JP2007018891A - Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell - Google Patents

Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell Download PDF

Info

Publication number
JP2007018891A
JP2007018891A JP2005199572A JP2005199572A JP2007018891A JP 2007018891 A JP2007018891 A JP 2007018891A JP 2005199572 A JP2005199572 A JP 2005199572A JP 2005199572 A JP2005199572 A JP 2005199572A JP 2007018891 A JP2007018891 A JP 2007018891A
Authority
JP
Japan
Prior art keywords
metal oxide
oxide semiconductor
semiconductor particles
copper
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005199572A
Other languages
Japanese (ja)
Inventor
Munenori Andou
宗徳 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2005199572A priority Critical patent/JP2007018891A/en
Publication of JP2007018891A publication Critical patent/JP2007018891A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a treated metal oxide semiconductor particle, suitable for a compound semiconductor based material having strong durability and absorbing power over a wide wavelength region with respect to sunlight as a sensitizing part, by making the best use of the feature that a titanium oxide porous layer binding dyes, since the sensitizing part can efficiently carry out photoelectric conversion by utilizing the size of its surface area, in a dye-sensitized photoelectric conversion cell. <P>SOLUTION: In this manufacturing method of the treated metal oxide semiconductor particles, the metal oxide semiconductor particle, having an average particle diameter of not less than 1 nm and not more than 200 nm, is brought into contact with salt or a chelate compound of copper, a sulfur source compound, and salt or a chelate compound of a metal, other than copper if required, and a copper-containing metal sulfide is bound to the surface of the metal oxide semiconductor particle. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電変換セルを作成する際に好適に用いられる処理金属酸化物半導体粒子の製造方法、それを用いた光電変換電極の製造方法、および光電変換セルに関する。   The present invention relates to a method for producing treated metal oxide semiconductor particles suitably used for producing a photoelectric conversion cell, a method for producing a photoelectric conversion electrode using the same, and a photoelectric conversion cell.

太陽光発電としては、単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅などの化合物半導体系太陽電池が実用化、もしくは研究開発対象となっている。しかし、化合物半導体系太陽電池を普及させる上では、製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに多く提案されているが、変換効率が低く、耐久性も悪いという問題があった。   As solar power generation, single crystal silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, compound semiconductor solar cells such as cadmium telluride and indium copper selenide have been put into practical use or are subject to research and development. . However, in widespread use of compound semiconductor solar cells, it is necessary to overcome problems such as manufacturing cost, securing raw materials, and long energy payback time. On the other hand, many solar cells using organic materials aimed at increasing the area and price have been proposed so far, but have the problems of low conversion efficiency and poor durability.

こうした状況の中で、Nature(第353巻、第737〜740頁、1991年)および米国特許4927721号等に、色素によって増感された半導体微多孔質体を用いた光電変換電極および光電変換セル、ならびにこれを作成するための材料および製造技術が開示された。提案された電池は、ルテニウム錯体等の増感色素によって分光増感された酸化チタン多孔質層を作用電極としヨウ素を主体とする電解質および対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は、酸化チタン等の安価な酸化物半導体を用いるため、安価な光電変換素子を提供できる点であり、第二の利点は、用いられるルテニウム錯体が可視光域に幅広く吸収を有していることから、比較的高い変換効率が得られる点である。
また、J.Am.Chem.Soc.(2001),Vol.123,p.p.1613-1624には、酸化チタン分散体で成膜後焼成してできた酸化チタン多孔質膜に、トリピリジルカルボキシレート配位子を有するルテニウム錯体を吸着させた電極を用いてセルを作製し、変換効率10.4%を達成したことが報告されている。
Under such circumstances, Nature (Vol. 353, 737-740, 1991) and US Pat. No. 4927721, etc., and a photoelectric conversion electrode and a photoelectric conversion cell using a semiconductor microporous material sensitized with a dye. , And materials and manufacturing techniques for making it have been disclosed. The proposed battery is a dye-sensitized photoelectric conversion cell comprising a titanium oxide porous layer spectrally sensitized with a sensitizing dye such as a ruthenium complex, an electrolyte mainly composed of iodine, and a counter electrode. The first advantage of this method is that an inexpensive photoelectric conversion element can be provided because an inexpensive oxide semiconductor such as titanium oxide is used. The second advantage is that the ruthenium complex used is widely used in the visible light range. Since it has absorption, a relatively high conversion efficiency is obtained.
In J. Am. Chem. Soc. (2001), Vol. 123, pp1613-1624, a tripyridylcarboxylate coordination was carried out on a titanium oxide porous film formed by baking after forming a film with a titanium oxide dispersion. It has been reported that a cell was produced using an electrode on which a ruthenium complex having a child was adsorbed and a conversion efficiency of 10.4% was achieved.

しかし、色素増感型の光電変換セルは、増感部が色素であるので、シリコン系やCIGS系などの化合物半導体系の太陽電池に比べて光や熱に対する耐久性が低いという欠点があった。
これに対して、次世代太陽電池として期待されている一群に、化合物半導体系の太陽電池がある。化合物半導体系の太陽電池は、感光体にCuInSやCuInSe、CuGaSe、Cu2InGaSe2、Cu2ZnSnS2等が用いられており、安価で耐久性の高い太陽電池として期待されている。CuInS2、CuGaS2、CuInSe、CuGaSeは各々、1.5eV、2.43eV、1.04eV、1.68eVのバンドギャップを有し、光吸収係数も大きいので幅広い波長に対応して太陽光の光電変換に寄与できる。
Adv.Mater.(2004),Vol.16,No.5,p.p.453-456には酸化チタン多孔質膜にAL-CVD法により感光層としてCuInSを使用した例が示されているが、この方法は真空チャンバ内の基板に原料化合物の分子を一層ごとに反応、窒素によるパージを繰り返し行うことで製膜する方法なので、減圧製造装置を要し、かつ雰囲気交換のための多くの繰り返し工程数が必要であり、量産化が困難である。
Nature(第353巻、第737〜740頁、1991年) 米国特許4927721号明細書 J.Am.Chem.Soc.(2001),Vol.123,p.p.1613-1624 Adv.Mater.(2004),Vol.16,No.5,p.p.453-456
However, since the dye-sensitized photoelectric conversion cell has a dye as the sensitizing portion, it has a drawback of low durability against light and heat compared to a compound semiconductor solar cell such as a silicon-based or CIGS-based compound. .
On the other hand, there is a compound semiconductor solar cell as a group expected as a next generation solar cell. A compound semiconductor solar cell uses CuInS, CuInSe, CuGaSe, Cu 2 InGaSe 2 , Cu 2 ZnSnS 2 or the like as a photoreceptor, and is expected to be a low-cost and highly durable solar cell. CuInS 2 , CuGaS 2 , CuInSe, and CuGaSe have band gaps of 1.5 eV, 2.43 eV, 1.04 eV, and 1.68 eV, respectively, and have a large light absorption coefficient. Can contribute to conversion.
Adv. Mater. (2004), Vol. 16, No. 5, pp453-456 shows an example in which CuInS is used as a photosensitive layer by a AL-CVD method on a titanium oxide porous film. This is a method of forming a film by repeatedly reacting the raw material compound molecules on the substrate in the vacuum chamber one layer at a time and purging with nitrogen repeatedly, which requires a reduced pressure manufacturing device and requires a large number of repeated steps for atmosphere exchange. Therefore, mass production is difficult.
Nature (Vol.353, 737-740, 1991) US Patent 4927721 J. Am. Chem. Soc. (2001), Vol. 123, pp1613-1624 Adv.Mater. (2004), Vol.16, No.5, pp453-456

本発明は、色素増感型光電変換セルにおいて、色素を増感部として結合する酸化チタン多孔質層が表面積の大きさを利用して効率的に光電変換できる特徴を活かし、増感部として耐久性が強く太陽光に対し幅広い波長域で吸収能をもつ化合物半導体系材料として好適な処理金属酸化物半導体粒子の製造方法を提供することを課題としている。その際、安価で安全衛生性の高い光電変換セルを目標として、この増感層が湿式工程で形成できる製造方法を提供することを課題としている。   In the dye-sensitized photoelectric conversion cell, the present invention makes use of the feature that the titanium oxide porous layer that binds the dye as a sensitizer can efficiently perform photoelectric conversion using the surface area, and is durable as a sensitizer. It is an object of the present invention to provide a method for producing treated metal oxide semiconductor particles suitable as a compound semiconductor material that is highly resistant and absorbs sunlight in a wide wavelength range. In that case, it aims at providing the manufacturing method which this sensitizing layer can form in a wet process aiming at an inexpensive photoelectric conversion cell with high safety and health.

本発明の処理金属酸化物半導体粒子の製造方法は、平均一次粒子径1nm以上200nm以下の金属酸化物半導体粒子と、銅の塩またはキレート化合物と、イオウ源化合物とを接触させ、金属酸化物半導体粒子の表面に銅硫化物を結着させることを特徴とする。
また、本発明の処理金属酸化物半導体粒子の製造方法は、平均一次粒子径1nm以上200nm以下の金属酸化物半導体粒子と、銅の塩またはキレート化合物と、イオウ源化合物と、銅以外の金属の塩またはキレート化合物とを接触させ、金属酸化物半導体粒子の表面に銅含有金属硫化物を結着させることを特徴とする。
また、本発明の光電変換電極の製造方法は、透明電極基材上に、上記いずれかの方法で製造される処理金属酸化物半導体粒子を成膜する工程を含むことを特徴とする。
また、本発明の光電変換セルは、上記方法で製造される光電変換電極、電解質、および電導性対極を具備することを特徴とする。
The method for producing a treated metal oxide semiconductor particle according to the present invention comprises contacting a metal oxide semiconductor particle having an average primary particle diameter of 1 nm or more and 200 nm or less, a copper salt or a chelate compound, and a sulfur source compound to form a metal oxide semiconductor. It is characterized by binding copper sulfide to the surface of the particles.
Further, the method for producing the treated metal oxide semiconductor particles of the present invention comprises metal oxide semiconductor particles having an average primary particle diameter of 1 nm to 200 nm, a copper salt or chelate compound, a sulfur source compound, and a metal other than copper. It is characterized by contacting with a salt or a chelate compound to bind a copper-containing metal sulfide to the surface of the metal oxide semiconductor particles.
Moreover, the manufacturing method of the photoelectric conversion electrode of this invention is characterized by including the process of forming into a film the process metal oxide semiconductor particle manufactured by one of the said methods on a transparent electrode base material.
Moreover, the photoelectric conversion cell of this invention comprises the photoelectric conversion electrode manufactured by the said method, an electrolyte, and a conductive counter electrode, It is characterized by the above-mentioned.

本発明によって得られた光電変換電極は、表面積の大きな金属酸化物半導体電極の表面に無機材質の増感部を有しているので、効率の良い光電変換能力と高い耐久性とを両立させる事ができる。さらに、増感部を具備する際に気相法によらず、液相中で処理可能であるため安価な製造コストで光電変換電極を提供可能である。ひいては安価で耐久性の良い光電変換セルが提供可能となった。   Since the photoelectric conversion electrode obtained by the present invention has a sensitized portion made of an inorganic material on the surface of a metal oxide semiconductor electrode having a large surface area, it is possible to achieve both efficient photoelectric conversion capability and high durability. Can do. Further, since the sensitizer can be processed in the liquid phase without using the vapor phase method, the photoelectric conversion electrode can be provided at a low production cost. As a result, an inexpensive and highly durable photoelectric conversion cell can be provided.

本発明における光電変換セルは、太陽光などの光を受光して光電変換を行う光電変換電極と、電解質、および電導性対極から主として形成される。本発明における光電変換電極は、透明電極基材と、その電導性表面に金属酸化物半導体の粒子を成膜して成る金属酸化物半導体多孔質層、および金属酸化物半導体多孔質層の多孔質表面に形成される増感部から成る。透明電極基材と金属酸化物半導体多孔質層のみからなる構成を金属酸化物半導体電極として区別する。
本発明における光電変換電極の態様は、色素増感太陽電池における光電変換電極に類似し、その増感部が色素から銅硫化物又は銅含有金属硫化物に置き換わったものに近い。
The photoelectric conversion cell in the present invention is mainly formed from a photoelectric conversion electrode that receives light such as sunlight and performs photoelectric conversion, an electrolyte, and a conductive counter electrode. The photoelectric conversion electrode in the present invention includes a transparent electrode substrate, a metal oxide semiconductor porous layer formed by forming metal oxide semiconductor particles on a conductive surface thereof, and a porous metal oxide semiconductor porous layer It consists of a sensitizing part formed on the surface. A configuration consisting only of a transparent electrode substrate and a metal oxide semiconductor porous layer is distinguished as a metal oxide semiconductor electrode.
The mode of the photoelectric conversion electrode in the present invention is similar to the photoelectric conversion electrode in the dye-sensitized solar cell, and its sensitization part is close to that in which the dye is replaced with copper sulfide or copper-containing metal sulfide.

(金属酸化物半導体粒子)
本発明において、「金属酸化物半導体粒子」には、その分散体中の一次粒子体、二次粒子体およびこれらが成膜して成る多孔質層の総体をも総称して含む。一次粒子体とは電子顕微鏡観察等で粒子と認められる最小単位で、この平均値が平均一次粒子径である。一次粒子径は、電子顕微鏡写真の画像処理等で測定する。二次粒子体とは分散体中、一次粒子体の凝集などによる集合体と認められる単位で、この平均値が平均二次粒子径である。二次粒子径は、分散体中粒度分布計等で測定する。金属酸化物半導体電極は、透明電極と金属酸化物半導体粒子から成る。本発明における光電変換電極の形成方法は金属酸化物半導体の粒子の表面に増感部を形成した後にこれを透明電極表面に積層する場合と、先に金属酸化物半導体電極を形成した後にこの表面に増感部を追加して形成する場合がある。さらに金属酸化物半導体の粒子の表面に増感部を形成する方法は、その一次粒子体表面に増感部を形成する場合と二次粒子体表面に増感部を形成する場合がある。
金属酸化物半導体粒子は、組成として単体の金属酸化物から成っていても良いし、複数の金属種の酸化物から成っていても良い。
(Metal oxide semiconductor particles)
In the present invention, the “metal oxide semiconductor particles” collectively includes the total of primary particle bodies, secondary particle bodies, and porous layers formed by film formation thereof in the dispersion. The primary particle body is the smallest unit recognized as a particle by observation with an electron microscope or the like, and this average value is the average primary particle diameter. The primary particle size is measured by image processing of an electron micrograph. The secondary particle body is a unit recognized as an aggregate due to aggregation of the primary particle body in the dispersion, and this average value is the average secondary particle diameter. The secondary particle size is measured with a particle size distribution meter in the dispersion. The metal oxide semiconductor electrode includes a transparent electrode and metal oxide semiconductor particles. The method for forming a photoelectric conversion electrode in the present invention includes a case where a sensitized portion is formed on the surface of a metal oxide semiconductor particle and then laminated on the surface of the transparent electrode, and the surface after the metal oxide semiconductor electrode is first formed. In some cases, a sensitization part is added to the film. Furthermore, the method for forming the sensitizing portion on the surface of the metal oxide semiconductor particle may be to form the sensitizing portion on the surface of the primary particle body or to form the sensitizing portion on the surface of the secondary particle body.
The metal oxide semiconductor particles may be composed of a single metal oxide as a composition, or may be composed of oxides of a plurality of metal species.

本発明において、金属酸化物半導体粒子は、粒子内部の組成と別組成の金属酸化物を粒子の表層に有したコア−シェル構成の複合金属酸化物半導体粒子をも含む。この場合、本発明においてはコアにあたる内部の金属酸化物を第一の金属酸化物半導体粒子、シェルにあたる表層の金属酸化物を第二の金属酸化物半導体と定義する。第二の金属酸化物半導体はさらに複数種の金属酸化物の積層構造から成っていても良い。
後述する銅硫化物および銅含有金属硫化物を増感部として使用し増感効果を得るためには、金属酸化物多孔質層の伝導帯の準位が金属硫化物の光励起準位から電子を受け取りやすい位置に存在することが望ましい。このため、第一の金属酸化物半導体粒子としての材質は、各種の金属酸化物を使用することができるが、とりわけ金属種としてTi、Zn、Sn、Nbの少なくとも1つを含むものが適切である。さらに好ましくは、Tiが挙げられる。
増感部の光励起順位を最適化させる等の目的で、銅含有金属硫化物の成分として銅外以外の金属を用いる事がある。好ましくは、この目的で二価の亜鉛、三価のインジウム、三価のガリウム、四価のスズ等を組み合わせて用いる。
In the present invention, the metal oxide semiconductor particles also include a composite metal oxide semiconductor particle having a core-shell structure in which a metal oxide having a composition different from the composition inside the particle is included in the surface layer of the particle. In this case, in the present invention, the internal metal oxide corresponding to the core is defined as the first metal oxide semiconductor particles, and the surface metal oxide corresponding to the shell is defined as the second metal oxide semiconductor. The second metal oxide semiconductor may further comprise a laminated structure of a plurality of types of metal oxides.
In order to obtain the sensitization effect using copper sulfide and copper-containing metal sulfide, which will be described later, the level of the conduction band of the metal oxide porous layer is changed from the photoexcited level of the metal sulfide. It is desirable to be in a position where it can be easily received. For this reason, various metal oxides can be used as the material for the first metal oxide semiconductor particles, but those containing at least one of Ti, Zn, Sn, and Nb as metal species are particularly suitable. is there. More preferably, Ti is mentioned.
For the purpose of optimizing the photoexcitation order of the sensitizer, a metal other than copper may be used as a component of the copper-containing metal sulfide. Preferably, divalent zinc, trivalent indium, trivalent gallium, tetravalent tin and the like are used in combination for this purpose.

第一の金属酸化物半導体粒子の表面にバッファー層や半絶縁層となる第二の金属酸化物半導体層を形成すると、光電変換電極を形成した場合、逆電子過程を防止するなど効率的な電子の移動に寄与する。
第二の金属酸化物半導体層としての材質は、各種の金属酸化物を使用することができる。第一の金属酸化物半導体粒子との組み合わせにもよるが、酸化物の状態でd軌道などに不対電子をもたないものが励起電子の失活が起こりにくく、適切である。これにはMg、Al、Si、Sc、Ti、Zn、Ga、Ge、Sr、Y、Zr、Nb、In、Sn、Ba、La、Taなどの酸化物が挙げられる。
又、金属酸化物半導体粒子と増感部との間にバッファー層としてInS、CdS等の金属硫化物を入れてもかまわない。
When a second metal oxide semiconductor layer that becomes a buffer layer or a semi-insulating layer is formed on the surface of the first metal oxide semiconductor particle, when a photoelectric conversion electrode is formed, an efficient electron such as preventing a reverse electron process Contributes to the movement of.
Various metal oxides can be used as the material for the second metal oxide semiconductor layer. Although depending on the combination with the first metal oxide semiconductor particles, those having no unpaired electrons in the d orbital or the like in the oxide state are suitable because excitation electrons are hardly deactivated. This includes oxides such as Mg, Al, Si, Sc, Ti, Zn, Ga, Ge, Sr, Y, Zr, Nb, In, Sn, Ba, La, Ta.
Further, a metal sulfide such as InS or CdS may be inserted as a buffer layer between the metal oxide semiconductor particles and the sensitizer.

第二の金属酸化物半導体層の形成方法は、第一の金属酸化物半導体粒子存在下その表面で、第二の金属酸化物半導体の前駆体を酸化する方法が容易である。
第二の金属酸化物半導体の前駆体としては、金属アルコラートなどが多く知られておりこれを用いても良いが、式(1)の構造を含有する前駆体は、金属酸化物半導体粒子に対する分散性が良いので、均質かつ緻密な第二の金属酸化物半導体層の形成には有用である。
一般式(1)

Figure 2007018891
(式中、Mは、1価から6価の金属原子を示す。R1、R2、R3は、それぞれ独立に水素原子または1価の置換基を示す。矢印は、酸素原子からMへの配位結合またはイオン結合を示す。破線は、ジケトナート化合物構造中の非局在結合を示す。) The second metal oxide semiconductor layer can be easily formed by oxidizing the second metal oxide semiconductor precursor on the surface in the presence of the first metal oxide semiconductor particles.
As a precursor of the second metal oxide semiconductor, many metal alcoholates are known and may be used. The precursor containing the structure of the formula (1) is dispersed in the metal oxide semiconductor particles. Therefore, it is useful for forming a homogeneous and dense second metal oxide semiconductor layer.
General formula (1)
Figure 2007018891
(In the formula, M represents a monovalent to hexavalent metal atom. R 1 , R 2 , and R 3 each independently represents a hydrogen atom or a monovalent substituent. The arrow represents an oxygen atom to M. (The broken line indicates a delocalized bond in the diketonate compound structure.)

本発明で言う1価の置換基の代表例としては、アルキル基、アルコキシル基、アルキルチオ基、アリールチオ基、ハロゲン基、ニトロ基、シアノ基、チオシアン酸基、イソチオシアン酸基、アミノ基、モノアルキルアミノ基、ジアルキルアミノ基、アリール基、アリールオキシ基、モノアリールアミノ基、ジアリールアミノ基、アルキルペプチド基、アリールペプチド基、アルキルカルボニル基(アシル基)、アリールカルボニル基、スルホン酸アミド基、スルホン酸エステル基、ジアルキルオキシホスホリル基、ジアリールオキシホスホリル基、アルキルオキシアリールオキシホスホリル基、ジアルキルホスホリル基、ジアリールホスホリル基、アルキルオキシアリールホスホリル基、ジアルコキシホスフィノオキシ基、ジアリールオキシホスフィノオキシ基、アルコキシアリールオキシホスフィノオキシ基、フタルイミドメチル基、ポリエーテル基等が挙げられるがこれに限定されるものではない。   Representative examples of the monovalent substituent in the present invention include an alkyl group, an alkoxyl group, an alkylthio group, an arylthio group, a halogen group, a nitro group, a cyano group, a thiocyanic acid group, an isothiocyanic acid group, an amino group, and a monoalkylamino. Group, dialkylamino group, aryl group, aryloxy group, monoarylamino group, diarylamino group, alkyl peptide group, aryl peptide group, alkylcarbonyl group (acyl group), arylcarbonyl group, sulfonic acid amide group, sulfonic acid ester Group, dialkyloxyphosphoryl group, diaryloxyphosphoryl group, alkyloxyaryloxyphosphoryl group, dialkylphosphoryl group, diarylphosphoryl group, alkyloxyarylphosphoryl group, dialkoxyphosphinooxy group, diaryloxy Sufinookishi group, alkoxy aryloxy phosphino group, a phthalimidomethyl group, polyether group, and the like, but not limited thereto.

前記ハロゲン基は、フッ素、塩素、臭素、ヨウ素を含む。
前記アルキル基は、分岐や脂環、不飽和結合を有しても良い。
前記アリール基は、芳香環内の炭素が一部窒素、酸素、イオウに置き換わった複素環基を用いても良い。
前記置換基の各々は、さらに前記置換基を複合して有しても良い。
The halogen group includes fluorine, chlorine, bromine and iodine.
The alkyl group may have a branch, an alicyclic ring, or an unsaturated bond.
As the aryl group, a heterocyclic group in which carbon in the aromatic ring is partially replaced with nitrogen, oxygen, or sulfur may be used.
Each of the substituents may further have a composite of the substituents.

第二の金属酸化物半導体の前駆体を酸化する方法としては、焼成や熱処理、オゾン処理、紫外線照射などの処理を単独あるいは組み合わせで用いることができる。又、第二の金属酸化物半導体の前駆体として金属アルコラートなどを用いた場合に、これを加水分解した後に乾燥し、金属酸化物を得る操作もここでは第二の金属酸化物半導体の前駆体の酸化と呼ぶ。
別法の表面処理等で第一の金属半導体粒子表面に第二の金属半導体を有する物を入手可能な場合は、次の銅含有金属硫化物処理にこれを原料として用いることができる。
As a method for oxidizing the second metal oxide semiconductor precursor, treatments such as baking, heat treatment, ozone treatment, and ultraviolet irradiation can be used alone or in combination. Further, when a metal alcoholate or the like is used as a precursor of the second metal oxide semiconductor, the operation of obtaining the metal oxide by hydrolyzing it is also the precursor of the second metal oxide semiconductor here. Called oxidation.
When the thing which has a 2nd metal semiconductor on the surface of a 1st metal semiconductor particle can be obtained by surface treatment etc. of another method, this can be used as a raw material for the following copper containing metal sulfide process.

光電変換電極は、表面積が大きい程増感部の表面積が増え、光電変換セルとしての変換効率は向上する。この為には、金属酸化物半導体粒子の平均一次粒子径は1nm以上200nm以下が望ましい。粒子径がこの範囲未満であると粒子同士が接近しすぎて成膜中の空隙が形成されにくくなり表面積が低下するので好ましくない。粒子径がこれを超えると、空隙は確保できるが同じ単位膜厚あたりの表面積は低下するので好ましくない。さらに好ましくは金属酸化物半導体粒子の平均一次粒子径は10nm以上50nm以上が望ましい。   As the surface area of the photoelectric conversion electrode increases, the surface area of the sensitizer increases, and the conversion efficiency as a photoelectric conversion cell improves. For this purpose, the average primary particle diameter of the metal oxide semiconductor particles is preferably 1 nm or more and 200 nm or less. When the particle diameter is less than this range, the particles are too close to each other, and voids during film formation are hardly formed, and the surface area is decreased, which is not preferable. If the particle diameter exceeds this, voids can be secured, but the surface area per unit film thickness is reduced, which is not preferable. More preferably, the average primary particle diameter of the metal oxide semiconductor particles is 10 nm or more and 50 nm or more.

(銅硫化物および銅含有金属硫化物)
本発明において、処理金属酸化物半導体粒子とは、金属酸化物半導体粒子の表面に、銅硫化物又は銅含有金属硫化物を結着したものである。ここにおいて銅硫化物とは、1価の銅または2価の銅の硫化物を少なくとも含む。詳しくはCu(I)2S、Cu(II)S等の銅硫化物単体や、Cu(I)1.2Cu(II)0.4Sの様な混合原子価の銅硫化物を含む。銅含有金属硫化物とは前記銅硫化物に加え、さらに異種の金属種を含んだ硫化物である。詳しくはCu(I)In(III)S2、Cu(I)2Sn(IV)Zn(II)S4の様な銅以外の金属種をも含む金属硫化物である。
(Copper sulfide and copper-containing metal sulfide)
In the present invention, the treated metal oxide semiconductor particles are obtained by binding copper sulfide or copper-containing metal sulfide to the surface of the metal oxide semiconductor particles. Here, the copper sulfide includes at least monovalent copper or divalent copper sulfide. Specifically, it includes copper sulfide alone such as Cu (I) 2 S, Cu (II) S, and mixed valence copper sulfide such as Cu (I) 1.2 Cu (II) 0.4 S. The copper-containing metal sulfide is a sulfide containing a different metal species in addition to the copper sulfide. Specifically, it is a metal sulfide containing a metal species other than copper, such as Cu (I) In (III) S 2 and Cu (I) 2 Sn (IV) Zn (II) S 4 .

(イオウ源化合物)
金属酸化物半導体粒子の表面に銅硫化物および銅含有金属硫化物を結着させる方法として、本発明では金属酸化物半導体粒子の存在下でCu塩およびIn塩、Ga塩、Zn塩、Sn塩等の金属塩とイオウ源化合物を接触させ、金属硫化物として粒子表面に析出させている。
本発明におけるイオウ源化合物とは、光電変換電極製造に用いる金属塩又はキレート化合物と接触するとイオウ元素がイオウ源化合物から遊離し金属元素と結合を形成光電変換電極の原料と成り得る化合物である。
(Sulfur source compound)
As a method for binding copper sulfide and copper-containing metal sulfide to the surface of the metal oxide semiconductor particle, in the present invention, Cu salt, In salt, Ga salt, Zn salt, Sn salt are present in the presence of the metal oxide semiconductor particle. A metal salt such as sulfur and a sulfur source compound are brought into contact with each other and precipitated on the particle surface as a metal sulfide.
The sulfur source compound in the present invention is a compound that can be used as a raw material for a photoelectric conversion electrode when it comes into contact with a metal salt or chelate compound used in the production of a photoelectric conversion electrode and the sulfur element is released from the sulfur source compound and forms a bond with the metal element.

(銅硫化物および銅含有金属硫化物の結着方法)
金属酸化物半導体粒子表面に銅硫化物および銅含有金属硫化物を結着させる一つの方法としては、金属塩の全てが均質に溶解した溶液に、酸化チタン等の金属酸化物半導体粒子を分散させ、ついでイオウ源化合物の溶液を接触させる。イオウ源化合物として2価の各種硫化物塩を用いることができるが、特に(NH42Sを用いると、硫化水素を用いる場合に比べて反応を定量的に穏やかに進めやすく、過剰の硫化水素ガスによる作業者への危険性や作業環境での腐食などを起こしにくい。硫化ナトリウム等は、アルカリ金属イオン等が残留すると電池性能を低下させる場合がある。工程上の取り扱いやすさと除去のしやすさから、イオウ源化合物としては(NH42Sの使用が最適である。
Cu塩、In塩、Ga塩、Zn塩、Sn塩をはじめとする金属塩としては、塩化物をはじめとするハロゲン化物、硫酸塩、硝酸塩等の強酸塩、酢酸塩、炭酸塩、シュウ酸塩、リン酸塩等の弱酸、有機酸塩、アセチルアセトナート等のキレート化合物等が挙げられる。
(Binding method for copper sulfide and copper-containing metal sulfide)
One method for binding copper sulfide and copper-containing metal sulfide to the surface of metal oxide semiconductor particles is to disperse metal oxide semiconductor particles such as titanium oxide in a solution in which all of the metal salt is homogeneously dissolved. Next, the solution of the sulfur source compound is brought into contact. Although various divalent sulfide salts can be used as the sulfur source compound, in particular, when (NH 4 ) 2 S is used, the reaction is easier to proceed quantitatively and gently than when hydrogen sulfide is used. It is less likely to cause danger to workers due to hydrogen gas and corrosion in the work environment. Sodium sulfide or the like may deteriorate battery performance if alkali metal ions or the like remain. The use of (NH 4 ) 2 S is optimal as a sulfur source compound because of ease of handling in the process and ease of removal.
Metal salts including Cu salt, In salt, Ga salt, Zn salt and Sn salt include strong acid salts such as chlorides and halides, sulfates and nitrates, acetates, carbonates and oxalates. And chelate compounds such as weak acid such as phosphate, organic acid salt and acetylacetonate.

前記の接触処理を行う際、加熱および紫外線照射を併用すると銅硫化物および銅含有金属硫化物の結晶化が促進されるなどしてより変換効率の高い光電変換電極を得ることができる。
銅含有金属硫化物の結着量は、金属酸化物半導体粒子100重量部に対し、1重量部以上300重量部以下、望ましくは10重量部以上100重量部以下の含有比である。これより結着量が少ない場合は増感効果を得にくく、多い場合は金属酸化物半導体中での電子移動を阻害しやすくなる。また、原材料コストも向上してしまう。
金属酸化物半導体粒子の表面に銅硫化物や銅含有金属硫化物を結着させた後は、後処理として、加熱、加圧又は超音波溶着処理、マイクロ波照射処理、紫外光照射処理、オゾン処理またはこれらの組合せ処理を行い、金属酸化物半導体粒子表面への結着力を増加させたり結晶化を促進させる事ができる。
When performing the above contact treatment, when heating and ultraviolet irradiation are used in combination, crystallization of copper sulfide and copper-containing metal sulfide is promoted, and a photoelectric conversion electrode with higher conversion efficiency can be obtained.
The binding amount of the copper-containing metal sulfide is a content ratio of 1 part by weight to 300 parts by weight, preferably 10 parts by weight to 100 parts by weight with respect to 100 parts by weight of the metal oxide semiconductor particles. When the amount of binding is smaller than this, it is difficult to obtain a sensitizing effect, and when it is large, electron transfer in the metal oxide semiconductor is easily inhibited. In addition, raw material costs are also increased.
After binding copper sulfide or copper-containing metal sulfide to the surface of the metal oxide semiconductor particle, as post-treatment, heating, pressurization or ultrasonic welding treatment, microwave irradiation treatment, ultraviolet light irradiation treatment, ozone By performing the treatment or a combination treatment thereof, the binding force to the surface of the metal oxide semiconductor particles can be increased or crystallization can be promoted.

(処理金属酸化物半導体粒子の形態)
本発明において「処理金属酸化物半導体粒子」の定義はその分散体中の一次粒子体、二次粒子体およびこれらが成膜して成る多孔質層の総体をも総称して含む。
本発明に該当する処理金属酸化物半導体粒子の形態を図1~6に示す。
図1~6は、処理金属酸化物半導体粒子の光電変換電極中での部分構造を表現している。
各図中、aが第一の金属酸化物半導体粒子、bが第二の金属酸化物半導体、cが銅硫化物又は銅含有金属硫化物である。cが光を吸収し、電荷分離して生じた電子がaの伝導帯へ注入される。aとcの間にバッファー層や半絶縁層として第二の金属酸化物半導体bが入り逆電子過程を防止するなど効率的な電子の移動に寄与する。bは組成の違う複数の層から成ってもかまわない。銅硫化物または銅含有金属硫化物は、金属酸化物半導体粒子の一次粒子表面に結着していても、二次粒子表面に結着していても、一旦基材上に成膜された金属酸化物半導体粒子層の表面に結着していても良い。
(Form of treated metal oxide semiconductor particles)
In the present invention, the definition of “treated metal oxide semiconductor particles” collectively includes the total of primary particle bodies, secondary particle bodies, and porous layers formed by film formation of these particles in the dispersion.
The form of the treated metal oxide semiconductor particles corresponding to the present invention is shown in FIGS.
1 to 6 represent partial structures of treated metal oxide semiconductor particles in a photoelectric conversion electrode.
In each figure, a is the first metal oxide semiconductor particle, b is the second metal oxide semiconductor, and c is copper sulfide or copper-containing metal sulfide. c absorbs light, and electrons generated by charge separation are injected into the conduction band of a. The second metal oxide semiconductor b enters between a and c as a buffer layer or a semi-insulating layer and contributes to efficient electron transfer such as preventing a reverse electron process. b may consist of a plurality of layers having different compositions. Copper sulfide or copper-containing metal sulfide is a metal once deposited on a substrate, whether it is bound to the primary particle surface of the metal oxide semiconductor particle or the secondary particle surface. It may be bound to the surface of the oxide semiconductor particle layer.

図1の様に、aの粒界面で導通した粒子表面にb、cが形成された構成が、電極中の電子移動には最も理想的である。この構成は、先に第一の金属酸化物半導体粒子のみで金属酸化物半導体電極を形成した後に、bと成り得る第二の金属酸化物半導体の前駆体で表面処理を行い酸化し、次いで前述の方法によりcを形成するなどの方法で得られる。
これとは別法で、金属酸化物半導体粒子が一次粒子まで分散された状態で粒子表面にbを形成し、成膜後cを形成すると図2の構成となり、分散状態のまま粒子表面にcまで形成後成膜すると図3の構成になりやすい。分散状態で先に粒子表面にb、cを形成し成膜する方が、塗膜の金属酸化物半導体粒子に対して化学処理を行う後加工工程が省けるので工程上有利である。
bの形成工程を省いた場合は図4、図5の構成が存在する。
As shown in FIG. 1, a configuration in which b and c are formed on the surface of a particle conducted at the grain interface of a is most ideal for electron transfer in the electrode. In this configuration, after forming a metal oxide semiconductor electrode with only the first metal oxide semiconductor particles, the surface treatment is performed with the precursor of the second metal oxide semiconductor which can be b, and then the oxidation is performed. It is obtained by the method of forming c by the method of.
In another method, when b is formed on the particle surface in a state where the metal oxide semiconductor particles are dispersed up to the primary particles, and c is formed after the film formation, the structure shown in FIG. 2 is obtained. If the film is formed after the formation, the structure of FIG. 3 is likely to be obtained. Forming the film by forming b and c on the particle surface first in a dispersed state is advantageous in terms of the process because a post-processing step of performing chemical treatment on the metal oxide semiconductor particles of the coating film can be omitted.
When the step of forming b is omitted, the configurations of FIGS. 4 and 5 exist.

金属酸化物半導体粒子が適切な大きさの二次粒子まで分散された状態でb、cを形成し、これを成膜すると図1の状態に準じた図6の様な構成になる。成膜後の後加工工程が不要になり工程上有理で、かつ電子移動に理想的な図1に近い構成の膜状態が得られる。この場合、二次粒子径が大きすぎると分散安定性も悪くなり、膜の密度も粗になり、二次粒子間の導通や透明電極への密着性も悪くなるので、二次粒子径は平均粒子径10nm以上500nm以下の状態が適切である。二次粒子径は、平均粒子径50nm以上200nm以下の状態がより適切である。   When b and c are formed in a state where the metal oxide semiconductor particles are dispersed to secondary particles of an appropriate size, and these are formed, the structure shown in FIG. 6 is obtained according to the state of FIG. A post-processing step after the film formation is not necessary, and a film state having a configuration similar to that shown in FIG. In this case, if the secondary particle size is too large, the dispersion stability is also deteriorated, the density of the film is also roughened, and the conduction between the secondary particles and the adhesion to the transparent electrode are also deteriorated. A state with a particle diameter of 10 nm to 500 nm is appropriate. The secondary particle size is more suitably in a state where the average particle size is 50 nm or more and 200 nm or less.

(分散体の作成)
原料となる金属酸化物半導体粒子または処理金属酸化物半導体粒子を分散させることのできる溶剤としてはエタノール、イソプロピルアルコール、ベンジルアルコール、1−オクタノール、ブチルセセロソルブ、ブチルカルビトールなどのアルコール系溶剤、アセトニトリル、プロピオニトリルなどのニトリル系溶剤、クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤、ヘキサン、オクタン、トルエン、キシレン等の炭水化物系位溶剤、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチルイミダゾリノン、Nメチルピロリドン、水等を用いることができるがこれに限らない。二種類以上の溶剤を混合して用いても良い。
(Create dispersion)
Solvents that can disperse the metal oxide semiconductor particles or the treated metal oxide semiconductor particles as raw materials are alcohol solvents such as ethanol, isopropyl alcohol, benzyl alcohol, 1-octanol, butyl cellosolve, and butyl carbitol, acetonitrile , Nitrile solvents such as propionitrile, halogen solvents such as chloroform, dichloromethane and chlorobenzene, ether solvents such as diethyl ether and tetrahydrofuran, ester solvents such as ethyl acetate and butyl acetate, ketones such as acetone, methyl ethyl ketone and cyclohexanone Solvents, carbonate esters such as diethyl carbonate and propylene carbonate, carbohydrate solvents such as hexane, octane, toluene and xylene, dimethylformamide, dimethylacetamide Dimethyl sulfoxide, 1,3-dimethyl imidazolinone, N-methylpyrrolidone, may be water or the like is not limited thereto. Two or more kinds of solvents may be mixed and used.

分散処理は、例えばジルコニア製ビーズを使用し、ペイントシェーカーやミルで行うのが一般的であるがこれに限らない。
分散体には、適切な粘度を得るために、バインダー樹脂を入れることができる。
バインダー樹脂としては、セルロース系、ポリエチレングリコール系、アクリル系、ウレタン系、ポリオール系、ポリエチレン系、ポリアミド系などが挙げられるが分散体の適切な粘度や成膜性、成膜後の電極としての特性を得られるものであればこれに限らない。
金属酸化物半導体粒子から光電変換電極を製造する際、導通の良い電極を得るには成膜中の粒子間にネッキングが形成される事が望ましいが、この目的で加圧処理、超音波溶着処理やマイクロ波処理等も効果があれば併用する。
The dispersion treatment is generally carried out using, for example, a zirconia bead and a paint shaker or a mill, but is not limited thereto.
The dispersion can contain a binder resin in order to obtain an appropriate viscosity.
Examples of the binder resin include cellulose, polyethylene glycol, acrylic, urethane, polyol, polyethylene, and polyamide, but suitable viscosity and film formability of the dispersion, and characteristics as an electrode after film formation. It is not limited to this as long as it can obtain
When producing a photoelectric conversion electrode from metal oxide semiconductor particles, it is desirable that necking be formed between the particles during film formation in order to obtain a conductive electrode. For this purpose, pressure treatment, ultrasonic welding treatment is performed. If microwave treatment is effective, use it in combination.

(透明電極用電導性表面)
本発明で用いられる透明電極は、電導性表面と透明基材から成る。本発明における透明電極上の多孔質層は電導性表面上に形成される。電導性表面としては、太陽光の可視から近赤外領域に対して光吸収が少ない電導材料なら特に限定されないが、ITO(インジウム−スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛等の電導性の良好な金属酸化物が好適である。電導性表面に、固形成分表面に銅含有金属硫化物が結着した金属酸化物半導体粒子の層をもうける前に、逆電子反応を防止する目的でSPD法(スプレー熱分解法)やスパッタリング法等の方法で酸化チタン層等を設けることが望ましい。
(Conductive surface for transparent electrodes)
The transparent electrode used in the present invention comprises a conductive surface and a transparent substrate. In the present invention, the porous layer on the transparent electrode is formed on the conductive surface. The conductive surface is not particularly limited as long as it is a conductive material that absorbs little light from the visible to the near-infrared region of sunlight. However, ITO (indium-tin oxide) or tin oxide (a material doped with fluorine or the like) can be used. Metal oxides having good electrical conductivity such as zinc oxide are preferable. SPD method (spray pyrolysis method), sputtering method, etc. for the purpose of preventing reverse electron reaction before forming a layer of metal oxide semiconductor particles with copper-containing metal sulfide bound to the solid component surface on the conductive surface It is desirable to provide a titanium oxide layer or the like by this method.

(透明電極用透明基材)
電導性表面を有した電極に用いられる透明基材としては、太陽光の可視から近赤外領域に対して光り吸収が少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニール等の樹脂基材等を用いることができる。
(Transparent substrate for transparent electrodes)
The transparent substrate used for the electrode having a conductive surface is not particularly limited as long as it is a material that absorbs less light from the visible to the near infrared region of sunlight. Glass substrates such as quartz, ordinary glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetylcellulose, syndioctane polystyrene, polyphenylene sulfide, polyarylate Resin base materials such as polysulfone, polyester sulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride can be used.

(光電変換セル)
本発明において用いられる光電変換電極は、電解質層を介して電導性対極を組み合わせることによって光電変換セルを形成する。
(電解質層)
本発明で用いられる電解質層は電解質、媒体、および添加物から構成されることが好ましい。本発明の電解質はI2とヨウ化物(例としてLiI、NaI、KI、CsI、MgI2、CaI2、CuI、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等)の混合物、Br2と臭化物(例としてLiBr等)の混合物、Inorg. Chem. 1996,35,1168-1178に記載の溶融塩等を用いることができるがこの限りではない。この中でもI2とヨウ化物の組み合わせとしてLiI、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等を混合した電解質が本発明では好ましい。
好ましい電解質濃度は媒体中I2が0.01M以上0.5M以下でありヨウ化物の混合物が0.1M以上15M以下である。
(Photoelectric conversion cell)
The photoelectric conversion electrode used in the present invention forms a photoelectric conversion cell by combining a conductive counter electrode through an electrolyte layer.
(Electrolyte layer)
The electrolyte layer used in the present invention is preferably composed of an electrolyte, a medium, and an additive. The electrolyte of the present invention is a mixture of I 2 and iodide (for example, LiI, NaI, KI, CsI, MgI 2 , CaI 2 , CuI, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.), Br 2 Mixtures of bromide and bromide (for example, LiBr, etc.), molten salts described in Inorg. Chem. 1996, 35, 1168-1178, etc. can be used, but not limited thereto. Among these, an electrolyte in which LiI, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of I 2 and iodide is preferable in the present invention.
The preferable electrolyte concentration is 0.01 M to 0.5 M in the medium I 2 and 0.1 M to 15 M in the iodide mixture.

本発明で電解質層に用いられる媒体は、良好なイオン電導性を発現できる化合物であることが望ましい。溶液状の媒体としては、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3‐メチル‐2‐オキサゾリジノンなどの複素環化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などを用いることができる。   The medium used for the electrolyte layer in the present invention is desirably a compound that can exhibit good ionic conductivity. Solution media include ether compounds such as dioxane and diethyl ether, chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, and polypropylene glycol dialkyl ether, methanol, ethanol, and ethylene glycol monoalkyl. Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, glycerin, acetonitrile, glutarodinitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate, 3-methyl-2-oxazolidinone heterocyclic compounds such as dimethyl sulfoxide, can be used aprotic polar substances such as sulfolane, water, and the like.

また、固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有した多官能性モノマーを前記溶液状媒体中で重合させて媒体を固体状にする。
電解質層としては、この他、CuI、CuSCN媒体を必要としない電解質および、Nature,Vol.395, 8 Oct. 1998,p583-585記載の2,2',7,7'‐テトラキス(N,N‐ジ‐p‐メトキシフェニルアミン)9,9'‐スピロビフルオレンのような正孔輸送材料を用いることができる。
Further, for the purpose of using a solid (including gel) medium, a polymer may be included. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution-like medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution-like medium to make the medium solid. To do.
As the electrolyte layer, an electrolyte that does not require CuI or CuSCN medium, and 2,2 ′, 7,7′-tetrakis (N, N described in Nature, Vol. 395, 8 Oct. 1998, p583-585) can be used. Hole transport materials such as -di-p-methoxyphenylamine) 9,9'-spirobifluorene can be used.

本発明に用いられる電解質層には、光電変換セルの電気的出力を向上させたり、耐久性を向上させる働きをする添加物を添加することができる。電気的出力を向上させる添加物として4‐t‐ブチルピリジンや、2‐ピコリン、2,6‐ルチジン、シクロデキストリン等が挙げられる。耐久性を向上させる添加物としてMgI等が挙げられる。
さらに、光電変換素子として作動が可能であれば、電解質の注入を省く事もできる。この場合、光電変換電極と対極の密着性を確保する為に光電変換電極表面に対極層を直接蒸着する等の方法が取られる。
In the electrolyte layer used in the present invention, an additive that functions to improve the electrical output of the photoelectric conversion cell or improve the durability can be added. Examples of additives that improve electrical output include 4-t-butylpyridine, 2-picoline, 2,6-lutidine, and cyclodextrin. MgI etc. are mentioned as an additive which improves durability.
Further, if the photoelectric conversion element can be operated, electrolyte injection can be omitted. In this case, in order to ensure adhesion between the photoelectric conversion electrode and the counter electrode, a method such as directly depositing a counter electrode layer on the surface of the photoelectric conversion electrode is taken.

(電導性対極)
本発明で用いられる電導性対極は、光電変換セルの正極として機能するものである。具体的に対極に用いる電導性の材料としては、金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物(ITO(インジウム‐スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛)、または炭素等が挙げられる。対極の膜厚は、特に制限はないが、5nm以上10μm以下であることが好ましい。
(Conductive counter electrode)
The conductive counter electrode used in the present invention functions as a positive electrode of a photoelectric conversion cell. Specifically, conductive materials used for the counter electrode include metals (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), tin oxide (fluorine, etc.)). , Zinc oxide), or carbon. The thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 μm or less.

(組み立て方)
前記の光電変換電極と電導性対極を、電解質層を介して組み合わせることによって光電変換セルを形成する。必要に応じて電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を行う。封止には熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは必要に応じて小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることによって起電圧を高くすることができる。
(How to assemble)
A photoelectric conversion cell is formed by combining the photoelectric conversion electrode and the conductive counter electrode via an electrolyte layer. In order to prevent leakage and volatilization of the electrolyte layer as necessary, sealing is performed around the photoelectric conversion cell. For sealing, a thermoplastic resin, a photocurable resin, glass frit, or the like can be used as a sealing material. The photoelectric conversion cell is made by connecting small-area photoelectric conversion cells as necessary. The electromotive voltage can be increased by combining the photoelectric conversion cells in series.

本発明により、表面が銅含有金属硫化物で処理された金属酸化物半導体粒子と電極を得ることができる。本発明で得られた処理金属酸化物半導体粒子は、溶液中の反応で得られるため、安価に製造可能である。さらに増感色素を使用せず、無機材料で幅広い波長の光を光電変換できるので耐久性にも優れている。   According to the present invention, metal oxide semiconductor particles and electrodes whose surfaces are treated with a copper-containing metal sulfide can be obtained. Since the treated metal oxide semiconductor particles obtained in the present invention are obtained by a reaction in a solution, they can be produced at a low cost. Furthermore, since a sensitizing dye is not used and light of a wide wavelength can be photoelectrically converted with an inorganic material, it is excellent in durability.

以下に、実施例を具体的に示すが、本発明は以下に限定されるものではない。
(実施例1)
・金属酸化物半導体分散体の作成
表1中、実施例1の金属酸化物半導体粒子の分散体組成でジルコニアビーズと混合し、ペイントシェーカーを用いて分散体を得た。第一の金属酸化物粒子としては酸化チタン(日本エロジル社製P25)を用い、第二の金属酸化物半導体の前駆体としてZnアセチルアセトナートを用いた。
この分散体を減圧留去によって溶媒除去後、400℃で焼結し、粉砕後10gを塩化第一銅のアンモニア水溶液へ入れ、二次粒子径200nmになるまでペイントシェーカーで再分散を行った。
Examples are shown below specifically, but the present invention is not limited to the following examples.
(Example 1)
-Preparation of metal oxide semiconductor dispersion In Table 1, the dispersion composition of the metal oxide semiconductor particles of Example 1 was mixed with zirconia beads, and a dispersion was obtained using a paint shaker. As the first metal oxide particles, titanium oxide (P25 manufactured by Nippon Erosil Co., Ltd.) was used, and Zn acetylacetonate was used as the precursor of the second metal oxide semiconductor.
The solvent was removed by distillation under reduced pressure, the dispersion was sintered at 400 ° C., and after pulverization, 10 g was put into an aqueous ammonia solution of cuprous chloride and redispersed with a paint shaker until the secondary particle size became 200 nm.

ついで銅イオンと定量的に反応できる量のイオウを含有する(NH42S水溶液を攪拌しながら滴下し、60℃で加熱処理、粒子を濾別風乾後エタノール中に分散することにより銅金属硫化物で処理された金属酸化物半導体粒子分散体を作成した。
出来上がった分散体を透明電極基材に塗布し多孔質層が厚さ13μm(+−2μm)に成膜された1cm角セルを作成した。透明電極はガラス基材のもの(旭ガラス社製;透明電導膜はFTO)で電導膜表面に100nm厚の酸化チタン層を設けたものを使用し、150℃1時間の加熱処理後、電解質と対極を施してセルを作成し、変換効率測定を行った。
Next, a (NH 4 ) 2 S aqueous solution containing sulfur in an amount capable of quantitatively reacting with copper ions is added dropwise with stirring, heat treatment at 60 ° C., the particles are filtered, air-dried, and dispersed in ethanol. A metal oxide semiconductor particle dispersion treated with sulfide was prepared.
The finished dispersion was applied to a transparent electrode substrate to prepare a 1 cm square cell in which a porous layer was formed to a thickness of 13 μm (+ −2 μm). The transparent electrode is made of a glass substrate (Asahi Glass Co., Ltd .; the transparent conductive film is FTO), and the conductive film surface is provided with a 100 nm thick titanium oxide layer. After heat treatment at 150 ° C. for 1 hour, the electrolyte and A cell was prepared by applying a counter electrode, and the conversion efficiency was measured.

・電解質は下記処方のものを用いた
溶媒 メトキシアセトニトリル
LiI 0.1M
2 0.05M
4‐t‐ブチルピリジン 0.5M
1‐プロピル‐2,3‐ジメチルイミダゾリウムヨージド 0.6M
・ Electrolyte with the following formulation Solvent Methoxyacetonitrile
LiI 0.1M
I 2 0.05M
4-t-butylpyridine 0.5M
1-propyl-2,3-dimethylimidazolium iodide 0.6M

・光電変換セルの組み立て
図7の様に光電変換セルの試験サンプルを組み立てた。
電導性対極にはフッ素ドープ酸化スズ層付ガラス基板(旭ガラス社製 タイプU−T CO)の電導層上にスパッタリング法により150nmの白金層を積層した物を用いた 。
樹脂フィルム製スペーサーとしては、三井・デュポンポリケミカル社製 「ハイミラ ン」フィルムの25μm厚の物を用いた。
-Assembly of photoelectric conversion cell The test sample of the photoelectric conversion cell was assembled as shown in FIG.
The conductive counter electrode was a glass substrate with a fluorine-doped tin oxide layer (type U-TCO manufactured by Asahi Glass Co., Ltd.) and a platinum layer having a thickness of 150 nm laminated on the conductive layer by sputtering.
As the resin film spacer, a 25 μm thick “High Milan” film manufactured by Mitsui DuPont Polychemical Co., Ltd. was used.

・変換効率の測定方法
ORIEL社製ソーラーシュミレーター(#8116)をエアマスフィルターとを 組み合わせ、光量計で1−SUN の光量に調整して測定用光源とし、光電変換セルの 試験サンプルに光照射をしながら 英弘精機社製I‐Vカーブトレーサー(MP160 )を使用してI‐Vカーブ特性を測定した。変換効率ηは、I‐Vカーブ特性測定から 得られたVoc(開放電圧値)、Isc(短絡電流値)、ff(フィルファクター値) を用いて下式により算出した。

η(%)= Voc(V)×Isc(mA)×ff ×100
100(mW/cm2)× 1(cm2
・ Measurement method of conversion efficiency Combined solar simulator (# 8116) manufactured by ORIEL with air mass filter, 1-SUN with a light meter The IV curve characteristics were measured using an IV curve tracer (MP160) manufactured by Eihiro Seiki Co., Ltd. while irradiating the test sample of the photoelectric conversion cell with light. The conversion efficiency η was calculated by the following equation using Voc (open circuit voltage value), Isc (short circuit current value), and ff (fill factor value) obtained from the IV curve characteristic measurement.

η (%) = Voc (V) × Isc (mA) × ff × 100
100 (mW / cm 2 ) × 1 (cm 2 )

(実施例2〜30)
その他の構成の光電変換電極についても同様に電極を作成した。
表1〜3に結果をまとめた。
(Examples 2 to 30)
Electrodes were similarly prepared for photoelectric conversion electrodes having other configurations.
The results are summarized in Tables 1-3.

Figure 2007018891
Figure 2007018891

Figure 2007018891
Figure 2007018891

Figure 2007018891
Figure 2007018891

[表中の記号説明]
acac(アセチルアセトナート基;一般式(1)においてR1、R3がメチル基、R2が水素元素)、Me(メチル基)、Et(エチル基)、Pr(プロピル基)、nPr(ノルマルプロピル基)、iPr(イソプロピル基)、Bu(ブチル基)、nBu(ノルマルブチル基)
(※1)「第二の金属酸化物半導体の前駆体」は、「金属酸化物半導体粒子の分散体」中の組成として、溶剤中に溶解又は分散状態で存在している。
[Explanation of symbols in the table]
acac (acetylacetonate group; in general formula (1), R 1 and R 3 are methyl groups, R 2 is a hydrogen element), Me (methyl group), Et (ethyl group), Pr (propyl group), nPr (normal) Propyl group), iPr (isopropyl group), Bu (butyl group), nBu (normal butyl group)
(* 1) The “precursor of the second metal oxide semiconductor” is present in a dissolved or dispersed state in the solvent as a composition in the “dispersion of metal oxide semiconductor particles”.

(実施例31〜33)
表4中、金属酸化物半導体粒子の分散体組成を透明電極基材に塗布し成膜後、基材ごと焼成して金属酸化物半導体粒子表面に第二の金属酸化物半導体を形成した。その後表中の銅含有金属塩水溶液を電極上に滴下し、60℃で乾燥後、(NH42S水溶液を滴下することで光電変換電極を得た。その他は実施例1〜30と同様の試験を行った。
(Examples 31-33)
In Table 4, the dispersion composition of metal oxide semiconductor particles was applied to a transparent electrode substrate, formed into a film, and then fired together with the substrate to form a second metal oxide semiconductor on the surface of the metal oxide semiconductor particles. Thereafter, a copper-containing metal salt aqueous solution in the table was dropped on the electrode, dried at 60 ° C., and a (NH 4 ) 2 S aqueous solution was dropped to obtain a photoelectric conversion electrode. The other tests were the same as in Examples 1-30.

Figure 2007018891
Figure 2007018891

[表中の記号説明]
acac(アセチルアセトナート基;一般式(1)においてR1、R3がメチル基、R2が水素元素)、Me(メチル基)、Et(エチル基)
(※1)「第二の金属酸化物半導体の前駆体」は、「金属酸化物半導体粒子の分散体」中の組成として、溶剤中に溶解又は分散状態で存在している。
[Explanation of symbols in the table]
acac (acetylacetonate group; in general formula (1), R 1 and R 3 are methyl groups, R 2 is a hydrogen element), Me (methyl group), Et (ethyl group)
(* 1) The “precursor of the second metal oxide semiconductor” is present in a dissolved or dispersed state in the solvent as a composition in the “dispersion of metal oxide semiconductor particles”.

(実施例34)
実施例3と同様の処理を行う際、銅含有金属硫化物の形成過程を紫外線照射を行いながら実施した。結果としての変換効率は3.17%であった。
(比較例1)
色素増感太陽電池との比較として耐久性の比較試験を行った。
電極は常法により酸化チタン(P25)の分散体を透明電極に1cm2角に塗布し450℃で焼成後、Ru色素(N719)を吸着させたものを用いた。常法によりセルまで作成し実施例3のセルと、1-Sun相当のフェードメーターで変換効率の変化を比較した。3日照射後、色素増感太陽電池は変換効率が20%減少したが、実施例3のセルは2%の減少に留まった。
(Example 34)
When the same treatment as in Example 3 was performed, the process of forming the copper-containing metal sulfide was performed while performing ultraviolet irradiation. The resulting conversion efficiency was 3.17%.
(Comparative Example 1)
As a comparison with a dye-sensitized solar cell, a durability comparison test was performed.
The electrode was prepared by applying a dispersion of titanium oxide (P25) to a transparent electrode in a square of 1 cm 2 by a conventional method, firing at 450 ° C., and adsorbing a Ru dye (N719). A cell was prepared by a conventional method, and the change in conversion efficiency was compared with the cell of Example 3 using a fade meter equivalent to 1-Sun. After 3 days of irradiation, the conversion efficiency of the dye-sensitized solar cell decreased by 20%, but the cell of Example 3 remained at a decrease of 2%.

処理金属酸化物半導体粒子の光電変換電極中での部分構造(第一の金属酸化物半導体の一次粒子界面で結着)。The partial structure in the photoelectric conversion electrode of a process metal oxide semiconductor particle (binding at the primary particle interface of a 1st metal oxide semiconductor). 処理金属酸化物半導体粒子の光電変換電極中での部分構造(第二の金属酸化物半導体界面で結着)。The partial structure in the photoelectric conversion electrode of a process metal oxide semiconductor particle (binding at the 2nd metal oxide semiconductor interface). 処理金属酸化物半導体粒子の光電変換電極中での部分構造(銅含有金属硫化物界面で結着)。Partial structure of the treated metal oxide semiconductor particles in the photoelectric conversion electrode (binding at the copper-containing metal sulfide interface). 処理金属酸化物半導体粒子の光電変換電極中での部分構造(第一の金属酸化物半導体の一次粒子界面で結着。第二の金属酸化物無し。)。Partial structure of the treated metal oxide semiconductor particles in the photoelectric conversion electrode (binding at the primary particle interface of the first metal oxide semiconductor; no second metal oxide). 処理金属酸化物半導体粒子の光電変換電極中での部分構造(銅含有金属硫化物界面で結着。第二の金属酸化物無し。)。Partial structure of the treated metal oxide semiconductor particles in the photoelectric conversion electrode (binding at the copper-containing metal sulfide interface. No second metal oxide). 処理金属酸化物半導体粒子の光電変換電極中での部分構造(第一の金属酸化物半導体粒子の二次粒子体表面に第二の金属酸化物半導体層と銅含有金属酸化物半導体層を形成後、成膜)。Partial structure of the treated metal oxide semiconductor particles in the photoelectric conversion electrode (after forming the second metal oxide semiconductor layer and the copper-containing metal oxide semiconductor layer on the secondary particle surface of the first metal oxide semiconductor particles) , Film formation). 光電変換セル試験サンプルの模式図。The schematic diagram of a photoelectric conversion cell test sample.

符号の説明Explanation of symbols

a.第一の金属酸化物半導体粒子
b.第二の金属酸化物半導体
c.銅含有金属硫化物
1.処理金属酸化物半導体多孔質層(銅含有硫化物が結着済み)
2.電解質溶液層
3.透明電極層(フッ素ドープ型酸化スズ、又はITO)
4.Pt電極層
5.透明電極
6.樹脂フィルム製スペーサー
7.変換効率測定用導線
a. First metal oxide semiconductor particles b. A second metal oxide semiconductor c. Copper-containing metal sulfide Processed metal oxide semiconductor porous layer (copper-containing sulfide has been bound)
2. 2. Electrolyte solution layer Transparent electrode layer (fluorine-doped tin oxide or ITO)
4). 4. Pt electrode layer Transparent electrode6. 6. Resin film spacer Conversion efficiency measurement lead

Claims (19)

平均一次粒子径1nm以上200nm以下の金属酸化物半導体粒子と、銅の塩またはキレート化合物と、イオウ源化合物とを接触させ、金属酸化物半導体粒子の表面に銅硫化物を結着させることを特徴とする処理金属酸化物半導体粒子の製造方法。   Metal oxide semiconductor particles having an average primary particle diameter of 1 nm or more and 200 nm or less, a copper salt or chelate compound, and a sulfur source compound are contacted to bind copper sulfide to the surface of the metal oxide semiconductor particles. A process for producing treated metal oxide semiconductor particles. 平均一次粒子径1nm以上200nm以下の金属酸化物半導体粒子と、銅の塩またはキレート化合物と、イオウ源化合物と、銅以外の金属の塩またはキレート化合物とを接触させ、金属酸化物半導体粒子の表面に銅含有金属硫化物を結着させることを特徴とする処理金属酸化物半導体粒子の製造方法。   Metal oxide semiconductor particles having an average primary particle diameter of 1 nm or more and 200 nm or less, a copper salt or chelate compound, a sulfur source compound, and a metal salt or chelate compound other than copper are brought into contact with each other, and the surface of the metal oxide semiconductor particles A process for producing treated metal oxide semiconductor particles, wherein a copper-containing metal sulfide is bound to a metal. 金属酸化物半導体粒子の平均二次粒子径が、10nm以上500nm以下であることを特徴とする請求項1または2記載の処理金属酸化物半導体粒子の製造方法。   3. The method for producing treated metal oxide semiconductor particles according to claim 1, wherein the average secondary particle diameter of the metal oxide semiconductor particles is 10 nm or more and 500 nm or less. 銅の塩またはキレート化合物の溶液に、平均一次粒子径1nm以上200nm以下の金属酸化物半導体粒子を添加し、ついでイオウ源化合物を添加することを特徴とする請求項1または3記載の処理金属酸化物半導体粒子の製造方法。   The treated metal oxide according to claim 1 or 3, wherein metal oxide semiconductor particles having an average primary particle diameter of 1 nm to 200 nm are added to a copper salt or chelate compound solution, and then a sulfur source compound is added. Of manufacturing semiconductor particles. 銅の塩またはキレート化合物および銅以外の金属塩またはキレート化合物の溶液に、平均一次粒子径1nm以上200nm以下の金属酸化物半導体粒子を添加し、ついでイオウ源化合物を添加することを特徴とする請求項2または3記載の処理金属酸化物半導体粒子の製造方法。   Claims characterized in that metal oxide semiconductor particles having an average primary particle diameter of 1 nm to 200 nm are added to a solution of copper salt or chelate compound and metal salt or chelate compound other than copper, and then a sulfur source compound is added. Item 4. A method for producing a treated metal oxide semiconductor particle according to Item 2 or 3. イオウ源化合物が(NH42Sを含むことを特徴とする請求項1〜5いずれか記載の処理金属酸化物半導体粒子の製造方法。 The process for producing treated metal oxide semiconductor particles according to claim 1, wherein the sulfur source compound contains (NH 4 ) 2 S. 紫外線照射を行いながら前記の接触処理を行うことを特徴とする請求項1〜6いずれか記載の処理金属酸化物半導体粒子の製造方法。   The method for producing treated metal oxide semiconductor particles according to claim 1, wherein the contact treatment is performed while irradiating with ultraviolet rays. 銅の塩またはキレート化合物が一価の銅を含み、銅以外の金属の塩またはキレート化合物が二価の亜鉛、三価のインジウム、三価のガリウム、四価のスズの何れかを含むことを特徴とする請求項2、3、5または6いずれか記載の処理金属酸化物半導体粒子の製造方法。   The copper salt or chelate compound contains monovalent copper, and the metal salt or chelate compound other than copper contains any of divalent zinc, trivalent indium, trivalent gallium, and tetravalent tin. The method for producing treated metal oxide semiconductor particles according to any one of claims 2, 3, 5 and 6. 金属酸化物半導体粒子が、第一の金属酸化物半導体粒子の表面に第二の金属酸化物半導体を有する複合金属酸化物半導体粒子であることを特徴とする請求項1〜8いずれか記載の処理金属酸化物半導体粒子の製造方法。   The treatment according to claim 1, wherein the metal oxide semiconductor particles are composite metal oxide semiconductor particles having a second metal oxide semiconductor on the surface of the first metal oxide semiconductor particles. A method for producing metal oxide semiconductor particles. 複合金属酸化物半導体粒子が、第一の金属酸化物半導体粒子の存在下、第二の金属酸化物半導体の前駆体を酸化して得られるものであることを特徴とする請求項9記載の処理金属酸化物半導体粒子の製造方法。   The process according to claim 9, wherein the composite metal oxide semiconductor particles are obtained by oxidizing the precursor of the second metal oxide semiconductor in the presence of the first metal oxide semiconductor particles. A method for producing metal oxide semiconductor particles. 第一の金属酸化物半導体粒子が、Ti、Zn、Sn、Nbから選ばれる少なくとも1種の金属を含むことを特徴とする請求項9または10記載の処理金属酸化物半導体粒子の製造方法。   The method for producing treated metal oxide semiconductor particles according to claim 9 or 10, wherein the first metal oxide semiconductor particles contain at least one metal selected from Ti, Zn, Sn, and Nb. 第二の金属酸化物半導体の前駆体が、下記一般式(1)の構造を含むことを特徴とする請求項10または11記載の処理金属酸化物半導体粒子の製造方法。
一般式(1)
Figure 2007018891
(式中、Mは、1価から6価の金属原子を示す。R1、R2、R3は、それぞれ独立に水素原子または1価の置換基を示す。矢印は、酸素原子からMへの配位結合またはイオン結合を示す。破線は、ジケトナート化合物構造中の非局在結合を示す。)
The method for producing treated metal oxide semiconductor particles according to claim 10 or 11, wherein the precursor of the second metal oxide semiconductor includes a structure represented by the following general formula (1).
General formula (1)
Figure 2007018891
(In the formula, M represents a monovalent to hexavalent metal atom. R 1 , R 2 , and R 3 each independently represents a hydrogen atom or a monovalent substituent. The arrow represents an oxygen atom to M. (The broken line indicates a delocalized bond in the diketonate compound structure.)
第二の金属酸化物半導体が、Mg、Al、Si、Sc、Ti、Zn、Ga、Ge、Sr、Y、Zr、Nb、In、Sn、Ba、La、Taから選ばれる少なくとも1種の金属を含む請求項9〜12いずれか記載の処理金属酸化物半導体粒子および製造方法。   The second metal oxide semiconductor is at least one metal selected from Mg, Al, Si, Sc, Ti, Zn, Ga, Ge, Sr, Y, Zr, Nb, In, Sn, Ba, La, Ta The process metal oxide semiconductor particle and manufacturing method in any one of Claims 9-12 containing this. 銅含有金属硫化物の含有量が、金属酸化物半導体粒子100重量部に対し、1重量部以上300重量部以下である請求項請求項1〜13いずれか記載の処理金属酸化物半導体粒子の製造方法。   The content of the copper-containing metal sulfide is 1 part by weight or more and 300 parts by weight or less with respect to 100 parts by weight of the metal oxide semiconductor particles, The production of the treated metal oxide semiconductor particles according to any one of claims 1 to 13. Method. 請求項1〜14いずれか記載の方法で製造される処理金属酸化物半導体粒子。   The process metal oxide semiconductor particle manufactured by the method in any one of Claims 1-14. 透明電極基材上に、請求項15記載の処理金属酸化物半導体粒子を成膜する工程を含む光電変換電極の製造方法。   The manufacturing method of the photoelectric conversion electrode including the process of forming into a film the process metal oxide semiconductor particle of Claim 15 on a transparent electrode base material. さらに、処理金属酸化物半導体粒子に加熱、加圧、超音波溶着処理、マイクロ波照射処理、紫外光照射処理、オゾン処理またはこれらの組み合わせ処理を行う工程を含む請求項16記載の光電変換電極の製造方法。   Furthermore, the process of the photoelectric conversion electrode of Claim 16 including the process of performing a heating, pressurization, an ultrasonic welding process, a microwave irradiation process, an ultraviolet light irradiation process, an ozone process, or these combination processes to a process metal oxide semiconductor particle. Production method. 請求項16または17記載の方法で製造される光電変換電極。   The photoelectric conversion electrode manufactured by the method of Claim 16 or 17. 請求項18記載の光電変換電極、電解質、および電導性対極を具備する光電変換セル。
A photoelectric conversion cell comprising the photoelectric conversion electrode according to claim 18, an electrolyte, and a conductive counter electrode.
JP2005199572A 2005-07-08 2005-07-08 Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell Pending JP2007018891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199572A JP2007018891A (en) 2005-07-08 2005-07-08 Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199572A JP2007018891A (en) 2005-07-08 2005-07-08 Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell

Publications (1)

Publication Number Publication Date
JP2007018891A true JP2007018891A (en) 2007-01-25

Family

ID=37755873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199572A Pending JP2007018891A (en) 2005-07-08 2005-07-08 Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell

Country Status (1)

Country Link
JP (1) JP2007018891A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026891A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Photoelectric element and sulfide system compound semiconductor
JP2009078946A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Core-shell type metal oxide particle and method for producing the same
WO2010095608A1 (en) * 2009-02-20 2010-08-26 株式会社豊田中央研究所 Sulfide and photoelectric element
JP2010208923A (en) * 2009-03-12 2010-09-24 Univ Of Yamanashi Artificial superlattice dielectric nanoparticle and method of manufacturing the same
KR101035389B1 (en) 2008-03-31 2011-05-20 영남대학교 산학협력단 Bulk heterojunction solar cell and Method of manufacturing the same
US8097885B2 (en) 2007-06-11 2012-01-17 Canon Kabushiki Kaisha Compound semiconductor film, light emitting film, and manufacturing method thereof
WO2013002057A1 (en) * 2011-06-27 2013-01-03 京セラ株式会社 Method for producing semiconductor layer, method for producing photoelectric conversion device, and semiconductor starting material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097885B2 (en) 2007-06-11 2012-01-17 Canon Kabushiki Kaisha Compound semiconductor film, light emitting film, and manufacturing method thereof
JP2009026891A (en) * 2007-07-18 2009-02-05 Toyota Central R&D Labs Inc Photoelectric element and sulfide system compound semiconductor
JP2009078946A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Core-shell type metal oxide particle and method for producing the same
KR101035389B1 (en) 2008-03-31 2011-05-20 영남대학교 산학협력단 Bulk heterojunction solar cell and Method of manufacturing the same
WO2010095608A1 (en) * 2009-02-20 2010-08-26 株式会社豊田中央研究所 Sulfide and photoelectric element
US8580157B2 (en) 2009-02-20 2013-11-12 Kabushiki Kaisha Toyota Chuo Kenkyusho Sulfide and photoelectric element
JP2010208923A (en) * 2009-03-12 2010-09-24 Univ Of Yamanashi Artificial superlattice dielectric nanoparticle and method of manufacturing the same
WO2013002057A1 (en) * 2011-06-27 2013-01-03 京セラ株式会社 Method for producing semiconductor layer, method for producing photoelectric conversion device, and semiconductor starting material
JPWO2013002057A1 (en) * 2011-06-27 2015-02-23 京セラ株式会社 Semiconductor layer manufacturing method, photoelectric conversion device manufacturing method, and semiconductor raw material
US9287434B2 (en) 2011-06-27 2016-03-15 Kyocera Corporation Method for producing semiconductor layer, method for producing photoelectric conversion device, and semiconductor starting material

Similar Documents

Publication Publication Date Title
KR101553104B1 (en) Photoelectric conversion element, photoelectrochemical battery, dye for photoelectric conversion element, and dye solution for photoelectric conversion element
JP5572029B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
WO2013047615A1 (en) Photoelectric conversion element, photoelectrochemical cell, and metal complex pigment used in same
JP2007018891A (en) Manufacturing method of treated metal oxide semiconductor particle, manufacturing method of photoelectric conversion electrode using the treated metal oxide semiconductor particle manufactured by the method, and photoelectric conversion cell
WO2012017869A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4999334B2 (en) Dye compound, photoelectric conversion element and photoelectrochemical cell using the compound
JP5620496B2 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP5620315B2 (en) Photoelectric conversion element and photoelectrochemical cell
JP2003157914A (en) Photoelectric conversion element, manufacturing method of the same, and photocell
JP4111360B2 (en) Gel electrolyte, gel electrolyte for photoelectrochemical cell, and photoelectrochemical cell
JP2007042534A (en) Metal oxide semiconductor particle dispersion body, manufacturing method of metal oxide semiconductor electrode, and photoelectric transfer cell
JP2012051952A (en) Pigment, photoelectric element and photoelectrochemical battery
KR20100115629A (en) Metal oxide semiconductor electrodes comprising hyper-hydrophobic compounds and manufacturing methods thereof
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
WO2012017873A1 (en) Metal complex dye, photoelectric conversion element and photoelectrochemical cell
JP2007042572A (en) Manufacturing method of treated metal oxide semiconductor particle dispersion body, manufacturing method of semiconductor electrode using treated metal oxide semiconductor particle dispersion body munufactured by this method, and photoelectric transfer cell
JP2012036239A (en) Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
WO2015002081A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, ligand, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
JP2008226582A (en) Photoelectric conversion element and solar cell
JP5332114B2 (en) Photoelectric conversion element and solar cell
WO2018061983A1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
JP6472665B2 (en) Dye-sensitized solar cell, dye-sensitized solar cell module, and method for producing dye-sensitized solar cell
JP2001196105A (en) Photoelectric transducer and photoelectrochemical cell