JP5466801B2 - Inorganic hollow fine particles - Google Patents

Inorganic hollow fine particles Download PDF

Info

Publication number
JP5466801B2
JP5466801B2 JP2009177675A JP2009177675A JP5466801B2 JP 5466801 B2 JP5466801 B2 JP 5466801B2 JP 2009177675 A JP2009177675 A JP 2009177675A JP 2009177675 A JP2009177675 A JP 2009177675A JP 5466801 B2 JP5466801 B2 JP 5466801B2
Authority
JP
Japan
Prior art keywords
particles
hollow fine
rate
fine particles
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009177675A
Other languages
Japanese (ja)
Other versions
JP2010053029A (en
Inventor
雅朗 野口
秀樹 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2009177675A priority Critical patent/JP5466801B2/en
Publication of JP2010053029A publication Critical patent/JP2010053029A/en
Application granted granted Critical
Publication of JP5466801B2 publication Critical patent/JP5466801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、独立気泡からな内部空隙に隔壁を有する無機中空微粒子に関し、より詳しくは、粒子内部の独立気泡からなる空隙が隔壁によって区切られており、軽量でありながら、静水圧下の浮揚残存率が高い無機中空微粒子に関する。 The present invention relates to an inorganic hollow fine particle having partition walls in internal voids made of closed cells, and more specifically, the voids made of closed cells inside the particles are separated by the partition walls, and is lightweight and remains floating under hydrostatic pressure. It relates to inorganic hollow fine particles having a high rate.

天然ガラス質岩石を原料として製造された中空軽量体としてパーライトが従来から知られている。パーライトは真珠岩や黒曜石などの粒子を900〜1300℃の高温で加熱し、含水分を発泡させて中空体にしたものであり、軽量骨材、建築材料、断熱材、土壌改良材などに広く用いられている。 Perlite has been conventionally known as a hollow lightweight body produced from natural glassy rock. Perlite is a hollow body made by heating particles such as pearlite and obsidian at a high temperature of 900 to 1300 ° C and foaming moisture, and is widely used for lightweight aggregates, building materials, heat insulating materials, soil improvement materials, etc. It is used.

従来のパーライトは、結晶水の多い原料を用いると、表面が多孔質になるため吸水性が高くなり、軽量骨材には不向きになる問題がある。そこで、内部に形成された多数の気泡と、該気泡の開口孔を塞ぐ外装殻を備えた低吸水パーライトが開発されている(特許文献1:特開2008−19149号公報)。 Conventional pearlite has a problem that if a raw material containing a large amount of water of crystallization is used, the surface becomes porous, resulting in high water absorption, making it unsuitable for lightweight aggregates. In view of this, a low water-absorbing pearlite having a large number of bubbles formed inside and an outer shell that closes the opening of the bubbles has been developed (Patent Document 1: Japanese Patent Application Laid-Open No. 2008-19149).

また、真珠岩や黒曜石などの原料岩石を加熱発泡させる際に、含水分の急激な発泡によって多数の開放気泡が形成されるのを避けるため、原料岩石の軟化点より低い温度で予備加熱を行った後に、高温で発発泡焼成して閉鎖型気孔を形成することによって吸水率を低下させた球状パーライトが知られている(特許文献2:特許第3528390号公報)。 Also, when heating and foaming raw rocks such as pearlite and obsidian, preheating is performed at a temperature lower than the softening point of the raw rock to avoid the formation of many open bubbles due to sudden foaming of moisture. After that, spherical pearlite is known in which the water absorption rate is lowered by foaming and firing at a high temperature to form closed pores (Patent Document 2: Japanese Patent No. 3528390).

特許文献1の中空粒子(低吸水パーライト)は、気泡の開口を塞ぐ外殻を有するので吸水率が低く、浮水率は80%であると説明されている。この中空粒子は多数の内部気泡を有するので常圧下での浮水率は高いが、内部気泡は連通気泡であって独立気泡ではないので(内部空間に隔壁が存在するが、気泡は互いに連通しており、相互に独立したものではない)、外殻に亀裂が生じると、この連通気泡を通じて粒子内部全体に水が浸透する。このため、加圧水中下での浮揚率は大幅に低下すると云う問題がある。 The hollow particles (low water-absorbing pearlite) of Patent Document 1 are described as having a low water absorption and a floating rate of 80% because they have an outer shell that closes the opening of bubbles. Since these hollow particles have a large number of internal bubbles, the floating rate under normal pressure is high. However, since the internal bubbles are continuous bubbles and not independent bubbles (although there are partition walls in the internal space, the bubbles communicate with each other). If the outer shell is cracked, water penetrates the entire interior of the particle through the communicating bubbles. For this reason, there is a problem that the levitation rate in pressurized water is significantly reduced.

特許文献2の中空粒子(球状パーライト)は、内部気泡が粒子表面に開口していないので吸水率は低いが、多くの場合、粒子の内部空間が大きな単一気泡によって形成されており、内部空間が区切られていないので、圧壊強度が低く、粒子表面に亀裂が生じやすい。また、表面に亀裂が生じると粒子内部に水が充満しやすい。このため加圧水中下の浮揚率は格段に低下する。 The hollow particles (spherical pearlite) of Patent Document 2 have low water absorption because the internal bubbles are not open on the particle surface, but in many cases, the internal space of the particles is formed by large single bubbles, and the internal space Is not divided, the crushing strength is low, and cracks are likely to occur on the particle surface. Further, when cracks occur on the surface, the particles are easily filled with water. For this reason, the levitation rate under pressurized water is significantly reduced.

従来の中空微粒子を図3〜図4に示す。図示する例はイースファイアーズの商品名で市販されている中空微粒子であり、粒子内部は大きな単一気泡によって形成されており、内部空間に隔壁は存在しない。 Conventional hollow fine particles are shown in FIGS. The example shown in the figure is a hollow fine particle commercially available under the trade name of Esfires, the inside of the particle is formed by large single bubbles, and there are no partition walls in the internal space.

特開2008−19149号公報JP 2008-19149 A 特許第3528390号公報Japanese Patent No. 3528390

本発明は、従来の中空粒子(パーライト等)における上記問題を解決したものであり、軽量でありながら圧壊強度が大きく、加圧下での浮揚残存率が格段に高い、無機中空微粒子を提供する。 The present invention solves the above-mentioned problems in conventional hollow particles (such as pearlite), and provides inorganic hollow fine particles that are lightweight but have a high crushing strength and a remarkably high buoyancy remaining under pressure.

本発明は、以下の構成によって上記課題を解決した無機中空微粒子に関する。
〔1〕平均粒径5〜200μmの加熱発泡させてなるシリカ質微粒子であって、該粒子の内部空間が隔壁によって区切られて該内部空間が複数の独立気泡によって形成されており、容重が0.16〜0.35g/cm 3 、および8MPa静水圧浮揚残存率が50%以上であることを特徴とする無機中空微粒子。

〔2〕平均粒径が20〜100μm、圧縮強度が15MPa以上、および吸水率が3%以下である上記[1]に記載する無機中空微粒子。
〔3〕隔壁によって区切られた複数の独立気泡によって形成されている内部空間を有する粒子を100個中60個以上含む上記[1]または上記[2]に記載する無機中空微粒子。
The present invention relates to inorganic hollow fine particles that have solved the above-described problems by the following constitution.
[1] Silica fine particles formed by heating and foaming having an average particle diameter of 5 to 200 μm, wherein the internal space of the particles is divided by partition walls, and the internal space is formed by a plurality of closed cells, and the weight is 0 An inorganic hollow fine particle characterized by .16 to 0.35 g / cm 3 and an 8 MPa hydrostatic pressure levitation residual ratio of 50% or more .

[2] The inorganic hollow fine particles as described in [1] above, having an average particle size of 20 to 100 μm, a compressive strength of 15 MPa or more, and a water absorption of 3% or less.
[3] The inorganic hollow fine particles according to the above [1] or [2], comprising 60 or more particles out of 100 particles having an internal space formed by a plurality of closed cells separated by partition walls.

本発明の無機中空微粒子は、適度な平均粒径と空隙率を有するので軽量であり、水中での浮揚率が高い。また、粒子の内部空間が隔壁によって区切られているので圧縮強度が大きく、加圧下でも亀裂が生じ難い。さらに、内部空間が隔壁によって区切られた複数の独立気泡によって形成されているので、部分的に亀裂が生じても水が浸透する範囲が限られる。従って、加圧後の水中での浮揚残存率が格段に高い。 The inorganic hollow fine particles of the present invention have an appropriate average particle size and porosity, so that they are lightweight and have a high floating rate in water. Further, since the internal space of the particles is partitioned by the partition walls, the compressive strength is high, and cracks are not easily generated even under pressure. Furthermore, since the internal space is formed by a plurality of closed cells separated by partition walls, the range in which water penetrates is limited even if a partial crack occurs. Therefore, the buoyancy remaining rate in water after pressurization is remarkably high.

本発明の中空微粒子の走査型電子顕微鏡写真Scanning electron micrograph of the hollow fine particles of the present invention 本発明の中空微粒子の模式断面図Schematic sectional view of the hollow fine particles of the present invention 市販品中空微粒子の外観を示す顕微鏡写真Micrograph showing the appearance of commercially available hollow fine particles 市販品中空微粒子の一部を切欠いた顕微鏡写真Photomicrograph of a part of commercially available hollow fine particles cut out 静水圧の変化に応じた浮揚残存率の変化を示すグラフA graph showing the change in the floating rate according to the change in hydrostatic pressure

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の中空微粒子は、平均粒径5〜200μmの加熱発泡させてなるシリカ質微粒子であって、該粒子の内部空間が隔壁によって区切られて該内部空間が複数の独立気泡によって形成されており、容重が0.16〜0.35g/cm 3 、および8MPa静水圧浮揚残存率が50%以上であることを特徴とする無機中空微粒子。
である。

Hereinafter, the present invention will be specifically described based on embodiments.
The hollow fine particles of the present invention are siliceous fine particles obtained by heating and foaming with an average particle diameter of 5 to 200 μm, and the internal spaces of the particles are divided by partition walls, and the internal spaces are formed by a plurality of closed cells. An inorganic hollow fine particle characterized by a weight of 0.16 to 0.35 g / cm 3 and an 8 MPa hydrostatic pressure levitation residual rate of 50% or more .
It is.

本発明に係る無機中空微粒子の顕微鏡写真を図1に示し、模式断面を図2に示す。図示するように、本発明の中空微粒子10は、粒子の内部空間11が隔壁12によって複数の空間11に区切られており、各内部空間11は隔壁12によって隔てられた互いに連通しない気泡(独立気泡と云う)によって形成されている。また、好ましくはこの独立気泡は粒子表面に開口を有しない気泡(密閉気泡と云う)である。 A photomicrograph of the inorganic hollow fine particles according to the present invention is shown in FIG. 1, and a schematic cross section is shown in FIG. As shown in the figure, in the hollow fine particle 10 of the present invention, the internal space 11 of the particle is divided into a plurality of spaces 11 by partition walls 12, and each internal space 11 is separated by the partition walls 12 and does not communicate with each other (closed cells). It is formed by. The closed cells are preferably bubbles having no opening on the particle surface (referred to as closed cells).

本発明の中空微粒子は、粒子の内部空間が隔壁によって隔てられた互いに連通しない独立気泡によって形成されているので、部分的に亀裂が生じても水が浸透する範囲が限られ、また上記独立気泡は粒子表面に開口しない密閉気泡であるので、加圧下の静水圧浮揚残存率が高い。静水圧浮揚残存率とは、加圧を経ていない常圧下における水中浮揚率(浮水率)W1に対する静水圧で加圧した粒子の加圧後の常圧下における水中浮揚率W2の比率〔浮揚残存率=W2/W1×100(%)〕である。 Since the hollow fine particles of the present invention are formed by closed cells that are separated from each other by the partition walls and do not communicate with each other, the range in which water penetrates is limited even if partial cracks occur. Is a closed cell that does not open on the particle surface, and therefore has a high hydrostatic pressure levitation residual rate under pressure. The hydrostatic levitation survival rate is the ratio of the underwater buoyancy rate W2 under normal pressure after pressurization of particles pressurized under hydrostatic pressure to the underwater levitation rate (floating rate) W1 under normal pressure without pressure [the buoyancy remaining rate = W2 / W1 × 100 (%)].

本発明の中空微粒子は、具体的には、例えば8MPa静水圧下での浮揚残存率が50%以上であり、好ましくは60%以上、より好ましくは70%以上である。浮揚残存率が50%を下回るものは粒子強度が低く、かつ粒子の内部空間が独立気泡によって形成されている割合が少ない。 Specifically, the hollow fine particles of the present invention have, for example, a residual levitation rate of 8 MPa under hydrostatic pressure of 50% or more, preferably 60% or more, more preferably 70% or more. Those having a buoyancy remaining rate of less than 50% have a low particle strength and a small proportion of the internal space of the particles formed by closed cells.

また、本発明の中空微粒子は、好ましくは上記独立気泡が粒子表面に開口しない密閉気泡であるので、吸水率が格段に小さい。具体的には、例えば、常圧下での吸水率が3%以下であり、好ましくは1.5%以下である。 In addition, the hollow fine particles of the present invention are preferably closed bubbles in which the closed cells do not open on the particle surface, and thus have a significantly low water absorption rate. Specifically, for example, the water absorption under normal pressure is 3% or less, preferably 1.5% or less.

本発明の中空微粒子について、粒子の内部空間が密閉された独立気泡によって形成されているとは、例えば、8MPa静水圧下での浮揚残存率が50%以上であることを云い、好ましくはさらに吸水率3%以下であることを云う。 In the hollow fine particles of the present invention, the fact that the internal space of the particles is formed by closed closed cells means, for example, that the residual rate of levitation under 8 MPa hydrostatic pressure is 50% or more, preferably further water absorption The rate is 3% or less.

本発明の無機中空微粒子において、内部空間の隔壁は2個以上あることが好ましい。複数の隔壁を有することによって、粒子の強度がさらに向上する。具体的には、例えば、圧縮強度15MPa以上である。従って、軽量モルタルを製造する場合、本発明の中空微粒子は強度が大きいのでモルタルと共に混合しても壊れることなくモルタルを軽量化することができ、モルタルの強度も低下しない。なお、軽量モルタルを製造する際に中空微粒子が壊れやすいものは、中空微粒子の使用量を多くしなければならず、また壊れた粒子やその破片によってワーカビリティー等が劣化することがある。 In the inorganic hollow fine particles of the present invention, it is preferable that there are two or more partition walls in the internal space. By having a plurality of partition walls, the strength of the particles is further improved. Specifically, for example, the compressive strength is 15 MPa or more. Therefore, when manufacturing a lightweight mortar, since the hollow microparticles of the present invention have a high strength, the mortar can be reduced in weight without breaking even when mixed with the mortar, and the strength of the mortar is not lowered. In the case of manufacturing lightweight mortar, those in which hollow fine particles are fragile must use a large amount of hollow fine particles, and workability and the like may deteriorate due to broken particles and fragments thereof.

本発明の中空微粒子は、粒子内部に大きな空間を有するので軽量である。具体的には、例えば、容重が0.16〜0.35g/cm3である。容重が0.16g/cm3を下回ると、殻および隔壁の厚さが薄くなるため強度が弱くなり、0.35g/cm3を超えると、未発泡粒子が多いため好ましくない。 The hollow fine particles of the present invention are lightweight because they have a large space inside the particles. Specifically, for example, the weight is 0.16 to 0.35 g / cm 3 . If the weight is less than 0.16 g / cm 3 , the thickness of the shell and partition walls will be reduced, and the strength will be weakened. If it exceeds 0.35 g / cm 3 , there will be many unfoamed particles, which is not preferable.

本発明の中空微粒子は、平均粒径が5〜200μmの範囲が好ましく、20〜100μmがより好ましい。粒子の平均粒径が5μm未満では、粒子どうしが凝集しやすくなるので好ましくない。また、平均粒径が5μmより小さいと、内部空間に隔壁を有する粒子を製造するのが難しくなる。一方、粒子の平均粒径が200μmを上回ると、例えば、塗料などに混合使用した場合に塗料面の平滑性が低下する他、空間容積比率と隔壁数が概ね同じものでは比表面積減少に伴い脆弱になり易いので好ましくない。 The hollow fine particles of the present invention preferably have an average particle size in the range of 5 to 200 μm, more preferably 20 to 100 μm. If the average particle diameter of the particles is less than 5 μm, the particles tend to aggregate, which is not preferable. On the other hand, if the average particle size is smaller than 5 μm, it is difficult to produce particles having partition walls in the internal space. On the other hand, when the average particle size of the particles exceeds 200 μm, for example, when used in a paint, the smoothness of the paint surface is reduced, and when the space volume ratio and the number of partition walls are approximately the same, the surface area becomes weak as the specific surface area decreases. It is not preferable because it tends to become.

また、本発明の中空微粒子において、平均粒径の相違によって浮揚残存率(8MPa静水圧下)が異なる傾向がある。具体的には、実施例の表1に示すように、容重0.2g/cm3の中空微粒子A3、A4についてみると、A3(平均粒径98μm)の浮揚残存率は80%であるが、A4(平均粒径179μm)の浮揚残存は60%である。また、容重0.25g/cm3の中空微粒子A7、A8についてみると、A7(平均粒径101μm)の浮揚残存率は90%であるが、A8(平均粒径199μm)の浮揚残存率は55%である。このことから、本発明の中空微粒子は、容重0.16〜0.35g/cm3において、平均粒径は20〜100μmがより好ましいことが判る。 Moreover, in the hollow fine particles of the present invention, the residual levitation rate (under 8 MPa hydrostatic pressure) tends to differ depending on the difference in average particle diameter. Specifically, as shown in Table 1 of the Examples, when the hollow fine particles A3 and A4 having a volume of 0.2 g / cm 3 are viewed, the buoyancy remaining rate of A3 (average particle size 98 μm) is 80%. A4 (average particle size 179 μm) levitation residual is 60%. Further, regarding the hollow fine particles A7 and A8 having a volume of 0.25 g / cm 3 , the levitation remaining rate of A7 (average particle size 101 μm) is 90%, but the levitation remaining rate of A8 (average particle size 199 μm) is 55%. %. From this, it can be seen that the hollow fine particles of the present invention preferably have an average particle diameter of 20 to 100 μm at a weight of 0.16 to 0.35 g / cm 3 .

本発明の中空微粒子はシラス、真珠岩、黒曜石、松脂岩などのシリカ質の天然ガラス質岩石、好ましくはシリカ含有量70質量%以上の天然ガラス質岩石を平均粒径150μm以下、より好ましくは100μm以下に粉砕し、該岩石微粒子を900℃〜1500℃に加熱して発泡させて中空微粒子にし、原料の岩石粉末の種類および成分などに応じて加熱発泡条件を調整することによって、内部空間が隔壁によって区切られたものを製造することができる。 The hollow fine particles of the present invention are siliceous natural vitreous rocks such as shirasu, pearlite, obsidian, and pine sebite, preferably natural vitreous rocks having a silica content of 70% by mass or more, and an average particle size of 150 μm or less, more preferably 100 μm. By crushing and heating the rock fine particles to 900 ° C. to 1500 ° C. to form hollow fine particles, and adjusting the heating and foaming conditions according to the type and components of the raw rock powder, the internal space becomes a partition wall. What is delimited by can be manufactured.

本発明の中空微粒子は、また、上記天然ガラス質岩石に限らず、岩石粉末に発泡原料を混合して造粒し、加熱発泡させることによって製造することができる。 The hollow fine particles of the present invention are not limited to the natural glassy rocks, and can be produced by mixing a foaming raw material with rock powder, granulating and heating and foaming.

本発明の中空微粒子は、内部に大きな空間を有するシリカガラス質の粒子であるので、光学顕微鏡によって内部空間を観察することができ、内部空間に隔壁を有することを確認することができる。なお、このような内壁を有する粒子形状は球形もしくは球形に近い方が好ましい。また、本発明の中空微粒子は内部空間に隔壁を有するものが粒子100個中に60個以上、より好ましくは70個以上あれば良い。 Since the hollow fine particles of the present invention are silica glassy particles having a large space inside, the internal space can be observed with an optical microscope, and it can be confirmed that the internal space has a partition wall. Note that the particle shape having such an inner wall is preferably spherical or nearly spherical. In addition, the hollow fine particles of the present invention may have 60 or more, more preferably 70 or more in 100 particles, each having a partition in the internal space.

以上のように、本発明の中空微粒子は、粒子の内部空間が表面に開口のない密閉気泡によって形成されているので吸水率が低い。かつ大きな内部空間を有するので軽量であり、また内部空間に隔壁が存在するので粒子の強度が大きく、加圧下でも亀裂が生じ難い。さらに、この内部空間が隔壁によって隔てられた複数の独立気泡によって形成されているので、部分的に亀裂が生じても水が浸透する範囲が限られ、加圧水下での浮揚残存率が格段に高い。 As described above, the hollow fine particles of the present invention have a low water absorption rate because the internal space of the particles is formed by sealed bubbles having no openings on the surface. In addition, since it has a large internal space, it is lightweight, and since there are partition walls in the internal space, the strength of the particles is large, and cracking does not easily occur even under pressure. Furthermore, since this internal space is formed by a plurality of closed cells separated by a partition wall, the range of water penetration is limited even if partial cracking occurs, and the buoyancy remaining rate under pressurized water is remarkably high .

従って、本発明の中空微粒子は、例えばモルタルや溶媒などに混ぜて比較的大量に使用するときのポンプ圧送などに適し、ポンプ圧送しても中空粒子が破壊されない。また、本発明の中空微粒子は、粒子の内部空間に隔壁を有するので、隔壁のない単一空間からなる粒子に比較して粒子の強度が大きいので、骨材や断熱材、建築材料などに用いたときに部材の強度を高めることができ、また移動や運搬中による粒子の破壊が少なく、取扱いが容易である。さらに、スラリー等に混合したときに、中空状態を維持することができる。 Therefore, the hollow fine particles of the present invention are suitable for pumping when, for example, they are mixed in a mortar or a solvent and used in a relatively large amount, and even if pumped, the hollow particles are not broken. In addition, since the hollow fine particles of the present invention have partition walls in the internal spaces of the particles, the strength of the particles is larger than particles consisting of a single space without the partition walls, so that they can be used for aggregates, heat insulating materials, building materials, etc. The strength of the member can be increased, and there is little particle breakage during movement and transportation, and handling is easy. Furthermore, a hollow state can be maintained when mixed with a slurry or the like.

一方、従来のように、内部空間に隔壁が存在しても、内部の気泡が互いに連通しているものは、部分的に亀裂が生じると粒子内部全体に水が浸透するので、浮揚残存率が大幅に低く、さらに吸水率が高い。吸水率が高いものはモルタルの骨材などに使用したときに軽量化できない。また、ポンプ圧送する場合にスランプロスが発生し、圧送が困難となる。 On the other hand, even if there are partition walls in the internal space as in the conventional case, in the case where the internal bubbles communicate with each other, if the cracks partially occur, the water penetrates the entire interior of the particles, so Significantly lower and higher water absorption. Those with high water absorption cannot be reduced in weight when used in mortar aggregates. In addition, slump loss occurs when pumping and pumping becomes difficult.

以下、本発明を実施例によって具体的に示す。なお、粒子の平均粒径、隔壁粒子の割合、容重、一軸圧縮強度、静水圧浮揚残存率、浮水率、吸水率は以下の方法によって測定した。   Hereinafter, the present invention will be specifically described by way of examples. The average particle diameter, the ratio of the partition wall particles, the volume, the uniaxial compressive strength, the hydrostatic levitation residual ratio, the buoyancy ratio, and the water absorption ratio were measured by the following methods.

〔平均粒径〕
レーザー回折粒度分布測定装置を用い、日機装社製測定器(マイクロトラック)によって測定した。
〔隔壁粒子の割合〕
プレパラート上に試料粒子を少量置き、そこにエタノールを滴下して粒子を分散させ、均一にならして乾燥させる。これを光透過型の顕微鏡で観察し、発泡粒子100個に対して隔壁が目視で見られた粒子の個数をカウントした。
[Average particle size]
Using a laser diffraction particle size distribution measuring device, measurement was performed with a measuring instrument (Microtrack) manufactured by Nikkiso Co., Ltd.
[Ratio of partition wall particles]
A small amount of sample particles are placed on the preparation, and ethanol is dropped therein to disperse the particles. This was observed with a light transmission type microscope, and the number of particles in which partition walls were visually observed with respect to 100 foamed particles was counted.

〔一軸圧縮強度〕
一軸圧縮強度は、内径15mm、高さ100mmのステンレス製シリンダに、シリンダ内径よりわずかに小さい高さ60mmの円柱状ステンレス冶具をシリンダ下部にセットし、その上から振動を加えて試料を充填させ、高さ約20mmとなるようにする。その上から同じ円柱状のステンレス製冶具を乗せて、一軸圧縮試験機にて圧縮させる。圧縮前の試料高さから50%体積減少した時点の圧縮圧力を常温で測定し、一軸圧縮強度とした。
[Uniaxial compressive strength]
Uniaxial compressive strength is set in a stainless steel cylinder with an inner diameter of 15 mm and a height of 100 mm, and a cylindrical stainless steel jig with a height of 60 mm, which is slightly smaller than the inner diameter of the cylinder, is set at the bottom of the cylinder. The height is about 20 mm. From there, the same cylindrical stainless steel jig is placed and compressed by a uniaxial compression tester. The compression pressure at the time when the volume was reduced by 50% from the sample height before compression was measured at room temperature to obtain the uniaxial compression strength.

〔浮水率〕
浮水率は、試料粒子を水に浸漬したときに、水面上に浮いた粒子の全試料粒子に占める体積割合であり、加圧しない常圧下の浮揚率である。約10gの試料を200mlメスシリンダーに入れて水を浸し、十分に攪拌した後に静置し、水の濁りがなくなるまで静置し、浮いた試料Vaと沈んだ試料の容積Vbを測定し、Va/(Va+Va)×100の式に基づいて浮水率を算出した。
[Floating rate]
The floating rate is a volume ratio of the particles floating on the water surface to the total sample particles when the sample particles are immersed in water, and is a floating rate under normal pressure without pressurization. About 10 g of sample is placed in a 200 ml graduated cylinder, soaked in water, allowed to stand after sufficient agitation, allowed to stand until the water is no longer cloudy, and the volume Vb of the floated sample Va and the sinked sample is measured. The floating rate was calculated based on the formula of / (Va + Va) × 100.

〔容重〕
一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を容重とした。
[Weight]
A sample is filled into a container with a constant volume S (cm 3 ), the portion protruding from the opening is ground, the total weight G1 is measured, and the weight G2 of the container is subtracted from this to obtain the powder weight G3 (g). The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the volume.

〔吸水率〕
約200g試料を十分な量の水中に入れ、24時間放置する。これを5種Aの濾紙で自然濾過させる。これを時計皿に薄く均一に延ばして風乾させ、試料を採取し、吸水試料質量maを測定する。これを105℃の乾燥機で恒量になるまで乾燥し、乾燥試料質量mbを測定する。(ma−mb)/mb×100の式から吸水率を算出した。
[Water absorption rate]
About 200 g sample is put in a sufficient amount of water and left for 24 hours. This is naturally filtered through 5 types A filter paper. This is thinly and evenly spread on a watch glass, air-dried, a sample is taken, and the water absorption sample mass ma is measured. This is dried to a constant weight with a dryer at 105 ° C., and the dry sample mass mb is measured. The water absorption was calculated from the formula (ma−mb) / mb × 100.

〔静水圧浮揚残存率〕
試料を試料容器と共に水で満たされた加圧容器内へ入れ、1、3、4、6、8、10MPaで1分間加圧する。加圧後、加圧した試料の全量を大気圧下で取り出してメスシリンダー入れ、水200mlを加えて静置する。静置後、水の濁りが無くなってきたら、上記浮水率測定方法に準じた方法で、浮いた試料粒子の体積を計測し、所定加圧下での加圧浮揚率(浮水率)W2とする。加圧試料と同量の試料粒子について、加圧せずに常圧下とした以外は同様の測定方法で測定し、非加圧下の浮揚率(浮水率)W1とする。加圧試料浮揚率W2/非加圧浮揚率W1×100の式に基づいて静水圧浮揚残存率(%)を算出した。
[Remaining hydrostatic pressure levitation rate]
The sample is put into a pressurized container filled with water together with the sample container and pressurized at 1, 3, 4, 6, 8, 10 MPa for 1 minute. After pressurization, the entire amount of the pressurized sample is taken out under atmospheric pressure, placed in a graduated cylinder, and 200 ml of water is added and left to stand. When the turbidity of water disappears after standing, the volume of the floating sample particles is measured by a method according to the above method for measuring the floating rate, and is set as a pressurized floating rate (floating rate) W2 under a predetermined pressure. Sample particles of the same amount as the pressurized sample are measured by the same measurement method except that the sample particles are not pressurized and are at normal pressure, and are defined as a non-pressurized floating rate (floating rate) W1. The hydrostatic pressure levitation residual rate (%) was calculated based on the formula of pressurized sample buoyancy rate W2 / non-pressurized levitation rate W1 × 100.

〔実施試料A1〜A9〕
真珠岩〔化学成分含有率(質量%)SiO2 74%、Al2O3 13%、Fe2O3 1%、CaO1%、MgO 0.1%、Na2O 3.5%、K2O 4.4%、ig.loss 2.2%〕を粉砕し、平均粒径10〜150μmに調整し、1000℃〜1100℃で焼成し、加熱発泡させて中空微粒子を製造した。この中空微粒子を光学顕微鏡によって観察し、内部空間に隔壁を有し、容重0.16〜0.35g/cm3、平均粒径約10〜200μmのものを選択し、その静水圧浮揚残存率を測定した。また、隔壁粒子の割合、吸水率、圧縮強度、浮水率を測定した。これらの結果を表1に示した(試料A1〜試料A9)。また、A2、A3、A7について浮揚残存率の推移を図5に示した。
[Examples A1 to A9]
Pearlite [chemical content (mass%) SiO 2 74%, Al 2 O 3 13%, Fe 2 O 3 1%, CaO 1%, MgO 0.1%, Na 2 O 3.5%, K 2 O 4.4%, ig .loss 2.2%] was pulverized, adjusted to an average particle size of 10 to 150 μm, fired at 1000 ° C. to 1100 ° C., and heated and foamed to produce hollow fine particles. These hollow fine particles are observed with an optical microscope, and those having partition walls in the internal space, having a capacity of 0.16 to 0.35 g / cm 3 and an average particle diameter of about 10 to 200 μm are selected, and the hydrostatic pressure levitation residual rate is determined. It was measured. In addition, the ratio of partition wall particles, water absorption, compressive strength, and floating rate were measured. These results are shown in Table 1 (Sample A1 to Sample A9). Moreover, the transition of the levitation remaining rate for A2, A3, and A7 is shown in FIG.

〔比較例1〕
実施例と同様の方法で隔壁のある中空微粒子を製造し、平均粒径約3μmの粒子(B1)と平均粒径約305μmの粒子(B2)を選択し、その静水圧浮揚残存率を測定した。また、隔壁粒子の割合、吸水率、圧縮強度、浮水率を測定した。これらの結果を表2に示した。また、浮揚残存率の推移を図5に示した。
[Comparative Example 1]
Hollow fine particles having partition walls were produced in the same manner as in Examples, and particles (B1) having an average particle size of about 3 μm and particles (B2) having an average particle size of about 305 μm were selected, and the hydrostatic pressure levitation residual ratio was measured. . In addition, the ratio of partition wall particles, water absorption, compressive strength, and floating rate were measured. These results are shown in Table 2. Moreover, the transition of the levitation survival rate is shown in FIG.

〔比較例2〕
市販品のパーライト(真珠岩系加熱発泡粒)の容重0.21g/cm3、平均粒径210μmの試料C1、容重0.21g/cm3、平均粒径179μmの試料C2について、隔壁粒子の割合、浮揚残存率、吸水率、圧縮強度、浮水率を測定した。この結果を表3に示した。また、市販のソーダライム系ガラスビーズ(表面に開口が無く、内部に隔壁のない単一気泡を有し、空隙率が85容積%)C3について、同様の測定を行い、その結果を表3に示した。
[Comparative Example 2]
Percentage of partition wall particles for commercially available pearlite (pearlite-based heated foam particles) with a weight of 0.21 g / cm 3 , sample C1 with an average particle size of 210 μm, sample C2 with a weight of 0.21 g / cm 3 and an average particle size of 179 μm The residual levitation rate, the water absorption rate, the compressive strength, and the buoyancy rate were measured. The results are shown in Table 3. In addition, the same measurement was performed for commercially available soda-lime-based glass beads (having a single cell with no opening on the surface and no partition inside, and a void ratio of 85% by volume), and the results are shown in Table 3. Indicated.

また、市販品のパーライト中空微粒子を回転電気炉で1000℃に再加熱し、表面を溶融させて特許文献1に記載されている中空微粒子(内部気泡が連通している)に相当するものを製造した(C4)。この表面溶融試料C4について、容重、平均粒径、隔壁粒子の割合、浮揚残存率、浮水率、吸水率、圧縮強度を表3に示した。試料C1およびC4について、浮揚残存率の推移を図5に示した。 Further, a commercially available pearlite hollow fine particle is reheated to 1000 ° C. in a rotary electric furnace, and the surface is melted to produce a hollow fine particle (internal bubbles communicated) described in Patent Document 1. (C4). Table 3 shows the volume, the average particle diameter, the ratio of the partition wall particles, the floating rate, the floating rate, the water absorption rate, and the compressive strength of the surface melt sample C4. FIG. 5 shows the transition of the levitation survival rate for samples C1 and C4.

表1に示すように、内部空間が隔壁によって仕切られた独立気泡によって形成されている、平均粒径10〜199μm、容重0.16〜0.35g/cm3の本発明品の中空粒子は、試料A8を除き、静水圧8MPa下の浮揚残存率が60%以上であり、また静水圧1MPa〜6MPaの低圧下における浮揚残存率の低下が少なく、静水圧6MPa〜8MPaの高圧下でも高い浮揚率を示す。 As shown in Table 1, the hollow particles of the product of the present invention having an average particle size of 10 to 199 μm and a weight of 0.16 to 0.35 g / cm 3 , which are formed by closed cells in which the internal space is partitioned by partition walls, Except for sample A8, the buoyancy remaining rate under hydrostatic pressure of 8 MPa is 60% or more, the levitation remaining rate under hydrostatic pressure of 1 MPa to 6 MPa is small, and the buoyancy rate is high even under high pressure of hydrostatic pressure of 6 MPa to 8 MPa. Indicates.

一方、表2に示すように、平均粒径が200μmを超える試料B1は、静水圧1MPa〜2MPa下の浮揚残存率は高いが、静水圧4MPa以上の浮揚残存率は急激に低下し、静水圧8MPa下の静水圧浮揚残存率は25%と大幅に低い。また、平均粒径が3μmの試料B2は浮水率が大幅に低く、発泡していない粒子が多いことを示している。さらに試料B2は、隔壁粒子数の割合が少ないため、殻が一部破損すると内部全体に水が浸入するため、静水圧1MPa〜4MPaの低圧下においても浮揚残存率が急激に低下する。 On the other hand, as shown in Table 2, sample B1 having an average particle size exceeding 200 μm has a high buoyancy remaining rate under a hydrostatic pressure of 1 MPa to 2 MPa, but the buoyancy remaining rate at a hydrostatic pressure of 4 MPa or more rapidly decreases. The hydrostatic levitation survival rate under 8 MPa is significantly low at 25%. Sample B2 having an average particle diameter of 3 μm has a significantly low floating rate, indicating that there are many unfoamed particles. Furthermore, since the ratio of the number of partition wall particles in Sample B2 is small, when the shell is partially broken, water infiltrates the entire interior, so that the buoyancy remaining rate is drastically lowered even under a hydrostatic pressure of 1 MPa to 4 MPa.

表3に示すように、従来のパーライト市販品C1〜C2は何れも静水圧2MPa以上の浮揚残存率が急激に低下しており、これは、従来のパーラート市販品は粒子の内部空間が単一の気泡によって形成されているので、僅かな亀裂でも粒子内部全体に水が浸透しやすいことを示している。特に隔壁粒子が全くない試料C3の静水圧8MPa下の浮揚残存率は1%であり、大部分の粒子は浮揚しない。 As shown in Table 3, all of the conventional pearlite commercial products C1 to C2 have a sudden drop in the residual buoyancy at a hydrostatic pressure of 2 MPa or more. This indicates that water can easily penetrate into the entire particle even with a slight crack. In particular, the floating rate of the sample C3 having no partition particles at a hydrostatic pressure of 8 MPa is 1%, and most of the particles do not float.

また、粒子表面を再溶融して表面開口を塞いだ試料C4も、静水圧4MPa以上の浮揚残存率が急激に低下する。これは、内部気泡が連通しているため、粒子表面が部分的に破損すると連通気泡を通じて粒子内部全体に水が浸入するためであり、静水圧6MPa以上では試料C1と同程度の低い浮揚残存率である。 In addition, the residual levitation rate at a hydrostatic pressure of 4 MPa or more also decreases sharply in Sample C4 in which the particle surface is remelted to close the surface opening. This is because the internal bubbles are connected, so if the particle surface is partially damaged, water will enter the entire inside of the particles through the connected bubbles, and at a hydrostatic pressure of 6 MPa or higher, the levitation rate is as low as that of sample C1. It is.

10−中空微粒子、11−内部空間、12−隔壁、13−外殻 10-hollow particulates, 11-inner space, 12-partition, 13-outer shell

Claims (3)

平均粒径5〜200μmの加熱発泡させてなるシリカ質微粒子であって、該粒子の内部空間が隔壁によって区切られて該内部空間が複数の独立気泡によって形成されており、容重が0.16〜0.35g/cm 3 、および8MPa静水圧浮揚残存率が50%以上であることを特徴とする無機中空微粒子。 Silica fine particles formed by heating and foaming having an average particle size of 5 to 200 μm, wherein the internal space of the particles is divided by partition walls, and the internal space is formed by a plurality of closed cells, and the weight is 0.16 to An inorganic hollow fine particle characterized by 0.35 g / cm 3 and an 8 MPa hydrostatic pressure levitation residual ratio of 50% or more . 平均粒径が20〜100μm、圧縮強度が15MPa以上、および吸水率が3%以下である請求項1に記載する無機中空微粒子。 The inorganic hollow fine particles according to claim 1, wherein the average particle size is 20 to 100 µm, the compressive strength is 15 MPa or more, and the water absorption is 3% or less. 隔壁によって区切られた複数の独立気泡によって形成されている内部空間を有する粒子を100個中60個以上含む請求項1または請求項2に記載する無機中空微粒子。 The inorganic hollow fine particle according to claim 1 or 2, comprising 60 or more particles out of 100 having an internal space formed by a plurality of closed cells separated by partition walls.
JP2009177675A 2008-07-30 2009-07-30 Inorganic hollow fine particles Expired - Fee Related JP5466801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177675A JP5466801B2 (en) 2008-07-30 2009-07-30 Inorganic hollow fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008196282 2008-07-30
JP2008196282 2008-07-30
JP2009177675A JP5466801B2 (en) 2008-07-30 2009-07-30 Inorganic hollow fine particles

Publications (2)

Publication Number Publication Date
JP2010053029A JP2010053029A (en) 2010-03-11
JP5466801B2 true JP5466801B2 (en) 2014-04-09

Family

ID=42069329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177675A Expired - Fee Related JP5466801B2 (en) 2008-07-30 2009-07-30 Inorganic hollow fine particles

Country Status (1)

Country Link
JP (1) JP5466801B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643495B2 (en) * 2008-08-29 2014-12-17 太平洋マテリアル株式会社 Granules for paint and heat insulating paint or sound insulation paint containing the granules
JP5308755B2 (en) * 2008-09-19 2013-10-09 太平洋マテリアル株式会社 Thermal insulation material and fiber
JP2011236097A (en) * 2010-05-12 2011-11-24 Mitsui Mining & Smelting Co Ltd Pearlite for building material and mortar composition mixed therewith
JP2012116690A (en) * 2010-11-30 2012-06-21 Taiheiyo Materials Corp High durability perlite and method for manufacturing the same
JP6153722B2 (en) * 2012-12-27 2017-06-28 太平洋マテリアル株式会社 Artificial lightweight aggregate and manufacturing method thereof
JP2014129214A (en) * 2012-12-29 2014-07-10 Igawa Sangyo:Kk Method for producing microparticle formed from glassy volcanic product
JP6189162B2 (en) * 2013-09-30 2017-08-30 大建工業株式会社 Calcium silicate plate and method for producing the same
DE102016205960A1 (en) * 2016-04-08 2017-10-12 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Use of closed-pore microballs of expanded perlite as a filler for the production of moldings for the foundry industry
WO2023139037A1 (en) * 2022-01-18 2023-07-27 Basf Se Uv filter compositions comprising closed-cell metal oxide particles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3788270B2 (en) * 2001-05-21 2006-06-21 宇部興産株式会社 Filter aid for gas-solid separation
JP5148971B2 (en) * 2007-11-05 2013-02-20 日揮触媒化成株式会社 Spherical silica particles and method for producing the same

Also Published As

Publication number Publication date
JP2010053029A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP5466801B2 (en) Inorganic hollow fine particles
CA1217319A (en) Low density proppant
EP1421038B1 (en) Improved foam glass product
EP3006417B1 (en) New porous rigid mineral foams, their manufacturing processes and their uses
JPS58501721A (en) Method and composition for producing foam glass from diatomaceous earth and flyash
Dele-Afolabi et al. Investigating the effect of porosity level and pore former type on the mechanical and corrosion resistance properties of agro-waste shaped porous alumina ceramics
CA2287891A1 (en) Reinforcement of ceramic bodies with wollastonite
MX2011004573A (en) High strength proppants.
KR20130001520A (en) Light weight refractory insulator
CN108483929A (en) Glass ceramics and preparation method thereof are melted in a kind of foaming for interior wall
Santos et al. Sustainable glass foams produced from glass bottles and tobacco residue
RU2425817C1 (en) Method to make porous wall ceramics
AU663185B2 (en) Ceramic products
CN111018487A (en) Preparation method of foamed ceramic with microporous ceramic as matrix
JP5194202B2 (en) Manufacturing method of high-strength glassy balloon
JP5636143B2 (en) Manufacturing method of high-strength pearlite
JP2011132058A (en) Particle material for lightweight ceramic product and the lightweight ceramic product
Mishra et al. Light weight silica tiles through foam casting method
US20070181845A1 (en) Thermal and/or acoustic insulation materials shaped from silica (as amended)
JP5441006B2 (en) Lightweight pottery
RU2318772C1 (en) Method of manufacture of wall ceramic articles, raw charge for manufacture of wall ceramic articles and filler for wall ceramic articles
JP5931419B2 (en) Lightweight perlite and method for producing the same
RU2196119C2 (en) Porous glass-crystal material with open porous structure (options) and method of preparation thereof
JP5308755B2 (en) Thermal insulation material and fiber
CN107311453A (en) A kind of method that waste glass fibre fabric is back to glass production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140125

R150 Certificate of patent or registration of utility model

Ref document number: 5466801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees