JP5463727B2 - Condenser cooling pipe leak inspection device - Google Patents

Condenser cooling pipe leak inspection device Download PDF

Info

Publication number
JP5463727B2
JP5463727B2 JP2009113108A JP2009113108A JP5463727B2 JP 5463727 B2 JP5463727 B2 JP 5463727B2 JP 2009113108 A JP2009113108 A JP 2009113108A JP 2009113108 A JP2009113108 A JP 2009113108A JP 5463727 B2 JP5463727 B2 JP 5463727B2
Authority
JP
Japan
Prior art keywords
cooling pipe
pressure fluctuation
cooling
end plug
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009113108A
Other languages
Japanese (ja)
Other versions
JP2010261655A (en
Inventor
哲也 筑紫
英樹 嘉屋
裕喜 吉原
善光 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009113108A priority Critical patent/JP5463727B2/en
Publication of JP2010261655A publication Critical patent/JP2010261655A/en
Application granted granted Critical
Publication of JP5463727B2 publication Critical patent/JP5463727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

本発明は、蒸気タービンから排出された水蒸気を冷却して水に復するための復水器に関し、特に復水器の冷却管(伝熱管)の漏洩(リーク)を検査するための復水器冷却管漏洩検査装置に関するものである。   The present invention relates to a condenser for cooling steam discharged from a steam turbine to recover water, and in particular, a condenser for inspecting leakage (leakage) of a condenser cooling pipe (heat transfer pipe). The present invention relates to a cooling pipe leakage inspection device.

従来から、発電所等において、ボイラーにより発生した水蒸気は、タービンを回す動力に使用された後、液化させるために復水器に送られて冷却され、再び水としてボイラーで加熱されて水蒸気になるように循環する構造がとられている。この場合、復水器の水蒸気側は−700mmHg程度の真空状態で運転されるが、これは水蒸気(気体)が水(液体)になるとき体積減少分が負圧となるためで、熱落差を大きくすることにより効率を上げている。   Conventionally, steam generated by a boiler in a power plant or the like is used as power for turning a turbine, and then sent to a condenser to be liquefied and cooled, and is again heated by a boiler as water to become steam. A structure that circulates like this is taken. In this case, the water vapor side of the condenser is operated in a vacuum state of about −700 mmHg. This is because when the water vapor (gas) becomes water (liquid), the volume decrease becomes negative pressure, so the heat drop is reduced. Increasing the efficiency increases efficiency.

図5は蒸気タービンの復水器の一般的な構成を示すものであり(特許文献1参照)、図5(a)は側面図、図5(b)はそのX−X矢視図である。図5(a)、(b)において、70は復水器本体であり、上部には蒸気タービン71が配置されている。72は胴体であり、胴体72の両側には管板73があり、両管板73で複数本の冷却管からなる冷却管群74を支持している。通常、冷却管群74は、図5(b)に示すように、A室とB室の2室に分離されており、各室内の冷却管の本数は数千〜数万本にも達する。ちなみに、必要に応じて、A室とB室のいずれか一方を停止して片側のみで運転(片肺運転)を行うことができるようになっている。   FIG. 5 shows a general configuration of a condenser of a steam turbine (see Patent Document 1), FIG. 5 (a) is a side view, and FIG. 5 (b) is an XX arrow view. . 5 (a) and 5 (b), reference numeral 70 denotes a condenser main body, and a steam turbine 71 is disposed in the upper part. Reference numeral 72 denotes a body. Tube bodies 73 are provided on both sides of the body 72, and both tube plates 73 support a cooling tube group 74 including a plurality of cooling tubes. Usually, as shown in FIG. 5B, the cooling tube group 74 is divided into two chambers, a chamber A and a chamber B, and the number of cooling tubes in each chamber reaches several thousand to several tens of thousands. Incidentally, if necessary, one of the A room and the B room is stopped and the operation (one lung operation) can be performed only on one side.

そして、75a、75bは水室であり、水室75aからは冷却水80aが流入し、冷却管群74の冷却管内を流れて水室75bから冷却水80bとして流出する。76は復水溜まりであり、冷却管内を流れる冷却水により水蒸気が冷却されて凝縮し、下部に溜まる。77は復水出口であり、復水溜まり76に溜まった水の出口である。   75a and 75b are water chambers. Cooling water 80a flows in from the water chamber 75a, flows in the cooling pipes of the cooling pipe group 74, and flows out from the water chamber 75b as cooling water 80b. 76 is a condensate reservoir, in which water vapor is cooled and condensed by the cooling water flowing in the cooling pipe, and is accumulated in the lower part. Reference numeral 77 denotes a condensate outlet, which is an outlet for water accumulated in the condensate reservoir 76.

なお、上記の水室75a、75bは、A室とB室のそれぞれに設けられている。そして、図示していないが、水室75a、75bにはそれぞれマンホールが設けられており、検査や補修の際には、A室または/およびB室から冷却水を抜き取り、マンホールからそのA室または/およびB室の水室75a、75b内に作業員が入ることができるようになっている。   The water chambers 75a and 75b are provided in the A chamber and the B chamber, respectively. Although not shown, each of the water chambers 75a and 75b is provided with a manhole, and at the time of inspection or repair, the cooling water is extracted from the A room or / and the B room, and the A room or / And a worker can enter the water chambers 75a and 75b of the B room.

上記構成の復水器において、蒸気タービン71で膨張し、仕事をして低温となった水蒸気81は復水器本体70内に流入し、胴体72内の冷却管群74内に流入する。冷却管群74内に流入した水蒸気は、冷却水が流れる多数の冷却管の間を流れる過程において冷却水により冷却されて冷却管表面に凝縮して水となり、下部の復水溜まり76内へ落下する。復水溜まり76に溜まった水は復水出口77より流出し、再度加熱源に戻される。   In the condenser having the above-described configuration, the water vapor 81 which has been expanded by the steam turbine 71 and has worked to become a low temperature flows into the condenser main body 70 and flows into the cooling pipe group 74 in the body 72. The water vapor that has flowed into the cooling pipe group 74 is cooled by the cooling water in the process of flowing between a large number of cooling pipes through which the cooling water flows, condenses on the surface of the cooling pipe, becomes water, and falls into the condensate reservoir 76 below. . The water accumulated in the condensate reservoir 76 flows out of the condensate outlet 77 and is returned to the heating source again.

その際、一般的に、大型発電所は、海岸に設立される場合が多く、上記の冷却水として海水を使用することが多い。   At that time, in general, large power plants are often established on the coast, and seawater is often used as the cooling water.

このような海水を冷却水として使用する復水器の場合、冷却管に何らかの原因(例えば、海水による腐食)で孔が開いて、そこから冷却水(海水)の漏洩が生ずると、ボイラーに使用されている純水に海水が混入するので復水の塩分濃度が高くなり、そのためにボイラー本体等に致命的な損傷を及ぼす恐れがある。したがって、早期に冷却管の漏洩を検出し、その漏洩管を閉止する必要がある。   In the case of such a condenser that uses seawater as cooling water, if a hole is opened in the cooling pipe for some reason (for example, corrosion by seawater) and cooling water (seawater) leaks from it, it is used for boilers. Since seawater is mixed with pure water, the salinity of the condensate becomes high, which may cause fatal damage to the boiler body. Therefore, it is necessary to detect the leakage of the cooling pipe at an early stage and close the leakage pipe.

その際、作業員の目視により冷却管の漏洩(漏口)を直接検出することは非常に難しく、従来は、薄いビニールシートや石鹸水(泡)等を用いて冷却管の漏洩を検出していた。   At that time, it is very difficult to directly detect the leakage (leakage) of the cooling pipe by visual inspection of the worker. Conventionally, the leakage of the cooling pipe is detected using a thin vinyl sheet or soapy water (foam). It was.

しかし、数千〜数万本にも達する多数の冷却管の漏洩を検査することは、時間と根気のいる作業であり、勘や経験に頼ることが多く、確実性に欠けていた。   However, inspecting the leakage of a large number of cooling pipes reaching several thousand to several tens of thousands is a time-consuming and persevering work, often relying on intuition and experience, and lacking certainty.

これに対して、これまで、復水器の冷却管の漏洩を正確に短時間で行うことを目的にした復水器冷却管漏洩検査技術がいくつか提案されている。   On the other hand, several condenser cooling pipe leakage inspection techniques have been proposed so far, which aim to accurately leak condenser condenser pipes in a short time.

例えば、特許文献1には、両端が開口すると共に管板で支持された冷却管の両開口周囲の管板にそれぞれ当接して同開口を塞ぎ、同冷却管内を密閉する内側キャップと、同内側キャップの外周囲を覆って密閉する外側キャップと、同外側キャップと前記内側キャップとで形成される空間と前記内側キャップで密閉された前記冷却管内とを等圧力に加圧する加圧手段と、前記外側キャップと内側キャップとで形成される空間内の圧力を一定圧力に保持する圧力保持手段と、前記内側キャップで密閉された前記冷却管内と前記外側キャップと内側キャップとで形成される空間との差圧を測定する差圧計とを備えた復水器冷却管漏洩検出装置が記載されている。   For example, Patent Document 1 discloses an inner cap that seals the inside of the cooling pipe by sealing the inside of the cooling pipe with both ends opened and closed against the pipe plates around both openings of the cooling pipe supported by the pipe plate. An outer cap that covers and seals the outer periphery of the cap; a pressurizing means that pressurizes the space formed by the outer cap and the inner cap and the inside of the cooling pipe sealed by the inner cap to an equal pressure; and A pressure holding means for holding a constant pressure in a space formed by the outer cap and the inner cap; and a space formed by the cooling pipe sealed by the inner cap, and the outer cap and the inner cap. A condenser condenser leak detection device having a differential pressure gauge for measuring differential pressure is described.

また、特許文献2には、冷却管の一端に圧力センサ付プラグを、他端に閉塞プラグを挿着して両端を閉塞し、該冷却管内と冷却管外の蒸気側との圧力差による漏口からの流出による圧力変動を測定することにより冷却管の漏洩を検出する復水器冷却管漏洩検出技術が記載されている。   In Patent Document 2, a plug with a pressure sensor is inserted into one end of a cooling pipe, and a plug is inserted into the other end to close both ends, and leakage due to a pressure difference between the inside of the cooling pipe and the steam side outside the cooling pipe. A condenser condenser leak detection technique is described that detects leaks in the condenser by measuring pressure fluctuations due to outflow from the mouth.

また、特許文献3には、復水器の冷却管の両端を密閉する手段と、冷却管を密閉する手段の一端に取りつけたセンサとを具備し、冷却管にピンホールがある場合には冷却管内の空気が復水器内に漏れて生ずる冷却内の減圧分と大気圧との差圧を前記センサにより検出することによって冷却管のピンホールの有無を検出する復水器冷却管漏洩探査器が記載されている。   Patent Document 3 includes a means for sealing both ends of the condenser cooling pipe and a sensor attached to one end of the means for sealing the cooling pipe. A condenser condenser leak detector that detects the presence or absence of pinholes in the condenser pipe by detecting the differential pressure between the reduced pressure in the cooling caused by the air leaking into the condenser and the atmospheric pressure by the sensor. Is described.

また、特許文献4には、復水器の冷却管の両端にカバーを設置し、真空ポンプにて冷却管を真空とし、カバーに併設された水位計にて水位低下を確認(目視)することで冷却管の漏洩を検知するようにした復水器冷却管漏洩検査装置が記載されている。   Also, in Patent Document 4, covers are installed at both ends of the condenser cooling pipe, the cooling pipe is evacuated with a vacuum pump, and a drop in water level is confirmed (visually) with a water level gauge attached to the cover. Describes a condenser condenser leak inspection system that detects leaks in condenser pipes.

特開2000−146459号公報Japanese Patent Laid-Open No. 2000-1446459 特開2000−154986号公報JP 2000-154986 A 特開平06−026978号公報Japanese Patent Application Laid-Open No. 06-026978 特開昭62−091795号公報Japanese Patent Laid-Open No. 62-09195

しかし、前記の特許文献1〜4に記載の技術は以下のような問題がある。   However, the techniques described in Patent Documents 1 to 4 have the following problems.

まず、特許文献1に記載の技術については、水冷管の両端に設置するキャップの構造が複雑で、設置から検知までに多大な時間を要する。   First, with respect to the technique described in Patent Document 1, the structure of caps installed at both ends of a water-cooled tube is complicated, and a long time is required from installation to detection.

また、特許文献2に記載の技術については、水冷管の両端に設置するプラグがネジ込み式のため、設置に多大な時間を要する。また、漏洩検出システムが複雑で高価である。   Moreover, about the technique of patent document 2, since the plug installed in the both ends of a water cooling pipe is a screwing type, installation requires a lot of time. Also, the leak detection system is complex and expensive.

また、特許文献3、4に記載の技術については、復水器が運転中は復水器内(水蒸気側)が真空状態であることを利用した漏洩検出装置であり、定期検査等で復水器が停止時には使用できない。また、漏洩検出システム等が複雑で高価である。   In addition, the techniques described in Patent Documents 3 and 4 are leakage detection devices that utilize the fact that the condenser (water vapor side) is in a vacuum state while the condenser is in operation. Cannot be used when the vessel is stopped. In addition, the leak detection system is complicated and expensive.

本発明は、上記のような事情に鑑みてなされたものであり、復水器の冷却管の漏洩の有無を簡便で効率的に検査することができる復水器冷却管漏洩検査装置を提供することを目的とするものである。   This invention is made | formed in view of the above situations, and provides the condenser cooling pipe leak test | inspection apparatus which can test | inspect the presence or absence of the leakage of the condenser pipe of a condenser simply and efficiently. It is for the purpose.

上記課題を解決するために、本発明は以下の特徴を有している。   In order to solve the above problems, the present invention has the following features.

[1]復水器内の冷却管群のうち孔があいて冷却水の漏洩が生じている冷却管を検出するため、冷却管の一端に、冷却管内の圧力変動を測定するための圧力変動測定手段に連通する圧力変動測定端プラグを挿着し、冷却管の他端に、冷却管を閉塞する閉塞端プラグを挿着し、該冷却管内と冷却管外の圧力差による前記孔からの流出に伴う冷却管内の圧力変動を前記圧力変動測定手段により測定することにより冷却管の漏洩を検出する復水器冷却管漏洩検査装置であって、
複数本の冷却管に同時に圧力変動測定端プラグと閉塞端プラグを挿着して1個の圧力変動検出手段で漏洩の有無が検査できるように、冷却管の配置に対応して複数本の圧力変動測定端プラグが三角形状にまとめられた圧力変動測定端プラグ群と、同じく複数本の閉塞端プラグが三角形状にまとめられた閉塞端プラグ群を備え、前記圧力変動測定端プラグ群内の圧力変動端プラグ間は互いに連通していることを特徴とする復水器冷却管漏洩検査装置。
[1] Pressure fluctuation for measuring pressure fluctuation in the cooling pipe at one end of the cooling pipe in order to detect a cooling pipe having a hole in the condenser pipe group in the condenser and causing leakage of the cooling water. A pressure fluctuation measuring end plug communicating with the measuring means is inserted, a closed end plug for closing the cooling pipe is inserted into the other end of the cooling pipe, and a pressure difference between the cooling pipe and the outside of the cooling pipe is inserted from the hole. A condenser cooling pipe leakage inspection device that detects leakage of a cooling pipe by measuring the pressure fluctuation in the cooling pipe accompanying outflow by the pressure fluctuation measuring means,
A plurality of pressures corresponding to the arrangement of the cooling pipes so that the presence or absence of leakage can be inspected by one pressure fluctuation detecting means by simultaneously inserting the pressure fluctuation measuring end plug and the closed end plug into the plurality of cooling pipes. A pressure fluctuation measuring end plug group in which fluctuation measuring end plugs are gathered in a triangular shape and a closing end plug group in which a plurality of closing end plugs are gathered in a triangular shape, and the pressure in the pressure fluctuation measuring end plug group A condenser cooling pipe leakage inspection device characterized in that the variable end plugs communicate with each other.

[2]冷却管の配置が千鳥配置の場合、1本、2本、3本の計6本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計6本の閉塞端プラグからなる閉塞端プラグ群、または、1本、2本、3本、4本の計10本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計10本の閉塞端プラグからなる閉塞端プラグ群を備えていることを特徴とする前記[1]に記載の復水器冷却管漏洩検査装置。   [2] When the arrangement of the cooling pipes is a staggered arrangement, the pressure fluctuation measuring end plug group including a total of six pressure fluctuation measuring end plugs including one, two, and three, and a total of six closed end plugs. A closed end plug group, or a pressure fluctuation measuring end plug group consisting of a total of 10 pressure fluctuation measuring end plugs of 1, 2, 3, 4 and a closed end consisting of a total of 10 closed end plugs. The condenser cooling pipe leakage inspection device according to [1], further comprising an end plug group.

[3]冷却管の配置が格子状配置の場合、1本、3本の計4本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計4本の閉塞端プラグからなる閉塞端プラグ群、または、1本、3本、5本の計9本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計9本の閉塞端プラグからなる閉塞端プラグ群を備えていることを特徴とする前記[1]に記載の復水器冷却管漏洩検査装置。   [3] When the cooling pipes are arranged in a grid pattern, the pressure fluctuation measuring end plug group including a total of four pressure fluctuation measuring end plugs, one or three, and the blocking end consisting of a total of four closing end plugs. An end plug group, or a pressure fluctuation measuring end plug group consisting of a total of nine pressure fluctuation measuring end plugs, one, three, and five, and a closed end plug group consisting of a total of nine closed end plugs are also provided. The condenser condenser pipe leakage inspection device according to [1] above, wherein

本発明においては、復水器の冷却管の漏洩の有無を検査するに際して、圧力変動測定端プラグが三角形状にまとめられた圧力変動測定端プラグ群と、同様に閉塞端プラグが三角形状にまとめられた閉塞端プラグ群を用いて、複数本の冷却管に同時に圧力変動測定端プラグと閉塞端プラグを挿着して1個の圧力変動測定手段で複数本の冷却管の漏洩検査ができるので、冷却管の漏洩の有無を簡便で効率的に検査することができる。   In the present invention, when inspecting the condenser cooling pipe for leakage, the pressure fluctuation measuring end plugs are grouped in a triangular shape, and the closed end plugs are gathered in a triangular shape. By using the closed end plug group, the pressure fluctuation measuring end plug and the closing end plug can be simultaneously inserted into the plurality of cooling pipes, and leakage inspection of the plurality of cooling pipes can be performed with one pressure fluctuation measuring means. The presence or absence of leakage in the cooling pipe can be easily and efficiently inspected.

本発明の一実施形態を示す図である。It is a figure which shows one Embodiment of this invention. 図1のA−A矢視図である。It is an AA arrow line view of FIG. 本発明の一実施形態における圧力変動測定端プラグ群を示す図である。It is a figure which shows the pressure fluctuation measurement end plug group in one Embodiment of this invention. 本発明の一実施形態における圧力変動測定端プラグ群の他の例を示す図である。It is a figure which shows the other example of the pressure fluctuation measurement end plug group in one Embodiment of this invention. 一般的な復水器を示す図である。It is a figure which shows a general condenser.

本発明の一実施形態を述べる。   One embodiment of the present invention will be described.

まず、本発明の一実施形態に係る復水器冷却管漏洩検査装置は、図5に示したような復水器内の冷却管群のうち孔があいて冷却水の漏洩が生じている冷却管を検出するため、冷却管の一端に、冷却管内の圧力変動を測定するための圧力変動測定手段に連通する圧力変動測定端プラグを挿着し、冷却管の他端に、冷却管を閉塞する閉塞端プラグを挿着し、該冷却管内と冷却管外の圧力差による前記孔からの流出に伴う冷却管内の圧力変動を前記圧力変動測定手段により測定することにより冷却管の漏洩を検出する復水器冷却管漏洩検査装置であるが、その基本的なコンセプトは以下の如くである。
(1)一度に多数の水冷管の漏洩検査ができる構造である。
(2)作業員が人力で使用できるように、コンパクトでハンドリングが容易な構造である。
(3)短時間の検査作業(例えば、10秒以内/1ヶ所)が可能である。
(4)復水器が片肺運転中(水冷管外が真空状態で、検査対象の冷却管内が大気圧状態)でも、完全停止時(水冷管外が大気圧状態で、検査対象の冷却管内も大気圧状態)でも検査が可能である。
First, the condenser cooling pipe leakage inspection apparatus according to an embodiment of the present invention is a cooling system in which a cooling water leak occurs in the cooling pipe group in the condenser as shown in FIG. In order to detect the pipe, a pressure fluctuation measuring end plug communicating with a pressure fluctuation measuring means for measuring pressure fluctuation in the cooling pipe is inserted into one end of the cooling pipe, and the cooling pipe is closed at the other end of the cooling pipe. A closed end plug is inserted, and the pressure fluctuation measuring means measures the pressure fluctuation in the cooling pipe due to the outflow from the hole due to the pressure difference between the inside of the cooling pipe and the outside of the cooling pipe, thereby detecting the leakage of the cooling pipe. Although it is a condenser cooling pipe leakage inspection device, its basic concept is as follows.
(1) It is a structure that can inspect a large number of water-cooled tubes at once.
(2) The structure is compact and easy to handle so that workers can use it manually.
(3) A short-time inspection operation (for example, within 10 seconds / one place) is possible.
(4) Even when the condenser is in single-lung operation (the outside of the water-cooled tube is in a vacuum state and the inside of the cooling tube to be examined is in the atmospheric pressure state), it is completely stopped (the outside of the water-cooled tube is in the atmospheric pressure state and inside the cooling tube to be examined) Can be inspected even under atmospheric pressure conditions.

そして、上記のようなコンセプトに基づいて、この実施形態に係る復水器冷却管漏洩検査装置は、複数本(例えば6本)の冷却管に同時に圧力変動測定端プラグと閉塞端プラグを挿着して1個の圧力変動検出手段で漏洩の有無が検査できるように、冷却管の配置に対応して複数本(例えば6本)の圧力変動測定端プラグが三角形状にまとめられた圧力変動測定端プラグ群と、同じく複数本(例えば6本)の閉塞端プラグが三角形状にまとめられた閉塞端プラグ群を備え、前記圧力変動測定端プラグ群内の圧力変動端プラグ間は互いに連通しているという構造になっている。   Based on the above concept, the condenser cooling pipe leakage inspection apparatus according to this embodiment simultaneously inserts the pressure fluctuation measuring end plug and the closed end plug into a plurality of (for example, six) cooling pipes. Thus, a pressure fluctuation measurement in which a plurality of (for example, six) pressure fluctuation measuring end plugs are arranged in a triangular shape corresponding to the arrangement of the cooling pipes so that one pressure fluctuation detecting means can inspect for leakage. An end plug group and a closed end plug group in which a plurality of (for example, six) closed end plugs are grouped in a triangular shape, and the pressure fluctuation end plugs in the pressure fluctuation measurement end plug group communicate with each other. It has a structure of being.

以下、この実施形態に係る復水器冷却管漏洩検査装置を図面に従って説明する。   Hereinafter, a condenser cooling pipe leakage inspection apparatus according to this embodiment will be described with reference to the drawings.

図1は、この実施形態に係る復水器冷却管漏洩検査装置を示す図であり、図5に示したような復水器の冷却管群に設置した状態を示している。図2は、図1におけるA−A矢視図である。また、図3は、この実施形態において用いる圧力変動測定端プラグ群を示す斜視図である。なお、ここでは、復水器が完全停止時に検査を行う場合を示している。したがって、水冷管外は大気圧状態であり、検査対象の冷却管内も冷却水が抜かれて大気圧状態である。   FIG. 1 is a view showing a condenser cooling pipe leakage inspection device according to this embodiment, and shows a state where the condenser cooling pipe leakage inspection apparatus is installed in a condenser pipe group of the condenser as shown in FIG. FIG. 2 is an AA arrow view in FIG. FIG. 3 is a perspective view showing a pressure variation measuring end plug group used in this embodiment. Here, a case is shown in which the condenser performs an inspection at a complete stop. Therefore, the outside of the water-cooled pipe is in an atmospheric pressure state, and the cooling water is also drawn out in the cooling pipe to be inspected and is in an atmospheric pressure state.

図1〜図3に示すように、この実施形態に係る復水器冷却管漏洩検査装置は、管板13で支持された多数の冷却管15からなる冷却管群14のうち、孔50があいて冷却水の漏洩が生じている冷却管を検出するため、6本の冷却管15のそれぞれの一端に挿着されて、6本の冷却管15内の圧力変動を圧力計41で測定できるようにした6本の圧力変動測定端プラグ23からなる圧力変動測定端プラグ群20と、当該6本の冷却管15のそれぞれの他端に挿着されて、その冷却管15の他端を閉塞する6本の閉塞端プラグ33からなる閉塞端プラグ群30とを備えている。   As shown in FIGS. 1 to 3, the condenser cooling pipe leakage inspection apparatus according to this embodiment has holes 50 in the cooling pipe group 14 composed of a large number of cooling pipes 15 supported by the pipe plate 13. In order to detect the cooling pipe in which the cooling water leaks, the pressure fluctuations in the six cooling pipes 15 can be measured with the pressure gauge 41 by being inserted into one end of each of the six cooling pipes 15. The pressure fluctuation measuring end plug group 20 including the six pressure fluctuation measuring end plugs 23 and the other cooling pipe 15 are respectively inserted into the other ends of the six cooling pipes 15 and the other ends of the cooling pipes 15 are closed. And a closed end plug group 30 including six closed end plugs 33.

そして、図2、図3に示すように、圧力変動測定端プラグ群20については、6本の圧力変動測定端プラグ23が、千鳥配置された冷却管15に対応して、架台24上に、三角形状(1本、2本、3本)に配置されている。   As shown in FIGS. 2 and 3, for the pressure fluctuation measuring end plug group 20, six pressure fluctuation measuring end plugs 23 correspond to the cooling pipes 15 arranged in a staggered manner on the gantry 24. They are arranged in a triangular shape (1, 2, 3).

それぞれの圧力変動測定端プラグ23は、中空のノズル21と、ノズル21と冷却管13間をシールするゴムシール22からなっており、ノズル21の先端が冷却管15内に挿入されるとともに、ノズル21の後端が架台24内に設けられている中空部25に接続している。これにより、6本の圧力変動端プラグ23間は互いに連通している。なお、中空部25にはニップル26が接続している。   Each pressure fluctuation measuring end plug 23 includes a hollow nozzle 21 and a rubber seal 22 that seals between the nozzle 21 and the cooling pipe 13. The tip of the nozzle 21 is inserted into the cooling pipe 15 and the nozzle 21. The rear end is connected to a hollow portion 25 provided in the gantry 24. Thus, the six pressure fluctuation end plugs 23 communicate with each other. A nipple 26 is connected to the hollow portion 25.

そして、中空部25は、ニップル26を介して、圧力計41が設置された圧力計用配管42に接続している。さらに、圧力計用配管42は、自在継手43を介して、圧縮機(図示せず)からの圧縮空気を供給するホース44に接続している。なお、ホース44には、圧力が必要以上に上昇しないように、減圧弁(図示せず)が設置されている。   The hollow portion 25 is connected via a nipple 26 to a pressure gauge pipe 42 in which a pressure gauge 41 is installed. Further, the pressure gauge pipe 42 is connected to a hose 44 for supplying compressed air from a compressor (not shown) through a universal joint 43. The hose 44 is provided with a pressure reducing valve (not shown) so that the pressure does not increase more than necessary.

一方、閉塞端プラグ群30についても、6本の閉塞端プラグ33が、上記の6本の圧力変動測定端プラグ23と同様に、千鳥配置された冷却管15に対応して、架台34上に、三角形状(1本、2本、3本)に配置されている。   On the other hand, in the closed end plug group 30 as well, the six closed end plugs 33 correspond to the cooling pipes 15 arranged in a staggered manner on the gantry 34 in the same manner as the six pressure fluctuation measuring end plugs 23 described above. Are arranged in a triangular shape (1, 2, 3).

それぞれの閉塞端プラグ33は、心棒31と、心棒31と冷却管15間をシールするゴムシール32からなっており、閉塞端プラグ33を冷却管15の他端に挿着することによって、冷却管15の他端を密閉するようになっている。   Each closed end plug 33 includes a mandrel 31 and a rubber seal 32 that seals between the mandrel 31 and the cooling pipe 15. By inserting the closed end plug 33 into the other end of the cooling pipe 15, the cooling pipe 15 The other end is sealed.

そして、上記のような圧力変動測定端プラグ群20と閉塞端プラグ群30を6本の冷却管15の両端に対向するように挿着することで、6本の冷却管15内と各ノズル21内と中空部25内が一つの空間(検査空間)を形成することになり、その検査空間内に圧縮機からの所定圧力(例えば、0.1MPa)の圧縮空気を供給して、所定の保持時間後(例えば、10s後)の検査空間内の圧力変動を圧力計41で測定することによって、6本の冷却管15の漏洩の有無(孔50の有無)を検査することができる。   Then, by inserting the pressure fluctuation measuring end plug group 20 and the closed end plug group 30 as described above so as to face both ends of the six cooling pipes 15, the inside of the six cooling pipes 15 and the nozzles 21. The inside and the hollow part 25 form a single space (inspection space), and a predetermined pressure (for example, 0.1 MPa) from the compressor is supplied into the inspection space for a predetermined holding. By measuring the pressure fluctuation in the inspection space after time (for example, after 10 seconds) with the pressure gauge 41, it is possible to inspect whether or not the six cooling pipes 15 are leaking (the presence or absence of the holes 50).

すなわち、水冷管外は大気圧状態にあるので、6本の冷却管15のいずれかに孔50が存在すると、その孔50から圧縮空気が流出して、検査空間内の圧力変動(圧力低下)が生じる。これに対して、6本の冷却管15のいずれにも孔50が存在しなければ、検査空間内の圧力変動(圧力低下)は生じない。   That is, since the outside of the water-cooled tube is in the atmospheric pressure state, if the hole 50 exists in any of the six cooling tubes 15, the compressed air flows out from the hole 50, and the pressure fluctuation (pressure drop) in the inspection space. Occurs. On the other hand, if there is no hole 50 in any of the six cooling pipes 15, pressure fluctuation (pressure drop) in the inspection space does not occur.

そして、もし、検査空間内の圧力変動(圧力低下)が生じた場合は、6本の冷却管15のいずれかに漏洩が有ることになるので、それら6本の冷却管15に対して個別に漏洩の有無(孔50の有無)を検査して、漏洩が有る冷却管15を特定する。   If a pressure fluctuation (pressure drop) occurs in the inspection space, any of the six cooling pipes 15 has a leak, so that the six cooling pipes 15 are individually The presence or absence of leakage (the presence or absence of holes 50) is inspected to identify the cooling pipe 15 having leakage.

これに対して、検査空間内の圧力変動(圧力低下)が生じなかった場合は、6本の冷却管15のいずれにも漏洩が無いことになるので、次の6本の冷却管15の検査に移る。   On the other hand, if there is no pressure fluctuation (pressure drop) in the inspection space, there will be no leakage in any of the six cooling pipes 15, so the next six cooling pipes 15 will be inspected. Move on.

以上のようにして、復水器が完全停止している際の漏洩検査を行うことができる。   As described above, it is possible to perform a leakage inspection when the condenser is completely stopped.

一方、復水器が片肺運転している際に、停止中のA室またはB室の冷却管の漏洩検査を行う場合には、図1において、ホース44を圧力測定用配管42から切り離すとともに、圧力計41に代えて真空計を用いて、検査空間内の圧力変動を測定する。   On the other hand, when the condenser is in one-lung operation and the leakage inspection of the cooling chamber A or B is stopped, the hose 44 is disconnected from the pressure measurement pipe 42 in FIG. The pressure fluctuation in the examination space is measured using a vacuum gauge instead of the pressure gauge 41.

すなわち、復水器が片肺運転している時には、水冷管外は真空状態であり、検査対象の冷却管内は冷却水が抜かれて大気圧状態になっているので、6本の冷却管15のいずれかに孔50が存在する場合には、その孔50から空気が流出して、検査空間内が負圧になる。そこで、その負圧になる圧力変動(圧力低下)を真空計で検知することによって、6本の冷却管15のいずれかに孔50が存在することを検出することができる。   That is, when the condenser is operating in one lung, the outside of the water cooling pipe is in a vacuum state, and the cooling water is drawn out to the atmospheric pressure state inside the cooling pipe to be inspected. When the hole 50 exists in any one of them, air flows out from the hole 50 and the inside of the examination space becomes negative pressure. Therefore, it is possible to detect the presence of the hole 50 in one of the six cooling pipes 15 by detecting the pressure fluctuation (pressure drop) that becomes the negative pressure with a vacuum gauge.

もちろん、6本の冷却管15のいずれにも孔50が存在しなければ、検査空間内の圧力変動(圧力低下)が生じることはない。   Of course, if there is no hole 50 in any of the six cooling pipes 15, pressure fluctuation (pressure drop) in the inspection space does not occur.

以上のようにして、復水器が片肺運転している際の漏洩検査を行うことができる。   As described above, a leak test can be performed when the condenser is operating in one lung.

なお、上記においては、圧力変動測定端プラグ群20が、千鳥配置された冷却管に対応して、1本、2本、3本の計6本の圧力変動測定端プラグ23を三角形状に配置したものになっていたが、図4に斜視図を示すように、圧力変動測定端プラグ群20として、1本、2本、3本、4本の計10本の圧力変動測定端プラグ23を三角形状に配置したものを用いてもよい。   In the above, the pressure fluctuation measuring end plug group 20 is arranged in a triangular shape with a total of six pressure fluctuation measuring end plugs 23 corresponding to the cooling pipes arranged in a staggered manner. As shown in the perspective view of FIG. 4, the pressure fluctuation measuring end plug group 20 includes one, two, three, and four pressure fluctuation measuring end plugs 23 in total. Those arranged in a triangular shape may be used.

また、冷却管が格子状に配置されている場合には、圧力変動測定端プラグ群20として、1本、3本の計4本の圧力変動測定端プラグ23を三角形状に配置したものや、1本、3本、5本の計9本の圧力変動測定端プラグ23を三角形状に配置したものを用いる。   When the cooling pipes are arranged in a grid, the pressure fluctuation measuring end plug group 20 includes one, three, four pressure fluctuation measuring end plugs 23 arranged in a triangular shape, A total of nine pressure fluctuation measuring end plugs 23 arranged in a triangular shape are used.

もちろん、その際に、圧力変動測定端プラグ群20の配置に合わせて、閉塞端プラグ群30も、閉塞端プラグ33を同様に配置したものを用いる。   Of course, in this case, in accordance with the arrangement of the pressure fluctuation measuring end plug group 20, the closed end plug group 30 having the same closed end plug 33 is used.

そして、圧力変動測定端プラグ群20は、耐圧を考慮して、ゴム22以外の部分(ノズル21、架台24等)は金属製とするが、ハンドリング性を考慮して、重量は1kg以下とすることが好ましい。閉塞端プラグ群30についても同様である。   The pressure variation measuring end plug group 20 is made of metal for the parts other than the rubber 22 (nozzle 21, pedestal 24, etc.) in consideration of pressure resistance, but the weight is 1 kg or less in consideration of handling properties. It is preferable. The same applies to the closed end plug group 30.

なお、ここでは、圧力変動測定端プラグ23や閉塞端プラグ33を三角形状に配置しているが、仮に、圧力変動測定端プラグ23や閉塞端プラグ33を直線状に配置した場合は、圧力変動測定端プラグ群20や閉塞端プラグ群30が長尺になり、水室内でのハンドリング性が悪くなる。   Here, the pressure fluctuation measuring end plug 23 and the closed end plug 33 are arranged in a triangular shape. However, if the pressure fluctuation measuring end plug 23 and the closed end plug 33 are arranged in a straight line, the pressure fluctuation measuring end plug 23 and the closed end plug 33 are arranged in a straight line. The measurement end plug group 20 and the closed end plug group 30 are long, and the handling property in the water chamber is deteriorated.

上記のようにして、この実施形態においては、コンパクトでハンドリングが容易な構造の漏洩検査装置を用いて、復水器が片肺運転中でも完全停止時でも、一度に多数の水冷管の漏洩検査を短時間の検査作業で行うことができる。すなわち、復水器の冷却管の漏洩の有無を簡便で効率的に検査することができる。   As described above, in this embodiment, a leakage inspection apparatus having a structure that is compact and easy to handle is used to perform leakage inspection of a large number of water-cooled tubes at a time even when the condenser is in single lung operation or when it is completely stopped. It can be done in a short time of inspection work. That is, it is possible to simply and efficiently inspect for the presence or absence of leakage in the condenser cooling pipe.

その結果、漏洩検査作業時間が短縮されて、機会損失の低減、漏洩検査費用の削減等を図ることが可能となる。   As a result, the leakage inspection work time is shortened, and it becomes possible to reduce opportunity loss and leakage inspection costs.

13 管板
14 冷却管群
15 冷却管
20 圧力変動測定端プラグ群
21 ノズル
22 ゴム
23 圧力変動測定端プラグ
24 架台
25 中空部
26 ニップル
30 閉塞端プラグ群
31 心棒
32 ゴム
33 閉塞端プラグ
34 架台
41 圧力計
42 圧力計用配管
43 自在継手
44 ホース
50 孔
70 復水器本体
71 蒸気タービン
72 胴体
73 管板
74 冷却管群
75a、75b 水室
76 復水溜まり
77 復水出口
80a、80b 冷却水(海水)
81 水蒸気
13 Tube Plate 14 Cooling Tube Group 15 Cooling Tube 20 Pressure Fluctuation Measurement End Plug Group 21 Nozzle 22 Rubber 23 Pressure Fluctuation Measurement End Plug 24 Mounting Base 25 Hollow Part 26 Nipple 30 Blocking End Plug Group 31 Mandrel 32 Rubber 33 Closing End Plug 34 Mounting Base 41 Pressure gauge 42 Pressure gauge piping 43 Universal joint 44 Hose 50 Hole 70 Condenser body 71 Steam turbine 72 Body 73 Tube plate 74 Cooling tube group 75a, 75b Water chamber 76 Condensate reservoir 77 Condensate outlet 80a, 80b Cooling water (seawater )
81 water vapor

Claims (3)

復水器内の冷却管群のうち孔があいて冷却水の漏洩が生じている冷却管を検出するため、冷却管の一端に、冷却管内の圧力変動を測定するための圧力変動測定手段に連通する圧力変動測定端プラグを挿着し、冷却管の他端に、冷却管を閉塞する閉塞端プラグを挿着し、該冷却管内と冷却管外の圧力差による前記孔からの流出に伴う冷却管内の圧力変動を前記圧力変動測定手段により測定することにより冷却管の漏洩を検出する復水器冷却管漏洩検査装置であって、
複数本の冷却管に同時に圧力変動測定端プラグと閉塞端プラグを挿着して1個の圧力変動検出手段で漏洩の有無が検査できるように、冷却管の配置に対応して複数本の圧力変動測定端プラグが架台上に三角形状にまとめられた圧力変動測定端プラグ群と、同じく複数本の閉塞端プラグが架台上に三角形状にまとめられた閉塞端プラグ群を備え、前記圧力変動測定端プラグ群内の圧力変動端プラグ間は互いに連通していることを特徴とする復水器冷却管漏洩検査装置。
In order to detect cooling pipes that have holes in the condenser and have leaked cooling water, one end of the cooling pipe is used as a pressure fluctuation measuring means to measure the pressure fluctuation in the cooling pipe. A pressure fluctuation measuring end plug is connected, and a closed end plug for closing the cooling pipe is inserted into the other end of the cooling pipe, which is accompanied by an outflow from the hole due to a pressure difference between the inside of the cooling pipe and the outside of the cooling pipe. A condenser cooling pipe leakage inspection device for detecting a leakage of a cooling pipe by measuring a pressure fluctuation in the cooling pipe by the pressure fluctuation measuring means,
A plurality of pressures corresponding to the arrangement of the cooling pipes so that the presence or absence of leakage can be inspected by one pressure fluctuation detecting means by simultaneously inserting the pressure fluctuation measuring end plug and the closed end plug into the plurality of cooling pipes. comprises a variation measuring end plug pressure fluctuation measuring portion plug group gathered in a triangular shape on the platform, also a plurality of closed end plugs of the closed end plug group gathered in a triangular shape on the gantry, the pressure variation measurement The condenser cooling pipe leakage inspection device, wherein the pressure fluctuation end plugs in the end plug group communicate with each other.
冷却管の配置が千鳥配置の場合、1本、2本、3本の計6本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計6本の閉塞端プラグからなる閉塞端プラグ群、または、1本、2本、3本、4本の計10本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計10本の閉塞端プラグからなる閉塞端プラグ群を備えていることを特徴とする請求項1に記載の復水器冷却管漏洩検査装置。   When the cooling pipes are arranged in a staggered arrangement, the pressure fluctuation measuring end plug group including a total of six pressure fluctuation measuring end plugs, one, two, and three, and the closed end including a total of six closed end plugs. A plug group, or a pressure fluctuation measuring end plug group consisting of a total of 10 pressure fluctuation measuring end plugs of 1, 2, 3, 4 and a closed end plug group consisting of a total of 10 closed end plugs. The condenser cooling pipe leakage inspection device according to claim 1, comprising: 冷却管の配置が格子状配置の場合、1本、3本の計4本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計4本の閉塞端プラグからなる閉塞端プラグ群、または、1本、3本、5本の計9本の圧力変動測定端プラグからなる圧力変動測定端プラグ群と、同じく計9本の閉塞端プラグからなる閉塞端プラグ群を備えていることを特徴とする請求項1に記載の復水器冷却管漏洩検査装置。   When the arrangement of the cooling pipes is a lattice arrangement, a pressure variation measuring end plug group including a total of four pressure variation measuring end plugs, one or three, and a closed end plug group including a total of four closed end plugs. Or, a pressure variation measuring end plug group consisting of a total of nine pressure variation measuring end plugs, one, three, and five, and a closed end plug group consisting of a total of nine closed end plugs are provided. The condenser cooling pipe leakage inspection device according to claim 1.
JP2009113108A 2009-05-08 2009-05-08 Condenser cooling pipe leak inspection device Expired - Fee Related JP5463727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009113108A JP5463727B2 (en) 2009-05-08 2009-05-08 Condenser cooling pipe leak inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009113108A JP5463727B2 (en) 2009-05-08 2009-05-08 Condenser cooling pipe leak inspection device

Publications (2)

Publication Number Publication Date
JP2010261655A JP2010261655A (en) 2010-11-18
JP5463727B2 true JP5463727B2 (en) 2014-04-09

Family

ID=43359884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009113108A Expired - Fee Related JP5463727B2 (en) 2009-05-08 2009-05-08 Condenser cooling pipe leak inspection device

Country Status (1)

Country Link
JP (1) JP5463727B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013185772A (en) * 2012-03-08 2013-09-19 Eco Factory:Kk Sealing structure of heat exchanger, and heat exchanger
JP6000096B2 (en) * 2012-12-05 2016-09-28 三菱日立パワーシステムズ株式会社 Heat exchanger tube leak inspection jig for heat exchanger
JP6691472B2 (en) * 2016-12-08 2020-04-28 株式会社スギノマシン Pipe end high pressure sealing jig

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105692A (en) * 1980-12-23 1982-07-01 Hitachi Ltd Leakage detecting device for heat transferring tube of heat exchanger
JPS62124537U (en) * 1986-01-31 1987-08-07
JPH01285833A (en) * 1988-05-12 1989-11-16 Chubu Electric Power Co Inc Inspecting method of leak in slender pipe of condenser
JP2000154986A (en) * 1998-11-18 2000-06-06 Sigma:Kk Method for detecting leakage of condenser and device therefor

Also Published As

Publication number Publication date
JP2010261655A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
KR100909443B1 (en) Test apparatus and method for safety valve
US8291748B2 (en) Heat exchanger leak testing method and apparatus
CN101408466B (en) Method and device for detecting leakage of shell type heat exchanger
US7454956B1 (en) Heat exchanger leak detection using mass gas flow metering
JP5463727B2 (en) Condenser cooling pipe leak inspection device
CN110887613A (en) Sealing detection method for air pressure test of large pressure container
CN106052968A (en) Method for positioning leak points of helium mass spectrometer leak detection device for heat-transfer pipe of nuclear steam generator
CN202329961U (en) Leakage detection device for U-shaped waste heat boiler pipe bundle
JP2015210219A (en) Leak detector and leak detecting method of heat exchanger
JP4859955B2 (en) Method and apparatus for searching for leak location of condenser cooling pipe
US4467635A (en) Leak detection in heat exchanger tubes and their tube sheet connections
KR102066995B1 (en) An inspector for tube leakage checking of a shell and tube type heat exchanger
JPH08304217A (en) Method for performing leakage test on expansion joint of condenser
JP6398211B2 (en) Heat exchanger thin tube leak detection device and leak detection method
GB2314421A (en) Leak detection in heat exchangers
CN207007440U (en) A kind of heat exchanger tube helium checking device
CN205449419U (en) Fuel compartment air -tight test's supplementary component
CN207180972U (en) A kind of cylinder tightness detector
CN219799062U (en) Boiler pipeline water pressure testing device
JP2007198837A (en) Method, detector, and detection tool for detecting leakage tube of condenser
SE0101469L (en) Device and method for acoustically detecting leaks in a pipe
CN216116610U (en) Accurate leak detection system of gas-water heat exchanger
JPS5824717B2 (en) Method for detecting minute leaks in heat exchanger tubes
JPS62138693A (en) Detecting of leaking pipe
De Vos et al. PED certified recuperator for micro gas turbines

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees