JP2012091978A - Method for manufacturing perlite - Google Patents

Method for manufacturing perlite Download PDF

Info

Publication number
JP2012091978A
JP2012091978A JP2010242068A JP2010242068A JP2012091978A JP 2012091978 A JP2012091978 A JP 2012091978A JP 2010242068 A JP2010242068 A JP 2010242068A JP 2010242068 A JP2010242068 A JP 2010242068A JP 2012091978 A JP2012091978 A JP 2012091978A
Authority
JP
Japan
Prior art keywords
pearlite
raw material
particles
foaming
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010242068A
Other languages
Japanese (ja)
Inventor
Masaaki Noguchi
雅朗 野口
Hideki Wachi
秀樹 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2010242068A priority Critical patent/JP2012091978A/en
Publication of JP2012091978A publication Critical patent/JP2012091978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing high durability perlite that undergoes a small change in the bulk density and does not lose its lightness and hollow state peculiar to perlite after manufacturing.SOLUTION: The method for manufacturing perlite includes pulverizing natural glassy rocks as a raw material and foaming by heating, wherein the water content in the raw material is adjusted to 3.6-5.0 wt.% and the raw material is foamed by temperature rising from this water content state to an expansion temperature within 60 seconds. For example, a raw material having a particle size of ≤0.5 mm is used, the water content in the raw material is adjusted to 3.6-5.0 wt.% at ≤300°C, and the raw material is foamed by temperature rising from this water content state to 800-1,200°C within 60 seconds.

Description

本発明は、高耐久性を持つパーライトを製造する方法に関する。パーライトの強度を改善し、製造後にパーライトの特質である軽量性および中空状態を失わない嵩密度の変化が小さい高耐久性のパーライトを製造する方法を提供する。 The present invention relates to a method for producing a highly durable pearlite. The present invention provides a method for producing a highly durable pearlite that improves the strength of the pearlite and has a small change in bulk density that does not lose the light weight and hollow state that are the characteristics of the pearlite after production.

パーライトは軽量化のために用いる軽量化材である。例えば、モルタル、瓦、外壁材にパーライトを混合することによって軽量化が可能となる。 Perlite is a weight reduction material used for weight reduction. For example, the weight can be reduced by mixing pearlite into mortar, roof tiles, and outer wall materials.

パーライト製造では、酸性火山岩である流紋岩(真珠岩、黒曜石等)を粉砕して、加熱発泡させて製品を生産している。加熱発泡する工程では、気流焼成炉やロータリー式キルンが利用されている。気流焼成炉では高温のガスや炉内に形成された火炎と原料が数分の一秒から数十秒の接触により発泡が行われる。ロータリー式キルンでは、原料がロータリー式キルン炉壁を摺動しながら炉壁の輻射熱、バーナーフレーム、炉内熱ガスによって加熱されて発泡が行われる。ロータリー式キルンは発泡時間が数分から数十分以上と長く、均一な発泡が行われる利点を有している。 In pearlite manufacturing, rhyolite (pearlite, obsidian, etc.), which is acid volcanic rock, is crushed and heated and foamed to produce products. In the process of heating and foaming, an airflow firing furnace or a rotary kiln is used. In an air-flow firing furnace, foaming is performed by contact of a high-temperature gas or a flame formed in the furnace with a raw material for a fraction of a second to several tens of seconds. In the rotary kiln, the raw material is heated by the radiant heat of the furnace wall, the burner frame, and the hot gas in the furnace while sliding on the rotary kiln furnace wall, and foaming is performed. The rotary kiln has an advantage that the foaming time is as long as several minutes to several tens of minutes, and uniform foaming is performed.

パーライトは、原料粒子に対して数倍から5倍程度の割合で発泡し、表面の殻の厚さは数ミクロンであって非常に薄い。このため、外部からの圧力に対して弱い。特に、パーライトを製造した後は、サイロ等へ保管するため輸送管中を空気圧送する場合が多く、このとき輸送速度は概ね数m/secであってかなり早く、さらに輸送管は設備の都合上、直管部分の他にさまざまな箇所に曲り部があり、輸送中のパーライトが曲り部に衝突して破損するため中空状態が失われ、嵩密度が次第に大きくなる問題があった。 Perlite foams at a ratio of several to five times the raw material particles, and the thickness of the surface shell is several microns, which is very thin. For this reason, it is weak against the pressure from the outside. In particular, after pearlite is manufactured, it is often sent pneumatically through the transport pipe for storage in silos, etc. At this time, the transport speed is approximately several m / sec, which is quite fast. In addition to the straight pipe portion, there are bent portions at various locations, and the pearlite being transported collides with the bent portion and breaks, so that the hollow state is lost and the bulk density gradually increases.

パーライトの強度を高めるには、発泡倍率を小さくして殻を厚くすることが一つの対策であり、パーライトを低温で焼成する方法がある。しかし、低温での焼成は発泡温度域の幅が狭くなるため、加熱が不十分になり未発泡の粒子ができやすい。そのため、製造されたパーライトは材料分離を起こしやすくなり、品質のムラを生じる。一方、高温で焼成すると、発泡過多となり、強度が低下する。 In order to increase the strength of pearlite, one measure is to reduce the expansion ratio and make the shell thicker, and there is a method of firing pearlite at a low temperature. However, since firing at a low temperature narrows the width of the foaming temperature region, heating is insufficient and unfoamed particles are easily formed. Therefore, the manufactured pearlite is likely to cause material separation, resulting in uneven quality. On the other hand, when fired at a high temperature, excessive foaming occurs and the strength decreases.

そこでパーライトの品質を向上させるため、パーライトの発泡を制御することが知られている(特許文献1、2)。真珠岩を原料とするパーライトは、真珠岩中の水分が発泡剤となり、融点温度となった時点で水が気化して発泡するが、原料の水分量が多すぎると、発泡過多になり、殻の厚さが薄くなって強度が弱くなる。そのため、あらかじめ余熱して真珠岩中の水分量をコントロールした上で発泡温度に加熱する製造方法が知られている。 Therefore, it is known to control foaming of pearlite in order to improve the quality of pearlite (Patent Documents 1 and 2). Pearlite made from pearlite becomes foaming agent when the water in pearlite becomes the foaming agent, and when it reaches the melting point temperature, the water vaporizes and foams. The thickness becomes thinner and the strength becomes weaker. Therefore, a manufacturing method is known in which preheating is performed in advance to control the amount of water in the pearlite, and then heating to the foaming temperature.

また、均一な焼成のために未発泡原料を少なくする方法として、発泡後の嵩密度が違う2種類の発泡原料を混合して使用することが知られている(特許文献3)。この方法では同じ温度で最適に発泡する嵩密度の異なる原料を混合して用いることによって、嵩密度をコントロールしている。 As a method for reducing unfoamed raw materials for uniform firing, it is known to use a mixture of two types of foamed raw materials having different bulk densities after foaming (Patent Document 3). In this method, the bulk density is controlled by mixing and using raw materials having different bulk densities that foam optimally at the same temperature.

特開平7−277851号公報JP-A-7-277851 特開2007−320805号公報JP 2007-320805 A 特許第3528390号公報Japanese Patent No. 3528390

高耐久性のパーライトを製造するための手段として、予備焼成等の複数回の焼成を行う場合には、相応の焼成炉が必要となり、焼成設置が大がかりになり易く、設置スペースや装置コストの過大な負担と、装置操作の煩雑さを要す。また、種類の違う原料を用いる場合には、異なる原料供給サイロ、供給経路、混合設備等を必要とし、この場合にも大掛かりな設備設置が必要である。また、いずれの場合にも未発泡粒子の混入は避けられない。 As a means for producing highly durable pearlite, when performing multiple firings such as pre-firing, a corresponding firing furnace is required, and the firing installation tends to be large, and installation space and equipment costs are excessive. Burden and complicated operation of the apparatus. In addition, when different types of raw materials are used, different raw material supply silos, supply paths, mixing facilities, and the like are required. In this case as well, large-scale equipment installation is required. In any case, the mixing of unfoamed particles is inevitable.

未発泡粒子が混入すると、保管や輸送時等にパーライトが破損されやすくなり、製造されたパーライトの密度は高くなる傾向がある。また、高強度となるよう低温焼成すると未発泡粒子が多くなりやすく、パーライトの品質が低下する。パーライトの殻を厚くして高強度化しても、未発泡粒子存在すると、発泡粒子と未発泡粒子が衝突してパーライトが破損し、軽量化および中空状態を維持できない。このように、従来の製造方法では、破損の原因である未発泡粒子の量が多いことが問題であった。 When unfoamed particles are mixed, the pearlite tends to be damaged during storage or transportation, and the density of the manufactured pearlite tends to increase. In addition, when fired at a low temperature so as to have high strength, the number of unfoamed particles tends to increase, and the quality of pearlite decreases. Even if the pearlite shell is made thicker and stronger, if unexpanded particles are present, the expanded particles collide with the unexpanded particles and the pearlite is damaged, and the weight reduction and the hollow state cannot be maintained. Thus, in the conventional manufacturing method, there was a problem that there was much quantity of the unexpanded particle which is a cause of breakage.

本発明は、パーライトの製造後、下流側、すなわち空気輸送、保管、製品輸送、末端製品の製造時などにおいて、未発泡粒子によってパーライトが破損されて嵩密度が高くなる問題を解決するため、未発泡粒子を極力少なくすることによって、製造後の破損を抑制し、嵩密度の増加を抑制する製造方法を提供する。 The present invention solves the problem that the pearlite is damaged by unfoamed particles and the bulk density is increased at the downstream side after manufacture of pearlite, that is, at the time of pneumatic transportation, storage, product transportation, end product production, etc. Provided is a production method that suppresses damage after production and suppresses an increase in bulk density by reducing foam particles as much as possible.

