing of rhyolite non-granulated rock grains, with an average particle diameter of 0.1 mm or less and a water content of 3-6 wt% Or a rock grain having an average particle size of 50 μm to 0.6 mm and a water content of 3% or less, the main firing temperature T 1 is 900 ° C. to 1000 ° C., and the temporary firing temperature T 0 is the main firing temperature. A method for producing hard foamed pearlite, which is a temperature [T 0 = T 1 − (20 to 200 ° C.)] lower than T 1 by 50 ° C. to 200 ° C.
請求項3の製造方法において、焼成後の発泡パーライトの圧縮強度に応じて以下に示す温度範囲で二段焼成を行う硬質発泡パーライトの製造方法。
(ニ)圧縮強度25N/mm2〜40N/mm2の場合:一次焼成温度900℃〜800℃、二次焼成温度970℃〜1020℃
(ホ)圧縮強度40N/mm2〜55N/mm2の場合:一次焼成温度850℃〜950℃、二次焼成温度950℃〜1010℃
(ヘ)圧縮強度55N/mm2以上の場合:一次焼成温度850℃〜970℃、二次焼成温度970℃〜1020℃


The manufacturing method of Claim 3 WHEREIN: The manufacturing method of the hard foam pearlite which performs two-stage baking in the temperature range shown below according to the compressive strength of the foamed pearlite after baking.
(D) For compressive strength of 25 N / mm 2 to 40 N / mm 2 : primary firing temperature 900 ° C. to 800 ° C., secondary firing temperature 970 ° C. to 1020 ° C.
(E) if the compression strength 40N / mm 2 ~55N / mm 2 : primary firing temperature 850 ° C. to 950 ° C., the secondary firing temperature 950 ℃ ~1010 ℃
(F) When the compressive strength is 55 N / mm 2 or more: primary firing temperature 850 ° C. to 970 ° C., secondary firing temperature 970 ° C. to 1020 ° C.


JP2006152780A 2006-05-31 2006-05-31 Hard foamed pearlite and its manufacturing method Pending JP2007320805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006152780A JP2007320805A (en) 2006-05-31 2006-05-31 Hard foamed pearlite and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006152780A JP2007320805A (en) 2006-05-31 2006-05-31 Hard foamed pearlite and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2007320805A true JP2007320805A (en) 2007-12-13

Family

ID=38853934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006152780A Pending JP2007320805A (en) 2006-05-31 2006-05-31 Hard foamed pearlite and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2007320805A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037164A (en) * 2008-08-06 2010-02-18 Kagoshima Prefecture Method for producing high strength and high sphericity glassy fine hollow sphere
JP2010064903A (en) * 2008-09-08 2010-03-25 Kagoshima Prefecture Method for producing high strength and high sphericity shirasu balloon
JP2011126762A (en) * 2009-12-21 2011-06-30 Taiheiyo Materials Corp Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
WO2011108856A2 (en) 2010-03-05 2011-09-09 주식회사 경동세라텍 Thermal insulator using closed cell expanded perlite
JP2012012293A (en) * 2010-05-31 2012-01-19 Taiheiyo Materials Corp Lightweight hollow particles with suppressed bulk density change and method for producing the same
JP2012131648A (en) * 2010-12-20 2012-07-12 Taiheiyo Materials Corp Method for producing pearlite, method for producing inorganic foam material, and device for producing the foam material
JP2012136402A (en) * 2010-12-27 2012-07-19 Taiheiyo Materials Corp Method for producing high strength perlite
JP2014129187A (en) * 2012-12-27 2014-07-10 Taiheiyo Material Kk Artificial lightweight fine aggregate and production method of the same
JP6235178B1 (en) * 2017-03-01 2017-11-22 石川ライト工業株式会社 Control material and control material manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183612A (en) * 1995-12-28 1997-07-15 Ube Ind Ltd Production of spherical pearlite
JP2000281401A (en) * 1999-03-31 2000-10-10 Taiheiyo Cement Corp Lightweight fine aggregate for concrete and its production
JP2001019504A (en) * 1999-06-30 2001-01-23 Taiheiyo Cement Corp Artificial aggregate, its production and arrangement therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183612A (en) * 1995-12-28 1997-07-15 Ube Ind Ltd Production of spherical pearlite
JP2000281401A (en) * 1999-03-31 2000-10-10 Taiheiyo Cement Corp Lightweight fine aggregate for concrete and its production
JP2001019504A (en) * 1999-06-30 2001-01-23 Taiheiyo Cement Corp Artificial aggregate, its production and arrangement therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037164A (en) * 2008-08-06 2010-02-18 Kagoshima Prefecture Method for producing high strength and high sphericity glassy fine hollow sphere
JP2010064903A (en) * 2008-09-08 2010-03-25 Kagoshima Prefecture Method for producing high strength and high sphericity shirasu balloon
JP2011126762A (en) * 2009-12-21 2011-06-30 Taiheiyo Materials Corp Methods for producing perlite and inorganic foamed material, and fluidized bed firing furnace
WO2011108856A2 (en) 2010-03-05 2011-09-09 주식회사 경동세라텍 Thermal insulator using closed cell expanded perlite
JP2012012293A (en) * 2010-05-31 2012-01-19 Taiheiyo Materials Corp Lightweight hollow particles with suppressed bulk density change and method for producing the same
JP2012131648A (en) * 2010-12-20 2012-07-12 Taiheiyo Materials Corp Method for producing pearlite, method for producing inorganic foam material, and device for producing the foam material
JP2012136402A (en) * 2010-12-27 2012-07-19 Taiheiyo Materials Corp Method for producing high strength perlite
JP2014129187A (en) * 2012-12-27 2014-07-10 Taiheiyo Material Kk Artificial lightweight fine aggregate and production method of the same
JP6235178B1 (en) * 2017-03-01 2017-11-22 石川ライト工業株式会社 Control material and control material manufacturing method
JP2018144041A (en) * 2017-03-01 2018-09-20 石川ライト工業株式会社 Control material, and method for producing control material

Similar Documents

Publication Publication Date Title
JP2007320805A (en) Hard foamed pearlite and its manufacturing method
US20170130123A1 (en) Proppant Material Incorporating Fly Ash and Method of Manufacture
CN105948467B (en) A kind of preparation method of easy fired low-density and high-strength foam glass
CN109734416A (en) A kind of foamed ceramic and its preparation process
CN106865992A (en) A kind of boroalumino silicate glasses microballon and preparation method thereof
CN106430981A (en) Cordierite-based glass ceramics containing modified fly ash and preparation process thereof
CN106061920B (en) Siliceous composition and method for obtaining the same
CN110891918A (en) Method for treating magnesite, sintered magnesia produced by the method and sintered refractory ceramic product produced by the method
CN110395973B (en) Ceramic abrasive
JP2000281401A (en) Lightweight fine aggregate for concrete and its production
CN107500800B (en) Porous ceramic material containing copper tailings and preparation method thereof
JP2006193373A (en) Fine glass bubble and method of manufacturing the same
JP2005126309A (en) Method of producing hollow alumina particle
CN115108812A (en) Method for regulating and controlling ceramsite structural characteristics and mechanical strength, pomegranate-like structure light-weight high-strength ceramsite and preparation method thereof
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
CN104703931A (en) Method for manufacturing foamed glass by using waste glass and foamed glass manufactured thereby
CN114315407A (en) Method for preparing small-particle-size porous ceramic sand by using bauxite tailings
JP3165626U (en) Foam glass spherical particles
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
JP5035563B2 (en) Manufacturing method of high strength, high sphericity glassy fine hollow sphere
CN107512873B (en) Low-density building foam glass and preparation method thereof
JP2006315914A (en) Porous light weight material and method of manufacturing the same
JP2001247366A (en) Boron carbide sintered compact and method for producing the same
CN104671823A (en) Ceramic foaming aid
JP2003095763A (en) Porous glass and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090529

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120118

Free format text: JAPANESE INTERMEDIATE CODE: A02