JP2012012293A - Lightweight hollow particles with suppressed bulk density change and method for producing the same - Google Patents
Lightweight hollow particles with suppressed bulk density change and method for producing the same Download PDFInfo
- Publication number
- JP2012012293A JP2012012293A JP2011121336A JP2011121336A JP2012012293A JP 2012012293 A JP2012012293 A JP 2012012293A JP 2011121336 A JP2011121336 A JP 2011121336A JP 2011121336 A JP2011121336 A JP 2011121336A JP 2012012293 A JP2012012293 A JP 2012012293A
- Authority
- JP
- Japan
- Prior art keywords
- hollow particles
- bulk density
- lightweight hollow
- lightweight
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
本発明は嵩密度変化の小さい軽量中空粒子の製造方法と装置に関する。より詳しくは、本発明は鉱物質原料を加熱発泡させてなるパーライトなどの軽量中空粒子について、嵩密度変化を抑制した軽量中空粒子の製造方法と装置に関する。 The present invention relates to a method and apparatus for producing lightweight hollow particles having a small change in bulk density. More specifically, the present invention relates to a method and apparatus for producing lightweight hollow particles in which bulk density changes are suppressed for lightweight hollow particles such as pearlite obtained by heating and foaming a mineral material.
パーライトは内部が独立した気泡を有しており、軽量骨材として使用されている。パーライトは嵩密度が小さいことを利用として軽量化材として利用され、また、粒子内部に空隙を有することを利用して断熱材や保温材などに利用されている。パーライトなどの軽量化材は最終製品が目標密度になるのに適した嵩密度を有するものが使用され、その添加量が調整される。従って、パーライトの嵩密度は重要な品質管理要素である。 Perlite has independent bubbles inside, and is used as a lightweight aggregate. Perlite is used as a weight-reducing material because of its low bulk density, and it is used as a heat insulating material, a heat insulating material, etc., because it has voids inside the particles. As the weight reducing material such as pearlite, a material having a bulk density suitable for the final product to have a target density is used, and the amount of addition is adjusted. Therefore, the bulk density of pearlite is an important quality control factor.
一方、パーライトは内部空間を有する軽量の中空粒子で、フライアッシュバルーンやガラスバルーンと比べて殻の厚さが非常に薄く、殻の厚さは概ね外径の数十分の一以下であるため非常に潰れ易い構造である。また、天然原料から製造されるため、パーライト個々の粒子自体の強度のばらつきが大きい。そのため、製造後の輸送、保管、梱包、バラ車やトラックへの積み込みや輸送時に一部が破損し、そのため次第に嵩密度が高くなる。特に、製造工程から貯蔵工程にパーライトを輸送管で空気輸送する際、パーライトが壁面に衝撃し、破壊されて嵩密度の上昇を引き起こす。 On the other hand, pearlite is a lightweight hollow particle with an internal space, and the shell thickness is very thin compared to fly ash balloons and glass balloons, and the thickness of the shell is generally several tenths or less of the outer diameter. It is a structure that is very easy to collapse. Moreover, since it is manufactured from a natural raw material, the dispersion | variation in the intensity | strength of each pearlite particle | grain itself is large. For this reason, part of the product is damaged during transportation, storage, packaging, bulk car or truck after production, or transportation, and the bulk density gradually increases. In particular, when pearlite is pneumatically transported from the manufacturing process to the storage process using a transport pipe, the pearlite impacts the wall surface and is destroyed, causing an increase in bulk density.
この空気輸送に対する耐久性はパーライト粒子の強度に依存するが、パーライトの強度を高めるために製造時の発泡率を下げると軽量性が失われ、一方、軽量性を高めるために発泡率を上げると粒子強度が低下すると云う問題がある。 The durability against air transportation depends on the strength of the pearlite particles, but if the foaming rate is reduced to increase the strength of the pearlite, the lightness will be lost, while if the foaming rate is increased to increase the lightness, There is a problem that the particle strength decreases.
パーライトの強度を高める方法として、原料粉末を余熱した後に加熱発泡させる方法が知られている。具体的には、真珠岩を原料とするパーライトは、真珠岩に含まれる水分が発泡剤として作用し、加熱によって水分が気化し、融点以上の温度になると気化した水蒸気によって発泡する。このとき水分量が多すぎると発泡過多になり、殻の厚さが薄く強度が弱くなる。そこで、予め余熱して真珠岩中の水分量をコントロールした後に発泡温度に加熱することによって過剰な発泡を防止する方法が知られている(特許文献1、2)。
As a method of increasing the strength of pearlite, a method of heating and foaming after preheating the raw material powder is known. Specifically, in pearlite made from nacre, the moisture contained in nacre acts as a foaming agent, the moisture evaporates by heating, and foams by the vaporized vapor when the temperature reaches the melting point or higher. If the amount of water is too large at this time, excessive foaming occurs, and the shell becomes thin and the strength is weakened. Therefore, there is known a method for preventing excessive foaming by preheating to control the water content in the pearlite and then heating to the foaming temperature (
また、原料粉末を予備加熱して含有水分量を調整した後に、この原料粉末を高融点微粉末に混合して発泡させた後に、生成した発泡体(パーライト)を高融点微粉末から分離する製造方法も知られている(特許文献3)。この製造方法は予備加熱した原料粉末を高融点微粉末に混合して発泡させることによって均一に発泡させ表面の凹凸が少ない球状のパーライトを製造する方法である。 In addition, after the raw material powder is preheated to adjust the moisture content, this raw material powder is mixed with the high melting point fine powder and foamed, and then the resulting foam (perlite) is separated from the high melting point fine powder. A method is also known (Patent Document 3). This production method is a method of producing spherical pearlite with less surface irregularities by uniformly foaming a preheated raw material powder into a high melting point fine powder and foaming.
従来の上記製造方法によって製造しても、製造後の輸送工程や保管工程などにおけるパーライトの破損を全く避けることはできず、破損量が多いとパーライトの嵩密度が大幅に変化することになる。 Even if manufactured by the above-described conventional manufacturing method, damage to pearlite in the transportation process or storage process after manufacture cannot be avoided at all, and if the amount of damage is large, the bulk density of pearlite will change significantly.
本発明は、このように製造された脆い粒子が含まれる軽量中空粒子から安定した品質の軽量中空粒子を得るため、パーライトなどの無機中空軽量粒子について、製造後の嵩密度変化を予め抑制したものであり、具体的には、空気圧送前後の嵩密度の変化量が基準量以下のものを選択することによって、嵩密度変化の小さい高品位の軽量中空粒子を製造する方法とその軽量中空粒子を提供する。 In the present invention, in order to obtain light-weight hollow particles with stable quality from light-weight hollow particles containing brittle particles produced in this way, the bulk density change after production of inorganic hollow light-weight particles such as pearlite is suppressed in advance. Specifically, a method for producing high-quality lightweight hollow particles having a small change in bulk density and a method for producing the lightweight hollow particles by selecting one having a change amount of the bulk density before and after pneumatic feeding below a reference amount. provide.
〔1〕角部を有する管路を通じて軽量中空粒子を空気圧送し、軽量中空粒子の一部が管路の上記角部に衝突して破壊されることによる空気圧送前後の嵩密度の変化量を指標として軽量中空粒子を選択することを特徴とする軽量中空粒子の製造方法。
〔2〕空気圧送前後の嵩密度の変化量が、空気圧送前の嵩密度Aに対する空気圧送後の嵩密度Bの嵩密度比(B/A)、または嵩密度差(B−A)で表した空気圧送前後の軽量中空粒子の嵩密度の変化量を指標として軽量中空粒子を選択する上記[1]に記載する軽量中空粒子の製造方法。
〔3〕嵩密度比(B/A)が2倍以下、または嵩密度差(B−A)が0.2g/cm3以下の軽量中空粒子を回収する上記[2]に記載する軽量中空粒子の製造方法。
〔4〕角部の個数(n)が1〜25、角部の角度(R)が80°〜135°の管路を通じて軽量中空粒子を5〜100m/secの流速で空気圧送する際に、次式[1]の範囲内になるように角部の個数(n)と角度(R)および空気圧(V)を選択して軽量中空粒子を空気圧送する上記[3]に記載する軽量中空粒子の製造方法。
100≦n×V×(90/R)2≦500 …[1]
〔5〕軽量中空粒子が突き当たる角部を有する管路を通じて軽量中空粒子を空気圧送したときの空気圧送前後の嵩密度比(B/A)が2倍以下、または嵩密度差(B−A)が0.2g/cm3以下である軽量中空粒子。
〔6〕鉱物質原料を加熱発泡させてなるパーライト、あるいは発泡剤が含有した無機粒子を加熱発泡させてなる無機中空粒子である上記[5]に記載する軽量中空粒子。
〔7〕軽量中空粒子が流れる管路と、軽量中空粒子を管路内に流す空気圧送手段とを有し、該管路にはその内部を流れる軽量中空粒子が突き当たる角部が形成されており、さらに該管路の後部には空気を逃がして軽量中空粒子を捕集するフィルター部が設けられていることを特徴とする密度変化の小さい軽量中空粒子の製造装置。
〔8〕角部の個数(n)が1〜25、角部の角度(R)が80°〜135°であり、5〜100m/secの空気圧(V)で軽量中空粒子を圧送する上記[7]に記載する軽量中空粒子の製造装置。
[1] The amount of change in the bulk density before and after pneumatic feeding is caused by pneumatically feeding lightweight hollow particles through a pipe having a corner, and a part of the lightweight hollow particles colliding with the corner of the pipe and being broken. A method for producing lightweight hollow particles, characterized in that lightweight hollow particles are selected as an index.
[2] The amount of change in the bulk density before and after pneumatic feeding is expressed as the bulk density ratio (B / A) of the bulk density B after pneumatic feeding to the bulk density A before pneumatic feeding, or the difference in bulk density (BA). The method for producing lightweight hollow particles according to the above [1], wherein the lightweight hollow particles are selected using as an index the change in the bulk density of the lightweight hollow particles before and after pneumatic feeding.