本発明によれば以下の構成からなるパーライトの製造方法が提供される。
〔1〕天然ガラス質岩石を原料とし、該原料を粉砕して加熱し発泡させるパーライトの製造方法であって、原料中の水分量を3.6〜5.0wt%に調整し、この水分量の状態から発泡温度まで60秒以内に昇温して発泡させることを特徴とするパーライトの製造方法。
〔2〕原料中の水分量を300℃以下で3.6〜5.0wt%に調整し、この水分量の状態から800℃〜1200℃に60秒以内に昇温して発泡させる上記[1]に記載するパーライトの製造方法。
〔3〕粒径が0.5mm以下の原料を用いる上記[1]または上記[2]に記載するパーライトの製造方法。
According to this invention, the manufacturing method of the pearlite which consists of the following structures is provided.
[1] A method for producing pearlite using natural glassy rock as a raw material, crushing the raw material, heating and foaming, and adjusting the water content in the raw material to 3.6 to 5.0 wt%. A method for producing pearlite, wherein the foaming is performed by raising the temperature from the above state to the foaming temperature within 60 seconds.
[2] The moisture content in the raw material is adjusted to 3.6 to 5.0 wt% at 300 ° C. or lower, and the temperature is increased from 800 ° C. to 1200 ° C. within 60 seconds from the state of the moisture content, and foamed. ] The manufacturing method of the pearlite described in.
[3] The method for producing pearlite according to [1] or [2] above, wherein a raw material having a particle size of 0.5 mm or less is used.

本発明の製造方法は、原料の水分量を所定範囲に調整すると共に、発泡温度までの昇温速度を所定速度以上にコントロールする。具体的には、原料中の水分量を3.6〜5.0wt%に調整し、この水分量の状態から発泡温度まで60秒以内に昇温するので、未発泡粒子の量を15wt%以下に抑制することができ、さらに過剰発泡も抑制されるので、空気圧送時の嵩密度変化が格段に小さい高品質のパーライトを製造することができる。 In the production method of the present invention, the moisture content of the raw material is adjusted to a predetermined range, and the temperature rising rate up to the foaming temperature is controlled to a predetermined rate or more. Specifically, the amount of moisture in the raw material is adjusted to 3.6 to 5.0 wt%, and the temperature is raised from this moisture amount state to the foaming temperature within 60 seconds, so the amount of unexpanded particles is 15 wt% or less. Furthermore, since excessive foaming is also suppressed, it is possible to manufacture a high-quality pearlite that has a remarkably small change in bulk density during pneumatic feeding.

本発明の製造方法は、天然ガラス質岩石を原料とし、該原料を粉砕して加熱し発泡させるパーライトの製造方法であって、原料中の水分量を3.6〜5.0wt%に調整し、この水分量の状態から発泡温度まで60秒以内に昇温して発泡させることを特徴とするパーライトの製造方法である。 The production method of the present invention is a method for producing pearlite in which natural glassy rock is used as a raw material, and the raw material is pulverized, heated and foamed, and the water content in the raw material is adjusted to 3.6 to 5.0 wt%. The method for producing pearlite is characterized in that foaming is performed by raising the temperature from the state of the water content to the foaming temperature within 60 seconds.

本発明の製造方法は、(イ)原料中の水分量を300℃以下で3.6〜5.0wt%に調整し、この水分量の状態から800℃〜1200℃に60秒以内に昇温して発泡させる態様、(ロ)粒径が0.5mm以下の原料を用いる態様を含む。 In the production method of the present invention, (i) the water content in the raw material is adjusted to 3.6 to 5.0 wt% at 300 ° C. or less, and the temperature is raised from 800 ° C. to 1200 ° C. within 60 seconds. And (b) an embodiment using a raw material having a particle size of 0.5 mm or less.

本発明の製造方法において、原料の天然ガラス質岩石としては、真珠岩、松脂岩、黒曜石、シラス等を用いることができる。原料の粒径は0.5mm以下の粉末が好ましい。粒径がこれより大きいと未発泡粒子が多くなる傾向がある。 In the production method of the present invention, the natural glassy rock used as a raw material may be pearlite, pine stone, obsidian, shirasu, and the like. The raw material preferably has a particle size of 0.5 mm or less. When the particle size is larger than this, unfoamed particles tend to increase.

