JP5463582B2 - Artificial superlattice particles - Google Patents

Artificial superlattice particles Download PDF

Info

Publication number
JP5463582B2
JP5463582B2 JP2009059753A JP2009059753A JP5463582B2 JP 5463582 B2 JP5463582 B2 JP 5463582B2 JP 2009059753 A JP2009059753 A JP 2009059753A JP 2009059753 A JP2009059753 A JP 2009059753A JP 5463582 B2 JP5463582 B2 JP 5463582B2
Authority
JP
Japan
Prior art keywords
temperature
ratio
particles
artificial superlattice
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009059753A
Other languages
Japanese (ja)
Other versions
JP2010208923A (en
JP2010208923A5 (en
Inventor
智志 和田
隆幸 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2009059753A priority Critical patent/JP5463582B2/en
Publication of JP2010208923A publication Critical patent/JP2010208923A/en
Publication of JP2010208923A5 publication Critical patent/JP2010208923A5/ja
Application granted granted Critical
Publication of JP5463582B2 publication Critical patent/JP5463582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、人工超格子誘電体ナノ粒子の作製方法に関するものであり、大容量密度のフィルムキャパシタに用いられる誘電体ナノ粒子として利用できるものである。
The present invention relates to a method for producing artificial superlattice dielectric nanoparticles, and can be used as dielectric nanoparticles used in a film capacitor having a large capacity density.

化学組成の異なる2種類以上の単位格子を自然界に存在しない周期構造で積層した人工超格子は、現在は単結晶を基板とし、超高真空下で超格子薄膜として作製される。しかし、薄膜では変調構造が膜厚方向にしか存在せず、従って変調構造より期待できる巨大物性は1次元のみに留まる。また、人工超格子薄膜の作製には500℃以上の高温が必要であり、その結果、化学組成の急峻な界面を保つことが困難であった。特許文献1には、酸化物人工超格子薄膜とその製造方法について開示されているが、薄膜の製造であり、本発明である球状粒子の製造に関しては、記載も示唆もされていない。特許文献2には、正方晶チタン酸バリウム粒子の製造方法が開示されているが、本発明のナノ粒子の積層化に関しては、記載も示唆もされていない。特許文献3には、カルシウムドープチタン酸バリウムの製造方法が開示されているが、ナノ粒子の積層化に関しては記載も示唆もされていない。
Artificial superlattices in which two or more types of unit cells with different chemical compositions are stacked in a periodic structure that does not exist in nature are currently manufactured as superlattice thin films under ultrahigh vacuum using a single crystal as a substrate. However, in a thin film, the modulation structure exists only in the film thickness direction, and therefore the giant physical properties that can be expected from the modulation structure are limited to one dimension. In addition, the production of the artificial superlattice thin film requires a high temperature of 500 ° C. or higher, and as a result, it has been difficult to maintain an interface having a steep chemical composition. Patent Document 1 discloses an oxide artificial superlattice thin film and a method for producing the same, but it is the production of a thin film, and there is no description or suggestion regarding the production of spherical particles according to the present invention. Patent Document 2 discloses a method for producing tetragonal barium titanate particles, but does not describe or suggest the lamination of the nanoparticles of the present invention. Patent Document 3 discloses a method for producing calcium-doped barium titanate, but neither describes nor suggests the lamination of nanoparticles.


特開2000−154100JP 2000-154100 A 特開2005−272295JP 2005-272295 A 特開2005−281092JP 2005-281092 A

例えば、現在、将来の超高速大容量通信を実現するための高周波回路素子として、電子基板内にL、C、R素子を3次元で実装するシステムインパッケージ(SIP)の実現が期待されているが、その課題となっているのが、C(キャパシタ)であり、10nF/mm2以上の容量密度を持つフィルムキャパシタが必要とされている。しかし、現時点でその容量密度は1桁小さく、その向上が求められている。3次元の変調構造を持つ人工超格子ナノ粒子を300℃以下の低温で作製することができれば、あらゆる方向に変調構造を持ち、その結果、すべての方位に対して巨大物性を持つ新材料を創生できる。一般にフィルムキャパシタは、高誘電率のセラミックス粒子と低誘電率のポリマーで構成されているが、セラミックス粒子の比誘電率には限界があり、どうしても必要となる容量密度を達成できない。しかし、このセラミックス粒子の代わりに、比誘電率が1桁以上も高いことが予測できる新規な構造の人工超格子ナノ粒子を用いることができれば、上記容量密度を超えるフィルムキャパシタの提供が可能となる。
For example, as a high-frequency circuit element for realizing future ultra-high-speed and large-capacity communication, it is expected to realize a system-in-package (SIP) in which L, C, and R elements are three-dimensionally mounted on an electronic board. However, the problem is C (capacitor), and a film capacitor having a capacity density of 10 nF / mm 2 or more is required. However, at present, its capacity density is an order of magnitude smaller and its improvement is required. If artificial superlattice nanoparticles with a three-dimensional modulation structure can be fabricated at a low temperature of 300 ° C or lower, a new material with a modulation structure in all directions and huge physical properties in all directions can be created. I can live. In general, a film capacitor is composed of ceramic particles having a high dielectric constant and a polymer having a low dielectric constant. However, the relative dielectric constant of ceramic particles is limited, and a necessary capacity density cannot be achieved. However, if artificial superlattice nanoparticles with a novel structure that can be predicted to have a relative dielectric constant higher by an order of magnitude or more can be used in place of the ceramic particles, it is possible to provide a film capacitor that exceeds the above capacity density. .

本願発明による人工超格子粒子は、核となる粒子の表面に、前記核となる粒子とは化学組成の異なる化合物を積層し、前記核となる粒子及び前記化合物は、ともにBa,Sr,Ca,Pbの中から選ばれる少なくとも1種以上の第一の金属と、Ti,Zrの中から選ばれる少なくとも1種以上の第2の金属とを含む金属酸化物であることを特徴とする。
The artificial superlattice particle according to the present invention is formed by laminating a compound having a chemical composition different from that of the core particle on the surface of the core particle, and the core particle and the compound are both Ba, Sr, Ca, It is a metal oxide containing at least one first metal selected from Pb and at least one second metal selected from Ti and Zr.

本願発明の別な側面による人工超格子粒子は、前記核となる粒子と、前記化合物は、一方がチタン酸バリウムを含み、他方がチタン酸ストロンチウムを含むことを特徴とする。
An artificial superlattice particle according to another aspect of the present invention is characterized in that one of the core particle and the compound contains barium titanate and the other contains strontium titanate.

本願発明の別な側面による人工超格子粒子は、前記核となる粒子はチタン酸バリウムであることを特徴とする。
An artificial superlattice particle according to another aspect of the present invention is characterized in that the core particle is barium titanate.

化学組成の異なる2種類以上の単位格子を自然界に存在しない周期構造で積層した人工超格子は、現在は単結晶を基板とし、超高真空下で薄膜として作製される。従って、変調構造より期待できる巨大物性は1次元のみに留まり、また高温での成膜の結果、化学組成の急峻な界面を保つことが困難であった。そこで、3次元の変調構造を持つ人工超格子ナノ粒子を300℃以下で作製することができれば、あらゆる方向に巨大物性を持つ新材料を創生できる。従って、3次元の人工超格子ナノ粒子ができれば、これまでにない巨大な物性や多機能を併せ持った夢の新材料を創生することができ、本発明はその根幹をなすものである。   Artificial superlattices in which two or more types of unit cells with different chemical compositions are stacked with a periodic structure that does not exist in nature are currently manufactured as a thin film under ultrahigh vacuum using a single crystal as a substrate. Therefore, the giant physical properties that can be expected from the modulation structure remain only in one dimension, and as a result of film formation at a high temperature, it is difficult to maintain an interface having a sharp chemical composition. Therefore, if artificial superlattice nanoparticles with a three-dimensional modulation structure can be fabricated at 300 ° C or lower, new materials with huge physical properties in all directions can be created. Therefore, if a three-dimensional artificial superlattice nanoparticle can be created, a new material of a dream that has unprecedented physical properties and multiple functions can be created, and the present invention forms the basis thereof.

本発明では、誘電体ナノ粒子に注目したが、誘電体以外に磁性体や半導体でも歪み変調構造による巨大特性を期待することができる。
In the present invention, attention has been paid to dielectric nanoparticles, but a giant characteristic due to a strain modulation structure can be expected even in a magnetic substance or a semiconductor other than a dielectric substance.

人工超格子ナノ粒子の概念図Conceptual diagram of artificial superlattice nanoparticles オートクレーブ装置Autoclave equipment BTのXRDの水/エタノール比依存性BT XRD water / ethanol ratio dependence BTのXRDの反応温度依存性BT XRD reaction temperature dependence BTのXRDのBa/Ti比依存性BT XRD Ba / Ti ratio dependence BTの生成領域BT generation area STのXRDの水/エタノール比依存性ST / XRD dependence of water / ethanol ratio BTのXRDの反応温度比依存性Dependence of BT XRD on reaction temperature ratio STのXRDのSr/Ti比依存性ST XRD dependence of Sr / Ti ratio STの生成領域ST generation area ST/BT複合粒子の第1段階のXRD結果First stage XRD results of ST / BT composite particles ST/BT複合粒子の1段階のSEM写真One-stage SEM photograph of ST / BT composite particles ST/BT複合粒子の第1段階のTEM写真First stage TEM photograph of ST / BT composite particles ST/BT複合粒子の第2段階のXRD結果Second stage XRD results of ST / BT composite particles ST/BT複合粒子の第2段階のSEM写真Second stage SEM photograph of ST / BT composite particles

図1に本発明の構造の概念図を示す。本発明の人工超格子ナノ粒子を構成する酸化物であるBaTiO3、SrTiO3についての条件検討結果を示すが、酸化物として、他にCaTiO3、PbTiO3、PbZrO3、CaZrO3、SrZrO3、BaZrO3についても用いることができ、またこれらに限定されるものではない。
(1)出発原料の選択
本発明における出発原料として、Ba源、Sr源、Ti源、O源の4種類の元素を含む原料が必要である。この中でO(酸素)については、アルコールや水などのOHから得ることができるため、検討から除外する。また、Ba、Srは溶解度が高いものから低いものまで様々な原料形態が存在する。本発明では、BaTiO3(BT)、SrTiO3(ST)をそれぞれ独立に合成するため、Ba、Sr原料については一般的な原料である無水水酸化バリウム(Ba(OH)2)、無水水酸化ストロンチウム(Sr(OH)2)を使用し、その代わりに、両方の合成反応に共通するTi源について制御することで、反応全体の制御を試みた。
FIG. 1 shows a conceptual diagram of the structure of the present invention. The results of the examination of conditions for BaTiO3 and SrTiO3, which are oxides constituting the artificial superlattice nanoparticles of the present invention, are shown. However, the present invention is not limited to these.
(1) Selection of starting material As a starting material in the present invention, a raw material containing four kinds of elements of Ba source, Sr source, Ti source and O source is required. Of these, O (oxygen) can be obtained from OH such as alcohol and water, and is therefore excluded from the study. In addition, Ba and Sr have various raw material forms from high to low solubility. In the present invention, since BaTiO3 (BT) and SrTiO3 (ST) are synthesized independently, the Ba and Sr raw materials are general raw materials such as anhydrous barium hydroxide (Ba (OH) 2) and anhydrous strontium hydroxide ( We tried to control the whole reaction by using Sr (OH) 2) and instead controlling the Ti source common to both synthesis reactions.

一般に、Tiは溶液中で不安定であり、水酸化チタン(ゲル状)のような形で存在する。また、酸化チタンナノ粒子のような形態での使用も報告され、この場合は塩基性が高い場合にTiイオンとして溶解することが知られている。しかし、理想的には溶液に溶けた錯体形状で安定に存在していることが、反応の均一性からも望ましい。一般にはアルコキシドであるチタンテトライソプロポキシド(Ti(iPrO)4、TP)がアルコールを溶媒として用いられるが、反応性が高いため室温でも僅かな水分で反応、分解し、最終的に水酸化チタンゲルを生成する。セラミックス粒子の合成には、核生成とそれに続く核成長という2つの過程が存在し、核生成速度、各成長速度ともに温度に対して正規分布を示す。また、それぞれの最大速度を示す温度は、核生成の方が核成長よりも一般的に低くなることが知られている。従って、溶液中に錯体の形で安定に存在するものの、高温まで反応せず、核成長がより支配的になる温度で、不安定になるようなTi源が存在すれば、核生成を起こさず、核成長のみを起こすのに最適なTi源となることができる。   In general, Ti is unstable in a solution and exists in a form like titanium hydroxide (gel). In addition, use in a form such as titanium oxide nanoparticles has been reported, and in this case, it is known that when the basicity is high, it dissolves as Ti ions. However, it is ideally desirable from the uniformity of reaction that it exists stably in the form of a complex dissolved in a solution. In general, titanium tetraisopropoxide (Ti (iPrO) 4, TP), which is an alkoxide, is used with alcohol as a solvent, but because of its high reactivity, it reacts and decomposes with a slight amount of water even at room temperature, and finally titanium hydroxide gel. Is generated. There are two processes in the synthesis of ceramic particles: nucleation and subsequent nucleation. Both the nucleation rate and each growth rate show a normal distribution with respect to temperature. In addition, it is known that the temperature at which each maximum speed is shown is generally lower in nucleation than in nucleation. Therefore, nucleation does not occur if there is a Ti source that is stable in the form of a complex in solution but does not react to high temperatures and becomes unstable at a temperature at which nucleation becomes more dominant. It can be an optimal Ti source for causing only nuclear growth.

そこで、TPのイソプロキシル基の一部をキレート配位子で置換し、高温まで安定に配位している化合物について検討し、TPの4つのイソプロキシル基の内、2つをアセチルアセトンというキレート配位子で置換したチタンジイソプロポキシドジアセチルアセトナート(Ti(iPrO)2(AcAc)2、TPA)をTi源として使用することにした。以下にTPAを用いたBTやSTの生成機構について示す。   Therefore, a part of the TP isoproxil group was replaced with a chelate ligand, and a compound that was stably coordinated to high temperatures was studied. Two of the TP isoproxyl groups of TP were chelated with acetylacetone. We decided to use titanium diisopropoxide diacetylacetonate (Ti (iPrO) 2 (AcAc) 2, TPA) substituted with ligand as the Ti source. The generation mechanism of BT and ST using TPA is shown below.

(2)TPAを用いたBTの核生成をせずに、ヘテロ核成長のみがおこる条件
(ア)水‐エタノール溶媒混合比依存性
まず、ソルボサーマル法によるBTの合成を、溶媒混合比を0〜1.0まで変えて行った。 Ba/Ti仕込み比を1.5とし、Ba(OH)2 2.570 g(0.015 mol)と TPA 4.820ml(0.010 mol) を、混合比を変えた水-エタノール混合溶液(250 ml) に入れ5分程度攪拌を行った。できた溶液を500 ml のオートクレーブ内に移し変えた。(図2)のような装置に取り付け、密閉状態で260℃、18時間保持し、昇温速度は120℃/hとした。オートクレーブ内は、密閉中は常時、300 rpmで攪拌した。その後、容器内が室温まで冷めるまで空冷し、反応物を取り出して高速遠心分離機を用いてろ過採集を行い、採取した沈殿物を20時間程度乾燥した。得られた試料は乳鉢で軽く粉砕し、X線回折測定 (XRD)、または56走査型電子顕微鏡(FE-SEM) および透過型電子顕微鏡(TEM)による観察を行った。電子顕微鏡観察用の試料はエタノールに混ぜ、超音波によって分散処理を行った。また、不純物である炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が多く含まれている粉体は、薄い酢酸溶液により10分程度洗浄を行い、高速遠心分離機でろ過採集した後、乾燥機内で乾燥した。
(2) Conditions under which only heteronuclear growth occurs without BT nucleation using TPA (a) Dependence of water-ethanol solvent mixing ratio First, BT synthesis by solvothermal method, solvent mixing ratio of 0 Changed to ~ 1.0. Ba / Ti charge ratio is 1.5, Ba (OH) 2 2.570 g (0.015 mol) and TPA 4.820 ml (0.010 mol) are put into water-ethanol mixed solution (250 ml) with different mixing ratio and stirred for about 5 minutes. Went. The resulting solution was transferred into a 500 ml autoclave. It was attached to a device as shown in (FIG. 2), kept in a sealed state at 260 ° C. for 18 hours, and the heating rate was 120 ° C./h. The inside of the autoclave was constantly stirred at 300 rpm during sealing. Thereafter, the container was air-cooled until it cooled to room temperature, the reaction product was taken out, collected by filtration using a high-speed centrifuge, and the collected precipitate was dried for about 20 hours. The obtained sample was lightly pulverized in a mortar and observed by X-ray diffraction measurement (XRD), or 56 scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). The sample for electron microscope observation was mixed with ethanol and subjected to dispersion treatment by ultrasonic waves. In addition, powder containing a large amount of impurities such as barium carbonate (BaCO3) and strontium carbonate (SrCO3) is washed with a thin acetic acid solution for about 10 minutes, collected by filtration with a high-speed centrifuge, and then dried in a dryer. Dried.

水‐エタノール溶媒混合比をエタノールの割合0〜100%(以下、Et0〜Et1.0)をEt0、Et0.3、Et0.5、Et0.7、Et1.0の6点に決め、合成したもののXRD測定を行った。(図3)この結果からEt0.3、Et0.5、Et0.7の3点においてBTの生成が確認できた。Et0、Et1.0においてはBTの生成はみられず、Et0ではXRDのプロファイルからBa4Ti12O27、Ba6Ti17O40等のTiリッチのバリウムチタン酸化物が含まれており、それ以外の4点においては、不純物である炭酸バリウム(BaCO3)が含まれていた。
(イ)反応温度依存性
溶媒混合比を0.5水:0.5エタノール、Ba/Ti仕込み比を1.5、Ti濃度を0.04mol/lに固定し、反応温度を170〜260℃で変化させ実験を行った。反応温度を170〜260℃で合成した7点のXRD測定を行った結果、180℃以上の反応温度においてBTが生成し、175℃以下ではBTの生成が確認できなかった。(図4)また、BTが生成した5点では、高温になるにつれてX線の回折強度が強くなった。
(ウ)Ba/Ti仕込み比依存性
溶媒混合比を0.5水:0.5エタノール、反応温度を240℃、Ba濃度を0.06mol/lに固定し、Ba/Ti仕込み比を0.75〜15で変化させ、実験を行った。Ba/Ti仕込み比を0.75 〜15まで変化させて合成した4点のXRD測定を行った結果、Ba/Ti=1.5〜15においてBTの生成が確認できた。(図5)Ba/Ti=3のメインピークが最も高くなっており、不純物であるBaCO3のメインピークがBa/Ti=15と比較して3分の1程度になっていることがわかる。Ba/Ti=0.75ではBTは生成されず、非晶質がほとんどであった。
(エ)BT生成反応におけるまとめ
図6は3軸のそれぞれを水-エタノール比、Ba/Ti比、反応温度とし、BTが生成した領域を示した3次元図である。BT生成はBTの核生成、核成長が実際に起きたことを意味する。従って、BTが生成しなかった領域では、BTの核生成が起らなかったことを示唆する。
(3)TPAを用いたSTの核生成をせずに、ヘテロ核成長のみがおこる条件
(ア)水‐エタノール溶媒混合比依存性
STにおいてもBTと同様の実験を行った。反応温度240℃、Sr/Ti仕込み比を1.5に固定し、Sr(OH)2 1.825 g(0.015 mol)と TPA 4.820ml(0.010 mol)として、
水‐エタノール溶媒混合比を0〜1.0まで変化させた。STでは、Et0、Et0.5、Et1.0の3点の合成を行った。このXRD測定結果を図7に示す。この結果から、BTとは異なりEt0.5だけでなく、Et0、Et1.0の点においてもSTの合成が確認できた。また、BTと比較して全体的にX線の回折強度がはるかに強くなっていることがわかった。
(イ)反応温度依存性
溶媒混合比を0.5水:0.5エタノール、Sr/Ti仕込み比を1.5、Ti濃度を0.04mol/lに固定し、反応温度を180〜260℃で変化させた。反応温度180〜260℃の7点で変化させた合成のXRD測定結果を図8に示す。この結果から190℃以上の温度でSTが生成し、185℃以下の温度では不純物であるSrCO3のみの生成であることがわかった。
(ウ)Ba/Ti仕込み比依存性
溶媒混合比を0.5水:0.5エタノール、反応温度を240℃、Sr濃度を0.06mol/lに固定し、Sr/Ti仕込み比を0.75〜3で変化させた。Sr/Ti仕込み比を0.75〜3で変化させ合成した4点のXRD測定結果を図9に示す。この測定結果からSr/Ti=1.5、3においてSTの生成し、Sr/Ti=0.75では酸化チタン(TiO2(Anatase))が生成することが確認できた。さらにSTの生成ポイントとTiO2のそれとの間のSr/Ti=1.0においても実験を行ったところ、大部分が非晶質で、少量のSrCO3が生成していた。
(エ)ST生成反応におけるまとめ
図10は3軸のそれぞれを水-エタノール比、Sr/Ti比、反応温度とし、STが生成した領域を示した3次元図である。ST生成はSTの核生成、核成長が実際におこったことを意味する。従って、STが生成しなかった領域が、STの核生成が起らなかったことを示唆する。
(4) BTとST生成機構
反応温度を変化させる実験において、BTでは180℃以上、STでは190℃以上でそれぞれの生成が確認できた。これはBa(OH)2、Sr(OH)2の溶解度を考慮すると、どちらも水に対してよく溶け、密閉容器内の温度が180℃になる前に溶解していると考えられるので、TPAからTiが溶解し始める温度とほぼ同じと考えられる。また、BT とSTのどちらにおいても生成し始める温度は5℃以内の差であることは、実験結果から明白であるのでTi濃度がBTでは175〜180℃、STでは185〜190℃の間で急激に高くなっていると考えられる。
The water-ethanol solvent mixing ratio was determined by combining ethanol ratios of 0-100% (hereinafter Et0-Et1.0) to Et0, Et0.3, Et0.5, Et0.7, Et1.0. XRD measurement was performed. (Fig. 3) From this result, the formation of BT was confirmed at three points of Et0.3, Et0.5, and Et0.7. Et0 and Et1.0 show no BT formation, and Et0 contains Ti-rich barium titanium oxides such as Ba4Ti12O27 and Ba6Ti17O40 from the XRD profile, and the other four points are impurities. Barium carbonate (BaCO3) was included.
(B) The reaction temperature-dependent solvent mixture ratio was fixed at 0.5 water: 0.5 ethanol, the Ba / Ti feed ratio was fixed at 1.5, the Ti concentration was fixed at 0.04 mol / l, and the reaction temperature was varied from 170 to 260 ° C. . As a result of XRD measurement of seven points synthesized at a reaction temperature of 170 to 260 ° C., BT was generated at a reaction temperature of 180 ° C. or higher, and formation of BT could not be confirmed at 175 ° C. or lower. (Fig. 4) Also, at the five points where BT was generated, the X-ray diffraction intensity increased as the temperature increased.
(C) Ba / Ti charge ratio dependence The solvent mixing ratio is 0.5 water: 0.5 ethanol, the reaction temperature is 240 ° C., the Ba concentration is fixed at 0.06 mol / l, and the Ba / Ti charge ratio is changed from 0.75 to 15, The experiment was conducted. As a result of XRD measurement of four points synthesized by changing the Ba / Ti charge ratio from 0.75 to 15, formation of BT was confirmed at Ba / Ti = 1.5 to 15. (FIG. 5) It can be seen that the main peak of Ba / Ti = 3 is the highest, and the main peak of BaCO3, which is an impurity, is about one third of that of Ba / Ti = 15. When Ba / Ti = 0.75, BT was not generated and almost amorphous.
(D) Summary of BT generation reaction Fig. 6 is a three-dimensional view showing the region where BT was generated, with each of the three axes representing a water-ethanol ratio, a Ba / Ti ratio, and a reaction temperature. BT generation means that BT nucleation and growth actually occurred. This suggests that BT nucleation did not occur in areas where BT did not form.
(3) Conditions where only heteronuclear growth occurs without ST nucleation using TPA (a) Dependence on water-ethanol solvent mixture ratio
In ST, the same experiment as BT was conducted. The reaction temperature is 240 ℃, Sr / Ti charge ratio is fixed at 1.5, Sr (OH) 2 1.825 g (0.015 mol) and TPA 4.820 ml (0.010 mol)
The water-ethanol solvent mixing ratio was varied from 0 to 1.0. In ST, synthesis of three points of Et0, Et0.5, and Et1.0 was performed. The XRD measurement results are shown in FIG. From this result, unlike BT, synthesis of ST was confirmed not only at Et0.5 but also at Et0 and Et1.0. It was also found that the X-ray diffraction intensity was much stronger overall than BT.
(A) The reaction temperature-dependent solvent mixing ratio was fixed at 0.5 water: 0.5 ethanol, the Sr / Ti feed ratio was fixed at 1.5, the Ti concentration was fixed at 0.04 mol / l, and the reaction temperature was changed at 180 to 260 ° C. FIG. 8 shows the XRD measurement results of the synthesis changed at 7 points of the reaction temperature of 180 to 260 ° C. From this result, it was found that ST was produced at a temperature of 190 ° C. or higher, and that only the impurity SrCO 3 was produced at a temperature of 185 ° C. or lower.
(C) Ba / Ti charge ratio dependence The solvent mixing ratio was 0.5 water: 0.5 ethanol, the reaction temperature was fixed at 240 ° C., the Sr concentration was fixed at 0.06 mol / l, and the Sr / Ti charge ratio was varied from 0.75 to 3. . FIG. 9 shows the XRD measurement results of four points synthesized by changing the Sr / Ti feed ratio from 0.75 to 3. From this measurement result, it was confirmed that ST was produced at Sr / Ti = 1.5 and 3, and titanium oxide (TiO2 (Anatase)) was produced at Sr / Ti = 0.75. Furthermore, an experiment was also conducted at Sr / Ti = 1.0 between the ST formation point and that of TiO2, and most of it was amorphous and a small amount of SrCO3 was generated.
(D) Summary of ST Formation Reaction FIG. 10 is a three-dimensional view showing the region where ST is generated, with each of the three axes being a water-ethanol ratio, an Sr / Ti ratio, and a reaction temperature. ST generation means that ST nucleation and growth have actually occurred. Therefore, the region where ST was not generated suggests that ST nucleation did not occur.
(4) BT and ST formation mechanism In experiments in which the reaction temperature was changed, the formation of each was confirmed at 180 ° C or higher for BT and 190 ° C or higher for ST. Considering the solubility of Ba (OH) 2 and Sr (OH) 2, it is considered that both are well dissolved in water and dissolved before the temperature in the sealed container reaches 180 ° C. This is considered to be almost the same as the temperature at which Ti begins to dissolve. Also, it is clear from the experimental results that the temperature at which BT and ST begin to form is within 5 ° C, so the Ti concentration is between 175-180 ° C for BT and 185-190 ° C for ST. It is thought that it has increased rapidly.

このBTとSTにおけるTiの溶解開始温度の違いは、Ba(OH)2とSr(OH)2の溶解度の違いが関係していると考えられる。Ba(OH)2の溶解度はSr(OH)2のそれと比べ80℃において5倍以上の差がある。また、反応温度を変化させる実験では、0.5水‐0.5エタノール混合溶液を溶媒として用いているので、Ba(OH)2、Sr(OH)2ともに溶解度は低下する。これにより、溶解度は溶媒に水のみを用いる条件より温度依存性が高くなり、それに伴いBa(OH)2とSr(OH)2の溶解度の違いが溶媒中のpHの違いとして現れると考えられる。したがって、このpHの差により、通常では溶け出しにくいTiの溶解を補助し、pH値が高いBa(OH)2を含む溶液の方が若干、BTの生成が低温側で起こったと考えられる。このTiの溶解反応を以下に示す。   This difference in the melting start temperature of Ti between BT and ST is thought to be related to the difference in solubility between Ba (OH) 2 and Sr (OH) 2. The solubility of Ba (OH) 2 is more than 5 times different at 80 ° C compared to that of Sr (OH) 2. In the experiment for changing the reaction temperature, since the 0.5 water-0.5 ethanol mixed solution is used as the solvent, the solubility of both Ba (OH) 2 and Sr (OH) 2 decreases. As a result, the solubility is more temperature-dependent than the condition of using only water as the solvent, and accordingly, the difference in solubility between Ba (OH) 2 and Sr (OH) 2 appears as a difference in pH in the solvent. Therefore, it is considered that due to this difference in pH, the solution containing Ba (OH) 2 having a higher pH value assists the dissolution of Ti which is usually difficult to dissolve, and BT formation occurred slightly on the low temperature side. The dissolution reaction of Ti is shown below.

Ti(i-PrO)2(AcAc)2 + 4H2O → Ti(OH)4 + 2i-PrOH + 2AcAc …(※)
これ以下の反応として、TiO2が生成される場合の反応は、
Ti(OH)4 → TiO2 + 2H2O
となり、BT生成の反応としては以下のようになると考えられる。
Ti (i-PrO) 2 (AcAc) 2 + 4H2O → Ti (OH) 4 + 2i-PrOH + 2AcAc… (*)
As a reaction below this, the reaction when TiO2 is produced is
Ti (OH) 4 → TiO2 + 2H2O
Therefore, the reaction of BT generation is considered as follows.

Ti(OH)4 + Ba(OH)2 → BaTiO3 + 3H2O
TiO2 + Ba(OH)2 → BaTiO3 + H2O
Ti仕込み比を変化させる実験以外では、Ba/Ti=1.5を基本とし、STの合成においても同様にSr/Ti=1.5で実験を行ったが、BTとSTの回折強度を比較すると非常に大きな差があることがわかる。溶媒混合比がEt0とEt1.0においても比較すると、BTの実験においてはBTの生成がみられなかったのに対し、STの合成ではどちらの点においてもSTが生成している。これにより、BTとSTではその生成に適したTi仕込み比が異なっており、実験結果よりBa/Ti=3、STにおいてはSr/Ti=1.5が効率よく生成していると考えられる。ここで、BT およびSTの生成において仕込み原料比が1ではないということについて、BTを例に次のように考えた。
Ti (OH) 4 + Ba (OH) 2 → BaTiO3 + 3H2O
TiO2 + Ba (OH) 2 → BaTiO3 + H2O
Except for changing the Ti charging ratio, Ba / Ti = 1.5 was used as the basis, and ST was synthesized in the same way with Sr / Ti = 1.5 in the synthesis of ST, but it was very large when comparing the diffraction intensities of BT and ST. You can see that there is a difference. When the solvent mixing ratio is also compared between Et0 and Et1.0, BT was not produced in the BT experiment, whereas ST was produced at both points in the synthesis of ST. As a result, the Ti preparation ratio suitable for the generation differs between BT and ST. From the experimental results, it is considered that Ba / Ti = 3 and Sr / Ti = 1.5 is generated efficiently in ST. Here, the BT and ST were considered as follows with respect to the fact that the raw material ratio was not 1 in the production of BT and ST.

nAcAc + Ba(OH)2 → Ba(OH)2(AcAc)n
このような反応が(※)式に示した反応とともに起こったとすると仮定すると、AcAc(アセチルアセトン)に攻撃されたBaイオンは不活性となり、BT生成反応に使われなくなる。また、ST生成の反応においても、Sr イオン1つに対してAcAcが3ないし4配位することにより、BTの生成と同様のことがいえる。
nAcAc + Ba (OH) 2 → Ba (OH) 2 (AcAc) n
Assuming that such a reaction occurred together with the reaction shown in the formula (*), Ba ions attacked by AcAc (acetylacetone) become inactive and cannot be used for the BT formation reaction. In addition, in the reaction of ST formation, the same thing can be said for the formation of BT by 3-4 coordination of AcAc to one Sr ion.

以下に、市販のBT球状ナノ粒子の上に、ST層をエピタキシャルに成長させることを目的としたBT/ST複合ナノ粒子の作製方法について、説明する。
まず、第1段階(低温)において、Sr/Ti仕込み比を1.1とし、Sr(OH)2 1.338 g(0.011 mol)と TPA 4.820ml(0.010 mol) を、0.5水-0.5エタノール混合溶液(250 ml) に入れ5分程度攪拌した溶液に結晶核となる市販のBT球状ナノ粒子BT-01(堺化学工業、100nm)2.33g (0.010mol:STの理論生成量と同mol)とともに500 ml の密閉容器内に移し変えた。オートクレーブ装置に入れ、密閉状態で190℃、18時間加熱保持した。昇温速度は120℃/hとした。オートクレーブ内は、常時300 rpmで撹拌した。その後、容器内が室温になるまで放冷し、反応物を取り出して高速遠心分離機を用いてろ過採集を行い、採取した沈殿物を20時間程度乾燥した。得られた試料は乳鉢で軽く粉砕し、X線回折測定 (XRD)、または走査型電子顕微鏡(FE-SEM) および透過型電子顕微鏡(TEM)による観察を行った。
A method for producing BT / ST composite nanoparticles for the purpose of epitaxially growing an ST layer on commercially available BT spherical nanoparticles will be described below.
First, in the first stage (low temperature), the Sr / Ti feed ratio was 1.1, Sr (OH) 2 1.338 g (0.011 mol) and TPA 4.820 ml (0.010 mol) were mixed with 0.5 water-0.5 ethanol mixed solution (250 ml ) In a solution stirred for about 5 minutes, a commercial BT spherical nanoparticle BT-01 (Sakai Chemical Industry Co., Ltd., 100 nm) 2.33 g (0.010 mol: the same as the theoretical amount of ST) and 500 ml sealed Transferred into the container. It was put in an autoclave apparatus and kept heated at 190 ° C. for 18 hours in a sealed state. The heating rate was 120 ° C./h. The inside of the autoclave was constantly stirred at 300 rpm. Thereafter, the vessel was allowed to cool to room temperature, the reaction product was taken out, collected by filtration using a high-speed centrifuge, and the collected precipitate was dried for about 20 hours. The obtained sample was lightly pulverized with a mortar and observed with an X-ray diffraction measurement (XRD), or a scanning electron microscope (FE-SEM) and a transmission electron microscope (TEM).

次に、第2段階として、そのままの装置状態で、190℃から、冷却せず、そのまま加熱温度を240℃まで120℃/hで昇温し、18時間保持した後、空冷により室温まで冷却した。
低温において合成された複合粒子のXRD測定結果およびSEMおよびTEM観察写真を(図11、12、13)に示す。まず、SEM観察によりBT-01の周囲を層が覆っていることがわかる。(図12)BT-01の周囲を覆う層から、キューブ状で30から40nmの粒子が部分的に生成されている粒子も見られた。このキューブ状の粒子はXRD測定結果(図11)よりSTであることを確認した。さらにTEMによる観察(図13)を行った。このTEM観察の結果から、内側に見られる100nm程度の球状粒子はBa元素とTi元素が同一の座標に存在することから、BT-01であることが確認できたが、表面にみられる層状の物質はSr元素のみ存在していることから、ストロンチウム酸化物等のSrを含むアモルファス物質、つまりSTの前駆体であることを確認した。
Next, as the second stage, without cooling from 190 ° C. in the same apparatus state, the heating temperature was raised to 240 ° C. at 120 ° C./h, held for 18 hours, and then cooled to room temperature by air cooling. .
The XRD measurement results and SEM and TEM observation photographs of the composite particles synthesized at low temperature are shown in (FIGS. 11, 12, and 13). First, SEM observation shows that the layer covers BT-01. (FIG. 12) From the layer covering the periphery of BT-01, there were also particles in which cube-shaped particles of 30 to 40 nm were partially generated. These cube-shaped particles were confirmed to be ST from the XRD measurement results (FIG. 11). Furthermore, observation by TEM (FIG. 13) was performed. From the results of this TEM observation, the spherical particles of about 100 nm seen on the inside were confirmed to be BT-01 because the Ba element and the Ti element existed at the same coordinates, but the layered layer seen on the surface Since only the Sr element exists, it was confirmed that the substance is an amorphous substance containing Sr such as strontium oxide, that is, a precursor of ST.

高温において合成された複合粒子のXRD測定結果およびSEM観察写真を図14、15に示す。高温で合成されたため、XRDプロファイルにはSTのX線回折強度がBT-01と同程度検出され、高い結晶性のSTが含まれることが分かった。また、SEM写真による観察においては、STの粒子がBT-01に付着するものもみられるが、同程度の頻度でSTの結晶がBT-01の周囲を覆い、多層を形成している。これにより、BT- ST系の多層構造を持つ複合粒子であることを確認した。   14 and 15 show the XRD measurement results and SEM observation photographs of the composite particles synthesized at high temperature. Since it was synthesized at high temperature, the XRD profile detected the same X-ray diffraction intensity as ST BT-01, and it was found that ST with high crystallinity was included. In addition, in the observation by the SEM photograph, some ST particles adhere to BT-01, but ST crystals cover the periphery of BT-01 at the same frequency to form a multilayer. As a result, it was confirmed that the composite particles had a BT-ST multilayer structure.

Claims (4)

核となる粒子の表面に、前記核となる粒子とは化学組成の異なる化合物を積層し、
前記核となる粒子及び前記化合物は、ともにBa,Sr,Ca,Pbの中から選ばれる少なくとも1種以上の第一の金属と、Ti,Zrの中から選ばれる少なくとも1種以上の第2の金属とを含む金属酸化物であることを特徴とする人工超格子粒子。
A compound having a chemical composition different from that of the core particle is laminated on the surface of the core particle,
The core particles and the compound are both at least one or more first metals selected from Ba, Sr, Ca and Pb, and at least one or more second metals selected from Ti and Zr. An artificial superlattice particle comprising a metal oxide containing a metal.
前記核となる粒子と、前記化合物は、一方がチタン酸バリウムを含み、他方がチタン酸ストロンチウムを含むことを特徴とする請求項1に記載の人工超格子粒子。   2. The artificial superlattice particle according to claim 1, wherein one of the core particle and the compound contains barium titanate and the other contains strontium titanate. 前記核となる粒子はチタン酸バリウムであることを特徴とする請求項1又は2のいずれかにに記載の人工超格子粒子。   3. The artificial superlattice particle according to claim 1, wherein the core particle is barium titanate. 前記請求項1から3のいずれかに記載の人工超格子粒子を備えたことを特徴とするフィルムキャパシタ。
A film capacitor comprising the artificial superlattice particle according to any one of claims 1 to 3.
JP2009059753A 2009-03-12 2009-03-12 Artificial superlattice particles Active JP5463582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059753A JP5463582B2 (en) 2009-03-12 2009-03-12 Artificial superlattice particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059753A JP5463582B2 (en) 2009-03-12 2009-03-12 Artificial superlattice particles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013175436A Division JP5810424B2 (en) 2013-08-27 2013-08-27 Artificial superlattice particles and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010208923A JP2010208923A (en) 2010-09-24
JP2010208923A5 JP2010208923A5 (en) 2012-04-26
JP5463582B2 true JP5463582B2 (en) 2014-04-09

Family

ID=42969515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059753A Active JP5463582B2 (en) 2009-03-12 2009-03-12 Artificial superlattice particles

Country Status (1)

Country Link
JP (1) JP5463582B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5618087B2 (en) * 2011-03-14 2014-11-05 独立行政法人産業技術総合研究所 Nanocrystal array method, nanocrystal film manufacturing method, nanocrystal film-coated substrate, and manufacturing method thereof
JP5779803B2 (en) * 2011-05-16 2015-09-16 国立大学法人山梨大学 Substrate particles or aggregates, and methods for producing them
KR101942718B1 (en) * 2011-11-21 2019-01-29 삼성전기 주식회사 Perovskite powder, fabricating method thereof and multi-layer ceramic electronic parts fabricated by using the same
JP5912702B2 (en) * 2012-03-16 2016-04-27 国立大学法人山梨大学 Composite ceramics and method for producing the same
JP6194559B2 (en) * 2013-02-27 2017-09-13 国立大学法人山梨大学 Dielectric porcelain composition, electronic component using the same, and manufacturing method thereof
JP6517012B2 (en) * 2014-12-18 2019-05-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method of manufacturing dielectric ceramic particles and dielectric ceramic
WO2019013145A1 (en) * 2017-07-12 2019-01-17 大塚化学株式会社 Rubber composition and tire
JP6773381B2 (en) * 2019-01-28 2020-10-21 サムソン エレクトロ−メカニックス カンパニーリミテッド. Dielectric Ceramic Particle Manufacturing Method and Dielectric Ceramic
JP7336136B2 (en) * 2019-09-30 2023-08-31 国立研究開発法人産業技術総合研究所 Nanocrystals and method for producing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6437462A (en) * 1987-08-03 1989-02-08 Fujikura Ltd Production of oxide based superconducting material
JPH05319808A (en) * 1992-05-20 1993-12-03 Kao Corp Metal oxide particulate and its production
JP2001220300A (en) * 2000-02-14 2001-08-14 Murata Mfg Co Ltd Oxide superlattice and method for producing the same
JP4697836B2 (en) * 2001-07-10 2011-06-08 国立大学法人山梨大学 Method for producing barium titanate
JP4102872B2 (en) * 2002-03-08 2008-06-18 独立行政法人産業技術総合研究所 High crystalline barium titanate ultrafine particles and method for producing the same
JP4366456B2 (en) * 2003-03-20 2009-11-18 国立大学法人山梨大学 Dielectric material and manufacturing method thereof
JP4671102B2 (en) * 2004-03-05 2011-04-13 株式会社豊田中央研究所 Method for producing colloidal crystals
JP4441306B2 (en) * 2004-03-30 2010-03-31 東邦チタニウム株式会社 Method for producing calcium-doped barium titanate
JP2005289737A (en) * 2004-03-31 2005-10-20 National Institute Of Advanced Industrial & Technology Barium titanate minute particle and its manufacturing method
JP2005314190A (en) * 2004-04-30 2005-11-10 Japan Science & Technology Agency Hollow single crystal of inorganic oxide, crystal material containing the single crystal, and methods for producing them
JP2007018891A (en) * 2005-07-08 2007-01-25 Toyo Ink Mfg Co Ltd Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell
FR2898519B1 (en) * 2006-03-20 2009-01-09 Commissariat Energie Atomique NANOPARTICLES, IN PARTICULAR WITH STRUCTURE HEART SHELLS, COATED

Also Published As

Publication number Publication date
JP2010208923A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP5463582B2 (en) Artificial superlattice particles
Caruntu et al. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals
Palchik et al. Microwave assisted preparation of binary oxide nanoparticles
Kim et al. Synthesis of bismuth sodium titanate nanosized powders by solution/sol–gel process
JP4200427B2 (en) Method for producing composite oxide powder
JP5779803B2 (en) Substrate particles or aggregates, and methods for producing them
JP2010208923A5 (en)
TWI380970B (en) Process for preparing advanced ceramic powders using onium dicarboxylates
Xu et al. Self-assembly and formation mechanism of single-crystal SrTiO 3 nanosheets via solvothermal route with ethylene glycol as reaction medium
JP5002208B2 (en) Method for producing metal oxide nanocrystals
Inada et al. Facile synthesis of nanorods of tetragonal barium titanate using ethylene glycol
JP6414818B2 (en) Nano composite oxide and method for producing the same
Schneller et al. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions
Hou et al. Controlled synthesis of photoluminescent Bi 4 Ti 3 O 12 nanoparticles from metal-organic polymeric precursor
KR20120099979A (en) Method of manufacturing ceramic powder having perovskite structure and ceramic powder having perovskite structure manufactured using the same
JP5810424B2 (en) Artificial superlattice particles and manufacturing method thereof
Bernardi et al. BaTi 1–x Zr x O 3 nanopowders prepared by the modified Pechini method
Kameda et al. Crystallization of lead zirconate titanate without passing through pyrochlore by new solution process
JP3612546B2 (en) Method for producing metal oxide fine particles
Xu et al. Solvothermal synthesis, characterization and formation mechanism of single-crystalline SrTiO 3 dense spheres with monoethanolamine as reaction medium solvent
JP5848053B2 (en) Method for producing boehmite nanorods, method for producing alumina nanorods, and method for producing CuAlO2 film
López-Domínguez et al. Colloidal oxide perovskite nanocrystals: from synthesis to application
Kubo et al. Synthesis of Nano‐sized BaTiO3 Powders by the Rotary‐Hydrothermal Process
JP2022081059A (en) Method for producing barium titanyl oxalate and method for producing barium titanate
KR20100022440A (en) Titan composite salt powder, method for producing the same and method for producing perovskite-typed titan composite oxide powder using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5463582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250