JP2001220300A - Oxide superlattice and method for producing the same - Google Patents

Oxide superlattice and method for producing the same

Info

Publication number
JP2001220300A
JP2001220300A JP2000034823A JP2000034823A JP2001220300A JP 2001220300 A JP2001220300 A JP 2001220300A JP 2000034823 A JP2000034823 A JP 2000034823A JP 2000034823 A JP2000034823 A JP 2000034823A JP 2001220300 A JP2001220300 A JP 2001220300A
Authority
JP
Japan
Prior art keywords
oxide
superlattice
thickness
type
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000034823A
Other languages
Japanese (ja)
Inventor
Osamu Nakagawara
修 中川原
Toru Shimuden
亨 志牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2000034823A priority Critical patent/JP2001220300A/en
Publication of JP2001220300A publication Critical patent/JP2001220300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superlattice in which thin film characteristics by formation of superlattice are highly functionalized and a method for producing the superlattice. SOLUTION: A ratio of film thickness of BaTiO3 to film thickness of SrTiO3 is differentiated from 1:1 and unbalanced. Thereby, lattice strain is unevenly distributed to enhance residual polarization value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、酸化物薄膜の積
層による酸化物超格子およびその製造方法に関するもの
である。
The present invention relates to an oxide superlattice formed by laminating oxide thin films and a method for producing the same.

【0002】[0002]

【従来の技術】従来、薄膜構造の高機能化を実現するた
めに、薄膜を超格子構造とする研究がなされている。
2. Description of the Related Art Hitherto, in order to realize a highly functional thin film structure, studies have been made on a thin film having a super lattice structure.

【0003】超格子は、異なる材料のエピタキシャル薄
膜または単結晶薄膜を分子層レベルで交互に積層した薄
膜である。この超格子は、固溶体を薄膜化しただけでは
バルク特性が十分に再現できないような材料系において
も、幾つかの優れた特性を発現する可能性がある。
[0003] A superlattice is a thin film in which epitaxial thin films or single crystal thin films of different materials are alternately stacked at a molecular layer level. This superlattice may exhibit some excellent properties even in a material system in which bulk properties cannot be sufficiently reproduced only by thinning a solid solution.

【0004】超格子はさまざまな材料に適用でき、特に
磁性体での応用例が多いが、最近では誘電体酸化物材料
を超格子化する特許出願も、特開平7−82097号
および特開平5−221800号として開示されてい
る。
[0004] The superlattice can be applied to various materials, and in particular, there are many applications to magnetic materials. Recently, Japanese Patent Application Laid-Open Nos. Hei 7-82097 and Hei 5 No. 221800.

【0005】図4は、このような従来の酸化物超格子の
構造を示している。図4においてda’およびdb’は
それぞれ種類の異なる酸化物薄膜であり、この2種の酸
化物薄膜を交互に積層している。
FIG. 4 shows the structure of such a conventional oxide superlattice. In FIG. 4, da 'and db' are different types of oxide thin films, and these two types of oxide thin films are alternately laminated.

【0006】上記の出願では、2種のペロブスカイト
型誘電体材料を積層し、1層当たりの膜厚を単分子層ま
で薄層化することで、優れた誘電特性を発現させてい
る。上記2種の材料には、似かよった結晶構造を持つが
わずかに格子定数が異なるような誘電材料が選ばれてい
て、わずかな格子不整合が積層界面に強い応力を及ぼす
ことを利用して、膜に格子歪みを導入している。このよ
うな超格子は「歪超格子」と呼ばれ、比誘電率の上昇な
どに有効である。
In the above-mentioned application, two types of perovskite type dielectric materials are laminated, and the thickness per layer is reduced to a monomolecular layer, thereby exhibiting excellent dielectric properties. For the above two types of materials, dielectric materials having similar crystal structures but slightly different lattice constants are selected, and utilizing the fact that slight lattice mismatch exerts strong stress on the lamination interface, Lattice strain is introduced into the film. Such a superlattice is called a “strained superlattice” and is effective for increasing the relative dielectric constant.

【0007】また、上記の出願においては、誘電体薄
膜を電子線回折で観察しながら分子層単位で膜厚を制御
し、超格子を作成するプロセスが提案されている。
Further, the above-mentioned application proposes a process for forming a superlattice by controlling the film thickness in units of molecular layers while observing a dielectric thin film by electron beam diffraction.

【0008】[0008]

【発明が解決しようとする課題】上述のように、2種類
の酸化物を超格子化することによって、固溶体薄膜では
得られないような特性が発現されているが、バルク特性
に比較すると十分とはいい難く、さらなる特性向上が望
まれていた。
As described above, by superlatticing two kinds of oxides, characteristics that cannot be obtained with a solid solution thin film are exhibited, but they are sufficient compared to bulk characteristics. However, further improvement in characteristics was desired.

【0009】この発明の目的は、上述の問題を解消し
て、薄膜の超格子化によって格子歪を導入することによ
り特性(特に残留分極)を高めた酸化物超格子およびそ
の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oxide superlattice which solves the above-mentioned problems and has improved characteristics (especially remanent polarization) by introducing lattice strain by forming a superlattice of a thin film, and a method of manufacturing the same. It is in.

【0010】[0010]

【課題を解決するための手段】この発明の酸化物超格子
は、基板上に、少なくとも第1種と第2種の酸化物を積
層させる際に、第1種の酸化物の膜厚を第2種の酸化物
の膜厚とは異ならせる。この構成により、目的とする特
性、特に残留分極特性を高める。
According to the oxide superlattice of the present invention, when at least a first type and a second type of oxide are laminated on a substrate, the thickness of the first type of oxide is reduced. The thickness is different from the thickness of the two oxides. With this configuration, desired characteristics, particularly remanent polarization characteristics, are enhanced.

【0011】また、この発明の酸化物超格子は、Ca,
Sr,Ba,Pb,Laのうち少なくとも1種の元素を
A、Ti,Zr,Nb,Taのうち少なくとも1種の元
素をBとしたとき、前記第1種と第2種の酸化物を、そ
れぞれABO3 で表されるペロブスカイト型酸化物とす
る。このペロブスカイト型酸化物は、立方体の各頂点に
A元素が、立方体の面の中心に酸素がそれぞれあって、
この6つの酸素に囲まれた8面体の中にB元素が入った
構造であるが、酸素イオンの間に入る小さなB元素が結
晶の中心からずれた場所を占めることにより、分極が生
じ易い。そのため、第1・第2種の酸化物誘電体の歪超
格子化によって比誘電率や残留分極などの優れた誘電特
性を容易に発現させることができる。
Further, the oxide superlattice of the present invention comprises Ca,
When at least one element of Sr, Ba, Pb, and La is A, and at least one element of Ti, Zr, Nb, and Ta is B, the first and second oxides are: Each is a perovskite oxide represented by ABO 3 . This perovskite oxide has an element A at each apex of the cube and oxygen at the center of the plane of the cube,
Although the structure is such that the element B is contained in the octahedron surrounded by the six oxygen atoms, polarization is likely to occur because a small element B between oxygen ions occupies a place shifted from the center of the crystal. Therefore, excellent dielectric properties such as relative permittivity and remanent polarization can be easily exhibited by forming the first and second types of oxide dielectrics into strained superlattices.

【0012】また、この発明の酸化物超格子は、前記第
1種と第2種の酸化物の膜厚が、前記ペロブスカイト型
酸化物の単位格子の整数倍とする。この構造により、第
1種と第2種との界面に格子歪みが生じて、歪超格子構
造による特性が発現する。
Further, in the oxide superlattice of the present invention, the thickness of the first type and second type oxides is an integral multiple of the unit cell of the perovskite oxide. With this structure, lattice distortion occurs at the interface between the first type and the second type, and characteristics due to the strained superlattice structure are exhibited.

【0013】この発明の酸化物超格子の製造方法は、C
a,Sr,Ba,Pb,Laのうち少なくとも1種の元
素をA、Ti,Zr,Nb,Taのうち少なくとも1種
の元素をBとしたとき、それぞれABO3 で表される第
1種と第2種のペロブスカイト型酸化物を第1・第2の
焼結体として作成し、少なくとも第1・第2の焼結体を
含む複数の焼結体をターゲットにしてレーザアブレーシ
ョン法により、基板上に薄膜を成膜する際、第1種の酸
化物の膜厚を第2種の酸化物の膜厚とは異なる成膜条件
に設定する。この製造方法により、ターゲットと組成ず
れが少ない、且つ高精度な膜厚の各酸化物薄膜を成膜
し、歪超格子の特性を容易に発現させる。
The method for producing an oxide superlattice according to the present invention comprises the steps of:
When at least one element of a, Sr, Ba, Pb, and La is A, and at least one element of Ti, Zr, Nb, and Ta is B, the first element represented by ABO 3 A second type of perovskite oxide is prepared as first and second sintered bodies, and a plurality of sintered bodies including at least the first and second sintered bodies are formed on a substrate by a laser ablation method. When a thin film is formed on the substrate, the film thickness of the first type oxide is set to a film formation condition different from the film thickness of the second type oxide. By this manufacturing method, each oxide thin film having a small composition deviation from the target and a high-accuracy film thickness is formed, and the characteristics of the strained superlattice are easily expressed.

【0014】[0014]

【発明の実施の形態】図1は、この発明の実施形態に係
る酸化物超格子の断面図である。ここで基板は、面方位
(100)のチタン酸ストロンチウムSrTiO3 の単
結晶基板である。この基板上に膜厚daのチタン酸バリ
ウムBaTiO3 と膜厚dbのチタン酸ストロンチウム
SrTiO3 を交互に積層して、BaTiO3 /SrT
iO3超格子を構成している。
FIG. 1 is a sectional view of an oxide superlattice according to an embodiment of the present invention. Here, the substrate is a single crystal substrate of strontium titanate SrTiO 3 having a plane orientation of (100). On this substrate, barium titanate BaTiO 3 having a thickness of da and strontium titanate SrTiO 3 having a thickness of db are alternately laminated to form BaTiO 3 / SrT.
It constitutes an iO 3 superlattice.

【0015】図2は上記酸化物超格子の製造装置を示す
図である。図2において成膜容器1は真空チャンバであ
り、その内部に2種類のターゲット(ターゲットX,タ
ーゲットY)を選択的に所定位置に移動可能なテーブル
2と、このテーブルの所定位置に対向する基板4を配置
している。成膜容器1の外部には、容器内部の所定位置
に配置されたターゲットへレーザ光を照射するレーザ装
置3を設けている。RHEEDガン5は、エネルギーが
10keV〜数10keVの電子線を入射させる。また
モニタ6は基板4上に形成した薄膜(表面)からの回折
の状態を観測する。
FIG. 2 is a view showing an apparatus for producing the above-mentioned oxide superlattice. In FIG. 2, a film forming container 1 is a vacuum chamber, in which a table 2 capable of selectively moving two types of targets (target X and target Y) to a predetermined position, and a substrate facing the predetermined position of the table. 4 are arranged. A laser device 3 that irradiates a laser beam to a target disposed at a predetermined position inside the container is provided outside the film forming container 1. The RHEED gun 5 causes an electron beam having an energy of 10 keV to several tens keV to enter. The monitor 6 observes the state of diffraction from a thin film (surface) formed on the substrate 4.

【0016】上記ターゲットXとして、BaTiO3
ターゲットYとしてSrTiO3 の焼結体を用いる。ま
た、基板はSrTiO3 単結晶基板であり、成膜容器内
において500℃以上の高温に保持し、酸化雰囲気中で
レーザアブレーション法を用いて成膜する。すなわちレ
ーザ光を所定のターゲットに集光照射することによっ
て、集光部のターゲット表面を爆発的に蒸発気化させ、
励起原子・励起分子・イオンなどのガス状粒子を柱状に
放出させ、その柱状粒子群(プルーム)を拡散させて、
基板表面に付着・堆積させて薄膜を形成する。
As the target X, BaTiO 3 ,
A sintered body of SrTiO 3 is used as the target Y. The substrate is a single crystal substrate of SrTiO 3 , which is maintained at a high temperature of 500 ° C. or higher in a film forming container and is formed by a laser ablation method in an oxidizing atmosphere. That is, by condensing and irradiating a predetermined target with laser light, the target surface of the condensing part is explosively vaporized and evaporated,
Gaseous particles such as excited atoms, excited molecules, ions, etc. are emitted in columns, and the columnar particles (plume) are diffused.
A thin film is formed by adhering and depositing on the substrate surface.

【0017】このレーザアブレーション法は、成膜速度
が速く、成膜容器とエネルギー源を別々に設けることが
できるため、製造上の種々のパラメータを様々に制御し
得るという特徴を備えている。
The laser ablation method is characterized in that a film forming speed is high and a film forming container and an energy source can be separately provided, so that various parameters in manufacturing can be controlled in various ways.

【0018】基板上に成膜するSrTiO3 薄膜または
BaTiO3 薄膜の膜厚は、レーザ装置3から出力する
パルスレーザの発射回数またはレーザ光の照射時間によ
って制御する。また、その膜厚は、反射高速電子線回折
(RHEED)の強度振動をモニタ6で観測することに
より検出する。層状成長するペロブスカイト型酸化物
(含BaTiO3 ,SrTiO3 )では、RHEEDの
強度振動が1分子層の成長に対応している。したがっ
て、反射高速電子線回折の強度振動数を数えることによ
って酸化物(SrTiO3 またはBaTiO3 )層の成
長厚の分子層の数を制御する。
The thickness of the SrTiO 3 thin film or BaTiO 3 thin film formed on the substrate is controlled by the number of times of emission of the pulse laser output from the laser device 3 or the irradiation time of the laser light. The film thickness is detected by observing the intensity oscillation of reflection high-energy electron beam diffraction (RHEED) on the monitor 6. In a perovskite-type oxide (containing BaTiO 3 , SrTiO 3 ) that grows in a layered manner, the RHEED intensity oscillation corresponds to the growth of one molecular layer. Accordingly, the number of molecular layers having a grown thickness of the oxide (SrTiO 3 or BaTiO 3 ) layer is controlled by counting the intensity frequency of the reflection high-energy electron beam diffraction.

【0019】以上のようにして成膜した酸化物超格子
は、基板法線方向に(001)面が配列し、且つc面内
に面内配向した3軸配向膜であることを、X線回折(X
RD)および反射高速電子線回折(RHEED)を用い
て確認した。
The oxide superlattice formed as described above is a triaxially oriented film in which (001) planes are arranged in the normal direction of the substrate and in-plane oriented in the c-plane. Diffraction (X
RD) and reflection high-energy electron diffraction (RHEED).

【0020】次に、SrTiO3 の膜厚を一定とし、B
aTiO3 の膜厚を複数段階に変化させたときの酸化物
超格子の残留分極を調べた。その結果を図3に示す。
Next, the film thickness of SrTiO 3 is kept constant,
The remanent polarization of the oxide superlattice when the film thickness of aTiO 3 was changed in a plurality of steps was examined. The result is shown in FIG.

【0021】ここでSrTiO3 の膜厚を1.2nm
(3分子層)とし、BaTiO3 の膜厚を1.2nm
(3分子層)、4nm(10分子層)、6nm(15分
子層)と変化させた。この時、酸化物超格子全体の総膜
厚を100nmとしたので、BaTiO3 の膜厚に応じ
て全体の積層数は異なる。すなわち、全体の積層数は、
BaTiO3 の膜厚が1.2nmのとき84層、4nm
のとき25層、6nmのとき17層となる。
Here, the thickness of SrTiO 3 is set to 1.2 nm.
(Three molecular layers), and the thickness of BaTiO 3 is 1.2 nm.
(3 molecular layers), 4 nm (10 molecular layers), and 6 nm (15 molecular layers). At this time, since the total thickness of the entire oxide superlattice was 100 nm, the total number of layers differs depending on the thickness of BaTiO 3 . That is, the total number of layers is
84 layers when the thickness of BaTiO 3 is 1.2 nm, 4 nm
In this case, there are 25 layers, and in the case of 6 nm, there are 17 layers.

【0022】ここで、残留分極はSrTiO3 <(S
r,Ba)TiO3 <BaTiO3 の関係にあるが、図
3の結果から明かなように、SrTiO3 とBaTiO
3 の膜厚をそれぞれ1.2nmとした時の残留分極は、
2Pr=18〔μC/cm2 〕であり、同一の成膜装置
で作成したBaTiO3 の単層膜の残留分極2Pr=1
4〔μC/cm2 〕より大きな値となる。しかし、その
差は僅かである。これに対して、BaTiO3 の膜厚を
SrTiO3 より厚くすると、残留分極値2Prは増加
し、BaTiO3 の膜厚が6nm(15分子層)の時、
2Pr=46〔μC/cm2 〕と非常に大きな値を示し
た。
Here, the remanent polarization is SrTiO 3 <(S
r, Ba) TiO 3 <BaTiO 3. As is clear from the results of FIG. 3, SrTiO 3 and BaTiO 3
The remanent polarization when the film thickness of 3 is 1.2 nm is:
2Pr = 18 [μC / cm 2 ], and the residual polarization 2Pr = 1 of the single-layer film of BaTiO 3 formed by the same film forming apparatus.
The value is larger than 4 [μC / cm 2 ]. However, the difference is small. On the other hand, when the thickness of BaTiO 3 is larger than that of SrTiO 3 , the remanent polarization value 2Pr increases, and when the thickness of BaTiO 3 is 6 nm (15 molecular layers),
2Pr = 46 [μC / cm 2 ], which was a very large value.

【0023】これは、BaTiO3 の膜厚をSrTiO
3 より厚くしたことにより、SrTiO3 と、BaTi
3 との積層による格子歪みによる残留分極増大の効果
とともに、強誘電体であるBaTiO3 の膜厚を、常誘
電体であるSrTiO3 より厚くしたことにより、Aサ
イト(SrおよびBa)の組成比率がBaリッチ側に近
づいたことの結果であると考えられる。
This is because the thickness of BaTiO 3 is changed to SrTiO.
3 and SrTiO 3 and BaTi
In addition to the effect of increasing remanent polarization due to lattice distortion caused by lamination with O 3 , the composition of the A site (Sr and Ba) is increased by making the film thickness of the ferroelectric BaTiO 3 thicker than that of the paraelectric SrTiO 3. This is considered to be the result of the ratio approaching the Ba-rich side.

【0024】このようにして、BaTiO3 /SrTi
3 の歪超格子の効果を活かして優れた強誘電特性を得
ることができた。
Thus, BaTiO 3 / SrTi
Excellent ferroelectric characteristics could be obtained by utilizing the effect of the strained superlattice of O 3 .

【0025】以上に示した実施形態ではAサイトにSr
またはBaを用い、BサイトにTiを用いたが、Aサイ
トとしてCa,Pb,Laのうち少なくとも1種を用
い、またBサイトとしてZr,Nb,Taのうち少なく
とも1種を用いてもよい。
In the embodiment described above, the site A has Sr
Alternatively, Ba was used and Ti was used for the B site. However, at least one of Ca, Pb, and La may be used as the A site, and at least one of Zr, Nb, and Ta may be used as the B site.

【0026】また、実施形態では2種の酸化物薄膜を積
層して酸化物超格子を構成したが、上記ペロブスカイト
型酸化物を2種以上用いて、それらの酸化物薄膜を順に
積層してもよい。
In the embodiment, two kinds of oxide thin films are stacked to form an oxide superlattice. However, two or more kinds of the above perovskite-type oxides are used, and these oxide thin films are sequentially stacked. Good.

【0027】[0027]

【発明の効果】請求項1に記載の発明によれば、歪超格
子の特質を発現させ、且つ第1種と第2種の酸化物の組
成比に応じた特性に定めることができ、残留分極が大き
いという、優れた誘電特性を得ることができる。
According to the first aspect of the present invention, the characteristics of the strained superlattice can be expressed, and the characteristics can be determined according to the composition ratio of the first type and second type oxides. Excellent dielectric properties such as large polarization can be obtained.

【0028】請求項2に記載の発明によれば、第1・第
2種の酸化物誘電体の超格子化によって残留分極などの
優れた誘電特性を容易に発現させることができる。
According to the second aspect of the present invention, excellent dielectric properties such as remanent polarization can be easily exhibited by superlattices of the first and second types of oxide dielectrics.

【0029】請求項3に記載の発明によれば、第1種と
第2種の酸化物誘電体の界面に、より大きな格子歪みが
生じて、歪超格子構造による特性が発現する。
According to the third aspect of the present invention, a larger lattice strain is generated at the interface between the first type and the second type of oxide dielectric, and characteristics due to the strained superlattice structure are exhibited.

【0030】請求項4に記載の発明によれば、ターゲッ
トと組成ずれが少なく、且つ高精度な膜厚で各酸化物薄
膜を成膜することができ、歪超格子の特性を容易に発現
させることができる。
According to the fourth aspect of the present invention, each oxide thin film can be formed with a small thickness and a high precision with a small composition deviation from the target, and the characteristics of the strained superlattice can be easily exhibited. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態に係る酸化物超格子の断面図FIG. 1 is a cross-sectional view of an oxide superlattice according to an embodiment.

【図2】同酸化物超格子の製造装置の構成を示す図FIG. 2 is a diagram showing a configuration of an apparatus for manufacturing the same oxide superlattice.

【図3】SrTiO3 /BaTiO3 超格子において、
SrTiO3 層の膜厚を固定し、BaTiO3 層の膜厚
を変化させた時の残留分極値の変化を示す図
FIG. 3. In the SrTiO 3 / BaTiO 3 superlattice,
The thickness of the SrTiO 3 layer is fixed, shows a residual change in polarization value when changing the thickness of the BaTiO 3 layer

【図4】従来の酸化物超格子の断面図FIG. 4 is a cross-sectional view of a conventional oxide superlattice.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、少なくとも第1種と第2種の
酸化物を積層させて成る酸化物超格子において、 積層する酸化物のうち、第1種の酸化物の膜厚を第2種
の酸化物の膜厚とは異ならせた酸化物超格子。
An oxide superlattice comprising at least a first oxide and a second oxide stacked on a substrate, wherein the first oxide has a thickness of at least 2 An oxide superlattice that is different from the seed oxide thickness.
【請求項2】 Ca,Sr,Ba,Pb,Laのうち少
なくとも1種の元素をA、Ti,Zr,Nb,Taのう
ち少なくとも1種の元素をBとしたとき、前記第1種と
第2種の酸化物が、それぞれABO3 で表されるペロブ
スカイト型酸化物である請求項1に記載の酸化物超格
子。
2. The method according to claim 1, wherein at least one of Ca, Sr, Ba, Pb and La is A, and at least one of Ti, Zr, Nb and Ta is B. oxides of 2 species, oxide superlattice according to claim 1 wherein each perovskite oxide represented by ABO 3.
【請求項3】 前記第1種と第2種の酸化物の膜厚が、
前記ペロブスカイト型酸化物の単位格子の整数倍である
請求項2に記載の酸化物超格子。
3. The film thickness of the first type and second type oxides is
The oxide superlattice according to claim 2, wherein the oxide superlattice is an integral multiple of a unit cell of the perovskite oxide.
【請求項4】 Ca,Sr,Ba,Pb,Laのうち少
なくとも1種の元素をA、Ti,Zr,Nb,Taのう
ち少なくとも1種の元素をBとしたとき、それぞれAB
3 で表される第1種と第2種のペロブスカイト型酸化
物を第1・第2の焼結体として作成し、少なくとも第1
・第2の焼結体を含む複数の焼結体をターゲットにして
レーザアブレーション法により、基板上に薄膜を成膜す
る際、第1種の酸化物の膜厚を第2種の酸化物の膜厚と
は異なる成膜条件に設定する酸化物超格子の製造方法。
4. When at least one of Ca, Sr, Ba, Pb and La is A, and at least one of Ti, Zr, Nb and Ta is B, AB
First and second types of perovskite-type oxides represented by O 3 are prepared as first and second sintered bodies, and at least
When a thin film is formed on a substrate by a laser ablation method using a plurality of sintered bodies including the second sintered body as a target, the thickness of the first type oxide is reduced by the second type oxide. A method for manufacturing an oxide superlattice in which a film formation condition different from a film thickness is set.
JP2000034823A 2000-02-14 2000-02-14 Oxide superlattice and method for producing the same Pending JP2001220300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000034823A JP2001220300A (en) 2000-02-14 2000-02-14 Oxide superlattice and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000034823A JP2001220300A (en) 2000-02-14 2000-02-14 Oxide superlattice and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001220300A true JP2001220300A (en) 2001-08-14

Family

ID=18559107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000034823A Pending JP2001220300A (en) 2000-02-14 2000-02-14 Oxide superlattice and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001220300A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043639A1 (en) * 2007-09-29 2009-04-09 Universite De Liege Material comprising finely layered heterostructures of oxide materials
JP2010208923A (en) * 2009-03-12 2010-09-24 Univ Of Yamanashi Artificial superlattice dielectric nanoparticle and method of manufacturing the same
US20130216800A1 (en) * 2010-01-21 2013-08-22 Joel D. Brock Perovskite to brownmillerite complex oxide crystal structure transformation induced by oxygen deficient getter layer
JP2016029708A (en) * 2014-07-23 2016-03-03 Tdk株式会社 Thin-film dielectric and thin-film capacitor element
EP3385967A1 (en) 2017-03-31 2018-10-10 TDK Corporation Polycrystalline dielectric thin film and capacitance element
JP2022135993A (en) * 2021-03-03 2022-09-15 テラ クアンタム アーゲー Terahertz ferroelectric resonator
US20230094616A1 (en) * 2021-09-30 2023-03-30 Tdk Corporation Thin film capacitor, power source module, and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043639A1 (en) * 2007-09-29 2009-04-09 Universite De Liege Material comprising finely layered heterostructures of oxide materials
JP2010208923A (en) * 2009-03-12 2010-09-24 Univ Of Yamanashi Artificial superlattice dielectric nanoparticle and method of manufacturing the same
US20130216800A1 (en) * 2010-01-21 2013-08-22 Joel D. Brock Perovskite to brownmillerite complex oxide crystal structure transformation induced by oxygen deficient getter layer
JP2016029708A (en) * 2014-07-23 2016-03-03 Tdk株式会社 Thin-film dielectric and thin-film capacitor element
US9947469B2 (en) 2014-07-23 2018-04-17 Tdk Corporation Thin-film dielectric and thin-film capacitor element
EP3385967A1 (en) 2017-03-31 2018-10-10 TDK Corporation Polycrystalline dielectric thin film and capacitance element
KR20180111689A (en) 2017-03-31 2018-10-11 티디케이가부시기가이샤 Polycrystalline dielectric thin film and capacitance element
US10522288B2 (en) 2017-03-31 2019-12-31 Tdk Corporation Polycrystalline dielectric thin film and capacitance element
JP2022135993A (en) * 2021-03-03 2022-09-15 テラ クアンタム アーゲー Terahertz ferroelectric resonator
US11803002B2 (en) 2021-03-03 2023-10-31 Terra Quantum AG Device with a heterostructure adapted to be applied as a resonator for electrons of an electrical circuit or for a terahertz electromagnetic wave
US20230094616A1 (en) * 2021-09-30 2023-03-30 Tdk Corporation Thin film capacitor, power source module, and electronic device

Similar Documents

Publication Publication Date Title
US5766697A (en) Method of making ferrolectric thin film composites
JP3620838B2 (en) Device having multilayer oxide artificial lattice and manufacturing method thereof
US7095067B2 (en) Oxidation-resistant conducting perovskites
KR100390286B1 (en) Thin Film Multilayered Body, Thin Film Capacitor, and Method of Manufacturing the Same
JP2000199049A (en) Manufacturing process of device containing lead zirconate titanate
JP2001220300A (en) Oxide superlattice and method for producing the same
KR100370516B1 (en) Layered Bismuth Oxide Ferroelectric Material
US10115887B2 (en) Ferroelectric ceramics and method for manufacturing the same
Purice et al. Ferroelectric thin films obtained by pulsed laser deposition
KR100396179B1 (en) Thin film multilayered structure, ferroelectric thin film element, and manufacturing method of the same
JP3705695B2 (en) Method for producing dielectric thin film with layered perovskite structure, dielectric thin film with layered perovskite structure and electronic component having dielectric thin film with layered perovskite structure
JP2651784B2 (en) Ferroelectric thin film having superlattice structure and infrared sensor / pressure sensor provided with the thin film
US6824898B2 (en) Dielectric thin film, method for making the same and electric components thereof
JP3224293B2 (en) Manufacturing method of dielectric thin film
JP2001302400A (en) Oxide superlatice
JP3389398B2 (en) Capacitor
KR101018291B1 (en) Stacked structure of ferroelectric layer and oxide ferroelectric layer and method for forming the same
Fu et al. Ba (Mg1/3Ta2/3) O3 substrate for BaxSr1-xTiO3 thin film used for phase shifter
WO2020246363A1 (en) Dielectric film, capacitor using same, and dielectric film production method
Shibuya et al. Natural-superlattice-structured ferroelectric Bi4Ti3O12–SrBi4Ti4O15 thin films prepared by pulsed laser deposition
JPH0696985A (en) Thin film capacitor
Czekaj et al. Synthesis and basic properties of ferroelectric thin films. Methods materials and novel applications
Chavarria Electronic and ionic charged defects in doped BaTiO3 thin films
JP3167099B2 (en) Dielectric thin film element and method of manufacturing the same
JP2001163620A (en) Dielectric thin film, production process of the same and electronic part using the same