本発明の製造方法は、原料の水分量を所定範囲に調整する。具体的には、原料中の水分量を3.6〜5.0wt%に調整する。この水分量は100℃で乾燥した原料を1000℃まで加熱させたときの減量分から算出される。原料の水分量が3.6wt%より少ないと未発泡粒子が多くなり、5wt%より多いと過発泡となって破裂するものが多くなるので好ましくない。 In the production method of the present invention, the moisture content of the raw material is adjusted to a predetermined range. Specifically, the water content in the raw material is adjusted to 3.6 to 5.0 wt%. This water content is calculated from the weight loss when the raw material dried at 100 ° C. is heated to 1000 ° C. If the water content of the raw material is less than 3.6 wt%, the number of unfoamed particles increases, and if it exceeds 5 wt%, the amount of excessive foaming and rupture increases.

本発明の製造方法は、原料の水分量を所定範囲に調整すると共に発泡温度までの昇温速度を所定速度以上に制御する。具体的には、加熱前の原料温度を300℃以下とし、原料中の水分量を300℃以下で3.6〜5.0wt%に調整し、この水分量の状態で60秒以内に800℃以上まで急激に加熱する。真珠岩等の発泡温度は概ね800℃〜1200℃であるので、60秒以内にこの温度まで加熱する。 In the production method of the present invention, the moisture content of the raw material is adjusted to a predetermined range, and the temperature rising rate up to the foaming temperature is controlled to a predetermined rate or more. Specifically, the raw material temperature before heating is set to 300 ° C. or lower, the water content in the raw material is adjusted to 3.6 to 5.0 wt% at 300 ° C. or lower, and the water content is set to 800 ° C. within 60 seconds. Heat rapidly to above. Since the foaming temperature of pearlite is approximately 800 ° C. to 1200 ° C., it is heated to this temperature within 60 seconds.

加熱前の原料温度が300℃を超え、800℃以上までの昇温時間が60秒を超えると、原料中の水分が分解して発泡に寄与する水分が少なくなるため未発泡分が多くなる。800℃〜1200℃での滞留時間は1秒〜180秒が好ましい。滞留時間が1秒以下では比較的大きい粒子では熱が伝わり難く、未発泡になりやすい。一方、滞留時間が180秒以上では発泡した粒子が融解・焼結して中空状態が損なわれるものが多くなる。 When the raw material temperature before heating exceeds 300 ° C. and the temperature rising time to 800 ° C. or more exceeds 60 seconds, the moisture in the raw material is decomposed and the moisture contributing to foaming is reduced, so that the unfoamed portion increases. The residence time at 800 ° C. to 1200 ° C. is preferably 1 second to 180 seconds. When the residence time is 1 second or less, heat is not easily transferred to relatively large particles, and unfoamed easily. On the other hand, when the residence time is 180 seconds or more, the foamed particles melt and sinter and the hollow state is impaired.

加熱手段は電気炉、ロータリーキルン、気流焼成炉、流動層焼成炉等を用いることができるが上記昇温速度にするためには気流焼成炉、流動層焼成炉が好ましい。 As the heating means, an electric furnace, a rotary kiln, an airflow firing furnace, a fluidized bed firing furnace, or the like can be used, but an airflow firing furnace or a fluidized bed firing furnace is preferable in order to achieve the above-described rate of temperature rise.

なお、未発泡粒子とは発泡しない粒子および発泡不十分な粒子を云い、具体的には発泡状態が発泡基準に達しない粒子を云う。発泡基準とは未発泡粒子と発泡粒子を区別する基準であり、原料の種類、加熱条件などの製造条件によって発泡状態は異なるので、製造条件や目的とする発泡状態に応じて具体的な発泡基準を定めればよい。 The unexpanded particles refer to particles that are not expanded and particles that are insufficiently expanded, and specifically, particles whose expanded state does not reach the expansion standard. The foaming standard is a standard that distinguishes unfoamed particles from foamed particles. The foaming state varies depending on the production conditions such as the type of raw material and heating conditions, so specific foaming standards depending on the production conditions and the desired foaming state. Can be determined.

例えば、嵩密度や浮水率(水中に投入したときに水中に浮く割合)を発泡基準の指標とすることができる。一般に、嵩密度約1.0g/cm3の真珠岩粒子を原料として、800℃に加熱することによって、全体の嵩密度約0.2g/cm3、浮水率約85%の発泡粒子を得ることができる。この値を発泡基準にしてもよい。 For example, the bulk density and the floating rate (ratio of floating in water when thrown into water) can be used as an index for foaming. Generally, nacreous particles with a bulk density of about 1.0 g / cm 3 are used as raw materials and heated to 800 ° C. to obtain expanded particles with an overall bulk density of about 0.2 g / cm 3 and a floating rate of about 85%. Can do. This value may be used as the foaming standard.

例えば、浮水率85%の発泡粒子全体には100%−85%=15%に相当する非浮水部分が含まれており、この非浮水部分は概ね嵩密度1.0g/cm3以上の未発泡粒子である。このような重い粒子が多いと周囲の軽い発泡粒子を破壊する傾向が大きくなる。そこで、嵩密度を指標とする場合、例えば、嵩密度1.0g/cm3を発泡基準とし、この量が少なくなるような原料を使用する。この場合、例えば、嵩密度1.0g/cm3以上の粒子が多くなると、このような嵩密度の大きい粒子は、嵩密度の小さい軽い発泡粒子よりも重いので、輸送中や取扱いの際に外力を受けると周囲の軽い発泡粒子に衝撃を与えてこれを破壊しやすい。 For example, the entire foamed particles having a floating rate of 85% include a non-floating portion corresponding to 100% -85% = 15%, and this non-floating portion is generally unfoamed with a bulk density of 1.0 g / cm 3 or more. Particles. When there are many such heavy particles, the tendency to destroy the surrounding light foam particles becomes large. Therefore, when the bulk density is used as an index, for example, a bulk density of 1.0 g / cm 3 is used as a foaming standard, and a raw material that reduces this amount is used. In this case, for example, when the number of particles having a bulk density of 1.0 g / cm 3 or more is increased, the particles having a large bulk density are heavier than the light foam particles having a small bulk density. When it receives, it is easy to destroy the surrounding light foam particles by impacting them.

本発明の製造方法によって得られるパーライトは、未発泡粒子が少ないので、発泡粒子が破壊され難いので、輸送中や使用時の取扱いによる嵩密度の変化が小さい。 Since the pearlite obtained by the production method of the present invention has few unexpanded particles, the expanded particles are difficult to be destroyed, so the change in bulk density due to handling during transportation or use is small.

また、本発明の製造方法によるパーライトは、未発泡の粒子が少なく、均一な嵩密度を有する発泡粒子からなる高品質のパーライトである。未発泡粒子は発泡粒子に比べて密度が大きく重いため、未発泡粒子が多いとパーライト全体で材料分離を生じやすい。このため、パーライトを混合して瓦や壁材などの製品を加工するときに、製品毎に質量のばらつきが生じるなどの問題が生じる。本発明のパーライトは未発泡粒子が少なく、均一な嵩密度を有する発泡粒子によって形成されているので、パーライト全体で材料分離を生じることがなく、このような問題を生じない。 Moreover, the pearlite by the manufacturing method of this invention is a high quality pearlite which has few unexpanded particles and consists of expanded particles which have a uniform bulk density. Since unexpanded particles are larger in density and heavier than expanded particles, if there are many unexpanded particles, material separation is likely to occur in the entire pearlite. For this reason, when products such as tiles and wall materials are processed by mixing pearlite, problems such as variations in mass occur between products. Since the pearlite of the present invention has few unexpanded particles and is formed of expanded particles having a uniform bulk density, material separation does not occur in the entire pearlite, and such a problem does not occur.

なお、本発明の方法で製造されたパーライトにおいても、多少の未発泡粒子は存在するので、これを除去すると更に優れた耐久性を有するパーライトが得られる。除去する方法として、嵩比重や見掛比重を発泡基準にして未発泡粒子を除去するには、乾式または湿式の比重分離装置、遠心力比重分離装置、慣性力集塵機などを用いればよい。一方、原料粒径に対する増加率を発泡基準にして未発泡粒子を除去するには、例えば、発泡基準率に相当する孔径(篩目)の篩を用い、篩残留分を適合とし、篩通過分を除去すればよい。 Even in the pearlite produced by the method of the present invention, some unfoamed particles are present, and when this is removed, pearlite having further excellent durability can be obtained. As a removal method, in order to remove the unexpanded particles based on the foam specific gravity or apparent specific gravity, a dry or wet specific gravity separator, a centrifugal specific gravity separator, an inertia force dust collector, or the like may be used. On the other hand, in order to remove unfoamed particles based on the rate of increase with respect to the raw material particle size, for example, a sieve having a pore diameter (sieving mesh) corresponding to the foaming standard rate is used, and the sieve residue is adapted, Can be removed.

製造したパーライトは製品サイロ等に保管することが多いが、サイロへの輸送は主に圧搾空気での輸送による。この輸送はパーライトを圧搾空気によって輸送管内を流すので、管内を流れるパーライトは空気圧を受ける。また、経路の途中には垂直ま部分や湾曲した部分があるので、管内を流れるパーライトはしばしば管壁に接触して摩擦を受け、破損される。さらにサイロへの積込み時や保管時、トラックやローリー車による運搬等によってパーライトに衝撃や圧力が加わる。 The manufactured perlite is often stored in product silos, etc., but transportation to the silo is mainly by transportation with compressed air. In this transportation, pearlite is caused to flow through the transport pipe by compressed air, so that the pearlite flowing in the pipe is subjected to air pressure. In addition, since there is a vertical part or a curved part in the middle of the path, the pearlite flowing in the pipe often comes into contact with the pipe wall and is damaged due to friction. Furthermore, impact and pressure are applied to the pearlite during loading into the silo, storage, and transportation by truck or lorry vehicle.

このような輸送時た保管時に、パーライトに未発泡粒子が多く混在すると、未発泡粒子は発泡粒子よりも重いので、輸送中や積込み時、保管中などに衝撃や圧力によって未発泡粒子が軽量な発泡粒子に衝突して、これを破壊する割合が多くなる。従来のパーライトは未発泡粒子が多いので、輸送中などに発泡粒子が破壊される割合が高く、嵩密度が大幅に高くなる。一方、本発明のパーライトは未発泡粒子が非常に少ないので、未発泡粒子による破壊が殆ど生じない。 When a lot of unexpanded particles are mixed in perlite during storage during transportation, the unexpanded particles are heavier than the expanded particles, so the unexpanded particles are lightened by impact or pressure during transportation, loading, storage, etc. The rate of collision with the foamed particles and their destruction increases. Since conventional pearlite has a large number of unexpanded particles, the ratio of the expanded particles to be destroyed during transportation is high, and the bulk density is significantly increased. On the other hand, since the pearlite of the present invention has very few unexpanded particles, the destruction by the unexpanded particles hardly occurs.

パーライトは内部に空間を持つ軽量骨材であるので、これを建築材料、たとえばモルタルや壁材、瓦等に混合することにより、材料の軽量化が図れる。また、内部に空洞を持つため、断熱材としても用いられる。本発明の方法によって製造したパーライトは嵩密度の変化が極めて小さいので、これを建築材料等に配合することによって高品質の軽量建築材料を得ることができる。 Since pearlite is a lightweight aggregate having a space inside, the weight of the material can be reduced by mixing it with building materials such as mortar, wall materials, roof tiles and the like. Moreover, since it has a cavity inside, it is also used as a heat insulating material. Since the pearlite produced by the method of the present invention has a very small change in bulk density, a high-quality lightweight building material can be obtained by blending it with a building material or the like.

本発明の実施例を比較例と共に示す。水分量、嵩密度、浮水率は以下のように測定した。
〔水分量〕100℃で乾燥した原料を1000℃まで加熱させたときの減量分から算出した。
〔嵩密度〕一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を嵩密度とした。
〔浮水率〕浮水率は、約10gの試料を200mlメスシリンダーに入れて水を入れ、十分に攪拌した後に静置し、水の濁りがなくなるまで置き、浮いた試料容積Va(cm3)と沈んだ試料の容積Vb(cm3)を測定しVa/(Va+Va)×100(vol%)から浮水率を算出した。
The Example of this invention is shown with a comparative example. The water content, bulk density, and floating rate were measured as follows.
[Moisture content] Calculated from the weight loss when the raw material dried at 100 ° C was heated to 1000 ° C.
[Bulk density] Fill a container with a constant volume S (cm 3 ), grind the portion protruding from the opening, measure the total weight G1, subtract the weight G2 of the container from this, and weight the powder G3 (g) The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the bulk density.
[Floating rate] Floating rate is about 10 g of sample placed in a 200 ml graduated cylinder, water is added, and after stirring well, let stand until it is free of water turbidity. The volume Vb (cm 3) of the sample was measured, and the floating rate was calculated from Va / (Va + Va) × 100 (vol%).

〔実施例1〕
表1に示す成分の原料を用い、最大粒径0.3mmに粉砕し粒度調整して、気流焼成炉に入れて加熱し、発泡させてパーライトを製造した。
焼成したパーライトの浮水率、嵩密度の測定結果を表1に示す。水分量が3.6〜5wt%内である真珠岩a〜dを原料にしたパーライトは浮水率が85%を超え、従って未発泡の原料割合が15wt%以下である(A1〜A4)。真珠岩eを原料にしたパーライトは浮水率が80.1%(B1)であり、真珠岩fを原料にしたパーライトは浮水率が84.5%(B2)であり何れも浮水率が低い。これは水分量6%の真珠岩eを原料にしたパーライトB1は過発泡により破裂したものが多く、真珠岩fを原料にしたパーライトB2は水分量が少ないため未発泡が多くなったと考えられる。
[Example 1]
The raw materials of the components shown in Table 1 were used to pulverize to a maximum particle size of 0.3 mm, adjust the particle size, put in an airflow firing furnace, heat and foam to produce pearlite.
Table 1 shows the measurement results of the floating rate and bulk density of the fired pearlite. Perlite made from pearlite a to d having a moisture content of 3.6 to 5 wt% has a floating rate of more than 85%, and therefore the ratio of unfoamed raw material is 15 wt% or less (A1 to A4). The pearlite made from the pearlite e has a floating rate of 80.1% (B1), and the pearlite made from the pearlite f has a floating rate of 84.5% (B2), both of which have a low floating rate. This is probably because pearlite B1 made from pearlite e having a moisture content of 6% was ruptured by overfoaming, and pearlite B2 made from pearlite f was made less foamed due to its low moisture content.

Figure 2012091978
Figure 2012091978

この製造したパーライトについて,90°の曲がり部を8箇所、輸送部全長5mの空気輸送管を用いて、輸送速度30m/secでパーライトを空気とともに輸送し、輸送前後の密度および浮水率を測定し、輸送前後を比較した。 About this manufactured pearlite, pearlite is transported with air at a transportation speed of 30m / sec using eight 90 ° bends and a pneumatic transportation pipe with a total length of 5m, and the density and the floating rate before and after transportation are measured. Compared before and after transportation.

このパーライトを空気圧送し、圧送前後の嵩密度の測定結果を表2に示す。
圧送前後の嵩密度を測定したA1〜A4は未発泡分が少ないため、空気圧送前後の嵩密度の差が小さい。一方、未発泡粒子が多いB2は圧送前後の差が大きくなり、中空のパーライト粒子が破損したと考えられる。
Table 2 shows the measurement results of the bulk density before and after the pearlite was pneumatically fed.
Since A1 to A4 measured for the bulk density before and after pumping have little unfoamed content, the difference in bulk density before and after pneumatic feeding is small. On the other hand, B2 with many unexpanded particles has a large difference between before and after pumping, and it is considered that the hollow pearlite particles were damaged.

Figure 2012091978
Figure 2012091978

上記パーライト(A1〜A4、B1〜B2)を使用したモルタル板を製造したときの製品品質を表3に示す。上記パーライトを使用して実設備にてモルタルを試作したところ、真珠岩a〜dを原料にしたパーライト(A1〜A4)は所定の密度とするためのパーライト量が設計量のパーライト使用量に対して140%以下であり、真珠岩e,fを原料にしたパーライト(B1、B2)は設計量の140%を超える使用量が必要となった。なお、表中の製品品質は、製品を製造するときに設定した製品密度とするために使用したパーライト量の比較であり、設計値通りの使用量を100%とする。 Table 3 shows the product quality when a mortar board using the above pearlite (A1 to A4, B1 to B2) was produced. When a mortar was prototyped with actual equipment using the above-mentioned pearlite, the pearlite (A1 to A4) made from pearlite a to d had a pearlite amount of a predetermined density compared to the designed amount of pearlite. The amount of perlite (B1, B2) made from nacre e and f is required to exceed 140% of the design amount. The product quality in the table is a comparison of the amount of pearlite used to obtain the product density set when the product is manufactured, and the amount used according to the design value is 100%.

Figure 2012091978
Figure 2012091978

〔実施例2〕
実施例1で使用した真珠岩bを使用して、加熱前の温度(原料温度)から発泡温度(800℃)に達するまでの昇温時間を変えて加熱した。結果を表4に示す。原料温度が280℃では浮水率が85%を超えが、原料温度が400℃では浮水率が85%を下回る。これは、加熱前の温度が400℃であると原料中の水分が分解揮発し、発泡成分が少なくなるために未発泡粒子が増えたと考えられる。
[Example 2]
The nacre b used in Example 1 was heated by changing the temperature rising time from the temperature before heating (raw material temperature) to the foaming temperature (800 ° C.). The results are shown in Table 4. When the raw material temperature is 280 ° C., the floating rate exceeds 85%, but when the raw material temperature is 400 ° C., the floating rate is less than 85%. This is considered that when the temperature before heating is 400 ° C., the moisture in the raw material is decomposed and volatilized, and the foamed components are reduced, so that unexpanded particles are increased.

また発泡温度までの昇温時間が60秒以下では浮水率は殆ど変わらない(C1〜C7)。昇温時間が120秒を超えると浮水率が低下する。これは発泡温度に達するまでに原料中の水分が分解揮発して発泡成分が少なくなり、未発泡粒子の量が多くなったと考えられる。 Further, when the temperature rising time to the foaming temperature is 60 seconds or less, the floating rate is hardly changed (C1 to C7). If the temperature rising time exceeds 120 seconds, the floating rate will decrease. This is thought to be due to the fact that the moisture in the raw material decomposes and volatilizes to reach the foaming temperature, the foaming component is reduced, and the amount of unfoamed particles is increased.

Figure 2012091978
Figure 2012091978

Claims (3)

天然ガラス質岩石を原料とし、該原料を粉砕して加熱し発泡させるパーライトの製造方法であって、原料中の水分量を3.6〜5.0wt%に調整し、この水分量の状態から発泡温度まで60秒以内に昇温して発泡させることを特徴とするパーライトの製造方法。
A method for producing pearlite which uses natural glassy rock as a raw material, pulverizes the raw material, heats and foams, and adjusts the water content in the raw material to 3.6 to 5.0 wt%. A method for producing pearlite, wherein the foaming is performed by raising the temperature to a foaming temperature within 60 seconds.
原料中の水分量を300℃以下で3.6〜5.0wt%に調整し、この水分量の状態から800℃〜1200℃に60秒以内に昇温して発泡させる請求項1に記載するパーライトの製造方法。
The moisture content in the raw material is adjusted to 3.6 to 5.0 wt% at 300 ° C or lower, and the temperature is raised from 800 ° C to 1200 ° C within 60 seconds from the state of the moisture content, and foamed. A manufacturing method of pearlite.
粒径が0.5mm以下の原料を用いる請求項1または請求項2に記載するパーライトの製造方法。 The method for producing pearlite according to claim 1 or 2, wherein a raw material having a particle size of 0.5 mm or less is used.
JP2010242068A 2010-10-28 2010-10-28 Method for manufacturing perlite Pending JP2012091978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242068A JP2012091978A (en) 2010-10-28 2010-10-28 Method for manufacturing perlite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242068A JP2012091978A (en) 2010-10-28 2010-10-28 Method for manufacturing perlite

Publications (1)

Publication Number Publication Date
JP2012091978A true JP2012091978A (en) 2012-05-17

Family

ID=46385799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242068A Pending JP2012091978A (en) 2010-10-28 2010-10-28 Method for manufacturing perlite

Country Status (1)

Country Link
JP (1) JP2012091978A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136402A (en) * 2010-12-27 2012-07-19 Taiheiyo Materials Corp Method for producing high strength perlite
JP2014129187A (en) * 2012-12-27 2014-07-10 Taiheiyo Material Kk Artificial lightweight fine aggregate and production method of the same
KR101444914B1 (en) * 2014-04-29 2014-09-26 주식회사 호만산업 Solid medium for nutrient solution culture and method for producing thereof
KR101748714B1 (en) * 2015-11-27 2017-06-19 김희대 Interior and exterior composition and a method of manufacturing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247628A (en) * 1999-02-23 2000-09-12 Mitsui Mining & Smelting Co Ltd Production process and equipment for expanded perlite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000247628A (en) * 1999-02-23 2000-09-12 Mitsui Mining & Smelting Co Ltd Production process and equipment for expanded perlite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136402A (en) * 2010-12-27 2012-07-19 Taiheiyo Materials Corp Method for producing high strength perlite
JP2014129187A (en) * 2012-12-27 2014-07-10 Taiheiyo Material Kk Artificial lightweight fine aggregate and production method of the same
KR101444914B1 (en) * 2014-04-29 2014-09-26 주식회사 호만산업 Solid medium for nutrient solution culture and method for producing thereof
KR101748714B1 (en) * 2015-11-27 2017-06-19 김희대 Interior and exterior composition and a method of manufacturing

Similar Documents

Publication Publication Date Title
US9809495B2 (en) Method for the closed-cell expansion of mineral material
JP2012091978A (en) Method for manufacturing perlite
FI62659C (en) FREQUENCY REFRIGERATION FOR FLASHING OF GLASPAUMLES MEDLITEN TAETHET OCH VATTENPERMEABILITET
Khamidulina et al. Foam glass production from waste glass by compression
JP2008019149A (en) Low water-absorbing perlite and method for producing the same
JP4910756B2 (en) Method for manufacturing perlite
JP6330536B2 (en) Pretreatment method of sintering raw materials
CN109734416A (en) A kind of foamed ceramic and its preparation process
JP5636143B2 (en) Manufacturing method of high-strength pearlite
US20070059528A1 (en) Low resin demand foundry media
JP5467669B2 (en) PERLITE AND MANUFACTURING METHOD THEREOF
JP4162704B2 (en) Foamed glass and manufacturing method thereof
WO2019002561A1 (en) Preparation of sintered granulate for the manufacturing of a foamed glass pellets
JP5674018B2 (en) Perlite manufacturing method, inorganic foam material manufacturing method, and foam material manufacturing apparatus
JP5035563B2 (en) Manufacturing method of high strength, high sphericity glassy fine hollow sphere
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
JP6153722B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JP2012116690A (en) High durability perlite and method for manufacturing the same
RU76335U1 (en) TECHNOLOGICAL LINE FOR PRODUCING GRANULATED FOAM-CERAMIC MATERIAL
JP7087939B2 (en) Manufacturing method of sintered raw material
JP2518737B2 (en) Fine-grained ceramic balloon manufacturing method
JPH11343128A (en) Glass expanded body and its production
JP3746802B2 (en) Method for producing hollow fired body
CN108350379A (en) Moulded coal and preparation method thereof and molten iron preparation method
JPH08157244A (en) Production of artificial lightweight aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150311