[3] Lightweight hollow particles as described in [2] above, which collect lightweight hollow particles having a bulk density ratio (B / A) of 2 times or less or a bulk density difference (BA) of 0.2 g / cm 3 or less. Manufacturing method.
[4] When pneumatically sending light-weight hollow particles at a flow rate of 5 to 100 m / sec through a pipe having a corner number (n) of 1 to 25 and a corner angle (R) of 80 ° to 135 °, Lightweight hollow particles as described in [3] above, wherein the number of corners (n), angle (R), and air pressure (V) are selected so as to be within the range of the following formula [1], and the lightweight hollow particles are pneumatically fed. Manufacturing method.
100 ≦ n × V × (90 / R) 2 ≦ 500 [1]
[5] The bulk density ratio (B / A) before and after pneumatic feeding when the lightweight hollow particles are pneumatically fed through a pipe line having a corner against which the lightweight hollow particles abut is less than double, or the bulk density difference (BA) Lightweight hollow particles having a particle size of 0.2 g / cm 3 or less.
[6] The lightweight hollow particles according to the above [5], which are pearlite obtained by heating and foaming a mineral material or inorganic hollow particles obtained by heating and foaming inorganic particles contained in a foaming agent.
[7] It has a conduit through which lightweight hollow particles flow, and a pneumatic feeding means for flowing the lightweight hollow particles into the conduit, and the conduit is formed with corners against which the lightweight hollow particles flowing in the tube abut. In addition, a light hollow particle manufacturing apparatus with a small density change, characterized in that a filter part for allowing air to escape and collect light hollow particles is provided at the rear part of the pipe.
[8] The number of corners (n) is 1 to 25, the angle (R) of the corners is 80 ° to 135 °, and light-weight hollow particles are pumped with an air pressure (V) of 5 to 100 m / sec. [7] A lightweight hollow particle production apparatus according to [7].
本発明の製造方法は、角部を有する管路を通じて軽量中空粒子を空気圧送する際に、脆く壊れ易い軽量中空粒子が管路の角部に衝突して破壊されことによって軽量中空粒子全体の嵩密度が変化するので、この空気圧送前後の嵩密度の変化量を指標とし、この変化量の小さい軽量中空粒子を選択するので、製品の使用時に嵩密度変化が小さい高品質の軽量中空粒子を得ることができる。 In the production method of the present invention, when light-weight hollow particles are pneumatically fed through a pipe having a corner, the light-weight hollow particles that are brittle and easily broken collide with the corner of the pipe and are broken, thereby breaking the bulk of the light-weight hollow particles. Since the density changes, the amount of change in the bulk density before and after the pneumatic feeding is used as an index, and lightweight hollow particles with a small amount of change are selected, so that high-quality lightweight hollow particles with a small change in bulk density are obtained when the product is used. be able to.
本発明の製造方法は、鉱物質原料を加熱発泡させてなるパーライトに限らず、発泡剤が含まれる無機粒子を加熱発泡してなる軽量中空粒子などにも適用することができる。 The production method of the present invention can be applied not only to pearlite obtained by heating and foaming a mineral material, but also to lightweight hollow particles obtained by heating and foaming inorganic particles containing a foaming agent.
以下、本発明を実施形態に基づいて具体的に説明する。
本発明は、角部を有する管路を通じて軽量中空粒子を空気圧送し、軽量中空粒子の一部が管路の上記角部に衝突して破壊されることによる空気圧送前後の嵩密度の変化量を指標として軽量中空粒子を選択することを特徴とする軽量中空粒子の製造方法である。
Hereinafter, the present invention will be specifically described based on embodiments.
The present invention pneumatically feeds light hollow particles through a pipe having a corner, and the amount of change in bulk density before and after pneumatic feeding due to a portion of the light hollow particles colliding with the above-mentioned corner of the pipe and being destroyed. It is a manufacturing method of the lightweight hollow particle characterized by selecting a lightweight hollow particle as a parameter | index.
本発明の製造方法において、軽量中空粒子は鉱物質原料を加熱発泡させてなるパーライトや、発泡剤が含まれる無機粒子を加熱発泡してなる無機軽量中空粒子などである。以下、パーライトを代表例として説明する。 In the production method of the present invention, the lightweight hollow particles are pearlite obtained by heating and foaming a mineral material, inorganic lightweight hollow particles obtained by heating and foaming inorganic particles containing a foaming agent, and the like. Hereinafter, pearlite will be described as a representative example.
パーライトは鉱物質原料を加熱発泡して製造される。具体的には、内部に水を有する真珠岩、松脂岩、黒曜石、シラスなどを原料としたもの。あるいはシリカガラス原料粉末にSiCなどの発泡剤を添加して造粒したものや、内部に未燃カーボンが含有しているフライアッシュなど、発泡剤が含まれる無機粒子を原料とし、ロータリーキルン、気流焼成炉、流動層焼成炉などの加熱炉で原料を加熱し、発泡して製造される。製造されたパーライトは嵩密度や浮水率、粒径などによって品質が評価され、用途に応じた品質を有するものが使用される。 Perlite is produced by heating and foaming mineral materials. Specifically, the raw material is nacre, pine sebite, obsidian, shirasu, etc. with water inside. Alternatively, the silica glass raw material powder is granulated by adding a foaming agent such as SiC, or fly ash containing unburned carbon inside. The raw material is inorganic kiln containing foaming agent. The raw material is heated and foamed in a heating furnace such as a furnace or a fluidized bed firing furnace. The quality of the manufactured pearlite is evaluated by the bulk density, the floating rate, the particle size, and the like, and those having a quality corresponding to the application are used.
通常、製造したパーライトは製品サイロ等に保管されるが、サイロへの輸送は主に空気輸送によって行われている。空気輸送はパーライトを圧縮空気によって輸送管内を流すので、管内を流れるパーライトは空気圧を受ける。また、経路の途中には湾曲した部分があるので、管内を流れるパーライトはしばしば管壁に接触して摩擦される。さらにサイロへの積込み時や保管時、トラックやローリー車による運搬等によってパーライトに衝撃や圧力が加わる。このとき、強度の弱いパーライトが破損し、破片となった微粒子を含むと全体の嵩密度が高くなる。また、パーライトの殻の一部が破損すると、内部の独立気泡が外部に開放された気泡(連通気泡)になり、内部空間に水などが浸入するようになるので、浮水率が大幅に低下する。 Usually, manufactured pearlite is stored in a product silo or the like, but transportation to the silo is mainly performed by pneumatic transportation. In pneumatic transportation, pearlite flows through the transport pipe by compressed air, so the pearlite flowing in the pipe receives air pressure. Further, since there is a curved portion in the middle of the path, the pearlite flowing in the tube is often rubbed against the tube wall. Furthermore, impact and pressure are applied to the pearlite during loading into the silo, storage, and transportation by truck or lorry vehicle. At this time, the weak bulky pearlite is broken, and if the broken fine particles are included, the overall bulk density is increased. In addition, if a part of the pearlite shell breaks, the closed cells inside become bubbles that are open to the outside (communication bubbles), and water etc. enters the internal space, so the floating rate is greatly reduced. .
一般に、パーライトの破壊程度はその強度に依存する。パーライトの強度は一軸圧縮試験や静水圧試験によって測定することができるが、これらの測定方法によって強度が大きいと判断された場合でも、壊れやすい場合がある。例えば、パーライト粒子の質量が大きい場合には、衝突エネルギーが大きくなるので壊れやすくなる。 In general, the degree of destruction of pearlite depends on its strength. The strength of pearlite can be measured by a uniaxial compression test or a hydrostatic pressure test. However, even if it is determined that the strength is high by these measurement methods, it may be fragile. For example, when the mass of the pearlite particles is large, the collision energy increases, so that the particles are easily broken.
そこで、本発明の製造方法は、角部を有する管路を通じて軽量中空粒子を空気圧送し、軽量中空粒子の一部が管路の上記角部に衝突して破壊されることによる空気圧送前後の嵩密度の変化量を指標として軽量中空粒子を選択する。具体的には、例えば、空気圧送前の嵩密度Aに対する空気圧送後の嵩密度Bの嵩密度比(B/A)、または嵩密度差(B−A)を嵩密度変化量の指標とし、これらが基準量以下の軽量中空粒子を回収する。この基準量は嵩密度比(B/A)が2倍、嵩密度差(B−A)が0.2g/cm3であり、嵩密度比(B/A)が2倍以下、または嵩密度差(B−A)が0.2g/cm3以下の軽量中空粒子を回収する。 Therefore, the manufacturing method of the present invention pneumatically feeds light hollow particles through a pipe having a corner, and before and after pneumatic feeding by a part of the light hollow particles colliding with the corner of the pipe and being broken. Lightweight hollow particles are selected using the change in bulk density as an index. Specifically, for example, the bulk density ratio (B / A) of the bulk density B after pneumatic feeding with respect to the bulk density A before pneumatic feeding, or the bulk density difference (BA) is used as an index of the change in bulk density, These recover lightweight hollow particles below the reference amount. This reference amount has a bulk density ratio (B / A) of 2 times, a bulk density difference (BA) of 0.2 g / cm 3 , and a bulk density ratio (B / A) of 2 times or less, or a bulk density. Light weight hollow particles having a difference (B−A) of 0.2 g / cm 3 or less are recovered.
嵩密度比(B/A)が2倍を超えるものは目的の製品基準に適合しなくなる場合が多いので、嵩密度比(B/A)の2倍を変化量の基準にすればよい。また、嵩密度が0.1g/cm3〜0.25g/cm3の範囲の軽量中空粒子において、嵩密度差(B−A)が0.2g/cm3を上回るものは、嵩密度比(B/A)が概ね2倍を上回るので、目的の製品基準に適合しないものが多くなる。 When the bulk density ratio (B / A) exceeds twice, it often fails to meet the target product standard, so twice the bulk density ratio (B / A) may be used as a reference for the amount of change. Further, the lightweight hollow particles ranging bulk density of 0.1g / cm 3 ~0.25g / cm 3 , which bulk density difference (B-A) exceeds 0.2 g / cm 3, the bulk density ratio ( Since B / A) generally exceeds twice, the number of products that do not meet the target product standards increases.
上記嵩密度比(B/A)が2倍以下、または上記嵩密度差(B−A)が0.2g/cm3以下の軽量中空粒子は、これをモルタルなどに配合して使用する場合、使用時の破壊量が格段に少なく、高品質のモルタル製品を得ることができる。本発明の軽量中空粒子は嵩密度比(B/A)が2倍以下、または嵩密度差(B−A)が0.2g/cm3以下のものである。 When the light-weight hollow particles having a bulk density ratio (B / A) of 2 times or less or a bulk density difference (BA) of 0.2 g / cm 3 or less are used in a mixture with mortar or the like, The amount of destruction at the time of use is remarkably small, and a high quality mortar product can be obtained. The lightweight hollow particles of the present invention have a bulk density ratio (B / A) of 2 times or less, or a bulk density difference (BA) of 0.2 g / cm 3 or less.
本発明の製造方法では、角部を有する管路を用い、該管路を通じて軽量中空粒子を空気圧送し、上記嵩密度の変化量の小さい軽量中空粒子を回収する。管路の角部は、進行方向に向かって80°〜135°の角度を有するものが好ましい(図3において進行方向Vに対する角度θ)。角部の角度θが80°より小さいと管路を流れる粒子が角部で停滞する割合が多くなるので好ましくない。また、上記角度θが135°より大きいと角部に衝突せずに通過するパーライトが多くなり、十分な効果が得られ難くなる。 In the production method of the present invention, a hollow pipe having a corner is used, and light hollow particles are pneumatically fed through the pipe to collect the light hollow particles having a small change in bulk density. It is preferable that the corner portion of the pipe has an angle of 80 ° to 135 ° in the traveling direction (angle θ with respect to the traveling direction V in FIG. 3). If the angle θ of the corner is smaller than 80 °, the ratio of the particles flowing through the pipeline stagnating at the corner increases. On the other hand, when the angle θ is larger than 135 °, more pearlite passes without colliding with the corners, and it is difficult to obtain a sufficient effect.
管路の角部の個数は1〜25箇所が良く、2〜20箇所程度が適当であり、4〜8箇所程度が好ましい。角部の個数が1箇所よりも2箇所以上のほうが十分な効果が得られる。角部が25箇所より多いと破損するパーライトが多くなり過ぎるので適当ではない。 The number of corners of the pipeline is preferably 1 to 25, suitably 2 to 20 and preferably 4 to 8. A sufficient effect can be obtained when the number of corners is two or more than one. If there are more than 25 corners, too much pearlite is damaged, which is not suitable.
管路の大きさ(口径)は、一般的な粒径0.1〜1mmのパーライトについて、内径10mm〜30mmの管路が適当である。ただし、管路の口径は圧送する軽量中空粒子の量および空気圧に応じて選択すればよいので基本的な条件ではない。 As for the size (caliber) of the pipe, a pipe having an inner diameter of 10 mm to 30 mm is suitable for a pearlite having a general particle diameter of 0.1 to 1 mm. However, the diameter of the pipe line is not a basic condition because it may be selected according to the amount of lightweight hollow particles to be pumped and the air pressure.
空気圧送の圧力(風速)は5〜100m/secが好ましい。5m/secを下回る空気圧では衝突エネルギーが小さく、十分な効果が得られ難くなる。一方、100m/secを超える空気圧では衝突エネルギーが過大になり、破損するパーライトが多くなり過ぎるので適当ではない。 Pneumatic pressure (wind speed) is preferably 5 to 100 m / sec. When the air pressure is less than 5 m / sec, the collision energy is small and it is difficult to obtain a sufficient effect. On the other hand, when the air pressure exceeds 100 m / sec, the collision energy becomes excessive, and too much pearlite is damaged.
さらに、角部の数(n)が1〜25、角部の角度(R)が80°〜135°の管路を通じて軽量中空粒子を5〜100m/secの流速で空気圧送する際に、次式[1]の範囲内になるように角部の数(n)と角度(R)および空気圧(V)を選択して軽量中空粒子を空気圧送する。
100≦n×V×(90/R)2≦500 …[1]
Further, when light-weight hollow particles are pneumatically fed at a flow rate of 5 to 100 m / sec through a pipe line having a corner number (n) of 1 to 25 and a corner angle (R) of 80 ° to 135 °, The number of corners (n), the angle (R), and the air pressure (V) are selected so as to be within the range of the formula [1], and the lightweight hollow particles are pneumatically fed.
100 ≦ n × V × (90 / R) 2 ≦ 500 [1]
上記[1]の値が100未満になる角部の数(n)と角度(R)および空気圧(V)の組み合わせによって軽量中空粒子の空気圧送を行うと、嵩密度比(B/A)および嵩密度差(B−A)は小さくなるが、脆く壊れ易い粒子が十分に排除されない傾向があるので好ましくない。 When the hollow hollow particles are pneumatically fed by a combination of the number (n) of corners where the value of [1] is less than 100, the angle (R), and the air pressure (V), the bulk density ratio (B / A) and Although the difference in bulk density (B-A) is small, it is not preferable because the brittle and fragile particles tend not to be sufficiently excluded.
上記[1]の値が500を超える角部の数(n)と角度(R)および空気圧(V)の組み合わせによって軽量中空粒子の空気圧送を行うと、破壊される粒子の数が多過ぎるので適当ではない。 When pneumatically sending lightweight hollow particles by combining the number of corners (n) with the value of [1] exceeding 500, the angle (R) and the air pressure (V), too many particles are destroyed. Not appropriate.
本発明の製造方法において用いる角部を有する管路の具体的な構成例を図4に示す。図示する製造装置は、軽量中空粒子が流れる管路10を有しており、その前方部分は軽量中空粒子を管路内に吸引する部分であり、バルブ20を通じて空気圧送手段(図示省略)が接続している。空気圧送はバルブ20を通じて安定化部分から回収部分方向(図4右側方向)へ空気が流れる仕組みになっており、圧縮空気を管路内に導入することによって軽量中空粒子を管路内に吸引して行われ、吸引された軽量中空粒子は圧縮空気によって管路全長を通じて管路内を流れる。 FIG. 4 shows a specific configuration example of a pipe having a corner used in the manufacturing method of the present invention. The illustrated manufacturing apparatus has a pipe line 10 through which light-weight hollow particles flow, and a front part thereof is a part for sucking the light-weight hollow particles into the pipe line, and a pneumatic feeding means (not shown) is connected through a valve 20. is doing. Pneumatic feeding is a mechanism in which air flows from the stabilization part to the recovery part direction (right side in FIG. 4) through the valve 20, and by introducing compressed air into the pipe, lightweight hollow particles are sucked into the pipe. The light-weight hollow particles sucked and flowed through the entire length of the pipeline by compressed air.
管路10にはその内部を流れる軽量中空粒子が突き当たる角部11〜14が形成されている。図示する装置において、角部11〜14は略直角に屈曲している。この部分は嵩密度の安定化部分であり、軽量中空粒子は4箇所の角部を経由し、一回りして管路後部に導かれる間に、割れ易い粒子は角部を通過する際に衝突し、破壊されることによって、事後の嵩密度変化が予め抑制される。
The pipe 10 is formed with
管路10の後部には空気を逃がして軽量中空粒子を捕集するフィルター部15が設けられている。管路の角部を経由してきた軽量中空粒子はフィルターに捕集されて回収される。なお、本発明の軽量中空粒子の製造装置については、角部を有する管路の材質は軽量中空粒子よりも高い硬度の金属が望ましいがこれに限定されるものではない。好適な一例としてSGP等の炭素鋼鋼管やステンレス鋼管を挙げることができる。また、塩ビ等の樹脂製配管を用いてもよい。軽量中空粒子の回収方法としては、バグフィルター等の集塵機を挙げることができる。 A filter portion 15 is provided at the rear portion of the pipe line 10 to allow air to escape and collect lightweight hollow particles. Light-weight hollow particles that have passed through the corners of the pipeline are collected by a filter and collected. In addition, about the manufacturing apparatus of the lightweight hollow particle of this invention, although the material of the pipe line which has a corner | angular part has a higher hardness than a lightweight hollow particle, it is not limited to this. As a suitable example, a carbon steel pipe such as SGP or a stainless steel pipe can be cited. Also, resin piping such as vinyl chloride may be used. Examples of a method for collecting the light hollow particles include a dust collector such as a bag filter.
本発明の実施例を比較例と共に示す。嵩密度および浮水率の測定方法を以下に示す。
〔嵩密度〕
一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を嵩密度とした。
〔浮水率〕
浮水率は、約10gの試料を200mlメスシリンダーに入れて水を入れ、十分に攪拌した後に静置し、水の濁りがなくなるまで置き、浮いた試料Vaと沈んだ試料の容積Vbを測定しVa/(Va+Va)×100から浮水率を算出した。
The Example of this invention is shown with a comparative example. The measuring method of a bulk density and a floating rate is shown below.
〔The bulk density〕
A sample is filled into a container with a constant volume S (cm 3 ), the portion protruding from the opening is ground, the total weight G1 is measured, and the weight G2 of the container is subtracted from this to obtain the powder weight G3 (g). The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the bulk density.
[Floating rate]
Floating rate is about 10 g of sample placed in a 200 ml graduated cylinder, filled with water, allowed to stand after sufficient agitation and placed until the water is no longer turbid. The floating rate was calculated from Va / (Va + Va) × 100.
〔実施例1〕
表1に示すパーライトについて、図4に示す装置(管路全長5m、角部個数n=8、角部R=90°)を用い、輸送速度(V)30m/secでパーライトを空気圧送し、圧送前後の密度比を測定した。パーライトA1〜A3は産地の同じ真珠岩を原料としたものであり、パーライトB1〜B3、C1〜C3は産地の異なる真珠岩を原料にしたものである。
[Example 1]
For the pearlite shown in Table 1, using the apparatus shown in FIG. 4 (pipe length 5 m, corner number n = 8, corner R = 90 °), the pearlite is pneumatically fed at a transportation speed (V) of 30 m / sec. The density ratio before and after pumping was measured. The perlites A1 to A3 are made from the same pearlite, and the pearlites B1 to B3 and C1 to C3 are made from pearlite from different places.
空気圧送前後の嵩密度、嵩密度比(b/a)および嵩密度差(b-a)を表2に示した。表2に示すように、A1、B1、C1は何れも嵩密度比(b/a)が2倍以上であり、嵩密度差(b-a)が0.2g/cm3以上であって本発明の目標範囲を外れる。一方、A2とA3、B2、B3、C2とC3は嵩密度比(b/a)および嵩密度差(b-a)が本発明の範囲内である。 Table 2 shows the bulk density before and after pneumatic feeding, the bulk density ratio (b / a), and the bulk density difference (ba). As shown in Table 2, all of A1, B1 and C1 have a bulk density ratio (b / a) of 2 times or more and a bulk density difference (ba) of 0.2 g / cm 3 or more. Out of target range. On the other hand, A2 and A3, B2, B3, C2 and C3 have a bulk density ratio (b / a) and a bulk density difference (ba) within the scope of the present invention.
空気圧送後のパーライトをモルタルに配合して軽量モルタルを製造し、設定したモルタル密度にするために混合したパーライトの量と比較して、パーライトを評価した。評価基準は設計値の配合量を100%とし、混合量が110%未満を最良(◎)、110%〜140%を良好(○)、140%以上を不合格(×)とした。この結果を表2に示す。 Light weight mortar was prepared by blending pearlite after pneumatic feeding into mortar, and pearlite was evaluated in comparison with the amount of pearlite mixed to obtain a set mortar density. As the evaluation criteria, the blending amount of the design value was 100%, and the mixing amount was less than 110% as the best (%), 110% to 140% as good (◯), and 140% or more as the rejection (x). The results are shown in Table 2.
表2に示すように、パーライトの密度比および嵩密度差とモルタル製品の品質には相関があり、圧送前後の嵩密度比(b/a)が2倍以下、あるいは圧送前後の嵩密度差(b-a)が0.2g/cm3以下の場合は、設計値との誤差が小さい配合量で済み、特に嵩密度比が1.8倍以下であれば、設計値に近い配合ですむ。一方、嵩密度比が2倍を超えると、または嵩密度差が0.2g/cm3を超えると、軽量中空粒子の混合量を設計値よりも大幅に増加させないと軽量化しない。 As shown in Table 2, there is a correlation between the density ratio and bulk density difference of pearlite and the quality of the mortar product, and the bulk density ratio (b / a) before and after pumping is less than twice, or the bulk density difference before and after pumping ( When ba) is less than 0.2 g / cm 3, a blending amount with a small error from the design value is sufficient. Especially when the bulk density ratio is 1.8 times or less, the blending is close to the design value. On the other hand, when the bulk density ratio exceeds twice or the difference in bulk density exceeds 0.2 g / cm 3 , the weight is not reduced unless the mixing amount of the lightweight hollow particles is significantly increased from the design value.
〔実施例2〕
輸送管の条件〔角部の数(n)と角度(R)、空気圧(V)〕を変えて空気圧送し、圧送前後の嵩密度を測定して嵩密度比を求めた。パーライトは表1のB2、B3およびC1を使用した。装置条件と結果を表3に示す。
圧送による破壊状態の指標として、式[1]〔n×V×(90/R)2〕の値を算出した。B2、B3について、式[1]の値が500を超えると嵩密度比(b/a)が2以下の軽量中空粒子を得られない。また、式[1]の値が100より小さいと、嵩密度比(b/a)がC1と類似して正確な評価が困難になる。
[Example 2]
The condition of the transport pipe [number of corners (n) and angle (R), air pressure (V)] was changed and the air pressure was fed, and the bulk density before and after the pumping was measured to obtain the bulk density ratio. Perlite used was B2, B3 and C1 in Table 1. The apparatus conditions and results are shown in Table 3.
As an index of the fracture state by pumping, the value of the formula [1] [n × V × (90 / R) 2 ] was calculated. For B2 and B3, when the value of the formula [1] exceeds 500, a lightweight hollow particle having a bulk density ratio (b / a) of 2 or less cannot be obtained. On the other hand, if the value of the expression [1] is smaller than 100, the bulk density ratio (b / a) is similar to C1, and accurate evaluation becomes difficult.
式[1]の値と輸送前後の嵩密度比の関係を図1、図2、図3に示す。図1はパーライトB2を用いた場合、図2はパーライトB3を用いた場合、図3はパーライトC1を用いた場合である。図1、図2に示すように、パーライトB2、B3については一次的な相関があり、破壊状態の指標である式[1]の値〔n×V×(90/R)2〕の値は圧送前後の嵩密度比に比例しており、従って、100≦n×V×(90/R)2≦500の範囲で判断することができる。 The relationship between the value of equation [1] and the bulk density ratio before and after transportation is shown in FIG. 1, FIG. 2, and FIG. 1 shows the case where pearlite B2 is used, FIG. 2 shows the case where pearlite B3 is used, and FIG. 3 shows the case where pearlite C1 is used. As shown in FIGS. 1 and 2, pearlite B2 and B3 have a primary correlation, and the value of the expression [1] [n × V × (90 / R) 2 ] that is an indicator of the destruction state is It is proportional to the bulk density ratio before and after the pumping, and therefore can be determined in the range of 100 ≦ n × V × (90 / R) 2 ≦ 500.
一方、パーライトC1については、式[1]の値が概ね500までは、ほぼ直線で示されるが、それを超えると一次的な関係式の係数が大きく異なり、良好なパーライトの判別が困難となる。また、上記指標が100以下では差が著しく小さいため良否を判別し難い。なお、パーライトC1は実施例1の表1に示すように嵩密度比が2倍を超え、また嵩密度差が0.2g/cm3を上回り、モルタル製品に用いたときの評価は不合格である。 On the other hand, for pearlite C1, the value of the expression [1] is approximately a straight line up to about 500. However, beyond this, the coefficient of the primary relational expression is greatly different, and it is difficult to discriminate good pearlite. . In addition, when the index is 100 or less, the difference is remarkably small, and it is difficult to determine whether it is good or bad. In addition, as shown in Table 1 of Example 1, pearlite C1 has a bulk density ratio exceeding twice, and the bulk density difference exceeds 0.2 g / cm 3 , and the evaluation when used in a mortar product is unacceptable. is there.
10−管路、11〜14角部、15−フィルター部、20−バルブ、θ−角度 10-pipe, 11-14 corners, 15-filter, 20-valve, θ-angle
Claims (8)
100≦n×V×(90/R)2≦500 …[1] When pneumatically feeding light-weight hollow particles at a flow rate of 5 to 100 m / sec through a pipe having a corner number (n) of 1 to 25 and a corner angle (R) of 80 ° to 135 °, the following formula [ 1. The method for producing lightweight hollow particles according to [3] above, wherein the number of corners (n), angle (R), and air pressure (V) are selected so as to be within the range of 1], and the lightweight hollow particles are pneumatically fed. .
100 ≦ n × V × (90 / R) 2 ≦ 500 [1]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011121336A JP5835861B2 (en) | 2010-05-31 | 2011-05-31 | Method and apparatus for producing lightweight hollow particles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010124398 | 2010-05-31 | ||
JP2010124398 | 2010-05-31 | ||
JP2011121336A JP5835861B2 (en) | 2010-05-31 | 2011-05-31 | Method and apparatus for producing lightweight hollow particles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012012293A true JP2012012293A (en) | 2012-01-19 |
JP5835861B2 JP5835861B2 (en) | 2015-12-24 |
Family
ID=45599164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011121336A Active JP5835861B2 (en) | 2010-05-31 | 2011-05-31 | Method and apparatus for producing lightweight hollow particles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5835861B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007320805A (en) * | 2006-05-31 | 2007-12-13 | Taiheiyo Material Kk | Hard foamed pearlite and its manufacturing method |
-
2011
- 2011-05-31 JP JP2011121336A patent/JP5835861B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007320805A (en) * | 2006-05-31 | 2007-12-13 | Taiheiyo Material Kk | Hard foamed pearlite and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP5835861B2 (en) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005512585A (en) | Improved smokable filling material | |
KR20140145610A (en) | Method for loading raw material into blast furnace | |
EP2766434B2 (en) | Method and apparatus for the preparation of calcium carbonate coated calcium hydroxide particles | |
JP5835861B2 (en) | Method and apparatus for producing lightweight hollow particles | |
CN105754196A (en) | High-density double-walled corrugated pipe | |
US10435328B2 (en) | Expanded-glass granular material and method for producing same | |
JP5401919B2 (en) | Method for producing sintered ore | |
JP5941992B2 (en) | Method for producing polyacrylic acid (salt) water-absorbing resin and process control method thereof | |
JP2012091978A (en) | Method for manufacturing perlite | |
JP2011162814A (en) | Method of adjusting adequate water amount in production of raw material for sinter granulation | |
JP6982058B2 (en) | Solid particle transport method and transport system | |
JP5504644B2 (en) | Method for producing granulated and sintered raw materials | |
RU2610611C2 (en) | Method of producing chemical carbon dioxide absorber | |
JP2012116690A (en) | High durability perlite and method for manufacturing the same | |
Raheman et al. | Solid velocity estimation in vertical pneumatic conveying of agricultural grains | |
JP7148030B2 (en) | Method for producing sintered ore and sintered ore | |
Hela et al. | Possibilities of nanotechnology in concrete | |
JP6978734B2 (en) | Manufacturing method of granulated sinter raw material and manufacturing method of sinter | |
JP2011201751A (en) | Pearlite and method for producing the same | |
Badham et al. | The propagation of blast pulses through dampened granular media | |
US20090253593A1 (en) | Solid product for preparing a drilling fluid | |
JP2017209711A (en) | Continuous casting mold powder and method for enhancing granule strength of continuous casting mold powder | |
US20050011309A1 (en) | Agglomerated quicklime or dolomitic quicklime compositions for electric arc furnace steelmaking | |
CN104893667B (en) | A kind of harbour coal unloading terminal dust inhibitor and preparation method thereof | |
JP6066322B2 (en) | Fly ash loading device and fly ash loading method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151007 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5835861 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |