JPH10251048A - Production of artificial fly ash aggregate - Google Patents

Production of artificial fly ash aggregate

Info

Publication number
JPH10251048A
JPH10251048A JP7670797A JP7670797A JPH10251048A JP H10251048 A JPH10251048 A JP H10251048A JP 7670797 A JP7670797 A JP 7670797A JP 7670797 A JP7670797 A JP 7670797A JP H10251048 A JPH10251048 A JP H10251048A
Authority
JP
Japan
Prior art keywords
fly ash
aggregate
alumina
silica
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7670797A
Other languages
Japanese (ja)
Inventor
Toshio Imai
敏夫 今井
Masamitsu Nanbu
正光 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP7670797A priority Critical patent/JPH10251048A/en
Publication of JPH10251048A publication Critical patent/JPH10251048A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/023Fired or melted materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To obtain a high density and high strength artificial fly ash aggregate which does not change into low density and high water absorption by rapid foaming, by mixing a specified silica-alumina-contg. fine powder into fly ash, granulating and then calcining. SOLUTION: A fly ash produced by combustion of a solid fuel is mixed with a silica alumina fine powder having <10μm average particle size, containing >=95wt.% total amt. of silica and alumina, >=23wt.% alumina and >=1,500 deg.C melting point, by 10 to 30wt.% of the final product to obtain a mixture. If necessary, a granulating assistant, clay and thickener and the like are added to the mixture, and then the mixture is humidified, granulated, and dried to obtain a pellet of calcination. The pellet is calcined at 1,100 to 1,300 deg.C. Thereby, the obtd. artificial fly ash aggregate can be produced at <=1,300 deg.C calcining temp. of the fly ash which is economical, and the obtd. aggregate shows 40MPa strength calculated as tensile strength by compressive strength test using Instron.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は産業廃棄物であるフ
ライアッシュを主原料として利用した人工骨材に関する
ものである。
TECHNICAL FIELD The present invention relates to an artificial aggregate using fly ash, which is industrial waste, as a main raw material.

【0002】[0002]

【従来の技術】火力発電所のボイラー等で石炭を燃料と
して燃焼させると産業廃棄物として多量のフライアッシ
ュが発生する。一年間に発生するフライアッシュは、お
よそ400万トンであり、そのうちの約半分が、セメン
トコンクリート等の建設、土木分野、窯業分野で有効利
用されている。フライアッシュの発生量は、年々確実に
増加している。環境保全、資源の有効活用の立場から
も、フライアッシュの有効利用が更に促進されることが
望まれる。
2. Description of the Related Art Burning coal as fuel in a boiler or the like of a thermal power plant generates a large amount of fly ash as industrial waste. Fly ash generated in one year is about 4 million tons, about half of which is used effectively in the construction of cement concrete and the like, the civil engineering field, and the ceramic industry. The amount of fly ash generated is steadily increasing every year. From the standpoint of environmental conservation and effective use of resources, it is desired that the effective use of fly ash be further promoted.

【0003】フライアッシュをコンクリート骨材として
用いる試みは種々なされているが実用化に至っているも
のは極めて少ない。その原因は、フライアッシュの持つ
化学的物理的性状のバラツキが大きいため、一定の製造
条件で、高密度で吸水率が小さく高強度の品質の安定し
た骨材を高収率で製造出来ないことにある。
[0003] Various attempts have been made to use fly ash as concrete aggregate, but very few have reached practical use. The reason is that fly ash has a large variation in chemical and physical properties, and it is not possible to produce high-density, low-water-absorption, low-strength, high-quality, stable aggregates in high yields under certain production conditions. It is in.

【0004】その原因に製造時に発生する発泡現象があ
げられる。未燃焼の炭質物を燃焼除去したフライアッシ
ュを、酸素濃度が5体積%以下の雰囲気で焼成すること
により発泡を抑制した人工骨材を製造する技術が、特願
平7−90219に開示されている。効果的な方法であ
るが、酸素濃度をコントロールする特別な装置を必要と
して経済的といえない。又、フライアッシュを、中性ま
たは、不活性ガス雰囲気で焼成することにより人工骨材
用原料の調整により焼成時の発泡現象を抑制する方法が
特願平7−90220に開示されている。これも同様に
経済的な方法とはいえない。
[0004] The cause is a foaming phenomenon that occurs during manufacturing. Japanese Patent Application No. 7-90219 discloses a technique for producing an artificial aggregate in which foaming is suppressed by baking fly ash obtained by burning and removing unburned carbonaceous materials in an atmosphere having an oxygen concentration of 5% by volume or less. I have. Although this is an effective method, it is not economical because a special device for controlling the oxygen concentration is required. Also, Japanese Patent Application No. 7-90220 discloses a method in which fly ash is fired in a neutral or inert gas atmosphere to adjust the raw material for the artificial aggregate to suppress the foaming phenomenon during firing. Again, this is not an economic method.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、フラ
イアッシュの焼成製造温度を経済性のある1300度以
下で製造でき、製造管理温度をこえても急激な発泡現象
による低密度化高吸水率化が生じない高密度高強度フラ
イアッシュ人工骨材の製造方法を得る事である。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to produce fly ash at an economical temperature of 1300 ° C. or lower, and to reduce the density and increase the water absorption due to a rapid foaming phenomenon even when the production control temperature is exceeded. An object of the present invention is to provide a method for producing a high-density, high-strength fly ash artificial aggregate that does not cause efficiency.

【0006】[0006]

【課題を解決するための手段】主原料であるフライアッ
シュに、高融点のシリカーアルミナ含有微粉末を混合す
る。この混合物を造粒した後、焼成することにより発泡
を抑制したフライアッシュ人工骨材の製造方法が得られ
ることを見出した。
A high-melting silica-alumina-containing fine powder is mixed with fly ash, which is a main raw material. It has been found that a method for producing a fly ash artificial aggregate in which foaming is suppressed can be obtained by granulating and baking the mixture.

【0007】本発明の製造方法は、以上の知見に基づく
ものであり、本発明によれば、以下の構成からなる人工
骨材の製造方法が提供される。
The production method of the present invention is based on the above findings. According to the present invention, there is provided a method for producing an artificial aggregate having the following constitution.

【0008】(1) フライアッシュと融点1500°
C以上のシリカーアルミナ含有微粉末とを混合し、該混
合物を造粒した後、焼成することを特徴とするフライア
ッシュ人工骨材の製造方法
(1) Fly ash and melting point 1500 °
A method for producing an artificial fly ash aggregate, comprising mixing a fine powder containing silica-alumina of C or more, granulating the mixture, and firing.

【0009】(2) シリカーアルミナ含有微粉末中の
シリカーアルミナ成分の合計量が95重量%以上であ
り、アルミナ成分の含有率が、23重量%以上であるこ
とを特徴とするフライアッシュ人工骨材の製造方法
(2) An artificial fly ash characterized in that the total amount of the silica-alumina component in the silica-alumina-containing fine powder is 95% by weight or more and the alumina component content is 23% by weight or more. Aggregate manufacturing method

【0010】(3) 混合物中のシリカーアルミナ含有
微粉末の配合割合が内割りで10重量%以上30重量%
以下であることを特徴とする人工骨材の製造方法
(3) The mixing ratio of the silica-alumina-containing fine powder in the mixture is at least 10% by weight and 30% by weight
A method for producing an artificial aggregate, characterized in that:

【0011】[0011]

【発明の実施形態】本発明の製造方法は、固形燃料の燃
焼によって生じる通常のフライアッシュが用いられる。
融点1500度C以上のシリカーアルミナ含有微粉末
は、高純度品でも良いが、酸化物セラミックス製造工程
で廃棄される成形屑、焼結体の廃材、粘土などの天然原
料、磁器廃材等も用いることができる。シリカとアルミ
ナを混合して用いても良いしアルミノシリケートの形態
で含有しても良い。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the production method of the present invention, ordinary fly ash generated by burning solid fuel is used.
The silica-alumina-containing fine powder having a melting point of 1500 ° C. or more may be a high-purity product, but molding waste, waste of sintered bodies, natural materials such as clay, waste of porcelain, and the like are also used in the oxide ceramic manufacturing process. be able to. Silica and alumina may be used as a mixture or may be contained in the form of aluminosilicate.

【0012】シリカ−アルミナ含有微粉末は、平均粒径
で10μm以下であることが望ましい。平均粒径で10
μm以上になると反応速度が遅くなり焼結温度を遅延さ
せ期待される効果が減少する恐れがある。
The silica-alumina-containing fine powder preferably has an average particle diameter of 10 μm or less. 10 in average particle size
If it is more than μm, the reaction speed becomes slow, the sintering temperature is delayed, and the expected effect may be reduced.

【0013】微粉末を得る手段は、通常の粉砕方法ある
いは分散方法が用いられる。フライアッシュとの混合手
段も通常の混合手段でよい。混合割合は、内割で10重
量%以上30重量%以下が望ましい。
As a means for obtaining the fine powder, a usual pulverization method or dispersion method is used. The mixing means with fly ash may be a usual mixing means. The mixing ratio is desirably 10% by weight or more and 30% by weight or less.

【0014】このように粒度調整された原料に造粒物の
強度を確保するため必要に応じて更に粉砕・混合した
り、あるいは、造粒補助剤・増粘剤として少量の粘土・
増粘剤などを添加しても良い。引き続いて加湿、造粒、
乾燥の工程を経て、焼結用のペレットを得る。造粒方法
に特に制約はないが、パンペレタイザーや押し出し成形
機による造粒が望ましい。
The raw material whose particle size has been adjusted as described above may be further pulverized and mixed as necessary in order to secure the strength of the granulated material, or a small amount of clay,
A thickener or the like may be added. Then humidification, granulation,
Through a drying step, pellets for sintering are obtained. There is no particular limitation on the granulation method, but granulation by a punch pelletizer or an extrusion molding machine is desirable.

【0015】こうして得られた成形体を1100度C以
上1300度C以下の温度で加熱保持することで比重の
バラツキの少ない高密度高強度フライアッシュ人工骨材
を得ることが出来る。フライアッシュを構成する個々の
ガラス質粒子は、高温加熱時発泡源となる未燃焼の炭質
物を含有するので、過度の高温での発泡は、比重の安定
した骨材を焼成するためには避けなければならない。上
記シリカーアルミナ質微粉末を混合させることで110
0度C以上1300度C以下の温度で加熱保持して比重
のバラツキの少ない高密度高強度フライアッシュ人工骨
材を得ることが出来る。
By heating and holding the thus obtained molded body at a temperature of 1100 ° C. or more and 1300 ° C. or less, a high-density high-strength fly ash artificial aggregate having a small variation in specific gravity can be obtained. Since the individual vitreous particles that constitute fly ash contain unburned carbonaceous material that becomes a foaming source during high-temperature heating, foaming at an excessively high temperature should be avoided in order to burn aggregate having a stable specific gravity. There must be. By mixing the above silica-alumina fine powder, 110
By heating and holding at a temperature of 0 ° C. or more and 1300 ° C. or less, a high-density high-strength fly ash artificial aggregate having little variation in specific gravity can be obtained.

【0016】この理由は、明確ではない。フライアッシ
ュは、主に球状を呈するガラス質粒子、石英およびムラ
イト等の結晶粒子、未燃焼の炭素質からなる集合物であ
る。フライアッシュを造粒・焼成して骨材化を図ろうと
する場合、その骨材の焼結は石英やムライトの溶融に先
立つガラス質の溶融によって起こる。このガラス質の溶
融と同時に、粒子内に捕獲されていた微少量の炭素質が
発泡することによって骨材の比重が低下するものと思わ
れる。
The reason for this is not clear. Fly ash is an aggregate mainly composed of glassy particles having a spherical shape, crystal particles such as quartz and mullite, and unburned carbonaceous materials. In the case where fly ash is granulated and fired to form an aggregate, sintering of the aggregate occurs by vitrification prior to melting of quartz or mullite. Simultaneously with the melting of the vitreous, it is thought that the specific gravity of the aggregate is reduced by foaming of a very small amount of carbonaceous material trapped in the particles.

【0017】本発明者らは、シリカーアルミナ質混合物
微粉末粒子を炭素質を捕獲するガラス質粒子の近辺に十
分で且つ必要な量を配して発泡成分を含んだガラス質の
無機物質全体に対する相対量を低下させることにより、
ガラス質の化学組成を変化させ溶融温度をコントロール
しガラス粒子発泡の比重低下に及ぼす影響を減少させ溶
融する温度領域を広くし、焼成温度の変化にたいする骨
材の密度のバラツキを小さく出来ることを見いだした。
The present inventors disclose a sufficient amount of silica-alumina mixture fine powder particles in the vicinity of the vitreous particles for capturing carbonaceous material, and provide the entire vitreous inorganic material containing a foaming component. By reducing the relative amount to
We found that it was possible to control the melting temperature by changing the glassy chemical composition, reduce the effect of glass particle foaming on specific gravity reduction, widen the melting temperature range, and reduce the variation in aggregate density with respect to firing temperature changes. Was.

【0018】こうして得られたフライアッシュ人工骨材
の製造方法により、比較的低温の焼結温度で従来より格
段に広い温度領域での同人工骨材の製造が可能になっ
た。製造管理温度が広いので焼結プロセスのコントロー
ルも容易であり通常の焼結装置が特別の仕様変更なく用
いることができる。
According to the method for producing a fly ash artificial aggregate thus obtained, the artificial aggregate can be produced at a relatively low sintering temperature in a much wider temperature range than before. Since the production control temperature is wide, it is easy to control the sintering process, and ordinary sintering equipment can be used without any special specification change.

【0019】得られたフライアッシュ人工骨材は、高密
度高強度の骨材として利用可能な焼結物であり、従来の
フライアッシュの製造方法をもちいては、製造できなか
ったものである。その吸水率は、フライアッシュ骨材の
従来品と比べて格段に小さく、インストロンを用いた圧
潰強度試験結果で引っ張り強度換算40MPaと天然の
骨材と比べても遜色なかった。
The obtained fly ash artificial aggregate is a sintered material which can be used as a high-density and high-strength aggregate, and cannot be produced using a conventional fly ash production method. The water absorption was much smaller than that of the conventional fly ash aggregate, and the crush strength test result using Instron showed a tensile strength of 40 MPa, which was comparable to that of natural aggregate.

【0020】以下に実施例及び比較例を示し、本発明の
特徴とするところをより一層明確にする。
Examples and comparative examples are shown below to further clarify the features of the present invention.

【0021】[0021]

【実施例】【Example】

実施例1 フライアッシュにシリカとアルミナの重量比が、1.
2:95.4であるような廃アルミナ粉を内割で10重
量%添加し、ボールミルで平均粒径6μmに粉砕した。
この調製原料に造粒補助剤・増粘剤としてベントナイト
を5重量%添加混合し、パンペレタイザーをもちいて加
湿しながら直径10〜20mmのペレットとした。この
ペレットをドラム型ドライアーで乾燥させた後、大気雰
囲気下の電気炉で、昇温速度は毎分20度Cとし管理温
度11600°Cで十分間焼成して骨材化した。アルキ
メデス法で骨材の絶乾比重2.41吸水率0.0を測定
した。吸水率の測定法は、24時間浸積法である。又、
骨材の強度を測定すると42MPaであり、天然骨材と
比べ遜色のないものであった。又、管理温度を超えて焼
結が進んだ場合、発泡によって絶乾比重が減少するが、
高強度低吸水率の得られる絶乾比重が、2.2以上とな
る温度範囲を焼結温度幅として求めると90°Cであっ
た。
Example 1 The weight ratio of silica to alumina in fly ash was 1.
A waste alumina powder having a ratio of 2: 95.4 was added by 10% by weight based on the internal ratio, and pulverized by a ball mill to an average particle diameter of 6 μm.
5% by weight of bentonite was added and mixed with the prepared raw material as a granulation auxiliary agent and a thickener, and the mixture was humidified using a pan pelletizer to form pellets having a diameter of 10 to 20 mm. After the pellets were dried by a drum type dryer, they were fired in an electric furnace under an air atmosphere at a heating rate of 20 ° C./min at a control temperature of 11600 ° C. for a sufficient time to form aggregates. The absolute dry specific gravity of the aggregate was measured to be 2.41 by the Archimedes method. The method of measuring the water absorption is a 24-hour immersion method. or,
The measured strength of the aggregate was 42 MPa, which was comparable to that of natural aggregate. In addition, when sintering proceeds beyond the control temperature, the absolute specific gravity decreases due to foaming,
The temperature range in which the absolute specific gravity at which high strength and low water absorption were obtained was 2.2 or more was determined as the sintering temperature range, and it was 90 ° C.

【0022】実施例2 実施例1において用いたのと全く同様な廃アルミナ20
%を混合する以外は、実施例1と全く同様な原料調合を
行い焼結を行い、管理温度1200°Cで十分間焼成し
2.2以上となる焼結温度幅は、110°Cであった。
Example 2 The same waste alumina 20 as used in Example 1 was used.
%, And sintering was conducted in exactly the same manner as in Example 1, except that the sintering was performed at 1200 ° C for a sufficient time and the sintering temperature range of 2.2 or more was 110 ° C. Was.

【0023】実施例3 実施例1において用いたのと全く同様な廃アルミナ30
%を混合する以外は、実施例1と全く同様な原料調合を
行い焼結を行い、管理温度1240°Cで十分間焼成し
て骨材化した。骨材の絶乾比重2.52吸水率0.0を
測定した。焼結温度幅は、240°Cであった。
Example 3 The same waste alumina 30 as used in Example 1 was used.
%, And sintering was performed in exactly the same manner as in Example 1, except that the raw materials were mixed. The absolute dry specific gravity of the aggregate was measured to be 2.52, and the water absorption was 0.0. The sintering temperature range was 240 ° C.

【0024】比較例1 廃アルミナを添加することなく、実施例1と同様の方法
により骨材化の焼結をおこなった。管理温度を1120
°Cとする骨材の絶乾比重2.46、吸水率は、0.0
であったが、焼結温度幅は50°Cと狭く、焼結コント
ロールが難しかった。
Comparative Example 1 Aggregate was sintered in the same manner as in Example 1 without adding waste alumina. Control temperature 1120
° C, the absolute specific gravity of the aggregate is 2.46, and the water absorption is 0.0
However, the sintering temperature range was as narrow as 50 ° C., and sintering control was difficult.

【0025】比較例2 廃アルミナを40%添加する以外は、実施例1と同様の
方法により骨材化の焼結をおこなった。管理温度を12
40°Cで焼結温度幅は、340°Cであったが、絶乾比
重2.40吸水率が3.8であり骨材として不適当な製
品であった。
Comparative Example 2 Except for adding 40% of waste alumina, sintering of aggregate was performed in the same manner as in Example 1. Control temperature 12
At 40 ° C., the sintering temperature range was 340 ° C., but the absolute dry specific gravity 2.40, water absorption was 3.8, and the product was unsuitable as aggregate.

【0026】実施例4 フライアッシュにシリカとアルミナの重量比が、19.
0:78.5であるような廃ムライト粉を内割で10重
量%添加し、ボールミルで平均粒径6μmに粉砕した。
この調製原料に造粒補助剤・増粘剤としてベントナイト
を5重量%添加混合し、パンペレタイザーをもちいて加
湿しながら直径10〜20mmのペレットとした。この
ペレットをドラム型ドライアーで乾燥させた後、大気雰
囲気下の電気炉で、昇温速度は毎分20°Cとし管理温
度1140°Cで十分間焼成して骨材化した。アルキメ
デス法で焼結した骨材の絶乾比重2.38吸水率0.0を測定
した。吸水率の測定法は、24時間浸積法である。又、
骨材の強度を測定すると引っ張り強度換算で43MPa
であり、天然骨材と比べ遜色のないものであった。又、
管理温度を超えて焼結が進んだ場合、発泡によって絶乾
比重が減少するが、高強度低吸水率の得られる絶乾比重
が、2.2以上となる温度範囲を焼結温度幅として求め
ると100°Cであった。
Example 4 Fly ash having a weight ratio of silica to alumina of 19.
A waste mullite powder having a ratio of 0: 78.5 was added by 10% by weight based on the internal ratio, and pulverized by a ball mill to an average particle diameter of 6 μm.
5% by weight of bentonite was added and mixed with the prepared raw material as a granulation auxiliary agent and a thickener, and the mixture was humidified using a pan pelletizer to form pellets having a diameter of 10 to 20 mm. After drying the pellets with a drum type dryer, the pellets were baked in an electric furnace under an air atmosphere at a heating rate of 20 ° C./minute and a control temperature of 1140 ° C. for a sufficient time to form aggregate. The absolute specific gravity 2.38 water absorption 0.0 of the aggregate sintered by the Archimedes method was measured. The method of measuring the water absorption is a 24-hour immersion method. or,
When the strength of the aggregate is measured, it is 43 MPa in terms of tensile strength.
It was comparable to natural aggregate. or,
When sintering proceeds beyond the control temperature, the absolute dry specific gravity decreases due to foaming, but the temperature range in which the absolute dry specific gravity with which high strength and low water absorption are obtained is 2.2 or more is determined as the sintering temperature width. And 100 ° C.

【0027】実施例5 実施例4において用いたのと全く同様な廃ムライト20
%を混合する以外は、実施例4と全く同様な原料調合を
行い焼結を行い、管理温度1180度Cで十分間焼成して骨
材化した。骨材の絶乾比重2.45吸水率0.0を測定した。
焼結温度幅は、100度Cであった。
Example 5 Waste Mullite 20 exactly as used in Example 4
%, And sintering was performed in exactly the same manner as in Example 4, except that the mixture was baked at a control temperature of 1180 ° C. for a sufficient time to form an aggregate. The absolute dry specific gravity of the aggregate was 2.45 and the water absorption was 0.0.
The sintering temperature range was 100 ° C.

【0028】実施例6 実施例4において用いたのと全く同様な廃ムライト30
%を混合する以外は、実施例4と全く同様な原料調合を
行い焼結を行い、管理温度1220°Cで十分間焼成し
て骨材化した。骨材の絶乾比重2.47、吸水率0.0
を測定した。焼結温度幅は、180°Cであった。
EXAMPLE 6 Waste Mullite 30 exactly as used in Example 4
%, And sintering was performed in exactly the same manner as in Example 4, except that the raw materials were mixed. Absolute dry specific gravity of aggregate 2.47, water absorption 0.0
Was measured. The sintering temperature range was 180 ° C.

【0029】比較例3 実施例4において用いたのと全く同様な廃ムライト40
%を混合する以外は、実施例4と全く同様な原料調合を
行い焼結を行い、管理温度1260°Cで十分間焼成し
て骨材化した。焼結温度幅は、260度Cであったが、骨材
の絶乾比重2.35、吸水率4.3以下にならなかっ
た。
Comparative Example 3 Waste Mullite 40 exactly the same as that used in Example 4
%, And sintering was carried out in exactly the same manner as in Example 4, except that the raw materials were mixed. The sintering temperature range was 260 ° C., but the absolute dry specific gravity of the aggregate was 2.35 and the water absorption did not fall below 4.3.

【0030】実施例7 フライアッシュにシリカとアルミナの重量比が、40.
6:54.4であるような廃磁器粉を内割で10重量%
添加し、ボールミルで平均粒径6μmに粉砕した。この
調製原料に造粒補助剤・増粘剤としてベントナイトを5
重量%添加混合し、パンペレタイザーをもちいて加湿し
ながら直径10〜20mmのペレットとした。このペレ
ットをドラム型ドライアーで乾燥させた後、大気雰囲気
下の電気炉で、昇温速度は毎分20°Cとし管理温度1
130°Cで十分間焼成して骨材化した。アルキメデス
法で焼結した骨材の絶乾比重2.40、吸水率0.0を
測定した。吸水率の測定法は、24時間浸積法である。
又、骨材の強度を測定すると41MPaであり、天然骨
材と比べ遜色のないものであった。又、管理温度を超え
て焼結が進んだ場合、発泡によって絶乾比重が減少する
が、高強度低吸水率の得られる絶乾比重が、2.22以
上となる温度範囲を焼結温度幅として求めると800°
Cであった。
Example 7 The weight ratio of silica to alumina in fly ash was 40.
6: 10% by weight of waste porcelain powder that is 54.4
And ground with a ball mill to an average particle size of 6 μm. 5 Bentonite was added to this raw material as a granulation aid and thickener.
By weight addition and mixing, pellets having a diameter of 10 to 20 mm were obtained while humidifying using a pan pelletizer. After the pellets were dried by a drum type dryer, the temperature was raised in an electric furnace under an air atmosphere at a rate of 20 ° C./min.
It was baked at 130 ° C. for a sufficient time to form an aggregate. The absolute specific gravity of the aggregate sintered by the Archimedes method was 2.40 and the water absorption was 0.0. The method of measuring the water absorption is a 24-hour immersion method.
When the strength of the aggregate was measured, it was 41 MPa, which was comparable to that of natural aggregate. When the sintering proceeds beyond the control temperature, the absolute dry specific gravity decreases due to foaming. However, the temperature range where the absolute dry specific gravity for obtaining high strength and low water absorption is 2.22 or more is defined as the sintering temperature range. 800 °
C.

【0031】実施例8 実施例7において用いたのと全く同様な廃磁器粉20%
を混合する以外は、実施例7と全く同様な原料調合を行
い焼結を行い、管理温度1150°Cで十分間焼成して
骨材化した。骨材の絶乾比重2.49、吸水率0.0を
測定した。焼結温度幅は、100°Cであった。
Example 8 Waste ceramic powder 20% exactly as used in Example 7
, And sintering, and sintering was carried out at a control temperature of 1150 ° C. for a sufficient time to obtain an aggregate. The absolute dry specific gravity of the aggregate was measured at 2.49, and the water absorption was measured at 0.0. The sintering temperature range was 100 ° C.

【0032】実施例9 実施例7において用いたのと全く同様な廃磁器分粉30
%を混合する以外は、実施例7と全く同様な原料調合を
行い焼結を行い、管理温度1200°Cで十分間焼成し
て骨材化した。骨材の絶乾比重2.51、吸水率0.0
を測定した。焼結温度幅は、180°Cであった。
Example 9 The exactly same waste porcelain powder 30 as used in Example 7 was used.
%, And sintering was carried out in exactly the same manner as in Example 7, except that the raw materials were mixed. Absolute dry specific gravity of aggregate 2.51, water absorption 0.0
Was measured. The sintering temperature range was 180 ° C.

【0033】比較例4 実施例7において用いたのと全く同様な廃磁器粉40%
を混合する以外は、実施例7と全く同様な原料調合と焼
結を行い、管理温度1240°Cで十分間焼成して骨材
化した。焼結温度幅は、180°Cであったが、骨材の
絶乾比重2.32、吸水率3.4以下にならなかった。
Comparative Example 4 Waste ceramic powder 40% exactly the same as that used in Example 7
, And sintering were performed in the same manner as in Example 7, and the mixture was baked at a control temperature of 1240 ° C for a sufficient time to form an aggregate. The sintering temperature range was 180 ° C, but the absolute dry specific gravity of the aggregate was 2.32 and the water absorption did not become 3.4 or less.

【0034】実施例10 フライアッシュにシリカとアルミナの重量比が、74.
3:23.1であるような廃材粉を内割で10重量%添
加し、ボールミルで平均粒径6μmに粉砕した。この調
製原料に造粒補助剤・増粘剤としてベントナイトを5重
量%添加混合し、パンペレタイザーをもちいて加湿しな
がら直径10〜20mmのペレットとした。このペレッ
トをドラム型ドライアーで乾燥させた後、大気雰囲気下
の電気炉で、昇温速度は毎分20度Cとし管理温度1130度
Cで十分間焼成して骨材化した。アルキメデス法で焼結
した骨材の絶乾比重2.42、吸水率0.0を測定し
た。吸水率の測定法は、24時間浸積法である。又、骨
材の強度を測定すると40MPaであり、天然骨材と比
べ遜色のないものであった。又、管理温度を超えて焼結
が進んだ場合、発泡によって絶乾比重が減少するが、高
強度低吸水率の得られる絶乾比重が、2.2以上となる
温度範囲を焼結温度幅として求めると90度Cであっ
た。
Example 10 The weight ratio of silica to alumina in fly ash was 74.
10% by weight of a waste material powder having a ratio of 3: 23.1 was added thereto, and pulverized by a ball mill to an average particle size of 6 μm. 5% by weight of bentonite was added and mixed with the prepared raw material as a granulation auxiliary agent and a thickener, and the mixture was humidified using a pan pelletizer to form pellets having a diameter of 10 to 20 mm. After the pellets were dried by a drum type dryer, they were baked in an electric furnace under an air atmosphere at a temperature rising rate of 20 ° C./min and at a control temperature of 1130 ° C. for a sufficient time to form aggregate. The absolute dry specific gravity of the aggregate sintered by the Archimedes method was 2.42, and the water absorption was 0.0. The method of measuring the water absorption is a 24-hour immersion method. When the strength of the aggregate was measured, it was 40 MPa, which was comparable to that of natural aggregate. Also, when sintering proceeds beyond the control temperature, the absolute dry specific gravity decreases due to foaming, but the temperature range where the absolute dry specific gravity for obtaining high strength and low water absorption is 2.2 or more is defined as the sintering temperature range. Was 90 ° C.

【0035】実施例11 実施例10において用いたのと全く同様な廃材粉20%
を混合する以外は、実施例10と全く同様な原料調合を
行い焼結を行い、管理温度1150°Cで十分間焼成し
て骨材化した。骨材の絶乾比重2.53、吸水率0.0
を測定した。焼結温度幅は、110°Cであった。
Example 11 Waste material powder 20% exactly as used in Example 10
, And sintering, and sintering was performed at a control temperature of 1150 ° C. for a sufficient time to form an aggregate. Absolute dry specific gravity of aggregate 2.53, water absorption 0.0
Was measured. The sintering temperature range was 110 ° C.

【0036】実施例12 実施例7において用いたのと全く同様な廃材粉30%を
混合する以外は、実施例7と全く同様な原料調合を行い
焼結を行い、管理温度1180°Cで十分間焼成して骨
材化した。骨材の絶乾比重2.54、吸水率0.0を測
定した。1180°Cを超える焼結温度幅は、140°
Cであった。
Example 12 Except that 30% of the same waste material powder as used in Example 7 was mixed, the same raw material preparation as in Example 7 was carried out and sintering was carried out. It was baked for a while to form an aggregate. The absolute dry specific gravity of the aggregate was measured to be 2.54, and the water absorption was measured to be 0.0. The sintering temperature range exceeding 1180 ° C is 140 °
C.

【0037】比較例5 実施例10において用いたのと全く同様な廃材粉40%
を混合する以外は、実施例7と全く同様な原料調合を行
い焼結を行い、管理温度1220度Cで十分間焼成して骨材
化した。1220°Cを超える焼結温度幅は、180°
Cであったが、骨材の絶乾比重2.42、吸水率は3.
2以下にならなかった。
Comparative Example 5 Waste material powder 40% exactly the same as that used in Example 10
, And sintering, and sintering was performed at a control temperature of 1220 ° C. for a sufficient time to obtain an aggregate. The sintering temperature range exceeding 1220 ° C is 180 °
C, but the absolute specific gravity of the aggregate was 2.42, and the water absorption was 3.
Did not fall below 2.

【0038】表1に以上の実施例、比較例の製造条件及
び得られた骨材の絶乾比重吸水率を示す。
Table 1 shows the production conditions of the above Examples and Comparative Examples, and the absolute dry water absorption of the obtained aggregates.

【0039】[0039]

【表1】 [Table 1]

【発明の効果】本発明の人工骨材製造方法は、廃棄処理
に困るフライアッシュを有効に再利用でき、環境保全お
よび資源の有効活用に大いに意義がある。本発明の人工
骨材製造方法は、よりコントールし易い製造方法で高密
度低吸水率で高強度の人工骨材を安価に提供するもので
ある。整理番号 P−5531 化学式等を記載した書面 明細書
The method for producing an artificial aggregate according to the present invention can effectively reuse fly ash which is difficult to dispose, and has great significance for environmental conservation and effective utilization of resources. The method for producing an artificial aggregate of the present invention provides a high-density, low-water-absorption, high-strength artificial aggregate at a low cost by a production method that is easier to control. Reference number P-5531 Document describing chemical formula etc.

【表1】 [Table 1]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フライアッシュと融点1500°C以上
のシリカ−アルミナ含有微粉末とを混合し、該混合物を
造粒した後、焼成することを特徴とするフライアッシュ
人工骨材の製造方法
1. A method for producing a fly ash artificial aggregate, comprising mixing fly ash and silica-alumina-containing fine powder having a melting point of 1500 ° C. or higher, granulating the mixture, and firing.
【請求項2】 シリカーアルミナ含有微粉末中のシリカ
−アルミナ成分の合計量が95重量%以上であり、アル
ミナ成分の含有率が、23重量%以上であることを特徴
とする請求項1記載のフライアッシュ人工骨材の製造方
2. The method according to claim 1, wherein the total amount of the silica-alumina component in the silica-alumina-containing fine powder is 95% by weight or more, and the content of the alumina component is 23% by weight or more. Method of Producing Fly Ash Artificial Aggregate
【請求項3】混合物中のシリカーアルミナ含有微粉末の
配合割合が内割りで10重量%以上30重量%以下であ
ることを特徴とする請求項1記載のフライアッシュ人工
骨材の製造方法
3. The method for producing an artificial fly ash aggregate according to claim 1, wherein the blending ratio of the silica-alumina-containing fine powder in the mixture is 10% by weight or more and 30% by weight or less.
JP7670797A 1997-03-13 1997-03-13 Production of artificial fly ash aggregate Pending JPH10251048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7670797A JPH10251048A (en) 1997-03-13 1997-03-13 Production of artificial fly ash aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7670797A JPH10251048A (en) 1997-03-13 1997-03-13 Production of artificial fly ash aggregate

Publications (1)

Publication Number Publication Date
JPH10251048A true JPH10251048A (en) 1998-09-22

Family

ID=13613008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7670797A Pending JPH10251048A (en) 1997-03-13 1997-03-13 Production of artificial fly ash aggregate

Country Status (1)

Country Link
JP (1) JPH10251048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238370A (en) * 2006-03-08 2007-09-20 Maeda Corp Method of manufacturing lightweight aggregate
KR102361098B1 (en) * 2021-06-02 2022-02-14 에스원건설 주식회사 Self-hydration Artificial aggregates and Manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238370A (en) * 2006-03-08 2007-09-20 Maeda Corp Method of manufacturing lightweight aggregate
KR102361098B1 (en) * 2021-06-02 2022-02-14 에스원건설 주식회사 Self-hydration Artificial aggregates and Manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN106986616A (en) A kind of flyash ceramic ceramic tile raw material, flyash ceramic ceramic tile and preparation method thereof
JP2001163647A (en) Producing method of artificial aggregate using waste incineration ash and artificial aggregate obtained by this method
JPH0977543A (en) Artificial lightweight aggregate and its production
JP2729281B2 (en) Manufacturing methods for civil engineering and building ceramic products
JP2001253740A (en) Artificial aggregate and its production process
JPH10251048A (en) Production of artificial fly ash aggregate
KR20000072111A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2006298730A (en) Method of firing incineration ash and sintered compact obtained by the same method
JP4010339B2 (en) Cement clinker manufacturing method
JP4377256B2 (en) Manufacturing method of artificial lightweight aggregate
JPH06227853A (en) Body composition for ceramic
KR20030083497A (en) Composition and manufacturing method of low temperature sintering bricks for construction
JP3623021B2 (en) Artificial aggregate and method for producing the same
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JP4509269B2 (en) Artificial aggregate and method for producing the same
JP3624033B2 (en) Artificial lightweight aggregate
JP2008143766A (en) Method of manufacturing porous water absorbing ceramic
JPH10259053A (en) Ceramic product
JP2013249219A (en) Porous sintered body and method for manufacturing the same
JPH08259292A (en) Production of fly ash type artificial aggregate
JP3746802B2 (en) Method for producing hollow fired body
JP2005219974A (en) Method of firing artificial aggregate
JP4159658B2 (en) Manufacturing method of artificial lightweight aggregate
JP4275381B2 (en) Tile manufacturing method using molten slag