JP3746802B2 - Method for producing hollow fired body - Google Patents

Method for producing hollow fired body Download PDF

Info

Publication number
JP3746802B2
JP3746802B2 JP33752894A JP33752894A JP3746802B2 JP 3746802 B2 JP3746802 B2 JP 3746802B2 JP 33752894 A JP33752894 A JP 33752894A JP 33752894 A JP33752894 A JP 33752894A JP 3746802 B2 JP3746802 B2 JP 3746802B2
Authority
JP
Japan
Prior art keywords
raw material
fired body
firing
hollow
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33752894A
Other languages
Japanese (ja)
Other versions
JPH08183664A (en
Inventor
忠士 末岡
悟 藤井
良輔 成島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP33752894A priority Critical patent/JP3746802B2/en
Publication of JPH08183664A publication Critical patent/JPH08183664A/en
Application granted granted Critical
Publication of JP3746802B2 publication Critical patent/JP3746802B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/04Heat treatment
    • C04B20/06Expanding clay, perlite, vermiculite or like granular materials
    • C04B20/068Selection of ingredients added before or during the thermal treatment, e.g. expansion promoting agents or particle-coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/14Minerals of vulcanic origin
    • C04B14/18Perlite
    • C04B14/185Perlite expanded
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【産業上の利用分野】
本発明は、主として建築用に用いる構造用および非構造用の軽量骨材、および断熱材や遮音材等として有用な中空焼成体を製造する方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来の人工軽量骨材は、頁岩の砕石整粒物および粉砕後造粒物、または抗火石のような酸性火山噴出物を粉砕した粉末に発泡助剤を添加し、造粒してなる粒子を焼成して製造したものであるが、これらの方法で製造した人工軽量骨材は、一般に内部の気泡分布がまちまちで、しかも気泡同士が連結した連続気泡であることが多い。そのため、骨材粒子全体に気泡が存在して強度が弱く、かつ吸水率の高いものであった。
気泡が連続気泡で、骨材強度が弱く、かつ吸水率が高いという傾向は、骨材が低比重であるほど顕著であり、高強度でかつ軽量である骨材を製造することは困難であった。
【0003】
また、市販の軽量骨材の比重は1.3〜1.4程度で、かつ吸水率が高いために、コンクリート施工を行う際、骨材に水を十分に吸水させる必要があり、そのため貯蔵中にプレウエッチングを行う必要がある。また、貯蔵中でのプレウエッチングのみでは吸水が十分とはいえず、この骨材を用いてコンクリートにした場合、コンクリート混練り中および運搬中にスランプドロップが起こり管理が困難であった。また、骨材比重が大であるためコンクリートの軽量化には限度があり、特に高層建築物に要求されているコンクリート比重を1.2t/m3 以下に抑えることは困難であった。
【0004】
以上説明した通り、従来の軽量骨材は、
(1)焼成時気泡の制御が不可能であるため比重の制御が困難である、
(2)骨材内気泡は連続気泡が多いため高吸水率である、
(3)低比重化が難しく、また低比重にすると吸水率が高くなる、
(4)低比重にすると骨材の強度が弱くなる、
等の欠点を有する。
【0005】
本発明は、従来の軽量骨材が有する前記問題点を解消し、低比重でかつ比重の調節ができ、強度が高い軽量骨材等の中空焼成体を製造する新規な方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
発明者らは、骨材素材の粉末原料に可燃還元物を添加して造粒し、該粒子をその構成材料の軟化温度で焼成することにより低比重で、かつ強度の大きい中空焼成体が得られ、しかも焼成時の温度と時間および雰囲気の酸素濃度を調節することにより、比重の調整も可能であることを見出し、本発明を完成するに至った。即ち、上記目的は、本発明の、SiO2 含有率が60重量%以上であり、かつガラス含有率が60体積%以上である天然鉱物質粉末に可燃還元物を加えて所定の粒径の粒子に造粒してなる原料粒子を、この原料粒子の軟化温度で焼成することにより、内部に中空が形成された焼成粒子を生成することを特徴とする中空焼成体の製造方法により達成される。
同様の目的は、本発明の、前記天然鉱物質粉末が、火成岩、火山砕屑岩および凝灰岩から選ばれる1種または2種以上の天然鉱物を粉砕してなることを特徴とする中空焼成体の製造方法によっても達成される。
また同様の目的は、本発明の、前記天然鉱物質粉末の代わりに人工的に得られるフライアッシュを原料とすることを特徴とする中空焼成体の製造方法によっても達成される。
更に同様の目的は、本発明の、前記原料粒子の焼成を該原料粒子の軟化温度で、かつ雰囲気の酸素濃度および焼成時間を調整して行うことを特徴とする中空焼成体の製造方法によっても達成される。
【0007】
【作用】
本発明は、前記特定組成の天然鉱物、フライアッシュからなる粉末と可燃還元物粉末との混合粉末を造粒、成形してなる原料粒子を、該原料粒子の軟化温度で焼成することを特徴とする。一般に、可燃還元物を含む場合と含まない場合とで、同一物質について軟化温度を比較すると、可燃還元物を含む場合は、含まない場合に比較して軟化温度が低くなる。
焼成装置内で原料粒子の焼成を開始すると、昇温時に燃焼ガス雰囲気中の酸素により、先ず原料粒子表層のみ燃焼して焼結する。一方、原料粒子の内部は未燃部分が残っており、更に焼成装置内の温度が上昇すると、前記未燃部分はそのままの状態で昇温して、表層よりも先に軟化温度に到達する。その結果、原料粒子は中心部のみが軟化溶融することとなり、この時に発生するガスが粒状体内部に空間部を形成する。そして、冷却過程において、中心部に中空を保持したまま固化して中空焼成体となる。
【0008】
上記焼成過程において、酸素濃度、焼成温度および焼成時間の焼成条件を適切に調整することにより、内部の中空部分の大きさを制御して中空焼成体の比重を調整することができる。
本発明においては、前記の焼成条件を適切に調整し、中空部の大きさを制御することにより、比重1.0以下の軽量骨材を得ることも可能である。そして、得られた比重1.0以下の軽量骨材の場合でも、表層には気泡が含まれず、強度が大きいため、本発明の軽量骨材は強度が大きく、かつ吸水率が小さい。従って本発明の軽量骨材を用いてコンクリートを調製する場合、軽量骨材のプレウエッチング工程を省略でき、また骨材比重を比重1.0以下にすることにより、コンクリートの単位容積重量を容易に1.2t/m3 以下にすることができる。
【0009】
以下、本発明に係る中空焼成体の製造方法に関して詳細に説明する。
本発明の原料素材の組成としてはSiO2 含有率が60重量%以上であり、かつガラス含有率が60体積%以上であることが必須条件であり、この条件に適する素材であれば天然の素材でも人工素材でも良い。
【0010】
本発明に使用される天然鉱物としては火成岩、火山砕屑岩および凝灰岩を好適に挙げられ、これらを単独で若しくは2種以上混合して使用することもできる。また、これら鉱物は石英、長石、斜長石、輝石、かんらん石、黒曜石、角閃石や頁岩などから好ましく構成されるものであり、その化学組成として、SiO2 のを主成分とし、Al2 3 を第2成分とし、更にはFe2 3 、CaOやMgO等を含むものである。
【0011】
人工素材は、フライアッシュが好ましい。このフライアシュは、例えば石炭火力発電所より大量に廃棄物として発生するもので、安価であるばかりでなく、その処理問題を解決する上でも好ましい材料である。
また、フライアッシュは通常、SiO2 を60重量%以上含み、この他Al2 3 、Fe2 3 、CaO、MgOやR2 O(R:アルカリ金属)等を含むものである。また、ガラス含有率も60体積%以上の範囲にある。
【0012】
前記原料素材は、予め粉砕して粉末にされる。この粉末の粒子径は、平均粒子径が5〜15μm、好ましくは6〜10μmであり、最大粒子径は50μm好ましくは40μmである。平均粒子径が15μm以上であると高強度な軽量中空焼成体が得られず、また5μm以下としても強度の伸びが少ないばかりか粉砕動力が高くなり好ましくない。原料素材の粉砕には、縦型ミルや横型チューブミルなどのような粉砕機が好ましく使用される。
【0013】
また、本発明に使用される可燃還元物としては、カーボンブラック、石炭、木炭あるいは原料に含まれる未燃カーボンなどを挙げることができる。可燃還元物は、前記原料素材と同じ粒度あるいはさらに微細な粉末として使用されることが望ましい。可燃還元物の粉砕には、やはり縦型ミルや横型チューブミルが好ましく使用される。
この可燃還元物は、前記原料素材に対して0.1〜6.0重量%添加される。可燃還元物の添加が0.1重量%未満では、焼成時の雰囲気の酸素濃度を0%近くにするか、若しくは焼成時間を数分間と極めて短時間にしなくては、中空部を有する焼成体を得ることができない。また6.0重量%よりも多量に添加した場合には、中空部を有する焼成体を得るためには、酸素濃度を10%以上と大きくするか、焼成時間を4時間以上と非常に長くしなければならず、製造コストが非常に高くなる。
【0014】
前記原料素材粉末に可燃還元物粉末を加え、また必要により炭化ケイ素等の発泡剤を加えて調製した混合粉体を、所望の粒径に造粒して原料粒子とすることができるが、焼成時の粉状化を防止するために更に粘結材を加えても良い。
前記粘結材としては、一般に知られているセメント、ベントナイトのような粘土、カルボキシメチルセルロース(CMC)やポリビニルアルコール(PVA)のような水溶性高分子物、あるいはパルプ廃液などが使用される。また、加える粘結材の量は、造粒した原料粒子が焼成時に焼成装置(回転窯)により解砕されて粉状化を起こさない程度とする。
【0015】
焼成前の原料粒子は、圧潰強度として1kgf/ペレット以上である必要があり、2kgf/ペレット以上であることが望ましい。骨材粒子とするための造粒あるいは成形方法は、一般に知られているパン型ペレタイザーに代表される転動造粒機、あるいはブリケットマシンなどの加圧成型機、または押出し成型機が用いられる。そして、これら成型機によって成形された成形物を焼成する。
焼成温度は、原料粒子の軟化温度に設定される。焼成装置としては、回転窯が好適に使用される。
【0016】
更に、焼成に際して、可燃還元剤の添加量や焼成温度に加えて、酸素濃度および焼成時間を適切に調整することにより、内部に生成する中空部分の大きさを制御して、焼成体の比重を調節するこができる。
例えば、図1は、SiO2 含有量が74.6重量%、Al2 3 含有量が13.6重量%、ガラス含有率95体積%の火山砕屑物の粉末に、発泡剤として炭化ケイ素粉末を0.3重量%添加し、カーボンブラック粉末(可燃還元剤)の配合量を変えて造粒した原料粒子を、酸素濃度および焼成時間を変えて焼成し、内部に中空部が形成された焼成体が生成する条件をプロットしたものであるが、可燃還元剤の添加量と酸素濃度、焼成時間の間には相関があることが認められる。
本発明においては、可燃還元物の添加量が上記で規定した0.1〜6.0重量%で、焼成温度が原料軟化温度である場合、焼成装置内の酸素濃度は0.2〜21%の範囲、また焼成時間は15分間から120分間までの条件で焼成されることが好ましく、実施に際しては、使用する天然鉱物やフライアッシュ、粘結材等の種類により最適条件を実験的に求めておく必要がある。
【0017】
【実施例】
以下に本発明の中空焼成体の製造の実施例について記載する。以下の実施例は本発明の構成や効果についての理解を深めるためのものであり、本発明を制限するものでないことはいうまでもない。
【0018】
〔実施例1〕
原料に、SiO2 含有量が70.5重量%、Al2 3 含有量が15.1重量%、ガラス含有率95体積%の火山性噴出物を用い、その粉砕には容積60リットルのボールミル3基を使用した。前記ボールミルの各々の中に、試料10kgおよび粉砕媒体として直径30mm、20mm、10mmの鉄製ボールの各30kgを投入し、45rpmで粉砕して平均粒子径で7.6μm、最大粒子径で44μm以下になるまで粉砕した。得られた原料粉末に粘結材として市販のベントナイト(主成分モンモリロナイト)を3.0重量%、発泡剤としてSiCを0.3重量%添加し、さらに粒子径44μm以下のカーボンブラック粉末をそれぞれ0.2、0.5、1.0重量%添加して十分混合した。
【0019】
前記原料の粉砕・混合などの処理を行った後、水を全量の15重量%程度加え、皿型造粒機により10±0.2mmの径の粒子に造粒する。得られた造粒物200kgを内径450mm、長さ8mのロータリーキルンを用いて、焼成温度1200℃、回転窯内の滞留時間を各々30分間、60分間、90分間および120分間、窯尻酸素濃度を各々3%、5%および7%に調整して焼成した。
得られた焼成体の物性を、第1表に示す。
【0020】
【表1】

Figure 0003746802
【0021】
なお、焼成体の比重および吸水率は、JIS C2141に準拠して測定したものである。前記第1表より、中空の焼成体を製造するための条件は、カーボンブラック量が増加すると酸素濃度を多くし、あるいは焼成時間を長くするような操作、若しくはこれらの併用操作が必要となり、カーボンブラック量が少なくなると酸素濃度を少なくし、あるいは焼成時間を短くするような操作、若しくはこれらの併用操作が必要となることがわかる。そして、酸素濃度および焼成時間を最適化することにより、中空の焼成体を得ることができた(表中、内部状況欄において「中空有り」の条件)。また、焼成体の物性も低比重かつ低吸水率であった。
【0022】
〔実施例2〕
原料に、SiO2 含有量が74.6重量%、Al2 3 含有量が13.6重量%、ガラス含有率90体積%の火山砕屑物を用い、その粉砕には容積60リットルのボールミル3基を使用した。前記ボールミルの各々の中に、試料10kgおよび粉砕媒体として直径30mm、20mm、10mmの鉄製ボールの各30kgを投入し、45rpmで粉砕して平均粒子径で7.6μm、最大粒子径で44μm以下になるまで粉砕した。得られた原料粉末に粘結材として市販のベントナイト(主成分モンモリロナイト)を3.0重量%、発泡剤としてSiCを0.3重量%添加し、さらに粒子径44μm以下のカーボンブラック粉末をそれぞれ0(無添加)、0.2、0.5、1.0重量%添加して十分混合した。
【0023】
前記原料の粉砕・混合などの処理を行った後、水を全量の15重量%程度加え、皿型造粒機により10±0.2mmの径の粒子に造粒する。得られた造粒物200kgを内径450mm、長さ8mのロータリーキルンを用いて、焼成温度1200℃、回転窯内の滞留時間を各々30分間、60分間および120分間、窯尻酸素濃度を各々3%、5%および7%に調整して焼成した。
得られた焼成体の物性を、第2表に示す。
【0024】
【表2】
Figure 0003746802
【0025】
なお、焼成体の比重および吸水率は、実施例1同様JIS C2141に準拠して測定したものである。第2表より、酸素濃度および焼成時間を最適化することにより、中空の焼成体が得られることが確認された(表中、内部状況欄において「中空有り」の条件)。
【0026】
〔実施例3〕
原料に、発電所より排出されるフライアッシュを用いて行った。原料の組成は、SiO2 含有量が61.1重量%、Al2 3 含有量が18.8重量%および残部がCaO、MgOを主成分とする酸化物19.5重量%であり、ガラス含有率90体積%でかつフライアッシュ中の未燃カーボン量が0.5重量%のものを容積60リットルのボールミルにより粉砕した。粉砕条件および粒度は、実施例1と同様に行った。得られた原料粉末に粘結材として市販のベントナイト(主成分モンモリロナイト)を3.0重量%、さらに粒子径44μm以下のカーボンブラック粉末を0.5または1.0重量%加えて十分混合した。
造粒は、水を全量の15重量%程度加え、皿型造粒機により10±1.0mmの径の粒子になるように造粒する。焼成は酸素濃度を5%一定とし、滞留時間および焼成温度を変えて行った。
得られた焼成体の物性を、第3表に示す。
【0027】
【表3】
Figure 0003746802
【0028】
第3表に示すように、滞留時間および焼成温度を最適化することにより、中空の焼成体を製造することが可能であり、中空とすることにより比重は小さくなるものの、強度低下は見られず、吸水率の少ない焼成体を得ることが可能であることが確認された。
【0029】
〔実施例4〕
原料に、発電所より排出されるフライアッシュを用いて行った。原料の組成は、SiO2 含有量が61.1重量%、Al2 3 含有量が18.8重量%および残部がCaO、MgOを主成分とする酸化物19.5重量%であり、ガラス含有率85体積%でかつフライアッシュ中の未燃カーボン量が0.5重量%のものを容積60リットルのボールミルにより粉砕した。粉砕には容積60リットルのボールミル3基を使用した。前記ボールミルの各々の中に、試料10kgおよび粉砕媒体として直径30mm、20mm、10mmの鉄製ボールの各30kgを投入し、45rpmで粉砕して平均粒子径で7.6μm、最大粒子径で44μm以下になるまで粉砕した。得られた原料粉末に粘結材として市販のベントナイト(主成分モンモリロナイト)を3.0重量%、さらに粒子径44μm以下のカーボンブラック粉末をそれぞれ0.5、1.0、2.5重量%ずつ添加して十分混合した。
【0030】
前記原料の粉砕・混合などの処理を行った後、水を全量の15重量%程度加え、皿型造粒機により10±0.2mmの径の粒子に造粒する。乾燥した原料粒子200kgを内径450mm、長さ8mのロータリーキルンを用いて、焼成温度1200℃、滞留時間を各々30分間、60分間および120分間、窯尻酸素濃度を各々3%、5%および7%に調整して焼成した。
得られた焼成体の物性を、第4表に示す。
【0031】
【表4】
Figure 0003746802
【0032】
なお、焼成体の比重および吸水率は、実施例1同様JIS C2141に準拠して測定したものである。第4表より、酸素濃度および焼成時間を最適化することにより、中空の焼成体が得られることが確認された(表中、内部状況欄において「中空有り」の条件)。
【0033】
【発明の効果】
以上説明したように、本発明の中空焼成体の製造方法によれば、SiO2 含有率が60重量%以上かつガラス含有率が60体積%以上である天然鉱物あるいは人工フライアッシュを用いて、焼成条件を適切に調整し、中空部の大きさを制御することにより、比重1.0以下の軽量骨材を得ることが可能である。
得られた比重1.0以下の軽量骨材の場合でも、表層には気泡が含まれず、強度が大きいため、本発明の軽量骨材は強度が大きく、かつ吸水率が小さい。従って本発明の軽量骨材を用いてコンクリートを調製する場合、軽量骨材のプレウエッチング工程を省略でき、また骨材比重を比重1.0以下にすることにより、コンクリートの単位容積重量を容易に1.2t/m3 以下にすることができる。
【図面の簡単な説明】
【図1】中空焼成体を焼成する諸条件の関係を、その1例について示す図である。[0001]
[Industrial application fields]
The present invention relates to a structural and non-structural lightweight aggregate mainly used for construction, and a method for producing a hollow fired body useful as a heat insulating material, a sound insulating material or the like.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventional artificial lightweight aggregates are produced by adding granulated particles by adding foaming aid to powders obtained by pulverizing shale crushed granulated and crushed granulated products, or acid volcanic products such as anti-fluorite. Although manufactured by firing, artificial lightweight aggregates manufactured by these methods are generally open-celled in which the internal bubble distribution varies and the bubbles are connected to each other. For this reason, bubbles exist in the entire aggregate particles, the strength is weak, and the water absorption rate is high.
The tendency of bubbles to be open cells, weak aggregate strength, and high water absorption is more pronounced as the aggregate has a lower specific gravity, and it is difficult to produce an aggregate that is high in strength and lightweight. It was.
[0003]
In addition, since the specific gravity of commercially available lightweight aggregates is about 1.3 to 1.4 and has a high water absorption rate, it is necessary to allow the aggregates to absorb sufficient water when performing concrete construction. It is necessary to perform pre-etching. Moreover, it cannot be said that water absorption is sufficient only by pre-etching during storage. When concrete is made using this aggregate, slump drops occur during mixing and transporting of the concrete, making it difficult to manage. Moreover, since the aggregate specific gravity is large, there is a limit to the weight reduction of the concrete, and it has been difficult to suppress the concrete specific gravity required particularly for high-rise buildings to 1.2 t / m 3 or less.
[0004]
As explained above, the conventional lightweight aggregate is
(1) It is difficult to control the specific gravity because bubbles cannot be controlled during firing.
(2) Aggregate bubbles have a high water absorption rate because there are many open cells.
(3) Low specific gravity is difficult, and water absorption increases when the specific gravity is low.
(4) When the specific gravity is low, the strength of the aggregate is weakened.
And other disadvantages.
[0005]
The present invention provides a novel method for producing a hollow fired body such as a lightweight aggregate having a low strength and a specific gravity that is low in specific gravity and capable of adjusting the specific gravity and having high strength. Objective.
[0006]
[Means for Solving the Problems]
The inventors have obtained a hollow fired body having a low specific gravity and a high strength by adding a combustible reductant to the powder material of the aggregate material and granulating it, and firing the particles at the softening temperature of the constituent material. In addition, the inventors have found that the specific gravity can be adjusted by adjusting the temperature and time during firing and the oxygen concentration of the atmosphere, and the present invention has been completed. That is, the above object is to obtain particles of a predetermined particle size by adding a combustible reductant to a natural mineral powder having a SiO 2 content of 60% by weight or more and a glass content of 60% by volume or more. This is achieved by a method for producing a hollow fired body characterized in that the raw material particles granulated in the form are fired at the softening temperature of the raw material particles to produce fired particles having hollows formed therein.
A similar object is to produce a hollow fired body according to the present invention, wherein the natural mineral powder is obtained by pulverizing one or more natural minerals selected from igneous rocks, volcanic clastic rocks, and tuffs. It is also achieved by the method.
The same object is also achieved by the method for producing a hollow fired body according to the present invention using fly ash obtained artificially instead of the natural mineral powder as a raw material.
A similar object is also achieved by the method for producing a hollow fired body according to the present invention, wherein the firing of the raw material particles is performed at the softening temperature of the raw material particles and by adjusting the oxygen concentration and firing time of the atmosphere. Achieved.
[0007]
[Action]
The present invention is characterized in that raw material particles obtained by granulating and molding a mixed powder of a natural mineral, fly ash powder and a combustible reductant powder having the above specific composition are fired at the softening temperature of the raw material particles. To do. In general, when the softening temperature is compared between the case where the combustible reductant is included and the case where the combustible reductant is not included, the softening temperature is lower in the case where the combustible reductant is included when the softening temperature is included.
When the firing of the raw material particles is started in the firing device, only the surface layer of the raw material particles is first burned and sintered by oxygen in the combustion gas atmosphere when the temperature is raised. On the other hand, unburned portions remain in the raw material particles, and when the temperature in the firing apparatus further rises, the unburned portions are heated as they are, and reach the softening temperature before the surface layer. As a result, only the central portion of the raw material particles is softened and melted, and the gas generated at this time forms a space portion inside the granular material. And in a cooling process, it solidifies, keeping hollow at the center part, and becomes a hollow sintered body.
[0008]
In the firing process, the specific gravity of the hollow fired body can be adjusted by appropriately adjusting the firing conditions of the oxygen concentration, firing temperature, and firing time to control the size of the hollow portion inside.
In the present invention, a lightweight aggregate having a specific gravity of 1.0 or less can be obtained by appropriately adjusting the firing conditions and controlling the size of the hollow portion. Even in the case of the obtained lightweight aggregate having a specific gravity of 1.0 or less, since the surface layer does not contain bubbles and has high strength, the lightweight aggregate of the present invention has high strength and low water absorption. Therefore, when preparing concrete using the lightweight aggregate of the present invention, the pre-etching step of the lightweight aggregate can be omitted, and the specific gravity of the concrete can be easily reduced by making the aggregate specific gravity 1.0 or less. It can be set to 1.2 t / m 3 or less.
[0009]
Hereinafter, the method for producing a hollow fired body according to the present invention will be described in detail.
The composition of the raw material of the present invention is an essential condition that the SiO 2 content is 60% by weight or more and the glass content is 60% by volume or more. But artificial materials are also acceptable.
[0010]
Preferable natural minerals used in the present invention include igneous rocks, volcanic clastic rocks and tuffs, and these can be used alone or in admixture of two or more. These minerals are preferably composed of quartz, feldspar, plagioclase, pyroxene, olivine, obsidian, hornblende, shale, etc., and its chemical composition is mainly composed of SiO 2 , Al 2 O. 3 is the second component, and further contains Fe 2 O 3 , CaO, MgO and the like.
[0011]
The artificial material is preferably fly ash. This fly ash is generated as a large amount of waste from, for example, a coal-fired power plant, and is not only inexpensive but also a preferable material for solving the processing problem.
Further, fly ash usually contains 60% by weight or more of SiO 2, and also contains Al 2 O 3 , Fe 2 O 3 , CaO, MgO, R 2 O (R: alkali metal) and the like. The glass content is also in the range of 60% by volume or more.
[0012]
The raw material is pulverized into powder. As for the particle diameter of this powder, the average particle diameter is 5 to 15 μm, preferably 6 to 10 μm, and the maximum particle diameter is 50 μm, preferably 40 μm. If the average particle size is 15 μm or more, a high-strength lightweight hollow fired body cannot be obtained, and if it is 5 μm or less, not only is the elongation of strength small but also the pulverization power is high, such being undesirable. A pulverizer such as a vertical mill or a horizontal tube mill is preferably used for pulverizing the raw material.
[0013]
In addition, examples of combustible reductants used in the present invention include carbon black, coal, charcoal, unburned carbon contained in raw materials, and the like. The combustible reductant is desirably used as the same particle size as the raw material or a finer powder. For pulverization of the combustible reductant, a vertical mill or a horizontal tube mill is preferably used.
This combustible reductant is added in an amount of 0.1 to 6.0% by weight with respect to the raw material. When the addition of the combustible reductant is less than 0.1% by weight, the fired body having a hollow portion is required unless the oxygen concentration in the atmosphere during firing is close to 0% or the firing time is as short as several minutes. Can't get. Further, when added in a larger amount than 6.0% by weight, in order to obtain a fired body having a hollow portion, the oxygen concentration is increased to 10% or more, or the firing time is increased to 4 hours or more. And manufacturing costs are very high.
[0014]
A mixed powder prepared by adding a combustible reductant powder to the raw material powder and, if necessary, adding a foaming agent such as silicon carbide, can be granulated to a desired particle size to obtain raw material particles. In order to prevent powdering at the time, a caking additive may be further added.
As the binder, generally known cement, clay such as bentonite, water-soluble polymer such as carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA), pulp waste liquid, and the like are used. The amount of the caking additive to be added is such that the granulated raw material particles are not pulverized by a baking apparatus (rotary kiln) at the time of baking and cause powdering.
[0015]
The raw material particles before firing must have a crushing strength of 1 kgf / pellet or more, and preferably 2 kgf / pellet or more. As a granulation or molding method for obtaining aggregate particles, a generally known rolling granulator represented by a bread pelletizer, a pressure molding machine such as a briquette machine, or an extrusion molding machine is used. And the molded object shape | molded by these molding machines is baked.
The firing temperature is set to the softening temperature of the raw material particles. A rotary kiln is preferably used as the firing device.
[0016]
Furthermore, during firing, in addition to the amount of combustible reducing agent added and the firing temperature, by appropriately adjusting the oxygen concentration and firing time, the size of the hollow portion produced inside is controlled, and the specific gravity of the fired body is increased. Can be adjusted.
For example, FIG. 1 shows a powder of volcanic debris having a SiO 2 content of 74.6% by weight, an Al 2 O 3 content of 13.6% by weight and a glass content of 95% by volume. Was added, and the raw material particles granulated by changing the blending amount of carbon black powder (flammable reducing agent) were baked with varying oxygen concentration and calcination time, and a hollow part was formed inside It is a plot of the conditions that the body produces, and it is recognized that there is a correlation between the amount of flammable reducing agent added, the oxygen concentration, and the firing time.
In the present invention, when the addition amount of the combustible reductant is 0.1 to 6.0% by weight as defined above and the firing temperature is the raw material softening temperature, the oxygen concentration in the firing apparatus is 0.2 to 21%. In addition, it is preferable that the firing is performed under conditions of 15 minutes to 120 minutes. In practice, optimum conditions are experimentally determined depending on the types of natural minerals, fly ash, and binder used. It is necessary to keep.
[0017]
【Example】
Examples of the production of the hollow fired body of the present invention will be described below. The following examples are for deepening the understanding of the configuration and effects of the present invention, and needless to say, the present invention is not limited thereto.
[0018]
[Example 1]
As a raw material, a volcanic ejecta having a SiO 2 content of 70.5% by weight, an Al 2 O 3 content of 15.1% by weight and a glass content of 95% by volume is used. Three groups were used. In each of the ball mills, 10 kg of a sample and 30 kg of 30 mm, 20 mm, and 10 mm diameter iron balls as the grinding media are placed and ground at 45 rpm to an average particle size of 7.6 μm and a maximum particle size of 44 μm or less. It grind | pulverized until it became. To the obtained raw material powder, 3.0% by weight of commercially available bentonite (main component montmorillonite) as a binder, 0.3% by weight of SiC as a foaming agent, and 0% carbon black powder having a particle size of 44 μm or less were added. .2, 0.5, 1.0 wt% was added and mixed well.
[0019]
After processing such as pulverization / mixing of the raw material, water is added in an amount of about 15% by weight, and granulated into particles having a diameter of 10 ± 0.2 mm by a dish type granulator. Using a rotary kiln with an inner diameter of 450 mm and a length of 8 m, 200 kg of the resulting granulated product was baked at 1200 ° C., and the residence time in the rotary kiln was 30 minutes, 60 minutes, 90 minutes and 120 minutes, respectively. Firing was adjusted to 3%, 5% and 7%, respectively.
Table 1 shows the physical properties of the obtained fired body.
[0020]
[Table 1]
Figure 0003746802
[0021]
The specific gravity and water absorption rate of the fired body are measured in accordance with JIS C2141. From Table 1 above, the conditions for producing a hollow fired body are as follows. When the amount of carbon black is increased, the oxygen concentration is increased or the firing time is increased, or a combination operation thereof is required. It can be seen that when the amount of black decreases, an operation for decreasing the oxygen concentration or shortening the baking time or a combination of these operations is required. A hollow fired body could be obtained by optimizing the oxygen concentration and firing time (in the table, the condition “with hollow” in the internal status column). Further, the physical properties of the fired body were low specific gravity and low water absorption.
[0022]
[Example 2]
As a raw material, volcanic debris having a SiO 2 content of 74.6% by weight, an Al 2 O 3 content of 13.6% by weight, and a glass content of 90% by volume is used. The group was used. In each of the ball mills, 10 kg of a sample and 30 kg of 30 mm, 20 mm, and 10 mm diameter iron balls as the grinding media are placed and ground at 45 rpm to an average particle size of 7.6 μm and a maximum particle size of 44 μm or less. It grind | pulverized until it became. To the obtained raw material powder, 3.0% by weight of commercially available bentonite (main component montmorillonite) as a binder, 0.3% by weight of SiC as a foaming agent, and 0% carbon black powder having a particle size of 44 μm or less were added. (No addition), 0.2, 0.5, 1.0 wt% was added and mixed well.
[0023]
After processing such as pulverization / mixing of the raw material, water is added in an amount of about 15% by weight, and granulated into particles having a diameter of 10 ± 0.2 mm by a dish type granulator. Using a rotary kiln with an inner diameter of 450 mm and a length of 8 m, 200 kg of the obtained granulated material was used, the firing temperature was 1200 ° C., the residence time in the rotary kiln was 30 minutes, 60 minutes, and 120 minutes, respectively, and the furnace bottom oxygen concentration was 3% each. Firing was adjusted to 5% and 7%.
Table 2 shows the physical properties of the obtained fired body.
[0024]
[Table 2]
Figure 0003746802
[0025]
The specific gravity and water absorption rate of the fired body were measured according to JIS C2141 as in Example 1. From Table 2, it was confirmed that a hollow fired body can be obtained by optimizing the oxygen concentration and firing time (in the table, the condition of “with hollow” in the internal status column).
[0026]
Example 3
The fly ash discharged from the power plant was used as the raw material. The composition of the raw material was SiO 2 content 61.1% by weight, Al 2 O 3 content 18.8% by weight, the balance being CaO, MgO 19.5% by weight of oxide, glass A ball mill having a content of 90% by volume and an unburned carbon content of 0.5% by weight in fly ash was pulverized by a ball mill having a volume of 60 liters. The pulverization conditions and the particle size were the same as in Example 1. To the obtained raw material powder, 3.0% by weight of commercially available bentonite (main component montmorillonite) as a binder and 0.5 or 1.0% by weight of carbon black powder having a particle size of 44 μm or less were added and mixed well.
For granulation, water is added in an amount of about 15% by weight, and granulation is performed by a dish granulator so as to obtain particles having a diameter of 10 ± 1.0 mm. Firing was carried out by keeping the oxygen concentration constant at 5% and changing the residence time and the firing temperature.
Table 3 shows the physical properties of the obtained fired body.
[0027]
[Table 3]
Figure 0003746802
[0028]
As shown in Table 3, it is possible to produce a hollow fired body by optimizing the residence time and the firing temperature. Although the specific gravity is reduced by making it hollow, no decrease in strength is observed. It was confirmed that a fired body with a low water absorption rate can be obtained.
[0029]
Example 4
The fly ash discharged from the power plant was used as the raw material. The composition of the raw material was SiO 2 content 61.1% by weight, Al 2 O 3 content 18.8% by weight, the balance being CaO, MgO 19.5% by weight of oxide, glass One having a content of 85% by volume and an unburned carbon content of 0.5% by weight in fly ash was pulverized by a ball mill having a volume of 60 liters. Three ball mills with a volume of 60 liters were used for grinding. In each of the ball mills, 10 kg of a sample and 30 kg of 30 mm, 20 mm, and 10 mm diameter iron balls as the grinding media are placed and ground at 45 rpm to an average particle size of 7.6 μm and a maximum particle size of 44 μm or less. It grind | pulverized until it became. 3.0% by weight of commercially available bentonite (main component montmorillonite) as a binder and 0.5%, 1.0%, and 2.5% by weight of carbon black powder having a particle diameter of 44 μm or less are added to the obtained raw material powder, respectively. Added and mixed well.
[0030]
After processing such as pulverization / mixing of the raw material, water is added in an amount of about 15% by weight, and granulated into particles having a diameter of 10 ± 0.2 mm by a dish type granulator. Using a rotary kiln with an inner diameter of 450 mm and a length of 8 m, 200 kg of the dried raw material particles, firing temperature of 1200 ° C., residence time of 30 minutes, 60 minutes and 120 minutes, respectively, kiln bottom oxygen concentration of 3%, 5% and 7%, respectively Adjusted to baked.
Table 4 shows the physical properties of the obtained fired body.
[0031]
[Table 4]
Figure 0003746802
[0032]
The specific gravity and water absorption rate of the fired body were measured according to JIS C2141 as in Example 1. From Table 4, it was confirmed that a hollow fired body can be obtained by optimizing the oxygen concentration and firing time (in the table, the condition of “with hollow” in the internal status column).
[0033]
【The invention's effect】
As described above, according to the method for producing a hollow fired body of the present invention, firing is performed using a natural mineral or artificial fly ash having a SiO 2 content of 60% by weight or more and a glass content of 60% by volume or more. By adjusting the conditions appropriately and controlling the size of the hollow portion, it is possible to obtain a lightweight aggregate having a specific gravity of 1.0 or less.
Even in the case of the obtained lightweight aggregate having a specific gravity of 1.0 or less, since the surface layer does not contain bubbles and has high strength, the lightweight aggregate of the present invention has high strength and low water absorption. Therefore, when preparing concrete using the lightweight aggregate of the present invention, the pre-etching step of the lightweight aggregate can be omitted, and the specific gravity of the concrete can be easily reduced by making the aggregate specific gravity 1.0 or less. It can be set to 1.2 t / m 3 or less.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between various conditions for firing a hollow fired body, as an example.

Claims (4)

SiO2 含有率が60重量%以上であり、かつガラス含有率が60体積%以上である天然鉱物質粉末に可燃還元物を加えて所定の粒径の粒子に造粒してなる原料粒子を、この原料粒子の軟化温度で焼成することにより、内部に中空が形成された焼成粒子を生成することを特徴とする中空焼成体の製造方法。Raw material particles formed by adding combustible reductants to a natural mineral powder having a SiO 2 content of 60% by weight or more and a glass content of 60% by volume or more, and granulating the particles into particles of a predetermined particle size, A method for producing a hollow fired body, characterized in that, by firing at the softening temperature of the raw material particles, fired particles having hollows formed therein are produced. 前記天然鉱物質粉末が、火成岩、火山砕屑岩および凝灰岩から選ばれる1種または2種以上の天然鉱物を粉砕してなることを特徴とする請求項1に記載の中空焼成体の製造方法。The method for producing a hollow fired body according to claim 1, wherein the natural mineral powder is obtained by pulverizing one or more natural minerals selected from igneous rocks, volcanic clastic rocks, and tuff. 前記天然鉱物質粉末の代わりに人工的に得られるフライアッシュを原料とすることを特徴とする請求項1に記載の中空焼成体の製造方法。The method for producing a hollow fired body according to claim 1, wherein fly ash obtained artificially is used as a raw material instead of the natural mineral powder. 前記原料粒子の焼成を該原料粒子の軟化温度で、かつ雰囲気の酸素濃度および焼成時間を調整して行うことを特徴とする請求項1乃至3のいずれかに記載の中空焼成体の製造方法。The method for producing a hollow fired body according to any one of claims 1 to 3, wherein the firing of the raw material particles is performed at a softening temperature of the raw material particles and by adjusting an oxygen concentration and a firing time in an atmosphere.
JP33752894A 1994-12-28 1994-12-28 Method for producing hollow fired body Expired - Fee Related JP3746802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33752894A JP3746802B2 (en) 1994-12-28 1994-12-28 Method for producing hollow fired body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33752894A JP3746802B2 (en) 1994-12-28 1994-12-28 Method for producing hollow fired body

Publications (2)

Publication Number Publication Date
JPH08183664A JPH08183664A (en) 1996-07-16
JP3746802B2 true JP3746802B2 (en) 2006-02-15

Family

ID=18309502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33752894A Expired - Fee Related JP3746802B2 (en) 1994-12-28 1994-12-28 Method for producing hollow fired body

Country Status (1)

Country Link
JP (1) JP3746802B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05002057A (en) * 2002-08-23 2005-09-12 James Hardie Int Finance Bv Synthetic hollow microspheres.

Also Published As

Publication number Publication date
JPH08183664A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
CN106365651A (en) Preparation method of reinforced spherical aggregate refractory material
EP0188371B1 (en) Artificial lightweight aggregate
CN105924140A (en) Method for preparing high-pressure-resistance alumina grinding medium through roll forming
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JP2000143307A (en) Method for producing artificial aggregate and artificial aggregate produced by the same method
JP3746802B2 (en) Method for producing hollow fired body
JPH0977543A (en) Artificial lightweight aggregate and its production
JP2001253740A (en) Artificial aggregate and its production process
JP3275725B2 (en) Manufacturing method of coal ash lightweight aggregate
JP3624033B2 (en) Artificial lightweight aggregate
JPH11335146A (en) Production of artificial lightweight aggregate and artificial lightweight aggregate obtained by the method
JP3165626U (en) Foam glass spherical particles
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP3369687B2 (en) Fly ash artificial aggregate
TWI687388B (en) Clean water sludge reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
JPH08157244A (en) Production of artificial lightweight aggregate
RU2225373C1 (en) Method of manufacturing foamed silicate blocks
JP2554975B2 (en) Fine spherical inorganic foam having thick skin and method for producing the same
RU2234473C1 (en) Charge for production of mineral wool
TWI686363B (en) Textile sludge reproduction-based light-weight pellet material, preparation method and manufacturing system thereof
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPH1179809A (en) Production of artificial lightweight aggregate using coal ash and artificial lightweight aggregate obtained by the production
JPH10251048A (en) Production of artificial fly ash aggregate
JPS61197163A (en) Manufacture of vitrified grinding wheel
JPH0784338B2 (en) Artificial lightweight aggregate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees