JP2012136402A - Method for producing high strength perlite - Google Patents

Method for producing high strength perlite Download PDF

Info

Publication number
JP2012136402A
JP2012136402A JP2010290673A JP2010290673A JP2012136402A JP 2012136402 A JP2012136402 A JP 2012136402A JP 2010290673 A JP2010290673 A JP 2010290673A JP 2010290673 A JP2010290673 A JP 2010290673A JP 2012136402 A JP2012136402 A JP 2012136402A
Authority
JP
Japan
Prior art keywords
temperature
raw material
preheating
water content
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010290673A
Other languages
Japanese (ja)
Other versions
JP5636143B2 (en
Inventor
Shinya Akae
信哉 赤江
Masaaki Noguchi
雅朗 野口
Hideki Wachi
秀樹 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2010290673A priority Critical patent/JP5636143B2/en
Publication of JP2012136402A publication Critical patent/JP2012136402A/en
Application granted granted Critical
Publication of JP5636143B2 publication Critical patent/JP5636143B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high strength perlite which has a good foamed state, a large compression strength, and a remarkably high float-up remaining rate in pressurized water.SOLUTION: The method for producing high strength perlite includes: using, as a raw material, a pulverized substance of natural glassy rock having a water content of ≥2 mass% and adjusting the water content by preheating (first step); then lowering temperature to stabilize (second step); and foam firing the resulting raw material by heating it to a temperature at which foaming occurs (third step). In the first step, preheating is carried out preferably under such conditions that the difference between the temperature of the raw material and a peak temperature (maximum temperature in preheating) is 350-750°C, and the temperature raising speed to the peak temperature is 5-20 °C/s, and the water content of the powder of the raw material is adjusted to 0.7-1.6 mass%.

Description

本発明は、建築用材、断熱材、土壌改良材等の資材として幅広く利用されているパーライトの製造方法に関する。さらに詳しくは、天然ガラス質岩石、特に日本国内で多量に産出される真珠岩あるいは松脂岩を原料にして、低吸水性であってモルタル化する際の流動性に優れ、特に建築用材に適した硬質パーライトを製造する方法に関する。 The present invention relates to a method for producing pearlite that is widely used as a material such as a building material, a heat insulating material, and a soil improvement material. More specifically, natural glassy rocks, especially pearlite or pinestone rocks produced in Japan in large quantities, are low in water absorption and excellent in fluidity when mortarized, especially suitable for building materials. The present invention relates to a method for producing hard pearlite.

天然ガラス質岩石を原料として製造された中空軽量体としてパーライトが従来から知られている。パーライトは真珠岩や黒曜石などの原料粒子を900〜1300℃の高温で加熱して含有水分を発泡させて中空体にしたものであり、軽量骨材、建築材料、断熱材、土壌改質材などに広く用いられている。 Perlite has been conventionally known as a hollow lightweight body produced from natural glassy rock. Perlite is made by heating raw particles such as pearlite and obsidian at a high temperature of 900 to 1300 ° C to foam the contained moisture into a hollow body. Widely used in

従来のパーライトは、結晶水の多い原料を用いると、表面が多孔質になるため吸水性が高くなり、軽量骨材には不向きになる問題がある。そこで、内部に形成された多数の気泡と、該気泡の開口孔を塞ぐ外装壁を備えた低吸水パーライトが開発されている(特許文献1:特開2008-1919号公報)。 Conventional pearlite has a problem that if a raw material containing a large amount of water of crystallization is used, the surface becomes porous, resulting in high water absorption, making it unsuitable for lightweight aggregates. In view of this, a low water-absorbing pearlite having a large number of bubbles formed inside and an exterior wall that closes the opening of the bubbles has been developed (Patent Document 1: Japanese Patent Laid-Open No. 2008-1919).

また、真珠岩や黒曜石などの原料岩石を加熱発泡させる際に、含有水分の急激な発泡によって多数の開放気泡が形成されるのを避けるため、原料岩石の軟化点より低い温度で予備加熱を行った後に、高温で発泡焼成して閉鎖型気孔を形成することによって吸水率を低下させた球状パーライトが知られている(特許文献2:特許第3528390号公報)。 Also, when heating and foaming raw rocks such as pearlite and obsidian, preheating is performed at a temperature lower than the softening point of the raw rock to avoid the formation of many open bubbles due to sudden foaming of the contained water. After that, spherical pearlite is known in which the water absorption rate is reduced by foaming and firing at a high temperature to form closed pores (Patent Document 2: Japanese Patent No. 3528390).

さらに、シラス原鉱粉末を用い、これを350〜500℃に加熱乾燥して含有水分量を1.46〜2.90質量%にし、次いで内熱式媒体流動床炉によって980〜1090℃に焼成することによって、高強度かつ高真球度のシラスバルーンを製造する方法が知られている。(特許文献3:特開2010-64903号公報) Further, using Shirasu ore powder, this was heated and dried to 350 to 500 ° C. to a moisture content of 1.46 to 2.90 mass%, and then fired to 980 to 1090 ° C. in an internal heating medium fluidized bed furnace. By doing so, a method of manufacturing a shirasu balloon with high strength and high sphericity is known. (Patent Document 3: JP 2010-64903 A)

特許文献1のパーライトは、気泡の開口を塞ぐ外殻を有するので吸水率が低く、浮水率は80%であると説明されている。この中空粒子は多数の内部気泡を有するので常圧下での浮水率は高いが、内部気泡は連通気泡であって独立気泡ではないので(内部空間に隔壁が存在するが、気泡は互いに連通しており、相互に独立したものではない)、外壁に亀裂が生じると,この連通気泡を通じて粒子内全体に水が浸透する。このため,加圧水中での浮場率は大幅に低下するという問題がある。 The pearlite of Patent Document 1 is described as having a low water absorption rate and a floating rate of 80% because it has an outer shell that closes the opening of bubbles. Since these hollow particles have a large number of internal bubbles, the floating rate under normal pressure is high, but the internal bubbles are continuous bubbles and not independent bubbles (although there are partition walls in the internal space, the bubbles communicate with each other). However, if a crack occurs in the outer wall, water penetrates the entire particle through the communicating bubbles. For this reason, there is a problem that the floating rate in pressurized water is significantly reduced.

特許文献2のパーライトは、内部気泡が粒子表面に開口していないので吸水率は低いが、多くの場合、粒子の内部空間が大きな単一気泡によって形成されており、内部に隔壁がないので圧縮強度が低く、粒子表面に亀裂が生じやすい。また、表面に亀裂が生じると粒子内部に水が充満しやすい。このため加圧水中での浮場率は大幅に低下する。 The pearlite of Patent Document 2 has a low water absorption rate because the internal bubbles are not open on the particle surface, but in many cases, the internal space of the particles is formed by large single bubbles and is compressed because there is no partition inside. The strength is low and cracks are likely to occur on the particle surface. Further, when cracks occur on the surface, the particles are easily filled with water. For this reason, the floating rate in pressurized water is significantly reduced.

特許文献3のシラスバルーンはシラスを原料に用いているが、真珠岩や松脂岩の岩粉を原料に用いる場合には、特許文献3の脱水加熱方法では良好な発泡粒子を得るのが難しいと云う問題がある。 The shirasu balloon of Patent Document 3 uses shirasu as a raw material, but when using a rock powder of pearlite or pine stone rock as a raw material, it is difficult to obtain good expanded particles by the dehydration heating method of Patent Document 3. There is a problem.

特開2008−19149号公報JP 2008-19149 A 特許第3528390号公報Japanese Patent No. 3528390 特開2010−64903号公報JP 2010-64903 A

パーライトの発泡は原料中の水分が中心部にあるほうが良好に発泡するとされている。シラスを原料に用いる場合、シラスは主として火山灰の堆積した砂状の火山堆積物であり、粉砕せずに使用することが多く、粒子表面は外気に曝された状態であるので、粒子表面の水が比較的少なく、含有水は中心部に偏在している。そのため加熱乾燥の昇温速度が遅くても良好に発泡しやすい。一方、真珠岩や松脂岩などの流紋岩原料は粉砕し適当な粒度にしたものを用いるが、粉砕によって粒子表面がはじめて外気に曝されるため、含有水の分布は比較的均一になっている。そのため脱水のための昇温速度が遅いと、中心部の水も脱水され、水分量が著しく少なくなり、良好に発泡されないという問題がある。また脱水のための予備加熱温度の状態のまま焼成工程に移ると、含有水の分布などが十分に安定しないので良好に発泡されないと云う問題がある。 It is said that perlite foams better when the moisture in the raw material is in the center. When Shirasu is used as a raw material, Shirasu is mainly a sandy volcanic deposit with volcanic ash deposited on it, and it is often used without crushing, and the particle surface is exposed to the outside air. Is relatively small, and the contained water is unevenly distributed in the center. Therefore, it is easy to foam well even if the heating rate of heat drying is slow. On the other hand, rhyolite materials such as pearlite and pine stone are crushed and made to an appropriate particle size, but the particle surface is exposed to the outside air for the first time by pulverization, so the distribution of water content is relatively uniform. Yes. Therefore, if the temperature rising rate for dehydration is slow, the water in the central part is also dehydrated, the amount of water is remarkably reduced, and there is a problem that foaming is not good. In addition, when the process proceeds to the firing step while maintaining the preheating temperature for dehydration, there is a problem that the distribution of the contained water is not sufficiently stable and foaming is not satisfactorily performed.

本発明は、パーライトの製造方法における従来の上記問題を解決したものであって、発泡状態が良好であり、圧縮強度が大きく、加圧水中での浮場残存率が格段に高い高強度のパーライトを製造する方法を提供する。 The present invention solves the above-mentioned conventional problems in the method for producing pearlite, and provides a high-strength pearlite having a good foamed state, a large compressive strength, and a remarkably high floating rate remaining in pressurized water. A method of manufacturing is provided.

本発明は以下の構成を有する高強度パーライトの製造方法に関する。
〔1〕含有水分量2質量%以上の天然ガラス質岩石の粉砕物を原料として用い、予備加熱をして含有水分量を調整し(第1工程)、次いで温度を下げて安定化し(第2工程)た後に、発泡まで加熱して発泡焼成する(第3工程)ことを特徴とする高強度パーライトの製造方法。
〔2〕第1工程において、原料温度からピーク温度(予備加熱の最高温度)が350℃〜750℃であって、ピーク温度までの昇温速度を5〜20℃/秒として予備加熱を行い、原料粉末の水分量を0.7〜1.6質量%に調整する上記[1]に記載する製造方法。
〔3〕第2工程において、原料粉末の加熱温度を100℃以上であってピーク温度より150℃以上低い温度の範囲に温度を下げる上記[1]または上記[2]に記載する製造方法。
〔4〕第1工程の予備加熱において、ピーク温度500〜600℃でまで加熱し、この温度範囲に20秒〜40秒保持した後に、第2工程において150℃〜500℃に加熱温度を下げる上記[1]〜上記[3]の何れかに記載する製造方法。
〔5〕第3工程において、原料粉末を900℃〜1200℃に加熱して発泡させる上記[1]〜上記[4]の何れかに記載する製造方法。
〔6〕天然ガラス質原料が真珠岩または松脂岩である上記[1]〜上記[5]の何れかに記載する製造方法。
〔7〕第1工程および第2工程をロータリーキルンまたは電気炉で行い、第3工程を流動層焼成炉で行う上記[1]〜上記[6]の何れかに記載する製造方法。
The present invention relates to a method for producing high-strength pearlite having the following configuration.
[1] Using a natural vitreous rock pulverized material with a water content of 2% by mass or more as a raw material, pre-heating to adjust the water content (first step), then lowering the temperature to stabilize (second) After the step, a method for producing high-strength pearlite, which is heated to foaming and foamed and fired (third step).
[2] In the first step, from the raw material temperature to the peak temperature (maximum preheating temperature) is 350 ° C. to 750 ° C., and the preheating is performed at a rate of temperature increase to the peak temperature of 5 to 20 ° C./second, The manufacturing method as described in said [1] which adjusts the moisture content of a raw material powder to 0.7-1.6 mass%.
[3] The production method according to the above [1] or [2], wherein in the second step, the heating temperature of the raw material powder is lowered to a temperature range of 100 ° C. or higher and 150 ° C. or lower than the peak temperature.
[4] In the pre-heating in the first step, after heating to a peak temperature of 500 to 600 ° C. and holding in this temperature range for 20 to 40 seconds, the heating temperature is lowered to 150 to 500 ° C. in the second step. [1] The production method according to any one of [3] above.
[5] The production method according to any one of [1] to [4] above, wherein in the third step, the raw material powder is heated to 900 ° C. to 1200 ° C. and foamed.
[6] The production method according to any one of [1] to [5] above, wherein the natural glassy raw material is pearlite or pinestone.
[7] The manufacturing method according to any one of [1] to [6], wherein the first step and the second step are performed in a rotary kiln or an electric furnace, and the third step is performed in a fluidized bed firing furnace.

本発明のパーライトの製造方法によれば、天然ガラス質岩石の粉砕物、特に真珠岩や松脂岩の粉砕粉末を原料に用い、予備加熱による脱水、安定化を行った後に加熱発泡させることによって、発泡状態が良好であり、圧縮強度が大きく、加圧水中での浮場残存率が格段に高い高強度のパーライトを製造することができる。 According to the method for producing pearlite of the present invention, a pulverized product of natural vitreous rock, in particular, a pulverized powder of pearlite or pinestone, is used as a raw material, dehydrated by preheating, stabilized, and then heated and foamed. It is possible to produce a high-strength pearlite that has a good foamed state, a high compressive strength, and a remarkably high floating ratio remaining in pressurized water.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の製造方法は、含有水分量2質量%以上の天然ガラス質岩石の粉砕物を原料として用い、予備加熱をして含有水分量を調整し(第1工程)、次いで温度を下げて安定化し(第2工程)た後に、発泡まで加熱して発泡焼成する(第3工程)ことを特徴とする高強度パーライトの製造方法である。ここで水分量は粉砕した原料を100℃から1000℃まで加熱した時の減少量を水分量とした。
Hereinafter, the present invention will be specifically described based on embodiments.
The production method of the present invention uses a natural glassy rock pulverized material having a water content of 2% by mass or more as a raw material, adjusts the water content by preheating and then lowers the temperature for stability. This is a method for producing high-strength pearlite, characterized in that after forming (second step), heating to foaming and foaming and firing (third step) are performed. Here, the amount of water was defined as the amount of water reduced when the pulverized raw material was heated from 100 ° C. to 1000 ° C.

〔第1工程:脱水〕
本発明の製造方法は天然ガラス質岩石の粉砕物、例えば、真珠岩や松脂岩の粉砕粉末を原料として用いることができる。含有水分量2質量%以上の天然ガラス質岩石の粉砕物を予備加熱をして含有水分量を調整する。水分量が2質量%より少ないと、脱水したときに発泡に必要な水分量が不足して殆ど発泡しないので好ましくない。
[First step: Dehydration]
In the production method of the present invention, a pulverized product of natural glassy rock, for example, a pulverized powder of pearlite or pine oil can be used as a raw material. A pulverized natural glassy rock having a water content of 2% by mass or more is preheated to adjust the water content. If the water content is less than 2% by mass, the amount of water necessary for foaming is insufficient when dehydrating, and this is not preferable.

予備加熱は、原料温度からピーク温度(予備加熱の最高温度)までの昇温速度を5〜20℃/秒として加熱するのが好ましい。原料温度は概ね室温である。ピーク温度は予備加熱の最高温度であり、350℃〜750℃が適当であり、500℃〜600℃が好ましい。ピーク温度が350℃より低いと、水分量が1.7質量%多くなりやすく、ピーク温度が750℃より高いと水分量が0.6質量%より少なくなりやすい。 The preheating is preferably performed at a temperature rising rate of 5 to 20 ° C./second from the raw material temperature to the peak temperature (the maximum temperature for preheating). The raw material temperature is approximately room temperature. The peak temperature is the maximum temperature for preheating, and is suitably 350 ° C to 750 ° C, preferably 500 ° C to 600 ° C. When the peak temperature is lower than 350 ° C., the amount of water tends to be 1.7% by mass, and when the peak temperature is higher than 750 ° C., the amount of water tends to be less than 0.6% by mass.

予備加熱の昇温速度が5℃/秒より遅いと、原料がゆっくり加熱されるので、ピーク温度に達するまでの加熱時間が長く、脱水量が多くなるため、発泡に必要な水分が不足するので好ましくない。一方、予備加熱の昇温速度が20℃/秒より早いと、原料の一部がガラス化するので好ましくない。ピーク温度に加熱した後に、この温度に20秒〜40秒保持すると良い。 If the heating rate of preheating is slower than 5 ° C / sec, the raw material is heated slowly, so the heating time until reaching the peak temperature is long and the amount of dehydration increases, so the water necessary for foaming is insufficient. It is not preferable. On the other hand, when the temperature increase rate of the preheating is higher than 20 ° C./second, a part of the raw material is vitrified, which is not preferable. After heating to peak temperature, it is good to hold | maintain at this temperature for 20 to 40 seconds.

この予備加熱によって原料の水分を脱水し、含有水分量を好ましくは0.7〜1.6質量%にする。予備加熱後の水分量が0.7質量%より少ないと発泡に必要な水分が不足するので好ましくない。一方、予備加熱後の水分量が1.6質量%より多いと、発泡過剰になって開口気泡が増えるため、静水圧残存率が低下し、また発泡形状が不良になりやすい。 The moisture of the raw material is dehydrated by this preheating, and the water content is preferably 0.7 to 1.6% by mass. If the amount of water after preheating is less than 0.7% by mass, the amount of water necessary for foaming is insufficient, such being undesirable. On the other hand, if the amount of water after preheating is more than 1.6% by mass, the foaming becomes excessive and the number of open bubbles increases, so that the hydrostatic pressure residual ratio decreases and the foam shape tends to be poor.

〔第2工程:安定化〕
原料を予備加熱をして含有水分量を調整した後に、加熱温度を下げて安定化させる。安定化させる温度範囲は100℃以上であって、ピーク温度より150℃以上低い温度、好ましくはピーク温度より200℃以上低い温度の範囲が良い。安定化温度の下限が100℃より低いと、大気中の水分を取り込んでしまう懸念があるので好ましくない。一方、安定化温度の上限とピーク温度の差が150℃より小さいと、原料内部の水分の分布が安定化するには活性が高すぎるので好ましくない。
[Second step: Stabilization]
After the raw material is preheated to adjust the water content, the heating temperature is lowered and stabilized. The temperature range to be stabilized is 100 ° C. or higher and is preferably 150 ° C. or more lower than the peak temperature, preferably 200 ° C. or lower than the peak temperature. If the lower limit of the stabilization temperature is lower than 100 ° C., there is a concern that moisture in the air may be taken in, which is not preferable. On the other hand, if the difference between the upper limit of the stabilization temperature and the peak temperature is less than 150 ° C., the activity is too high to stabilize the moisture distribution inside the raw material, which is not preferable.

具体的には、例えば、第1工程の予備加熱のピーク温度が500〜600℃である場合、第2工程の安定化温度は150℃〜500℃、好ましくは200℃〜400℃の温度範囲が良い。 Specifically, for example, when the preheating peak temperature in the first step is 500 to 600 ° C, the stabilization temperature in the second step is 150 ° C to 500 ° C, preferably 200 ° C to 400 ° C. good.

〔第3工程:発泡〕
上記安定化の後に、原料を900℃〜1200℃に加熱焼成して発泡させる。焼成温度が900℃より低いと、十分に発泡できない場合が多いので好ましくない。一方、焼成温度が1200℃を超えると、原料が完全に融解してしまう懸念があるため好ましくない。
[Third step: Foaming]
After the stabilization, the raw material is heated and fired at 900 ° C. to 1200 ° C. to be foamed. When the firing temperature is lower than 900 ° C., there are many cases where sufficient foaming cannot be performed, which is not preferable. On the other hand, if the firing temperature exceeds 1200 ° C., the raw material may be completely melted, which is not preferable.

第1工程および第2工程をロータリーキルンまたは電気炉で行い、第3工程を流動層焼成炉で行うと良い。発泡焼成後に、発泡体を水選し、気流分流などの選別手段によって未発泡体などを除去し、目的の硬質な球状パーライトを得る。 The first step and the second step may be performed in a rotary kiln or an electric furnace, and the third step may be performed in a fluidized bed firing furnace. After foaming and firing, the foam is selected with water, and unfoamed material and the like are removed by a sorting means such as airflow diversion to obtain the desired hard spherical pearlite.

本発明の実施例を比較例と共に示す。なお、水分量,静水圧残存率、嵩密度は以下の方法で測定した。
〔水分量〕
原料を乾燥機で約100℃で恒量になるまで乾燥する.この乾燥した原料をるつぼに入れて試料質量Aを秤量する。これを電気炉で約1000℃で恒量となるまで加熱し、加熱後の試料質量Bを秤量する。得られた試料質量から(A−B)/A×100%を算出し、この値を水分量とした。
〔静水圧浮揚残存率〕
試料を試料容器と共に水で満たされた加圧容器内へ入れ、8MPaで1分間加圧する。加圧後、加圧した試料の全量を取り出してメスシリンダー入れ、水200mlを加えて静置する。静置後、水の濁りが無くなってきたら、上記浮水率測定方法に準じた方法で浮いた試料粒子の体積を計測し、8MPa加圧下での加圧浮揚率(浮水率)W2とする。加圧試料と同量の試料について、加圧せずに常圧下とした以外は同様の測定方法で測定し、非加圧下の浮揚率(浮水率)W1とする。加圧試料浮揚率W2/非加圧浮揚率W1×100の式に基づいて静水圧浮揚残存率を算出した。
〔嵩密度〕
一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を嵩密度とした。
〔形状〕形状は肉眼で判定した。
The Example of this invention is shown with a comparative example. In addition, the moisture content, the hydrostatic pressure residual ratio, and the bulk density were measured by the following methods.
〔amount of water〕
Dry the raw material in a dryer at about 100 ° C until a constant weight is obtained. This dried raw material is put in a crucible and a sample mass A is weighed. This is heated in an electric furnace at about 1000 ° C. until a constant weight is obtained, and the sample mass B after heating is weighed. From the obtained sample mass, (A−B) / A × 100% was calculated, and this value was taken as the moisture content.
[Remaining hydrostatic pressure levitation rate]
The sample is put into a pressurized container filled with water together with the sample container, and pressurized at 8 MPa for 1 minute. After pressurization, the entire amount of the pressurized sample is taken out and placed in a graduated cylinder, and 200 ml of water is added and left to stand. When the turbidity of water disappears after standing, the volume of the sample particles floating is measured by a method according to the above method for measuring the floating rate, and is set as a pressurized floating rate (floating rate) W2 under a pressure of 8 MPa. A sample having the same amount as the pressurized sample is measured by the same measurement method except that the sample is not pressurized and is at normal pressure, and is defined as a non-pressurized floating rate (floating rate) W1. The hydrostatic pressure levitation residual rate was calculated based on the formula of pressurized sample buoyancy rate W2 / non-pressurized levitation rate W1 × 100.
〔The bulk density〕
A sample is filled into a container with a constant volume S (cm 3 ), the portion protruding from the opening is ground, the total weight G1 is measured, and the weight G2 of the container is subtracted from this to obtain the powder weight G3 (g). The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the bulk density.
[Shape] The shape was determined with the naked eye.

〔実施例1〕
含有水分量2.9%,平均粒径120μmの真珠岩(以下,原料A)をロータリーキルン中において昇温速度5℃/秒、ピーク温度600℃、保持時間30秒で予備加熱して(第1工程)水分量を0.7%に調整した。次いで、加熱温度を下げた後(第2工程)、加熱温度を上げ、1050℃で発泡焼成(第3工程)を行った。分級後、発泡体の嵩密度、静水圧残存率を測定し、形状を判定した。この結果を表1に示した。
予備加熱のピーク温度から200〜450℃低い温度で冷却すると不定形非球形粒子の割合が小さくなり、静水圧残存率が格段に上がる(A3、A4)。一方、ピーク温度から全く温度を下げない試料(A1)、またはピーク温度からの温度差が100℃の試料(A2)では、不定形非球状粒子の割合が多くなる。安定化温度が100℃を下回ると不定形非球形粒子の割合が大きくなり、静水圧残存率が格段に下がる(A5)。従って、予備加熱後の安定化温度は予備加熱のピーク温度より150℃以上低い、好ましくは200℃以上低い温度が良い。
[Example 1]
Pearlite with a water content of 2.9% and an average particle size of 120 μm (hereinafter referred to as “raw material A”) was preheated in a rotary kiln at a heating rate of 5 ° C./second, a peak temperature of 600 ° C., and a holding time of 30 seconds (first Step) The water content was adjusted to 0.7%. Next, after the heating temperature was lowered (second step), the heating temperature was raised and foaming firing (third step) was performed at 1050 ° C. After classification, the bulk density and hydrostatic pressure residual ratio of the foam were measured to determine the shape. The results are shown in Table 1.
When cooling at a temperature 200 to 450 ° C. lower than the peak temperature of preheating, the proportion of amorphous non-spherical particles decreases, and the hydrostatic pressure residual rate increases dramatically (A3, A4). On the other hand, in the sample (A1) in which the temperature is not lowered at all from the peak temperature, or in the sample (A2) in which the temperature difference from the peak temperature is 100 ° C., the ratio of amorphous non-spherical particles increases. When the stabilization temperature is lower than 100 ° C., the proportion of amorphous non-spherical particles increases, and the hydrostatic pressure residual ratio decreases dramatically (A5). Accordingly, the stabilization temperature after the preheating is 150 ° C. or more, preferably 200 ° C. or more lower than the preheating peak temperature.

Figure 2012136402
Figure 2012136402

〔実施例2〕
原料Aをロータリーキルン中において、昇温速度とピーク温度を変えて予備加熱を行った(保持時間30秒)。次いで、安定化温度まで温度を下げた後に、焼成温度1050℃で発泡焼成を行った。分級後、発泡体の嵩密度、静水圧残存率を測定し、形状を判定した。その結果を表2に示した。
安定化温度が同じでも、予備加熱のピーク温度と安定化温度との差が100℃では、発泡粒子中の過発泡が起こり、不定形非球状粒子の数が多くなる(A7)。一方、予備加熱のピーク温度と安定化温度の差が200℃以上の試料(A6、A8)は静水圧残存率が高い。
[Example 2]
The raw material A was preheated in a rotary kiln by changing the rate of temperature rise and the peak temperature (holding time 30 seconds). Next, after the temperature was lowered to the stabilization temperature, foam firing was performed at a firing temperature of 1050 ° C. After classification, the bulk density and hydrostatic pressure residual ratio of the foam were measured to determine the shape. The results are shown in Table 2.
Even if the stabilization temperature is the same, if the difference between the peak temperature of the preheating and the stabilization temperature is 100 ° C., excessive foaming occurs in the foamed particles, and the number of amorphous non-spherical particles increases (A7). On the other hand, samples (A6, A8) having a difference between the preheating peak temperature and the stabilization temperature of 200 ° C. or higher have a high hydrostatic pressure residual rate.

Figure 2012136402
Figure 2012136402

〔実施例3〕
原料Aをロータリーキルン中において予備加熱し(昇温速度5℃/秒、ピーク温度600℃、保持時間30秒)、水分量を1.1質量%に調整した。次いで、安定化温度300℃まで温度を下げた後に、焼成温度を変えて発泡焼成を行った。分級後、発泡体の嵩密度、静水圧残存率を測定し、形状を判定した。その結果を表3に示した。
焼成温度が900〜1200℃あれば、形状が良く、かつ静水圧残存率が高い(A9〜A11)。それ以上の焼成温度(1350℃)であると融解してしまう(A12)。
Example 3
The raw material A was preheated in a rotary kiln (heating rate 5 ° C./second, peak temperature 600 ° C., holding time 30 seconds), and the water content was adjusted to 1.1 mass%. Next, after the temperature was lowered to the stabilization temperature of 300 ° C., the firing temperature was changed to perform foaming firing. After classification, the bulk density and hydrostatic pressure residual ratio of the foam were measured to determine the shape. The results are shown in Table 3.
If the firing temperature is 900 to 1200 ° C., the shape is good and the hydrostatic pressure residual rate is high (A9 to A11). If the firing temperature is higher (1350 ° C.), it will melt (A12).

Figure 2012136402
Figure 2012136402

〔実施例4〕
原料Aをロータリーキルン中において、昇温速度、ピーク温度、保持時間を変えて予備加熱した。次いで、安定化温度として予備加熱のピーク温度から300℃低く温度を下げた後に、焼成温度1050℃で発泡焼成を行った。分級後、発泡体の嵩密度、静水圧残存率を測定し、形状を判定した。その結果を表4に示した。
Example 4
The raw material A was preheated in a rotary kiln by changing the heating rate, peak temperature, and holding time. Next, after the temperature was lowered by 300 ° C. from the peak temperature of the preheating as the stabilization temperature, foam firing was performed at a firing temperature of 1050 ° C. After classification, the bulk density and hydrostatic pressure residual ratio of the foam were measured to determine the shape. The results are shown in Table 4.

昇温速度が3℃/秒では,水分量が0.4質量%と小さくなり、これを加熱焼成しても発泡しない(A13)。一方、昇温速度が30℃/秒では、水分量が2.1質量%と大きくなり、これを加熱焼成すると、発泡粒子中の不定形非球形粒子の割合が大きくなる(A14)。また、予備加熱のピーク温度が300℃と低い場合には、水分量が2.6質量%と大きくなるため、発泡体の形状は不良になり、静水圧残存率も小さい(A15)。予備加熱のピーク温度が800℃である場合には、昇温速度が26℃/秒でも水分量が0.6質量%まで脱水されるので、発泡しない(A16)。予備加熱後の水分量が0.5質量%でも昇温速度が3℃/秒では、発泡しない(A17)。従って、予備加熱の昇温速度は5〜20℃/秒が好ましく、水分量は0.7〜1.6質量%が好ましい。 At a heating rate of 3 ° C./second, the water content becomes as small as 0.4% by mass and does not foam even when heated and fired (A13). On the other hand, when the rate of temperature increase is 30 ° C./second, the water content becomes as large as 2.1% by mass, and when this is heated and fired, the proportion of amorphous non-spherical particles in the expanded particles increases (A14). Further, when the preheating peak temperature is as low as 300 ° C., the water content becomes as large as 2.6% by mass, so that the shape of the foam becomes poor and the hydrostatic pressure residual rate is small (A15). When the peak temperature of the preheating is 800 ° C., the water content is dehydrated to 0.6% by mass even at a rate of temperature increase of 26 ° C./second, so that no foaming occurs (A16). No foaming occurs at a rate of temperature increase of 3 ° C./second even when the water content after preheating is 0.5 mass% (A17). Accordingly, the heating rate for preheating is preferably 5 to 20 ° C./second, and the water content is preferably 0.7 to 1.6 mass%.

Figure 2012136402
Figure 2012136402

〔実施例5〕
含有水分量2.2質量%、平均粒径120μmからなる真珠岩(原料B)をロータリーキルン中において、昇温速度を変えて予備加熱した(最高温度600℃,保持時間30秒)。安定化温度を予備加熱のピーク温度より300℃下げてた後に、焼成温度1050℃で発泡焼成を行った。分級後,分級後、発泡体の嵩密度、静水圧残存率を測定し、形状を判定した。その結果を表5に示した。
予備加熱前の水分量が異なる原料であっても予備加熱によって水分量を0.7〜1.6質量%に調整し、予備加熱のピーク温度から300℃下げて安定化させれば、形状が良く、静水圧残存率も大きくなる(B1,B2)。
Example 5
Pearlite (raw material B) having a moisture content of 2.2 mass% and an average particle size of 120 μm was preheated in a rotary kiln by changing the heating rate (maximum temperature 600 ° C., holding time 30 seconds). After the stabilization temperature was lowered by 300 ° C. from the preheating peak temperature, foam firing was performed at a firing temperature of 1050 ° C. After classification, after classification, the bulk density and hydrostatic pressure residual ratio of the foam were measured, and the shape was determined. The results are shown in Table 5.
Even if the raw material has a different water content before preheating, if the water content is adjusted to 0.7 to 1.6% by mass by preheating and stabilized by lowering the preheating peak temperature by 300 ° C., the shape becomes The hydrostatic pressure residual rate is also good (B1, B2).

Figure 2012136402
Figure 2012136402

含有水分量1.5質量%、平均粒径120μmからなる真珠岩(原料C)を、予備加熱を行わずに1段焼成(焼成温度1,050℃)して発泡焼成を行った。分級後,分級後、発泡体の嵩密度、静水圧残存率を測定し、形状を判定した。その結果を表6に示した。
安定化工程がない1段焼成では、原料の水分量が1.5質量%でも不定形非球形粒子の割合が多くなり,静水圧残存率が小さい(C)。
Pearlite (raw material C) having a water content of 1.5% by mass and an average particle size of 120 μm was subjected to foam firing by performing one-stage firing (firing temperature of 1,050 ° C.) without performing preheating. After classification, after classification, the bulk density and hydrostatic pressure residual ratio of the foam were measured, and the shape was determined. The results are shown in Table 6.
In one-step firing without a stabilization step, the proportion of amorphous non-spherical particles increases even when the moisture content of the raw material is 1.5% by mass, and the hydrostatic pressure residual rate is small (C).

Figure 2012136402
Figure 2012136402

Claims (7)

含有水分量2質量%以上の天然ガラス質岩石の粉砕物を原料として用い、予備加熱をして含有水分量を調整し(第1工程)、次いで温度を下げて安定化し(第2工程)た後に、発泡まで加熱して発泡焼成する(第3工程)ことを特徴とする高強度パーライトの製造方法。 Using a pulverized natural glassy rock having a water content of 2% by mass or more as a raw material, preheating was performed to adjust the water content (first step), and then the temperature was lowered and stabilized (second step). A method for producing high-strength pearlite, which is heated to foaming and then fired by foaming (third step). 第1工程において、原料温度からピーク温度(予備加熱の最高温度)が350℃〜750℃であって、ピーク温度までの昇温速度を5〜20℃/秒として予備加熱を行い、原料粉末の水分量を0.7〜1.6質量%に調整する請求項1に記載する製造方法。
In the first step, from the raw material temperature to the peak temperature (maximum preheating temperature) is 350 ° C. to 750 ° C., preheating is performed at a rate of temperature increase to the peak temperature of 5 to 20 ° C./second, The production method according to claim 1, wherein the water content is adjusted to 0.7 to 1.6 mass%.
第2工程において、原料粉末の加熱温度を100℃以上であってピーク温度より150℃以上低い温度の範囲に温度を下げる請求項1または請求項2に記載する製造方法。
The manufacturing method according to claim 1 or 2, wherein in the second step, the heating temperature of the raw material powder is lowered to a temperature range of 100 ° C or higher and 150 ° C or lower than the peak temperature.
第1工程の予備加熱において、ピーク温度500〜600℃でまで加熱し、この温度範囲に20秒〜40秒保持した後に、第2工程において150℃〜500℃に加熱温度を下げる請求項1〜請求項3の何れかに記載する製造方法。
The preheating in the first step is heated to a peak temperature of 500 to 600 ° C, held in this temperature range for 20 to 40 seconds, and then the heating temperature is lowered to 150 to 500 ° C in the second step. The manufacturing method in any one of Claim 3.
第3工程において、原料粉末を900℃〜1200℃に加熱して発泡させる請求項1〜請求項4の何れかに記載する製造方法。
The manufacturing method according to any one of claims 1 to 4, wherein in the third step, the raw material powder is heated to 900 ° C to 1200 ° C to be foamed.
天然ガラス質原料が真珠岩または松脂岩である請求項1〜請求項5の何れかに記載する製造方法。
The manufacturing method according to any one of claims 1 to 5, wherein the natural glassy raw material is pearlite or pine stone.
第1工程および第2工程をロータリーキルンまたは電気炉で行い、第3工程を流動層焼成炉で行う請求項1〜請求項61の何れかに記載する製造方法。 The manufacturing method according to any one of claims 1 to 61, wherein the first step and the second step are performed in a rotary kiln or an electric furnace, and the third step is performed in a fluidized bed firing furnace.
JP2010290673A 2010-12-27 2010-12-27 Manufacturing method of high-strength pearlite Expired - Fee Related JP5636143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010290673A JP5636143B2 (en) 2010-12-27 2010-12-27 Manufacturing method of high-strength pearlite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290673A JP5636143B2 (en) 2010-12-27 2010-12-27 Manufacturing method of high-strength pearlite

Publications (2)

Publication Number Publication Date
JP2012136402A true JP2012136402A (en) 2012-07-19
JP5636143B2 JP5636143B2 (en) 2014-12-03

Family

ID=46674162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290673A Expired - Fee Related JP5636143B2 (en) 2010-12-27 2010-12-27 Manufacturing method of high-strength pearlite

Country Status (1)

Country Link
JP (1) JP5636143B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129214A (en) * 2012-12-29 2014-07-10 Igawa Sangyo:Kk Method for producing microparticle formed from glassy volcanic product
JP2022082563A (en) * 2016-04-08 2022-06-02 ヒュッテネス-アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of closed-pore microspheres of expanded pearlite as filler for production of moldings for foundry industry
JP7500268B2 (en) 2020-05-13 2024-06-17 昭和化学工業株式会社 concrete

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277851A (en) * 1994-04-01 1995-10-24 Showa Kagaku Kogyo Kk Production of low water absorptive granular perlite for building material formed by using perlite and pitchstone
JPH09183612A (en) * 1995-12-28 1997-07-15 Ube Ind Ltd Production of spherical pearlite
JP2000247628A (en) * 1999-02-23 2000-09-12 Mitsui Mining & Smelting Co Ltd Production process and equipment for expanded perlite
JP2007320805A (en) * 2006-05-31 2007-12-13 Taiheiyo Material Kk Hard foamed pearlite and its manufacturing method
JP2008201630A (en) * 2007-02-21 2008-09-04 Ube Ind Ltd Manufacturing method of pearlite
JP2010018507A (en) * 2008-07-14 2010-01-28 Principle:Kk Method for producing high-strength vitreous balloon
JP2010064933A (en) * 2008-09-12 2010-03-25 Principle:Kk Method of producing high strength glassy hollow sphere
JP2010076986A (en) * 2008-09-26 2010-04-08 Kubota Matsushitadenko Exterior Works Ltd Method for producing pearlite
JP2012091978A (en) * 2010-10-28 2012-05-17 Taiheiyo Materials Corp Method for manufacturing perlite
JP2012131648A (en) * 2010-12-20 2012-07-12 Taiheiyo Materials Corp Method for producing pearlite, method for producing inorganic foam material, and device for producing the foam material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07277851A (en) * 1994-04-01 1995-10-24 Showa Kagaku Kogyo Kk Production of low water absorptive granular perlite for building material formed by using perlite and pitchstone
JPH09183612A (en) * 1995-12-28 1997-07-15 Ube Ind Ltd Production of spherical pearlite
JP2000247628A (en) * 1999-02-23 2000-09-12 Mitsui Mining & Smelting Co Ltd Production process and equipment for expanded perlite
JP2007320805A (en) * 2006-05-31 2007-12-13 Taiheiyo Material Kk Hard foamed pearlite and its manufacturing method
JP2008201630A (en) * 2007-02-21 2008-09-04 Ube Ind Ltd Manufacturing method of pearlite
JP2010018507A (en) * 2008-07-14 2010-01-28 Principle:Kk Method for producing high-strength vitreous balloon
JP2010064933A (en) * 2008-09-12 2010-03-25 Principle:Kk Method of producing high strength glassy hollow sphere
JP2010076986A (en) * 2008-09-26 2010-04-08 Kubota Matsushitadenko Exterior Works Ltd Method for producing pearlite
JP2012091978A (en) * 2010-10-28 2012-05-17 Taiheiyo Materials Corp Method for manufacturing perlite
JP2012131648A (en) * 2010-12-20 2012-07-12 Taiheiyo Materials Corp Method for producing pearlite, method for producing inorganic foam material, and device for producing the foam material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014129214A (en) * 2012-12-29 2014-07-10 Igawa Sangyo:Kk Method for producing microparticle formed from glassy volcanic product
JP2022082563A (en) * 2016-04-08 2022-06-02 ヒュッテネス-アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of closed-pore microspheres of expanded pearlite as filler for production of moldings for foundry industry
JP7361819B2 (en) 2016-04-08 2023-10-16 ヒュッテネス-アルベルトゥス ヒェーミッシェ ヴェルケ ゲゼルシャフト ミット ベシュレンクテル ハフツング Use of expanded perlite closed-cell microspheres as filler for producing molded articles for the foundry industry
JP7500268B2 (en) 2020-05-13 2024-06-17 昭和化学工業株式会社 concrete

Also Published As

Publication number Publication date
JP5636143B2 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
Gonzenbach et al. Processing of particle‐stabilized wet foams into porous ceramics
JP5466801B2 (en) Inorganic hollow fine particles
CN103797054B (en) High performance heat-barrier material
EP3006417B1 (en) New porous rigid mineral foams, their manufacturing processes and their uses
JP5636143B2 (en) Manufacturing method of high-strength pearlite
KR100306866B1 (en) Thermally insulating building material
FI62659B (en) PROTECTION OF FLASHES OF FLASHERS WITH FLASHES AND CONDITIONS
Dhara et al. Nature inspired novel processing routes for ceramic foams
RU2444418C1 (en) Method of producing sintered porous articles from tungsten-base pseudoalloy
CN106966754A (en) A kind of pore creating material and preparation method and its method for preparing light-weight brick
CN106497542A (en) Well fracturing proppant that a kind of flyash is fired into and preparation method thereof
JP4910756B2 (en) Method for manufacturing perlite
Chen et al. Improving strength and microstructure of SiC reticulated porous ceramic through in-situ generation of SiC whiskers within hollow voids
JP5194202B2 (en) Manufacturing method of high-strength glassy balloon
JP2012091978A (en) Method for manufacturing perlite
CN106676358A (en) W-K/W-K-Y alloy with nano potassium bubble distribution and preparing method of alloy
JP5674018B2 (en) Perlite manufacturing method, inorganic foam material manufacturing method, and foam material manufacturing apparatus
WO2019002561A1 (en) Preparation of sintered granulate for the manufacturing of a foamed glass pellets
JP2008189994A (en) Method for manufacturing pelletized raw material for sintering
CN105400505B (en) Low-density petroleum fracturing propping agent and preparation method thereof
CN104961449B (en) Semitransparent jadeite ceramic and preparation method thereof
US4123285A (en) Foamed ceramic element
JP6153722B2 (en) Artificial lightweight aggregate and manufacturing method thereof
RU2318772C1 (en) Method of manufacture of wall ceramic articles, raw charge for manufacture of wall ceramic articles and filler for wall ceramic articles
RU2698388C1 (en) Method for production of granulated foamed glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141018

R150 Certificate of patent or registration of utility model

Ref document number: 5636143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees