JP5702638B2 - Impact-resistant perlite and method for producing the same - Google Patents

Impact-resistant perlite and method for producing the same Download PDF

Info

Publication number
JP5702638B2
JP5702638B2 JP2011067218A JP2011067218A JP5702638B2 JP 5702638 B2 JP5702638 B2 JP 5702638B2 JP 2011067218 A JP2011067218 A JP 2011067218A JP 2011067218 A JP2011067218 A JP 2011067218A JP 5702638 B2 JP5702638 B2 JP 5702638B2
Authority
JP
Japan
Prior art keywords
particles
density
apparent density
pearlite
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011067218A
Other languages
Japanese (ja)
Other versions
JP2011219353A (en
Inventor
雅朗 野口
雅朗 野口
秀樹 和知
秀樹 和知
庄次郎 倉橋
庄次郎 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2011067218A priority Critical patent/JP5702638B2/en
Publication of JP2011219353A publication Critical patent/JP2011219353A/en
Application granted granted Critical
Publication of JP5702638B2 publication Critical patent/JP5702638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

本発明は、耐衝撃性を有するパーライトとその製造方法に関し、より詳しくは、製造後の輸送中や取扱いの際に破壊され難く、優れた耐衝撃性を有するパーライトの製造方法を提供する。 The present invention relates to impact-resistant pearlite and a method for producing the same, and more particularly, to provide a method for producing pearlite having excellent impact resistance that is not easily destroyed during transportation or handling after production.

パーライトは真珠岩や黒曜石等などの鉱物質原料粒子を加熱して発泡させた中空粒子であり、軽量化材料として広く用いられている。例えば、モルタル、瓦、外壁材にパーライトを混合して軽量化する材料として用いられている。 Perlite is a hollow particle obtained by heating and foaming mineral raw material particles such as nacre and obsidian, and is widely used as a light weight material. For example, it is used as a material for reducing weight by mixing pearlite into mortar, roof tiles, and outer wall materials.

パーライトは、原料粒子に対して直径比で通常1.5倍〜5倍程度に発泡しており、表面の殻の厚さが数ミクロンであり非常に薄いため破損しやすく、パーライトを製造した後に、保管、輸送、最終製品製造などの取扱い中に部分的に壊れ、製造中の嵩密度が次第に大きくなる。 Perlite is foamed in a diameter ratio of about 1.5 to 5 times with respect to the raw material particles, and the surface shell is a few microns, so it is very thin and easily damaged. It is partially broken during handling such as storage, transportation and final product production, and the bulk density during production gradually increases.

このようなパーライトの破壊を防止する対策として、低温焼成して発泡倍率を小さくすることによってパーライトの強度を高めることが考えられるが、低温焼成すると未発泡粒子が発生し、発泡したパーライトと未発泡粒子が混在することになる。このような未発泡粒子が混在すると、未発泡粒子は重いので周囲の発泡粒子に衝撃を与え、輸送中や製品の取扱いの際に、発泡粒子が破壊される割合が多くなると云う問題がある。このような未発泡粒子を少なくするには、高温で焼成して原料粒子全体を十分に加熱すればよいが、高温焼成すると発泡過多となり、外殻の厚さが薄くなるため発泡体の強度が低下する。 As a measure to prevent such destruction of pearlite, it is conceivable to increase the strength of pearlite by firing at low temperature and reducing the expansion ratio. However, when fired at low temperature, unfoamed particles are generated. Particles will be mixed. When such unexpanded particles are mixed, the unexpanded particles are heavy, so that there is a problem that impact is given to the surrounding expanded particles, and the ratio of the expanded particles is increased during transportation and handling of the product. In order to reduce such unfoamed particles, the entire raw material particles may be heated sufficiently by firing at a high temperature. However, when fired at a high temperature, excessive foaming occurs, and the thickness of the outer shell becomes thin. descend.

パーライトの強度を高める他の方法として、原料粉末を余熱した後に加熱発泡させる方法が知られている。具体的には、真珠岩を原料とするパーライトは、真珠岩に含まれる水分が発泡剤として作用し、加熱によって水分が気化し、融点以上の温度になると気化した水蒸気によって発泡する。このとき水分量が多すぎると発泡過多になり、殻の厚さが薄く強度が弱くなる。そこで、あらかじめ余熱して真珠岩中の水分量をコントロールした後に発泡温度に加熱することによって過剰な発泡を防止する方法が知られている(特許文献1、2)。 As another method for increasing the strength of pearlite, there is known a method of heating and foaming after preheating the raw material powder. Specifically, in pearlite made from nacre, the moisture contained in nacre acts as a foaming agent, the moisture evaporates by heating, and foams by the vaporized vapor when the temperature reaches the melting point or higher. If the amount of water is too large at this time, excessive foaming occurs, and the shell becomes thin and the strength is weakened. Therefore, a method is known in which excessive foaming is prevented by heating in advance to the foaming temperature after preheating to control the amount of water in the pearlite (Patent Documents 1 and 2).

また、原料粉末を予備加熱して含有水分量を調整した後に、この原料粉末を高融点微粉末に混合して発泡させた後に、生成した発泡体(パーライト)を高融点微粉末から分離する製造方法も知られている(特許文献3)。この製造方法は予備加熱した原料粉末を高融点微粉末に混合して発泡させることによって均一に発泡させ表面の凹凸が少ない球状のパーライトを製造する方法である。 In addition, after the raw material powder is preheated to adjust the moisture content, this raw material powder is mixed with the high melting point fine powder and foamed, and then the resulting foam (perlite) is separated from the high melting point fine powder. A method is also known (Patent Document 3). This production method is a method of producing spherical pearlite with less surface irregularities by uniformly foaming a preheated raw material powder into a high melting point fine powder and foaming.

特開平7−277851号公報JP-A-7-277851 特開2007−320805号公報JP 2007-320805 A 特許第3528390号公報Japanese Patent No. 3528390

原料を予備加熱するには、発泡用の加熱炉のほかに予備加熱炉が必要であり、製造設備が大掛かりになると云う問題がある。また、予備加熱した原料粉末を高融点微粉末に混合して加熱発泡させる方法では、高融点微粉末の供給設備や分離設備が必要になり、工程も多くなるので手間がかかり製造コストも嵩む問題がある。 In order to preheat the raw material, a preheating furnace is required in addition to the foaming heating furnace, and there is a problem that the manufacturing equipment becomes large. Also, the method of mixing preheated raw material powder with high melting point fine powder and heating and foaming requires supply equipment and separation equipment for high melting point fine powder, which increases the number of processes and increases the manufacturing cost. There is.

さらに、何れの製造方法においても未発泡体の混入は避けられない。未発泡粒子が混在すると、未発泡粒子は発泡粒子よりも重いので、輸送中や製品の取扱いの際に、振動などの外力を受けると未発泡粒子が周囲の発泡粒子に衝撃を与えて破壊する割合が多くなると云う問題がある。焼成条件を最適化し、改良した焼成炉を使用して焼成しても、未発泡粒子のないパーライトを製造することは困難である。 Furthermore, in any production method, the unfoamed material cannot be avoided. When unexpanded particles are mixed, the unexpanded particles are heavier than the expanded particles, so when subjected to external forces such as vibration during transportation or product handling, the unexpanded particles will impact the surrounding expanded particles and break them. There is a problem that the ratio increases. Even if the firing conditions are optimized and firing is performed using an improved firing furnace, it is difficult to produce pearlite free of unexpanded particles.

本発明は、このような問題を解決したものであり、製造後の輸送中や取扱いの際に破損し難い、優れた耐衝撃性を有するパーライトとその製造方法を提供する。 The present invention solves such problems, and provides a pearlite having excellent impact resistance that is not easily damaged during transportation and handling after production, and a method for producing the same.

本発明は、以下の構成を有する耐衝撃性パーライトとその製造方法に関する。
〔1〕鉱物質原料を加熱発泡させてなるパーライトであり、見掛密度が1.0g/cm未満の低密度粒子を80vol%以上含み、かつ粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子含有量が15vol%以下であり、さらに見掛密度1.0g/cm 以上であって粒子径45μm未満の粒子を含むこと特徴とする耐衝撃性パーライト。
〔2〕平均見掛密度が0.2〜0.6g/cmである上記[1]に記載する耐衝撃性パーライト。
〔3〕鉱物質原料を加熱発泡させた後に、見掛密度が1.0g/cm 未満の低密度粒子を80vol%以上含み、かつ粒子径45μm以上および見掛密度1.0g/cm 以上の高密度粒子含有量が15vol%以下であり、さらに見掛密度1.0g/cm 以上であって粒子径45μm未満の粒子を含むように、粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子を分離する耐衝撃性パーライトの製造方法。
〔4〕発泡粒子を風力下で風速を10〜50m/secに調整することによって、粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子を落下分級する上記[3]に記載する耐衝撃性パーライトの製造方法。
〔5〕鉱物質原料を加熱発泡させた後に、発泡粒子を水中に入れて沈降した粒子を分離することによって、粒子径45μm以上および見掛密度1.0g/cm 以上の高密度粒子を分離する上記[3]に記載する耐衝撃性パーライトの製造方法。
The present invention relates to an impact-resistant pearlite having the following configuration and a manufacturing method thereof.
[1] Perlite formed by heating and foaming a mineral raw material, containing 80 vol% or more of low density particles having an apparent density of less than 1.0 g / cm 3 , a particle diameter of 45 μm or more, and an apparent density of 1.0 g / An impact-resistant pearlite having a high density particle content of cm 3 or more and 15 vol% or less , and further containing particles having an apparent density of 1.0 g / cm 3 or more and a particle diameter of less than 45 μm .
[2] The impact-resistant pearlite according to the above [1], having an average apparent density of 0.2 to 0.6 g / cm 3 .
[3] After heating and foaming the mineral material, it contains 80 vol% or more of low density particles having an apparent density of less than 1.0 g / cm 3 and has a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more. The particle size is 45 μm or more and the apparent density is 1.0 g / cm so that the high-density particle content is 15 vol% or less and the particles have an apparent density of 1.0 g / cm 3 or more and less than 45 μm. A method for producing impact-resistant pearlite that separates high-density particles of cm 3 or more.
[4] The above-mentioned [3], in which high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more are fall-classified by adjusting the wind speed of the foamed particles to 10 to 50 m / sec under wind force. A method for producing the impact-resistant pearlite described.
[5] After high-temperature foaming of the mineral material, the foamed particles are placed in water and the settled particles are separated to separate high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more. The method for producing impact-resistant pearlite according to [3] above.

本発明のパーライトは、粒子径45μm以上であって見掛密度1.0g/cm3以上の高密度粒子の含有量が15vol%以下に低減されているので、空気輸送の際に破損される発泡粒子が格段に少なく、従って、空気輸送前後の嵩密度の変化が小さく、耐衝撃性に優れており、また、材料分離を生じ難い。 In the pearlite of the present invention, the content of high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more is reduced to 15 vol% or less. The number of particles is remarkably small. Therefore, the change in bulk density before and after pneumatic transportation is small, the impact resistance is excellent, and the material separation is difficult to occur.

本発明の製造方法は、原料粒子を加熱発泡させた後に、粒子径45μm以上であって見掛密度1.0g/cm3以上の高密度粒子を分離して高密度粒子が少ない発泡粒子にするので、空気輸送前後の嵩密度の変化が小さい耐衝撃性に優れたパーライトを容易に製造することができる。 In the production method of the present invention, after the raw material particles are heated and foamed, high density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more are separated to form expanded particles with few high density particles. Therefore, it is possible to easily manufacture pearlite that has a small change in bulk density before and after pneumatic transportation and excellent in impact resistance.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明のパーライトは、鉱物質原料を加熱発泡させてなるパーライトであり、見掛密度が1.0g/cm未満の低密度粒子を80vol%以上含み、かつ粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子含有量が15vol%以下であり、さらに見掛密度1.0g/cm 以上であって粒子径45μm未満の粒子を含むこと特徴とする耐衝撃性パーライトである。ここで、見掛密度1.0g/cm以上の粒子量は、パーライトを水中に入れたときに沈んだ粒子の容積を測定することにより、その量を算出することができる。水の密度は液体状態・常圧ではおよそ1.0g/cmであるので、沈んだ粒子は1.0g/cm以上の粒子である。
Hereinafter, the present invention will be specifically described based on embodiments.
The pearlite of the present invention is a pearlite obtained by heating and foaming a mineral raw material, contains 80 vol% or more of low density particles having an apparent density of less than 1.0 g / cm 3 , and has a particle diameter of 45 μm or more and an apparent density of 1 .0g / cm 3 or more and a high-density particulate content of less 15 vol%, further impact perlite to this and characteristics, including apparent density 1.0 g / cm 3 or more in a by a particle diameter of less than 45μm particle is there. Here, the amount of particles having an apparent density of 1.0 g / cm 3 or more can be calculated by measuring the volume of particles that sink when pearlite is placed in water. Since the density of water is about 1.0 g / cm 3 in the liquid state and normal pressure, the sinked particles are particles of 1.0 g / cm 3 or more.

本発明のパーライトは、鉱物質原料を加熱発泡させた後に、粒子径45μm以上であって見掛密度1.0g/cm3以上の高密度粒子を分離し、除去することによって製造することができる。 The pearlite of the present invention can be produced by separating and removing high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more after heating and foaming the mineral material. .

パーライトを製造する鉱物質原料は加熱して発泡する岩石質粉末などからなる原料であり、具体的には、内部に水を有する真珠岩、松脂岩、黒曜石、シラス等が用いられる。その他、シリカガラス原料粉末にSiCなどの発泡剤を添加して造粒したものや、内部に未燃カーボンが含有しているフライアッシュ等が用いられる。 The mineral material for producing pearlite is a raw material composed of a rocky powder that is foamed by heating. Specifically, pearlite, pine stone, obsidian, shirasu, etc. having water inside are used. In addition, granulated by adding a foaming agent such as SiC to silica glass raw material powder or fly ash containing unburned carbon inside is used.

原料を加熱する手段(加熱炉等)は限定されない。通常のロータリーキルン、気流焼成炉、流動層焼成炉などを用いることができる。また、加熱炉等に供給する手段や方法、排出する手段や方法も限定されない。 The means (heating furnace etc.) for heating the raw material is not limited. A normal rotary kiln, airflow firing furnace, fluidized bed firing furnace, or the like can be used. Further, the means and method for supplying to the heating furnace and the like and the means and method for discharging are not limited.

平均粒子径50〜200μmの鉱物質原料粒子を加熱炉に入れ、概ね750〜1000℃に加熱して発泡させることによって発泡粒子(パーライト)を製造することができる。加熱温度は焼成炉の種類や大きさによって温度を調整すればよい。 Foamed particles (perlite) can be produced by placing mineral raw material particles having an average particle size of 50 to 200 μm in a heating furnace and heating them to approximately 750 to 1000 ° C. for foaming. The heating temperature may be adjusted according to the type and size of the firing furnace.

一般に、平均粒径150μmの真珠岩粒子を約800℃に加熱すると、概ね平均粒径180μm〜300μmの発泡粒子(全体の嵩密度約0.2〜0.35g/cm3)になるが、原料粒子の状態や加熱状態によって未発泡粒子あるいは発泡不十分な粒子が含まれている場合があり、通常、見掛密度1.0g/cm3以上の高密度粒子が概ね20vol%前後含まれている。なお、見掛密度は、粒子内に空間があり、該内部空間が外部に連通つていない場合に、内部空洞も含めた粒子の体積に対する粒子質量の比であり、見掛密度=粒子質量/粒子体積(g/cm3)によって表わされる。 Generally, when nacreous particles having an average particle diameter of 150 μm are heated to about 800 ° C., foam particles having an average particle diameter of 180 μm to 300 μm (total bulk density of about 0.2 to 0.35 g / cm 3 ) are obtained. Depending on the state of the particles and the heated state, unexpanded particles or insufficiently expanded particles may be included, and usually high density particles having an apparent density of 1.0 g / cm 3 or more are generally included around 20 vol%. . The apparent density is the ratio of the particle mass to the volume of the particle including the internal cavity when there is a space in the particle and the internal space does not communicate with the outside, and the apparent density = particle mass / Expressed by particle volume (g / cm 3 ).

このような高密度粒子(重い粒子)は、周囲の密度の小さい発泡粒子(軽い粒子)に衝突すると、これを破壊する傾向がある。特に、高密度でありかつ粒径の大きく重たい粒子は運動エネルギーが大きく、衝突時に多くの発泡粒子を破壊する。従って、原料粒子を加熱発泡させて発泡粒子を製造したときに、高密度粒子が多く含まれていると、発泡粒子を空気輸送する際に、軽い発泡粒子が破壊されて、空気輸送の前後で発泡粒子の密度変化(密度差)が大きくなり、発泡粒子全体が耐衝撃性の低いものになる。 When such high density particles (heavy particles) collide with surrounding foam particles (light particles) having a low density, they tend to break them. In particular, high-density and heavy particles having a large particle size have large kinetic energy, and destroy many foamed particles at the time of collision. Therefore, when foam particles are produced by heating and foaming raw material particles, if high-density particles are contained, light foam particles are destroyed when the foam particles are pneumatically transported. The density change (density difference) of the expanded particles becomes large, and the entire expanded particles have low impact resistance.

そこで、本発明の製造方法は、原料粒子を加熱発泡させた後に、粒子径45μm以上であって見掛密度1.0g/cm3以上の粒子を分離して、その含有量を15vol%以下に制限する。粒子径45μm以上であって見掛密度1.0g/cm3以上の粒子は、周囲の嵩密度の小さい発泡粒子(軽い粒子)に衝突すると、これを破壊する傾向が大きいので、このような高密度粒子を除去する。なお、本発明において粒子径45μm以上であって見掛密度1.0g/cm3以上の粒子を高密度粒子と云う。 Therefore, in the production method of the present invention, after the raw material particles are heated and foamed, particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more are separated, and the content is reduced to 15 vol% or less. Restrict. Particles with a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more tend to break when they collide with surrounding foamed particles (light particles) with a small bulk density. Remove density particles. In the present invention, particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more are referred to as high-density particles.

なお、見掛密度が1.0g/cm3以上であっても粒子径45μmより小さいものは、周囲の軽い粒子を破壊して密度変化を引き起こす傾向は小さいので、このような粒子が含まれるのは許容される。一方、粒子径が45μm以上であっても見掛密度が1.0g/cm3未満の粒子は発泡した軽い粒子であり、大部分の発泡粒子はこの低密度粒子である。本発明のパーライトは見掛密度が1.0g/cm3未満の低密度粒子を80vol%以上を含む。 Even if the apparent density is 1.0 g / cm 3 or more, those having a particle diameter of less than 45 μm are less likely to cause a change in density by destroying surrounding light particles. Is acceptable. On the other hand, even if the particle diameter is 45 μm or more, particles having an apparent density of less than 1.0 g / cm 3 are light foamed particles, and most of the foamed particles are low-density particles. The pearlite of the present invention contains 80 vol% or more of low density particles having an apparent density of less than 1.0 g / cm 3 .

粒子径45μm以上であって見掛密度1.0g/cm3以上の高密度粒子を分離する手段は、乾式または湿式の比重分離装置、遠心力比重分離装置、あるいは慣性力集塵機などを用いればよい。乾式の分離方法として、例えば、発泡粒子を風力下で風速を調整することによって、粒子径45μm以上および見掛密度1.0g/cm3以上の高密度粒子を落下させて分離することができる。具体的には、空気輸送する輸送管の下部に粒子を捕集するトラップを設け、空気圧(風速)を調整して目的の粒子を落下させ、捕集する分離装置を用いるとよい。 As a means for separating high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more, a dry or wet specific gravity separator, a centrifugal specific gravity separator, or an inertial dust collector may be used. . As a dry separation method, for example, foam particles can be separated by dropping high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more by adjusting the wind speed under wind force. Specifically, a separation device may be used in which a trap for collecting particles is provided at a lower portion of a transport pipe for pneumatic transportation, and the target particles are dropped by collecting air pressure (wind speed) and collected.

具体的には、発泡粒子を空気輸送する際に、風速を10〜50m/secに調整することによって、粒子径45μm以上および見掛密度1.0g/cm3以上の高密度粒子を落下させて分離することができる。この分離方法によって、粒子径45μm以上および見掛密度1.0g/cm3以上の高密度粒子の含有量が15vol%以下のパーライトを得ることができる。 Specifically, when the foamed particles are pneumatically transported, by adjusting the wind speed to 10 to 50 m / sec, high density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more are dropped. Can be separated. By this separation method, pearlite having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more and a content of high-density particles of 15 vol% or less can be obtained.

一方、見掛密度1.0g/cm3以上の高密度粒子を分離するには、水に対する浮揚を利用すれば良い。発泡粒子を水中に入れると、見掛密度1.0g/cm3以上の重い粒子は沈むので、沈んだ粒子を分離し、浮揚した粒子を回収することによって、見掛密度1.0g/cm3以上の粒子を含まない発泡粒子を得ることができる。水を利用したこの分離方法によれば、見掛密度1.0g/cm3以上の高密度粒子を全て分離することができるので、粒子径にかかわらず見掛密度1.0g/cm3以上の高密度粒子の含有量が15vol%以下のパーライトを得ることができる。 On the other hand, in order to separate high density particles having an apparent density of 1.0 g / cm 3 or more, levitation with respect to water may be used. When foamed particles are placed in water, heavy particles with an apparent density of 1.0 g / cm 3 or more will sink. Therefore, by separating the settled particles and collecting the floated particles, the apparent density is 1.0 g / cm 3. Foamed particles that do not contain the above particles can be obtained. According to this separation method using water, it is possible to separate all the apparent density 1.0 g / cm 3 or more dense particles, apparent density 1.0 g / cm 3 or more regardless of the particle size Perlite with a high-density particle content of 15 vol% or less can be obtained.

本発明のパーライトは、粒子径45μm以上および見掛密度1.0g/cm3以上の高密度粒子の含有量が15vol%以下であり、好ましくは、粒子全体の平均見掛密度が0.2〜0.6g/cm3であり、見掛密度1.0g/cm3未満の低密度粒子含有量80%以上である。 In the pearlite of the present invention, the content of high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more is 15 vol% or less, and preferably the average apparent density of the whole particles is 0.2 to 0.2%. It is 0.6 g / cm 3 and the content of low density particles having an apparent density of less than 1.0 g / cm 3 is 80% or more.

平均見掛密度が0.2g/cm3より小さいと粒子自体の強度が弱いため耐衝撃性が劣る。また平均見掛密度が0.6g/cm3より大きい場合には、残留している高密度粒子含有量が多く、また軽量化材として使用しても軽量効果が小さい。従って、平均見掛密度は0.2〜0.6g/cm3の範囲が適当である。また、見掛密度1.0g/cm3未満の低密度粒子含有量が80%より小さいと高密度粒子含有量が多くなるので好ましくない。 When the average apparent density is less than 0.2 g / cm 3, the impact resistance is poor because the strength of the particles themselves is weak. When the average apparent density is larger than 0.6 g / cm 3 , the remaining high-density particle content is large, and the light weight effect is small even when used as a weight reducing material. Therefore, the average apparent density is suitably in the range of 0.2 to 0.6 g / cm 3 . Further, if the content of low density particles having an apparent density of less than 1.0 g / cm 3 is less than 80%, the content of high density particles increases, which is not preferable.

本発明のパーライトは、粒子径45μm以上および見掛密度1.0g/cm3以上の高密度粒子の含有量が15vol%以下である。これより多いと、空気輸送したときに、粒子全体の嵩密度変化が大きくなる。 In the pearlite of the present invention, the content of high density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more is 15 vol% or less. If it is more than this, the bulk density change of the whole particles becomes large when pneumatically transported.

パーライト中に高密度粒子が多いと、これが軽い発泡粒子に衝突して破壊し、粒子全体の嵩密度変化が大きくなる。従来のパーライトはこのような嵩密度の変化が大きい。一方、本発明のパーライトは、高密度粒子の含有量が少ないので、発泡粒子が破壊され難く、優れた耐久性を有するので、輸送中や使用時の取扱いによる嵩密度の変化が小さい。 When there are many high-density particles in pearlite, this collides with light foam particles and breaks them, and the bulk density change of the whole particles becomes large. Conventional pearlite has such a large change in bulk density. On the other hand, since the pearlite of the present invention has a low content of high-density particles, the foamed particles are not easily broken and has excellent durability, so the change in bulk density due to handling during transportation or use is small.

本発明のパーライトは高密度粒子の含有量が少ないので、使用時の材料分離を生じ難い。パーライトに含まれる高密度粒子が多いと、瓦や壁材の材料にパーライトを混合して製品を加工するときに、材料分離を生じやすいため、製品毎に質量のばらつきが生じるなどの問題が生じる。本発明のパーライトは高密度粒子が少なく、材料分離を生じ難いので、高品質の製品を得ることができる。 Since the pearlite of the present invention has a low content of high-density particles, it is difficult to cause material separation during use. If the pearlite contains a large number of high-density particles, when processing the product by mixing pearlite with the material of the tile or wall material, it tends to cause material separation, resulting in problems such as variation in mass for each product. . Since the pearlite of the present invention has few high-density particles and hardly causes material separation, a high-quality product can be obtained.

また、一般に製造したパーライトは製品サイロ等に保管されるが、サイロへの輸送は主に空気輸送によって行われている。空気輸送はパーライトを圧縮空気によって輸送管内を流すので、管内を流れるパーライトは空気圧を受ける。また、経路の途中には垂直部分や湾曲した部分があるので、管内を流れるパーライトはしばしば管壁に接触して衝突または摩擦によって破損する。さらにサイロへの積込み時や保管時、トラックやローリー車による運搬等によってパーライトに衝撃や圧力が加わる。本発明のパーライトはこのような衝撃や圧力による密度変化が小さい。 In general, manufactured pearlite is stored in a product silo or the like, and transportation to the silo is mainly performed by pneumatic transportation. In pneumatic transportation, pearlite flows through the transport pipe by compressed air, so the pearlite flowing in the pipe receives air pressure. Further, since there are vertical and curved portions in the middle of the path, the pearlite flowing in the tube often comes into contact with the tube wall and is damaged by collision or friction. Furthermore, impact and pressure are applied to the pearlite during loading into the silo, storage, and transportation by truck or lorry vehicle. The pearlite of the present invention is small in density change due to such impact and pressure.

以下、本発明の実施例を比較例と共に示す。なお、パーライトの嵩密度、見掛密度、平均粒径、見掛密度1.0g/cm3未満の低密度粒子含有量、高密度粒子残量は以下の方法によって測定した。 Examples of the present invention are shown below together with comparative examples. The bulk density, apparent density, average particle diameter, content of low density particles having an apparent density of less than 1.0 g / cm 3 , and residual density of high density particles were measured by the following methods.

〔嵩密度〕一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3〔G3/S〕g/cm3を嵩密度とした。
〔見掛密度〕気体置換法(島津製作所社製、アキュピック1330)により測定した。
[Bulk density] Fill a container with a constant volume S (cm 3 ), grind the portion protruding from the opening, measure the total weight G1, subtract the weight G2 of the container from this, and weight the powder G3 (g) The powder weight G3 [G3 / S] g / cm 3 with respect to the volume S was defined as the bulk density.
[Apparent density] Measured by a gas displacement method (Accupic 1330, manufactured by Shimadzu Corporation).

〔平均粒径〕45、90、150、300、600μmの篩を用い、各篩残分および通過分質量を測定し、粒径の HYPERLINK "http://kotobank.jp/word/%E5%AF%BE%E6%95%B0" 対数を横軸に、各篩の通過質量を百分率(篩通過質量/全質量×100%)を縦軸として HYPERLINK "http://kotobank.jp/word/%E6%9B%B2%E7%B7%9A" 曲線粒径加積曲線のグラフを作成し、50質量%が通過する粒径をグラフより導き出し、この値を平均粒径とした。 [Average particle size] Using sieves of 45, 90, 150, 300, and 600 μm, measure the mass of each sieve residue and the amount passed through, and use the HYPERLINK "http://kotobank.jp/word/%E5%AF" % BE% E6% 95% B0 "HYPERLINK" http://kotobank.jp/word/% "with logarithm as the horizontal axis and the passing mass of each sieve as percentage (mass passing mass / total mass x 100%) as the vertical axis E6% 9B% B2% E7% B7% 9A "Curved particle size cumulative curve graph was prepared, and the particle size through which 50% by mass passed was derived from the graph, and this value was taken as the average particle size.

〔低密度粒子含有量〕水に浮く粒子は密度1.0g/cm3未満であるので、この容積が見掛密度が1.0g/cm3未満の低密度粒子量となる。約10gの試料を200mlメスシリンダーに入れて水を入れ、十分に攪拌した後に静置し、水の濁りがなくなるまで置き、浮いた試料Vaと沈んだ試料の容積Vbを測定しVa/(Va+Va)×100vol%から低密度粒子含有量を算出した。 [Low Density Particle Content] Since the particles floating in water have a density of less than 1.0 g / cm 3 , this volume is the amount of low density particles having an apparent density of less than 1.0 g / cm 3 . About 10 g of sample is put into a 200 ml graduated cylinder, water is added, and after stirring sufficiently, it is left to stand until the turbidity of water disappears, and the volume Vb of the floated sample Va and the sinked sample is measured and Va / (Va + Va ) Low density particle content was calculated from x 100 vol%.

〔高密度粒子残量〕水に沈む試料(見掛密度1g/cm3以上)のうち45μm篩残留試料の全体の体積に対するvol%を測定した。 [Residual density of high-density particles] The vol% of the total volume of the 45 μm sieve residual sample among the samples (apparent density of 1 g / cm 3 or more) sinking in water was measured.

〔実施例1(発泡工程1)〕
真珠岩A(平均粒径150μm、ig.loss2.3%)を表1に示す温度に加熱してパーライトを製造した。焼成温度と製造したパーライトの嵩密度および見掛密度1.0g/cm3未満の低密度粒子含有量を表1に示す。A2の試料は800℃で気流焼成炉にて加熱して全体の嵩密度を0.2g/cm3にした一般的なパーライトであり、見掛密度1.0g/cm3未満の低密度粒子含有量は79vol%である。
[Example 1 (foaming step 1)]
Pearlite was manufactured by heating Pearlite A (average particle size 150 μm, ig.loss 2.3%) to the temperature shown in Table 1. Table 1 shows the firing temperature, the bulk density of the manufactured pearlite, and the content of low density particles having an apparent density of less than 1.0 g / cm 3. The A2 sample is a general pearlite with an overall bulk density of 0.2 g / cm 3 heated at 800 ° C. in an air flow firing furnace, and contains low density particles with an apparent density of less than 1.0 g / cm 3. The amount is 79 vol%.

Figure 0005702638
Figure 0005702638

〔実施例2(発泡工程2)〕
真珠岩B1(平均粒径150μm、ig.loss3.5%)、真珠岩B2(平均粒径150μm、ig.loss3.0%)、黒曜石B3(平均粒径150μm、ig.loss0.9%)を表1に示す温度に加熱してパーライトを製造した。焼成温度と製造したパーライトの嵩密度および見掛密度1.0g/cm3未満の低密度粒子含有量を表2に示す。
[Example 2 (foaming step 2)]
Pearlite B1 (average particle size 150 μm, ig.loss 3.5%), Pearlite B2 (average particle size 150 μm, ig.loss 3.0%), Obsidian B3 (average particle size 150 μm, ig.loss 0.9%) The pearlite was manufactured by heating to the temperature shown in Table 1. Table 2 shows the firing temperature, the bulk density of the manufactured pearlite, and the content of low density particles having an apparent density of less than 1.0 g / cm 3.

Figure 0005702638
Figure 0005702638

〔実施例3〕
実施例1で製造したA2について、発泡粒子を空気輸送の風力下で風速(空気圧)を調整することによって、高密度粒子(粒子径45μm以上および見掛密度1.0g/cm3以上の粒子)を落下させて分離した。
具体的には、空気輸送管(内径200mm)を用い、その途中の下部に、長さ200mmのトラップ部を設置し、風速を変化させて通過させ、高密度粒子をトラップに落下させて捕集した。この結果を表3に示す。
なおC1については、風速が弱いため分離量が30vol%以上となり、分離する容量を超えるため分離不可であった。また、風速が50m/secを超えると、分離量が0.9vol%と著しく小さくなり、高密度粒子の含有量が本発明の範囲を外れる。
Example 3
For A2 produced in Example 1, high-density particles (particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more) are prepared by adjusting the wind speed (air pressure) of the foamed particles under the wind force of pneumatic transportation. Was dropped and separated.
Specifically, using a pneumatic transport pipe (inner diameter 200 mm), a trap part with a length of 200 mm is installed at the lower part of the pipe, passing through it by changing the wind speed, and collecting high-density particles by dropping them into the trap. did. The results are shown in Table 3.
In addition, about C1, since the wind speed was weak, separation amount became 30 vol% or more, and since it exceeded the capacity | capacitance to isolate | separate, separation was impossible. On the other hand, when the wind speed exceeds 50 m / sec, the separation amount becomes extremely small as 0.9 vol%, and the content of the high density particles is out of the scope of the present invention.

Figure 0005702638
Figure 0005702638

〔実施例4〕
実施例1で製造したA2について、水中に入れて浮揚分と沈降分を分離し、浮揚分を回収して乾燥することによって、見掛密度1.0g/cm3以上の粒子を分離した。この結果を表4に示す。
Example 4
A2 produced in Example 1 was put in water to separate the floating portion and the sedimented portion, and the floating portion was collected and dried to separate particles having an apparent density of 1.0 g / cm 3 or more. The results are shown in Table 4.

Figure 0005702638
Figure 0005702638

〔実施例5〕
実施例3の試料C2〜C4、実施例4の試料D1について、これらを風速50m/secで空気輸送した。また、比較試料として、高密度粒子を分離しない実施例1の試料A1〜A2、および実施例2の試料B1、B2、B3、実施例3の試料C5について同様の試験を行った。空気輸送前と輸送後の嵩密度、嵩密度差を表5に示す。空気輸送後の嵩密度は、輸送前に比べて0.2g/cm3よりも重くならないことが好ましい。
分離操作を行わなくても高密度粒子残量が15vol%を下回る場合には、輸送後にも嵩密度差が小さい(A3)。分離操作を行った場合、高密度の残量が15vol%を下回ると、輸送後との嵩密度差が0.2g/cm3以下となり、衝撃性が高くなる(C2〜C4、D1)
見掛密度が0.2g/cm3を下回る場合には、発泡倍率が高いため強度が弱く、高密度粒子含有量が少ないにもかかわらず、輸送後の嵩密度は高くなる(B1)。
Example 5
Samples C2 to C4 of Example 3 and Sample D1 of Example 4 were pneumatically transported at a wind speed of 50 m / sec. Moreover, the same test was done about the sample A1-A2 of Example 1 which does not isolate | separate a high density particle as a comparative sample, Sample B1, B2, B3 of Example 2, and Sample C5 of Example 3. Table 5 shows the bulk density and the bulk density difference before and after pneumatic transportation. It is preferable that the bulk density after air transportation does not become heavier than 0.2 g / cm 3 compared with before transportation.
Even if the separation operation is not performed, if the remaining amount of high-density particles is less than 15 vol%, the bulk density difference is small even after transportation (A3). When the separation operation is performed, if the remaining amount of the high density is less than 15 vol%, the bulk density difference after transportation becomes 0.2 g / cm 3 or less, and the impact property becomes high (C2 to C4, D1).
When the apparent density is less than 0.2 g / cm 3 , the foaming ratio is high, the strength is weak, and the bulk density after transportation is high (B1) despite the low high-density particle content.

Figure 0005702638
Figure 0005702638

Claims (5)

鉱物質原料を加熱発泡させてなるパーライトであり、見掛密度が1.0g/cm未満の低密度粒子を80vol%以上含み、かつ粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子含有量が15vol%以下であり、さらに見掛密度1.0g/cm 以上であって粒子径45μm未満の粒子を含むこと特徴とする耐衝撃性パーライト。 It is a pearlite made by heating and foaming mineral raw materials, contains 80 vol% or more of low density particles with an apparent density of less than 1.0 g / cm 3 , has a particle diameter of 45 μm or more, and an apparent density of 1.0 g / cm 3 or more. An impact-resistant pearlite having a high-density particle content of 15 vol% or less , further containing particles having an apparent density of 1.0 g / cm 3 or more and a particle diameter of less than 45 μm . 平均見掛密度が0.2〜0.6g/cmである請求項1に記載する耐衝撃性パーライト。 Impact perlite average apparent density according to claim 1 which is 0.2 to 0.6 g / cm 3. 鉱物質原料を加熱発泡させた後に、見掛密度が1.0g/cm 未満の低密度粒子を80vol%以上含み、かつ粒子径45μm以上および見掛密度1.0g/cm 以上の高密度粒子含有量が15vol%以下であり、さらに見掛密度1.0g/cm 以上であって粒子径45μm未満の粒子を含むように、粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子を分離する耐衝撃性パーライトの製造方法。 After the mineral raw material is heated and foamed, it contains 80 vol% or more of low density particles having an apparent density of less than 1.0 g / cm 3 , and has a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more. In order to include particles having a particle content of 15 vol% or less and an apparent density of 1.0 g / cm 3 or more and a particle diameter of less than 45 μm , the particle diameter is 45 μm or more and the apparent density is 1.0 g / cm 3 or more. Of producing impact-resistant pearlite that separates high-density particles. 発泡粒子を風力下で風速を10〜50m/secに調整することによって、粒子径45μm以上および見掛密度1.0g/cm以上の高密度粒子を落下分級する請求項3に記載する耐衝撃性パーライトの製造方法。 The impact resistance according to claim 3, wherein the foam particles are classified by dropping high density particles having a particle diameter of 45 µm or more and an apparent density of 1.0 g / cm 3 or more by adjusting the wind speed to 10 to 50 m / sec under wind force. Method for producing pearlite. 鉱物質原料を加熱発泡させた後に、発泡粒子を水中に入れて沈降した粒子を分離することによって、粒子径45μm以上および見掛密度1.0g/cm 以上の高密度粒子を分離する請求項3に記載する耐衝撃性パーライトの製造方法。
A method of separating high-density particles having a particle diameter of 45 μm or more and an apparent density of 1.0 g / cm 3 or more by separating the settled particles by placing the foamed particles in water after the mineral material is heated and foamed. 3. A method for producing an impact-resistant pearlite described in 3.
JP2011067218A 2010-03-26 2011-03-25 Impact-resistant perlite and method for producing the same Active JP5702638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011067218A JP5702638B2 (en) 2010-03-26 2011-03-25 Impact-resistant perlite and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010071927 2010-03-26
JP2010071927 2010-03-26
JP2011067218A JP5702638B2 (en) 2010-03-26 2011-03-25 Impact-resistant perlite and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011219353A JP2011219353A (en) 2011-11-04
JP5702638B2 true JP5702638B2 (en) 2015-04-15

Family

ID=45036799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067218A Active JP5702638B2 (en) 2010-03-26 2011-03-25 Impact-resistant perlite and method for producing the same

Country Status (1)

Country Link
JP (1) JP5702638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153722B2 (en) * 2012-12-27 2017-06-28 太平洋マテリアル株式会社 Artificial lightweight aggregate and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319853A (en) * 1992-05-26 1993-12-03 Fujitsu Ltd Sorting of hollow granular body and method for regulating particle size
JP2648116B2 (en) * 1995-01-24 1997-08-27 工業技術院長 Method for producing fine hollow glass sphere
WO2001002314A1 (en) * 1999-06-30 2001-01-11 Asahi Glass Company, Limited Fine hollow glass sphere and method for preparing the same
JP2002037645A (en) * 2000-05-19 2002-02-06 Asahi Glass Co Ltd Fine hollow aluminosilicate glass ball and its manufacturing method
JP3876296B2 (en) * 2001-05-11 2007-01-31 鹿児島県 Method for continuously producing hollow glass spheres
JP4910756B2 (en) * 2007-02-21 2012-04-04 宇部興産株式会社 Method for manufacturing perlite
JP5467669B2 (en) * 2010-03-26 2014-04-09 太平洋マテリアル株式会社 PERLITE AND MANUFACTURING METHOD THEREOF

Also Published As

Publication number Publication date
JP2011219353A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
JP6165742B2 (en) Method of expanding mineral material with closed cells
CN101959571B (en) Cordierite ceramic honeycomb filter and process for producing the same
Blum et al. The physics of protoplanetesimal dust agglomerates. I. Mechanical properties and relations to primitive bodies in the solar system
US7737091B2 (en) Proppants and anti-flowback additives made from sillimanite minerals, methods of manufacture, and methods of use
WO2006010036A3 (en) Method for producing solid ceramic particles
CN109923069A (en) The manufacturing method of galapectite powder and galapectite powder
WO2006107552A2 (en) Granular solid wax particle
JP2002338280A (en) Manufacturing method and manufacturing apparatus for fine hollow glass spherical body
JP5702638B2 (en) Impact-resistant perlite and method for producing the same
JP2017519707A (en) Granulated slag products and processes for their production
JP5824272B2 (en) Powder, molded body, enveloping body, and method for producing powder
WO2020189109A1 (en) Fly ash modification method
JP5194202B2 (en) Manufacturing method of high-strength glassy balloon
JP2012091978A (en) Method for manufacturing perlite
JP5076197B2 (en) Method for producing high-strength glassy hollow sphere
Minoshima et al. Estimation of diameter of granule prepared by spray drying of slurry with fast and easy evaporation
RU104937U1 (en) MICROSPHERIC FILLER
JP5454451B2 (en) Method for drying sintered raw material pellets
Grasselli et al. Crater formation on a three dimensional granular heap
JP5145498B2 (en) Manufacturing method of high strength, high sphericity shirasu balloon
JP5467669B2 (en) PERLITE AND MANUFACTURING METHOD THEREOF
JP2010037164A (en) Method for producing high strength and high sphericity glassy fine hollow sphere
JP4091082B2 (en) Dry separation method and dry separation apparatus
JPWO2020189109A1 (en) How to modify fly ash
CN205205086U (en) Micro -vortex coalescence ash remover of fine coal pyrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150220

R150 Certificate of patent or registration of utility model

Ref document number: 5702638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250