JP5463099B2 - Hollow silica powder, production method and use thereof - Google Patents

Hollow silica powder, production method and use thereof Download PDF

Info

Publication number
JP5463099B2
JP5463099B2 JP2009191591A JP2009191591A JP5463099B2 JP 5463099 B2 JP5463099 B2 JP 5463099B2 JP 2009191591 A JP2009191591 A JP 2009191591A JP 2009191591 A JP2009191591 A JP 2009191591A JP 5463099 B2 JP5463099 B2 JP 5463099B2
Authority
JP
Japan
Prior art keywords
particles
core
water
powder
hollow silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009191591A
Other languages
Japanese (ja)
Other versions
JP2011042527A (en
Inventor
幹男 今野
大輔 長尾
美知子 村岡
卓 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Denka Co Ltd
Original Assignee
Tohoku University NUC
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Denki Kagaku Kogyo KK filed Critical Tohoku University NUC
Priority to JP2009191591A priority Critical patent/JP5463099B2/en
Publication of JP2011042527A publication Critical patent/JP2011042527A/en
Application granted granted Critical
Publication of JP5463099B2 publication Critical patent/JP5463099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、中空シリカ粉末に関する。 The present invention relates to a hollow silica powder.

近年、中空粉末は低屈折率、低誘電率、高空隙率であるため、反射防止材、低誘電率材、断熱材等の充填材、ドラッグデリバリーシステムのための担体などとして、種々検討されている。シリカ等のシリコン化合物からなる中空粉末は化学的安定性に優れるが、粒子サイズが数〜数十ナノメートルの中空シリカ粉末は、さらに透明性、流動性及び充填性にも優れるため、特に重用されている。 In recent years, hollow powders have a low refractive index, a low dielectric constant, and a high porosity, and thus have been studied variously as fillers for antireflection materials, low dielectric constant materials, heat insulating materials, and carriers for drug delivery systems. Yes. Hollow powders made of silicon compounds such as silica are excellent in chemical stability, but hollow silica powders with a particle size of several to several tens of nanometers are particularly important because they are also excellent in transparency, fluidity and filling properties. ing.

粒子サイズが数〜数十ナノメートルの中空粉末の製造方法としては、種々の方法が提案されているが、外殻(シェル)がシリカであるコア−シェル粒子のコア粒子を除去することで、内部が空洞であるシリカ粉末を得る方法が一般的である。かかる方法は、コア粒子をあたかも型板(テンプレート)のように利用するため、テンプレート法と呼ばれる。さらに、コア粒子として無機化合物を用いる方法は無機テンプレート法、有機ポリマーを用いる方法は有機テンプレート法と呼ばれる。 Various methods have been proposed as a method for producing a hollow powder having a particle size of several to several tens of nanometers, but by removing the core particles of the core-shell particles whose outer shell (shell) is silica, A general method is to obtain silica powder having a hollow inside. Such a method is called a template method because the core particles are used as if they were a template (template). Furthermore, a method using an inorganic compound as the core particles is called an inorganic template method, and a method using an organic polymer is called an organic template method.

無機テンプレート法においては、コア粒子として、酸又は酸性カチオン交換樹脂による溶解除去が可能な、シリカと他の無機化合物の複合物を用いる方法(特許文献1〜2)、炭酸カルシウムを用いる方法(特許文献3〜4)又は酸化亜鉛を用いる方法(特許文献5)が提案されている。有機テンプレート法においては、コア粒子としてスチレン重合体またはスチレン/ジビニルベンゼン共重合体を用いる方法(特許文献6)、スチレン重合体またはメラミン−ホルムアルデヒド共重合体を用いる方法(特許文献7)、スチレン、メタクリル酸エステルまたはアクリル酸エステルの重合体を用いる方法(特許文献8)が提案されている。 In the inorganic template method, as a core particle, a method using a composite of silica and another inorganic compound that can be dissolved and removed with an acid or an acidic cation exchange resin (Patent Documents 1 and 2), a method using calcium carbonate (patent) Documents 3 to 4) or a method using zinc oxide (Patent Document 5) has been proposed. In the organic template method, a method using a styrene polymer or a styrene / divinylbenzene copolymer as a core particle (Patent Document 6), a method using a styrene polymer or a melamine-formaldehyde copolymer (Patent Document 7), styrene, A method using a polymer of methacrylic acid ester or acrylic acid ester (Patent Document 8) has been proposed.

テンプレート法においては、粒子を中空化するためにコアの除去が必要になる。コア除去の具体的な方法は、無機テンプレート法においては酸(特許文献1〜4)あるいは酸性カチオン交換樹脂(特許文献5)によるコアの溶解除去である。また、有機テンプレート法においては、コア−シェル粒子を500〜600℃で加熱することによる有機ポリマーコアの熱分解、燃焼による除去(特許文献6〜7)又は加熱した液体酸化剤による酸化除去である(特許文献8)。 In the template method, the core needs to be removed to hollow out the particles. A specific method for removing the core is dissolution and removal of the core with an acid (patent documents 1 to 4) or an acidic cation exchange resin (patent document 5) in the inorganic template method. In the organic template method, the organic polymer core is thermally decomposed by heating the core-shell particles at 500 to 600 ° C., removed by combustion (Patent Documents 6 to 7), or oxidized by a heated liquid oxidant. (Patent Document 8).

しかしながら、これら従来のテンプレート法は、以下に示す問題点を有していた。無機テンプレート法のコア除去法は、酸あるいは酸性カチオン交換樹脂によるコアの溶解除去が一般的である。かかる酸性条件下のコア除去を経た場合、シェルを構成するシリカの末端にはシラノール基(Si−OH基)が形成される。一方、有機テンプレート法においては無機テンプレート法と異なりコア除去時にシラノール基が形成されることは少ないが、コアの有機ポリマー粒子は一般に乳化重合法によって形成される場合が多く、かかる粒子をコアに用いると、シリカシェル形成の初期にコア粒子とシリカシェルの界面に乳化剤が存在する。この乳化剤の成分は、イオン性界面活性剤である場合が多いため、シリカシェルもイオン性を帯びやすくなる。その結果、形成初期のシリカシェルには多くのシラノール基が含まれる。このように、従来のテンプレート法は、無機テンプレート、有機テンプレートの何れの方法においても、シリカシェル中に多くのシラノール基が形成されていた。 However, these conventional template methods have the following problems. The core removal method of the inorganic template method is generally performed by dissolving and removing the core with an acid or acidic cation exchange resin. When the core is removed under such acidic conditions, silanol groups (Si—OH groups) are formed at the ends of the silica constituting the shell. On the other hand, in the organic template method, unlike the inorganic template method, silanol groups are rarely formed when the core is removed, but the organic polymer particles of the core are generally formed by an emulsion polymerization method, and such particles are used for the core. And an emulsifier exists in the interface of a core particle and a silica shell at the early stage of silica shell formation. Since the component of this emulsifier is often an ionic surfactant, the silica shell is also easily ionic. As a result, the silica shell in the early stage of formation contains many silanol groups. As described above, in the conventional template method, many silanol groups are formed in the silica shell in both the inorganic template method and the organic template method.

シラノール基は、中空シリカ粒子の表面処理(シランカップリング処理)を行う際に反応の起点となるため、適度に存在することは必要である。しかし、過度に存在する場合は、酸性の官能基であり塩基性物質と反応しやすいため、中空シリカ粉末をアルカリ水溶液に浸した際にシリカシェルが溶解しやすくなってしまう。中空シリカ粉末を反射防止材として用いる場合、中空シリカ粉末と被膜形成用マトリックスとを含んでなる塗料が基材表面上に塗布されて被膜が形成されるが、この被膜表面の汚れを除去するためにアルカリ性洗剤で洗浄を行う場合、溶解しやすいシェルからなる中空シリカ粉末では、シェルが溶解して孔が開いてしまい、被膜の劣化が促進されてしまう。このため、従来の反射防止材は、洗浄効果が高いアルカリ性洗剤を用いることができないという問題点を有していた。 Since the silanol group is a starting point of the reaction when the surface treatment (silane coupling treatment) of the hollow silica particles is performed, it needs to be present appropriately. However, when it exists excessively, it is an acidic functional group and easily reacts with a basic substance. Therefore, when the hollow silica powder is immersed in an alkaline aqueous solution, the silica shell is easily dissolved. When hollow silica powder is used as an antireflective material, a coating comprising a hollow silica powder and a film-forming matrix is applied onto the substrate surface to form a film. In order to remove dirt on the film surface In the case of washing with an alkaline detergent, the hollow silica powder composed of a shell that is easily dissolved dissolves the shell and opens a hole, thereby promoting the deterioration of the coating film. For this reason, the conventional antireflection material has a problem that an alkaline detergent having a high cleaning effect cannot be used.

特開2001−233611号公報JP 2001-233611 A WO2006/009132号公報WO2006 / 009132 Publication 特開2006−263550号公報JP 2006-263550 A 特開2006−256921号公報JP 2006-256922 A 特開2006−335605号公報JP 2006-335605 A 特開平6−142491号公報JP-A-6-142491 特表2003−522621号公報Special table 2003-522621 gazette WO2008/061670号公報WO2008 / 061670

本発明は、耐アルカリ性の優れた中空シリカ粉末、その製造方法及び用途を提供するものである。 The present invention provides a hollow silica powder having excellent alkali resistance, a method for producing the same, and a use thereof.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)シリカ(SiO)を主成分とし、平均粒子径が5〜120nm、シェルの厚さが1〜35nm、単位表面積当たりのシラノール基(≡Si−OH基)の数が1〜10個/nmであることを特徴とする中空シリカ粉末。
(2)表面をシランカップリング剤で処理してなる、前記(1)に記載の中空シリカ粉末。
(3)コアが有機ポリマー、シェルがシリカであるコアシェル粒子からなる粉末を製造した後にコアを除去する中空シリカ粉末の製造方法において、
(A)コアとなる有機ポリマー粒子は、重合性モノマーを主成分としてこれにイオン性コモノマーをモル比で150:1〜2:1の割合で共重合させてなるソープフリー重合によって平均粒子径5〜90nmの粒子を製造し、
(B)その後この有機ポリマー粒子を含む液体に、陽イオン性水溶性高分子を加えた後、非イオン性水溶性高分子を加え、さらにコア粒子を含む液体を水からアルコールに置換した後、アルコキシシラン、水及び塩基性物質を添加してシリカを被覆し、平均粒子径が5〜120nm、シリカシェルの厚さが1〜35nmのコアシェル粒子からなる粉末を製造し、その後コアを除去することを特徴とする中空シリカ粉末の製造方法。
(4)重合性モノマーがスチレン、イオン性コモノマーがp−スチレンスルホン酸塩であることを特徴とする、前記(3)に記載の中空シリカ粉末の製造方法。
(5)陽イオン性水溶性高分子が分子量1000〜15000のポリアリルアミン塩酸塩、非イオン性水溶性高分子が分子量10000〜1000000のポリビニルピロリドンであることを特徴とする、前記(3)又は前記(4)に記載の中空シリカ粉末の製造方法。
(6)前記(1)又は前記(2)に記載の中空シリカ粉末5〜40質量%を含有し、スラリー中の中空シリカ粉末と有機溶媒の合計が90〜99.9質量%であり、残部は主として水であることを特徴とするスラリー。
(7)有機溶媒が25℃で液体のアルコール及び/又は25℃で液体のケトンであることを特徴とする前記(6)に記載のスラリー。
(8)前記(1)又は前記(2)に記載の中空シリカ粉末と、被膜形成用マトリックスとを含んでなる透明被膜形成用塗料。
(9)前記(1)又は前記(2)に記載の中空シリカ粉末と、被膜形成用マトリックスとを含んでなる被膜が、単独でまたは他の被膜とともに基材表面上に形成された被膜付き基材。
The present invention employs the following means in order to solve the above problems.
(1) Mainly composed of silica (SiO 2 ), an average particle diameter of 5 to 120 nm, a shell thickness of 1 to 35 nm, and 1 to 10 silanol groups (≡Si—OH groups) per unit surface area Hollow silica powder characterized by being / nm 2 .
(2) The hollow silica powder according to (1), wherein the surface is treated with a silane coupling agent.
(3) In a method for producing a hollow silica powder in which a core is removed after producing a powder composed of core-shell particles in which the core is an organic polymer and the shell is silica.
(A) The organic polymer particles as the core have an average particle diameter of 5 by soap-free polymerization in which a polymerizable monomer is a main component and an ionic comonomer is copolymerized at a molar ratio of 150: 1 to 2: 1. Producing ~ 90nm particles,
(B) Then, after adding a cationic water-soluble polymer to the liquid containing the organic polymer particles, adding a nonionic water-soluble polymer, and further substituting the liquid containing the core particles from water to alcohol, Adding alkoxysilane, water and a basic substance to coat silica, producing a powder composed of core-shell particles having an average particle diameter of 5 to 120 nm and a silica shell thickness of 1 to 35 nm, and then removing the core A process for producing a hollow silica powder characterized by
(4) The method for producing a hollow silica powder as described in (3) above, wherein the polymerizable monomer is styrene and the ionic comonomer is p-styrene sulfonate.
(5) The above (3) or the above, wherein the cationic water-soluble polymer is polyallylamine hydrochloride having a molecular weight of 1000 to 15000, and the nonionic water-soluble polymer is polyvinylpyrrolidone having a molecular weight of 10,000 to 1,000,000. The manufacturing method of the hollow silica powder as described in (4).
(6) The hollow silica powder according to (1) or (2) is contained in an amount of 5 to 40% by mass, and the total of the hollow silica powder and the organic solvent in the slurry is 90 to 99.9% by mass, and the balance Is a slurry characterized by being mainly water.
(7) The slurry according to (6) above, wherein the organic solvent is an alcohol liquid at 25 ° C. and / or a ketone liquid at 25 ° C.
(8) A paint for forming a transparent film comprising the hollow silica powder according to (1) or (2) and a film forming matrix.
(9) A coated base in which a coating comprising the hollow silica powder according to (1) or (2) above and a coating-forming matrix is formed on the surface of the substrate alone or together with another coating Wood.

本発明によれば、耐アルカリ性に優れ、微細な中空シリカ粒子からなる粉末、これを含んでなる被膜形成用塗料及びこれを含んでなる被膜付き基材が得られる。 ADVANTAGE OF THE INVENTION According to this invention, it is excellent in alkali resistance and the powder which consists of a fine hollow silica particle, the coating material for film formation containing this, and the base material with a film containing this are obtained.

本発明の中空粒子からなる粉末の主成分はシリカ(SiO)である。他の成分として、原材料に含まれる金属不純物の残留物、コアの有機ポリマーや水溶性ポリマーに由来する炭素成分の残留物等が極微量含まれる場合があるが、これらの不純物は中空粒子からなる粉末の性質に影響を及ぼさない。 The main component of the powder composed of the hollow particles of the present invention is silica (SiO 2 ). As other components, there may be a trace amount of residues of metal impurities contained in the raw materials, carbon component residues derived from the core organic polymer or water-soluble polymer, etc. These impurities consist of hollow particles. Does not affect the properties of the powder.

本発明の中空粒子からなる粉末の平均粒子径は5〜120nm、好ましくは5〜65nmである。平均粒子径は、透過型電子顕微鏡又は動的光散乱法による粒子径測定装置によって測定できるが、動的光散乱法による粒子径は、測定に供するスラリー(粉末を溶媒に分散させた液)の粒子濃度や粘度、あるいは溶媒組成の影響を受けて変動しやすいため、本発明においては特に透過型電子顕微鏡を用いて得た粒子像の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2 を粒子径とした。この方法で100〜200個の粒子の粒子径を測定し、その算術平均値を平均粒子径とした。平均粒子径が5nmよりも小さいと、中空状の粒子形態の維持が困難になる。また平均粒子径が120nmを超えると、反射防止材の充填材として用いた場合に透明性が維持できなくなる。このため、何れも本発明に適さない。 The average particle diameter of the powder comprising the hollow particles of the present invention is 5 to 120 nm, preferably 5 to 65 nm. The average particle size can be measured by a transmission electron microscope or a particle size measuring device using a dynamic light scattering method, but the particle size by the dynamic light scattering method is the value of a slurry (liquid in which powder is dispersed in a solvent) used for measurement. In particular, in the present invention, the maximum length of a particle image obtained using a transmission electron microscope (Dmax: the maximum at two points on the contour of the particle image) is easily affected by the influence of particle concentration, viscosity, or solvent composition. Length) and maximum vertical length (DV-max: the shortest length connecting two straight lines when the image is sandwiched between two straight lines parallel to the maximum length) The value (Dmax × DV-max) 1/2 was defined as the particle diameter. The particle diameter of 100 to 200 particles was measured by this method, and the arithmetic average value was defined as the average particle diameter. When the average particle diameter is smaller than 5 nm, it is difficult to maintain a hollow particle form. On the other hand, when the average particle diameter exceeds 120 nm, transparency cannot be maintained when used as a filler for an antireflection material. For this reason, none is suitable for the present invention.

本発明の中空粒子からなる粉末のシェルの厚さは、1〜35nm、好ましくは1〜20nmである。シェルの厚さは以下の方法で測定した。中空粒子の透過型電子顕微鏡像は、シェルの部分(外縁)の色が濃く、空洞部分(内部)の色が薄い、二重のコントラストを有する像として得られる。コントラストが薄い空洞部分の最大長(IDmax)、及び最大長垂直長(IDV−max)を、前項の粒子像と同様にして測長し、その相乗平均値(IDmax×IDV−max)1/2 を空洞部分の径とした。前項にて粒子径を測定した100〜200個の粒子像について、空洞部分の径を測定し、その算術平均値を平均空洞径とした。平均粒子径と平均空洞径から、{(平均粒子径)−(平均空洞径)}÷2 を算出し、これをシェルの厚さとした。シェルの厚さが1nmよりも小さいと、シェルが破れやすくなり、中空の粒子形態の維持が困難になる。シェルの厚さが35nmよりも大きいと、粒子の屈折率が増大し、反射防止材の充填材として用いた場合に、充分な反射防止性能が得られなくなる。このため、何れも本発明に適さない。 The thickness of the powder shell comprising the hollow particles of the present invention is 1 to 35 nm, preferably 1 to 20 nm. The thickness of the shell was measured by the following method. The transmission electron microscopic image of the hollow particles is obtained as an image having a double contrast in which the shell portion (outer edge) is dark and the cavity portion (inner) is light. The maximum length (IDmax) and the maximum vertical length (IDV-max) of the cavity portion with low contrast are measured in the same manner as the particle image in the previous section, and the geometric mean value (IDmax × IDV-max) 1/2 Was the diameter of the cavity. About 100 to 200 particle images whose particle diameter was measured in the previous section, the diameter of the cavity portion was measured, and the arithmetic average value thereof was defined as the average cavity diameter. From the average particle diameter and the average cavity diameter, {(average particle diameter) − (average cavity diameter)} / 2 was calculated, and this was defined as the thickness of the shell. When the thickness of the shell is smaller than 1 nm, the shell is easily broken and it is difficult to maintain a hollow particle form. When the thickness of the shell is larger than 35 nm, the refractive index of the particles increases, and sufficient antireflection performance cannot be obtained when used as a filler for the antireflection material. For this reason, none is suitable for the present invention.

本発明の中空シリカ粉末は、高い耐アルカリ性を有する。具体的には温度20〜30℃、pH12のアルカリ性水溶液に24時間浸漬しても、シリカシェルが溶解せずに中空の粒子形態を維持するため、1.30以下の低い屈折率を維持することができる。 The hollow silica powder of the present invention has high alkali resistance. Specifically, even when immersed in an alkaline aqueous solution at a temperature of 20 to 30 ° C. and pH 12 for 24 hours, the silica shell does not dissolve and maintains a hollow particle form, so that a low refractive index of 1.30 or less is maintained. Can do.

本発明の中空シリカ粉末は、そのまま反射防止材の充填材として用いることも可能であるが、マトリックス樹脂との親和性を向上させ、高い分散性を発揮させるためには、粉末粒子の表面をシランカップリング剤で処理することが好ましい。シランカップリング剤としては、メタクリロキシシラン系カップリング剤、エポキシシラン系カップリング剤等が適するが、3−メタクリロキシプロピルトリメトキシシラン(MPTMS)、3−アクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン等が特に好適である。 The hollow silica powder of the present invention can be used as it is as a filler for an antireflective material. However, in order to improve the affinity with the matrix resin and to exhibit high dispersibility, the surface of the powder particles is made of silane. It is preferable to treat with a coupling agent. As the silane coupling agent, a methacryloxysilane coupling agent, an epoxysilane coupling agent and the like are suitable, but 3-methacryloxypropyltrimethoxysilane (MPTMS), 3-acryloxypropyltrimethoxysilane, 3-glycol. Sidoxypropyltrimethoxysilane and the like are particularly suitable.

本発明の中空シリカ粒子からなる粉末の製造方法としては、例えば以下の方法が採用される。コアが有機ポリマー、シェルがシリカであるコアシェル粒子からなる粉末を製造した後にコアを除去する中空シリカ粉末の製造方法において、コアとなる有機ポリマー粒子は、界面活性剤を用いずに、重合性モノマーを主成分としてこれにイオン性コモノマーを、共重合させてなる、ソープフリー重合によって製造される。この際、重合性モノマーとイオン性コモノマーの割合を、モル比で150:1〜2:1とすることによって、平均粒子径5〜90nmの有機ポリマー粒子が形成される。イオン性コモノマー割合が上記よりも少ないと、有機ポリマー粒子の径が90nmよりも大きくなるため、本発明には適さない。反対に上記よりも多いとイオン性コモノマーが乳化重合におけるイオン性界面活性剤と同様に作用してシリカシェルがイオン性を帯びやすくなり、その結果形成初期のシリカシェルには多くのシラノール基が含まれるようになるため、本発明には適さない。 As a method for producing a powder comprising the hollow silica particles of the present invention, for example, the following method is employed. In the method for producing a hollow silica powder in which the core is removed after producing a powder composed of core-shell particles in which the core is an organic polymer and the shell is silica, the organic polymer particles serving as the core are polymerizable monomers without using a surfactant. Is produced by soap-free polymerization, in which an ionic comonomer is copolymerized. At this time, organic polymer particles having an average particle diameter of 5 to 90 nm are formed by setting the molar ratio of the polymerizable monomer and the ionic comonomer to 150: 1 to 2: 1. If the ratio of the ionic comonomer is smaller than the above, the diameter of the organic polymer particles is larger than 90 nm, and thus is not suitable for the present invention. On the other hand, if the amount is larger than the above, the ionic comonomer acts like an ionic surfactant in emulsion polymerization, and the silica shell tends to be ionic, and as a result, the silica shell in the early stage contains many silanol groups. Therefore, it is not suitable for the present invention.

本発明に用いられる重合性モノマーは、スチレン、メタクリル酸メチルなどのメタクリル酸エステル、アクリル酸メチルなどのアクリル酸エステルなどであるが、特にスチレンが好ましい。重合製モノマーに、必要に応じて架橋剤であるジビニルベンゼン(DVB)等を微量添加しても良い。また本発明に用いられるイオン性コモノマーは、p−スチレンスルホン酸塩、メタクリル酸塩、アクリル酸塩などであるが、p−スチレンスルホン酸塩、特にp−スチレンスルホン酸ナトリウムが好ましい。 The polymerizable monomer used in the present invention is methacrylic acid ester such as styrene or methyl methacrylate, acrylic acid ester such as methyl acrylate, etc., and styrene is particularly preferable. A small amount of divinylbenzene (DVB), which is a cross-linking agent, may be added to the polymerization monomer as necessary. The ionic comonomer used in the present invention is p-styrene sulfonate, methacrylate, acrylate, etc., but p-styrene sulfonate, particularly sodium p-styrene sulfonate is preferred.

ソープフリー重合によるコア粒子の形成方法の一例を示す。混合用の撹拌翼付きセパラブルフラスコ等の反応器を用い、水(脱イオン水、蒸留水又は純水)をフラスコに入れて窒素ガス等の不活性ガスをバブリングして酸素を脱気する。その後p−スチレンスルホン酸ナトリウム(以下p−NaSSという)を含む水溶液を、p−NaSSの水に対する濃度が0.1〜50ミリモル/リットルになるように加えて撹拌した後、スチレンを水に対する濃度が5〜200ミリモル/リットルになるように加えて撹拌を行い、さらに過硫酸カリウム等の重合開始剤を含む水溶液を加え撹拌を続けながら恒温槽等を用いてフラスコを40〜90℃に加熱して重合反応を行い、ソープフリー重合ポリスチレン粒子からなる粉末を得ることができる。 An example of a method for forming core particles by soap-free polymerization is shown. Using a reactor such as a separable flask with a stirring blade for mixing, water (deionized water, distilled water or pure water) is placed in the flask, and an inert gas such as nitrogen gas is bubbled to degas oxygen. Thereafter, an aqueous solution containing sodium p-styrenesulfonate (hereinafter referred to as p-NaSS) was added and stirred so that the concentration of p-NaSS with respect to water was 0.1 to 50 mmol / liter, and then the concentration of styrene with respect to water was increased. The flask is heated to 40 to 90 ° C. using a thermostatic bath or the like while continuing the stirring by adding an aqueous solution containing a polymerization initiator such as potassium persulfate. Thus, a polymerization reaction can be performed to obtain a powder composed of soap-free polymerized polystyrene particles.

ポリスチレン等の有機ポリマー粒子からなる粉末にシリカを被覆する場合、従来は粉末表面をシランカップリング剤で処理した後に被覆する方法が用いられた(特許文献8)。しかし、シランカップリング剤は加水分解してシラノール基を生成するため、被覆後のシリカシェルにシラノール基が残存しやすくなり、中空シリカ粉末をアルカリ水溶液に浸した際にシリカシェルが溶解しやすくなってしまう。本発明においては、シリカ被覆の際にシランカップリング剤は用いずに、陽イオン性水溶性高分子及び非イオン性水溶性高分子を用いることが特徴である。陽イオン性水溶性高分子は、有機ポリマー粒子に緩く吸着し、粒子周囲に存在するため、後に添加するアルコキシシラン(シリカ源物質)を有機ポリマー粒子の周囲に静電気力で引き寄せる。このためアルコキシシランが加水分解して生成する珪酸化合物(SiO・nHO) が、有機ポリマー粒子表面で脱水縮合することによってシリカシェルが形成される。本発明は従来と異なりシランカップリング剤を使用しないため、シリカシェルにシラノール基が残存しにくく、その結果耐アルカリ性に優れたシリカシェルが形成される。シリカシェルに残存するシラノール基量は、以下の方法で測定することができる。中空シリカ粉末約0.5gを、高温水分気化装置(三菱化学社製、VA−122)に入れて加熱する。200℃未満で中空シリカ粉末から発生する水分は物理吸着水に由来するものであるため無視し、200〜900℃で発生する水分をシラノール基由来のものとして、アルゴンガスを用いて、カールフィッシャー電量滴定法水分計(三菱化学社製、CA−100)に導入して定量する。200〜900℃で発生した水分の1個の分子が、1個のシラノール基に由来するものとして、水分量定量値から単位質量当たりの中空シリカ粉末が有するシラノール基由来の水分子数を求める。一方この粉末0.2gを用い、全自動比表面積測定装置(マイクロデータ社製、マイクロソープ4232II)を用いBET一点法によって比表面積を測定する。単位質量当たりの水分子数を比表面積値(単位質量当たりの表面積値)で除することによって、中空シリカ粉末の単位表面積当たりのシラノール基量(個/nm)を測定する。本発明の中空シリカ粉末の単位表面積当たりのシラノール基量は、1〜10個/nmである。シラノール基量がこれよりも少ないと表面処理(シランカップリング処理)を充分に行うことができない。またシラノール基がこれよりも多いと粉末の耐アルカリ性が得られない。このため、何れも本発明に適さない。なお、脱水縮合の際、近接する粒子同士が脱水縮合物で架橋されて凝集することを防ぐために、本発明においてはさらに非イオン性水溶性高分子を立体障害物として用いる。非イオン性水溶性高分子は、陽イオン性水溶性高分子を加えた後、アルコキシシランを加える前に、有機ポリマー粒子を含む液体に加えられる。 When silica is coated on a powder composed of organic polymer particles such as polystyrene, conventionally, a method of coating the powder surface after treating with a silane coupling agent has been used (Patent Document 8). However, since the silane coupling agent is hydrolyzed to generate silanol groups, the silanol groups are likely to remain in the coated silica shell, and the silica shell is likely to dissolve when the hollow silica powder is immersed in an alkaline aqueous solution. End up. The present invention is characterized in that a cationic water-soluble polymer and a nonionic water-soluble polymer are used without using a silane coupling agent in the silica coating. Since the cationic water-soluble polymer is adsorbed loosely on the organic polymer particles and exists around the particles, the alkoxysilane (silica source material) to be added later is attracted around the organic polymer particles by electrostatic force. Therefore, a silica shell is formed by dehydration condensation of silicic acid compounds (SiO 2 .nH 2 O) m produced by hydrolysis of alkoxysilane on the surface of the organic polymer particles. Since the present invention does not use a silane coupling agent unlike the prior art, silanol groups hardly remain in the silica shell, and as a result, a silica shell excellent in alkali resistance is formed. The amount of silanol groups remaining in the silica shell can be measured by the following method. About 0.5 g of hollow silica powder is placed in a high temperature moisture vaporizer (Mitsubishi Chemical Corporation, VA-122) and heated. Moisture generated from the hollow silica powder at less than 200 ° C. is derived from physically adsorbed water, so it is ignored, and moisture generated at 200-900 ° C. is derived from silanol groups, using Argon gas, and Karl Fischer coulometry. It introduce | transduces into a titration method moisture meter (the Mitsubishi Chemical make, CA-100), and quantifies. Assuming that one molecule of water generated at 200 to 900 ° C. is derived from one silanol group, the number of water molecules derived from the silanol group of the hollow silica powder per unit mass is determined from the moisture content quantitative value. On the other hand, 0.2 g of this powder is used, and the specific surface area is measured by a BET single point method using a fully automatic specific surface area measuring device (Microsoap 4232II, manufactured by Microdata). By dividing the number of water molecules per unit mass by the specific surface area value (surface area value per unit mass), the amount of silanol groups (units / nm 2 ) per unit surface area of the hollow silica powder is measured. The amount of silanol groups per unit surface area of the hollow silica powder of the present invention is 1 to 10 / nm 2 . If the amount of silanol groups is less than this, the surface treatment (silane coupling treatment) cannot be performed sufficiently. On the other hand, if there are more silanol groups, the alkali resistance of the powder cannot be obtained. For this reason, none is suitable for the present invention. In the dehydration condensation, a nonionic water-soluble polymer is further used as a steric hindrance in the present invention in order to prevent adjacent particles from being crosslinked and aggregated with the dehydration condensate. The nonionic water-soluble polymer is added to the liquid containing the organic polymer particles after adding the cationic water-soluble polymer and before adding the alkoxysilane.

本発明に用いる陽イオン性水溶性高分子はポリアリルアミン塩酸塩(PAH)、ポリアクリロキシアルキルアンモニウム塩酸塩等であるが、中でも分子量1000〜15000のPAHが好ましく、特に分子量15000のものが好ましい。また本発明に用いる非イオン性水溶性高分子は、ポリビニルピロリドン(PVP)、ポリアクリルアミド(PAM),ポリエチレンオキシド(PEO)等であるが、中でも分子量10000〜1000000のPVPが好ましく、特に分子量360000のものが好ましい。本発明においては、PVPを添加した後、コア粒子を含む液体を水からアルコールに置換するが、アルコールとしてはエタノール、イソプロパノール、エタノール等が好ましく、特にエタノールが好ましい。その後シリカシェル(被覆)を形成するためアルコキシシランを添加するが、アルコキシシランとしてはテトラエトキシシラン(TEOS)、テトラメトキシシラン(TMOS)、テトライソプロポキシシラン(TiPOS)等が好ましく、特にTEOSが好ましい。さらにその後アルコキシシランを加水分解させるために、水及び塩基性物質を添加するが、塩基性物質としては、アンモニア、水酸化ナトリウム等が好ましく、特にアンモニアが好ましい。 The cationic water-soluble polymer used in the present invention is polyallylamine hydrochloride (PAH), polyacryloxyalkylammonium hydrochloride, etc., among which PAH having a molecular weight of 1000 to 15000 is preferable, and one having a molecular weight of 15000 is particularly preferable. The nonionic water-soluble polymer used in the present invention is polyvinyl pyrrolidone (PVP), polyacrylamide (PAM), polyethylene oxide (PEO), etc. Among them, PVP having a molecular weight of 10,000 to 1,000,000 is preferable, and a molecular weight of 360000 is particularly preferable. Those are preferred. In the present invention, after adding PVP, the liquid containing the core particles is replaced with water by alcohol. As the alcohol, ethanol, isopropanol, ethanol and the like are preferable, and ethanol is particularly preferable. Thereafter, alkoxysilane is added to form a silica shell (coating). As alkoxysilane, tetraethoxysilane (TEOS), tetramethoxysilane (TMOS), tetraisopropoxysilane (TiPOS), etc. are preferable, and TEOS is particularly preferable. . Further, water and a basic substance are then added to hydrolyze the alkoxysilane. As the basic substance, ammonia, sodium hydroxide, and the like are preferable, and ammonia is particularly preferable.

シリカシェル形成(シリカ被覆)方法の一例を示す。重合反応終了後のソープフリー重合ポリスチレン粒子を含む液を室温まで冷却後、ポリアリルアミン塩酸塩(以下PAHという)がポリスチレン粒子に過度に吸着することを防ぐために電解質として0.01モル/リットルの水酸化ナトリウムを加えた後、PAHを水1リットル当たり0.1〜2g加えて撹拌する。この時、液のpHはアルカリ性であれば粒子が凝集しにくくなるため好ましい。その後遠心沈降等によりPAHが吸着したポリスチレン粒子を液相から分離して捕集する。水を加えた後、超音波分散等によって粒子を水中へ再分散させた後、PVPを水1リットル当たり1〜20g加えて撹拌する。遠心沈降等により粒子を捕集し、エタノールを加えてコア粒子を含む液体を水からエタノールに置換し、超音波分散によって粒子をエタノール中へ再分散させる。その後、シリカ源としてテトラエトキシシラン、アンモニア及び水を、それぞれエタノール1リットル当たり1〜50ミリモル、0.2〜10モル及び1〜20モル加えて、常温付近(10〜50℃)で数時間保持してコア粒子表面にシリカシェルの被覆を行う。 An example of a silica shell formation (silica coating) method is shown. After the polymerization reaction is completed, the liquid containing soap-free polymerized polystyrene particles is cooled to room temperature, and then 0.01 mol / liter of water as an electrolyte is used to prevent polyallylamine hydrochloride (hereinafter referred to as PAH) from being excessively adsorbed on the polystyrene particles. After sodium oxide is added, 0.1 to 2 g of PAH is added per liter of water and stirred. At this time, if the pH of the liquid is alkaline, it is preferable because the particles hardly aggregate. Thereafter, polystyrene particles adsorbed with PAH are separated from the liquid phase and collected by centrifugal sedimentation or the like. After adding water, the particles are redispersed in water by ultrasonic dispersion or the like, and then 1-20 g of PVP is added per liter of water and stirred. The particles are collected by centrifugal sedimentation, etc., ethanol is added to replace the liquid containing the core particles from water to ethanol, and the particles are redispersed in ethanol by ultrasonic dispersion. Thereafter, tetraethoxysilane, ammonia and water are added as silica sources in an amount of 1 to 50 mmol, 0.2 to 10 mol and 1 to 20 mol per liter of ethanol, respectively, and kept at around room temperature (10 to 50 ° C.) for several hours. Then, the surface of the core particle is coated with a silica shell.

コアシェル粒子を含む液から、遠心沈降等によって粒子を捕集した後、真空乾燥を行い、さらに高温に加熱してコア粒子を分解除去することによって、中空シリカ粒子からなる粉末が得られる。 After collecting the particles from the liquid containing the core-shell particles by centrifugal sedimentation or the like, vacuum drying is performed, and further, the core particles are decomposed and removed by heating to a high temperature to obtain a powder composed of hollow silica particles.

本発明の中空シリカ粉末とは、外殻を有し、内部に単一の空孔(空洞)を有する粒子からなる粉末である。中空粉末は、低屈折率、低誘電率、高空隙率であるため、反射防止材、低誘電率材、断熱材等の充填材、ドラッグデリバリーシステムのための担体などへの適用が考えられるが、大部分の用途において、粉末を構成する粒子が分散していることが必要になる。サイズが数〜数十ナノメートルの中空粒子の群からなる粉末は、乾燥状態では凝集が顕著であり分散粒子は得難いため、分散性が比較的良好なスラリー状にする必要がある。スラリーの溶媒としては水または有機溶媒の何れも用いることができるが、後に添加するマトリックスが有機物である場合は、水よりも有機溶媒が好ましい。 The hollow silica powder of the present invention is a powder composed of particles having an outer shell and having a single void (cavity) inside. Since the hollow powder has a low refractive index, low dielectric constant, and high porosity, it can be applied to antireflection materials, low dielectric constant materials, fillers such as heat insulating materials, and carriers for drug delivery systems. In most applications, it is necessary that the particles constituting the powder are dispersed. A powder composed of a group of hollow particles having a size of several to several tens of nanometers needs to be made into a slurry having relatively good dispersibility because aggregation is remarkable in a dry state and it is difficult to obtain dispersed particles. As the solvent for the slurry, either water or an organic solvent can be used. However, when a matrix to be added later is an organic substance, an organic solvent is preferable to water.

スラリー中の粒子の分散性をさらに向上させる方法として、ホモジナイザー又は湿式ジェットミルによる分散を行うことができる。ホモジナイザー装置としては、撹拌式(みづほ工業製、又はエム・テクニック製[商品名クレアミックス])又は超音波式(ブランソン製)等を、湿式ジェットミル装置としては、アルティマイザー、スターバースト(以上、スギノマシン製)、ナノジェットパル(常光製)、ナノメーカー(アドバンスト・ナノ・テクノロジー製)又はマイクロフルイダイザー(マイクロフルイディックス製)等を用いることができる。 As a method for further improving the dispersibility of the particles in the slurry, dispersion by a homogenizer or a wet jet mill can be performed. As a homogenizer device, an agitating type (manufactured by Mizuho Kogyo Co., Ltd. or M Technique [trade name Claremix]) or an ultrasonic type (manufactured by Branson) is used, and as a wet jet mill device, an optimizer, a starburst (above, Sugino Machine), NanoJet Pal (manufactured by Joko), Nano Maker (manufactured by Advanced Nano Technology), or Microfluidizer (manufactured by Microfluidics) can be used.

有機溶媒中で中空粒子の分散性を向上させる方法として、上記分散とは別に、又は上記分散と併せて、粒子表面を、メタクリロキシシラン系カップリング剤、エポキシシラン系カップリング剤等のシランカップリング剤で被覆する方法を用いることもできる。 As a method for improving the dispersibility of the hollow particles in an organic solvent, the silane cup such as a methacryloxy silane coupling agent, an epoxy silane coupling agent or the like is used for the particle surface separately from or in combination with the above dispersion. A method of coating with a ring agent can also be used.

有機溶媒中に中空粒子が分散したスラリーは、中空粒子が5〜40質量%であることが好ましく、10〜30質量%であることが更に好ましい。スラリー中の中空粒子と有機溶媒の合計が90〜99.9質量%が好ましく、95〜99.9質量%であることが更に好ましい。有機溶媒としては、メタノール、エタノール、ノルマルプロパノール、イソプロパノール、ノルマルブタノール、イソブタノール、ターシャリブタノール等、常用温度である25℃にて液体のアルコール、又はメチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等、25℃にて液体のケトンが好適である。 The slurry in which the hollow particles are dispersed in the organic solvent preferably has 5 to 40% by mass of hollow particles, and more preferably 10 to 30% by mass. The total of the hollow particles and the organic solvent in the slurry is preferably 90 to 99.9% by mass, and more preferably 95 to 99.9% by mass. As the organic solvent, methanol, ethanol, normal propanol, isopropanol, normal butanol, isobutanol, tertiary butanol, etc., liquid alcohol at normal temperature of 25 ° C., methyl ethyl ketone, diethyl ketone, methyl isobutyl ketone, etc., 25 ° C. A liquid ketone is preferred.

ケトンに分散したスラリーは、上記によって得たアルコールに分散したスラリーを、必要に応じて湿式ジェットミルにて分散し、さらに粒子表面をシランカップリング剤で被覆した後、クロスフロー限外濾過又は蒸留等の方法を用いて、溶媒をアルコールからケトンに置換することによって得られる。シランカップリング剤としては、エポキシシラン系カップリング剤、メタクリロキシシラン系カップリング剤等が好適に用いられる。 For the slurry dispersed in ketone, the slurry dispersed in alcohol obtained as described above is dispersed by a wet jet mill as necessary, and the particle surface is coated with a silane coupling agent, and then cross-flow ultrafiltration or distillation. Or the like, by replacing the solvent from alcohol to ketone. As the silane coupling agent, an epoxy silane coupling agent, a methacryloxy silane coupling agent, or the like is preferably used.

スラリーに所定量の透明被膜形成用マトリックスが加えられる。透明被膜形成用マトリックス添加量は、中空シリカ粉末と透明被膜形成用マトリックスの合計の体積に対する中空シリカ粉末の体積分率が5〜60体積%、好ましくは8〜55体積%になる量である。粉末がこれよりも少ないと粉末添加の効果が得られず、またこれよりも多いと粒子が凝集してしまうため透明性の高い塗膜が得られない。このため何れも本発明に適さない。マトリックスの材料としては透明性が高い樹脂が好ましく、例えば低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂等である。なかでもアクリル系の樹脂が特に好ましい。例えば、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、ペンタエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート等であるが、特にメタクリル酸メチルが好適に用いられる。これらの樹脂は、ポリマー、モノマーの何れの形態で加えても良い。なお、ポリマー添加後は液を混合しながら50〜100℃に加熱して所定時間保持し、ポリマーを溶媒へ完全に溶解させることが好ましい。この後、粉末、透明被膜形成用マトリックス及び溶媒を含む液を冷却することによって、本発明の透明被膜形成用塗料が得られる。中空シリカ粉末と透明被膜形成用マトリックスの合計量に対する溶媒の量は、塗料の粘度が塗工に適する値(数十〜数万 mPa・s)になるように、適宜調整することが好ましい。 A predetermined amount of a matrix for forming a transparent film is added to the slurry. The addition amount of the matrix for forming the transparent film is such that the volume fraction of the hollow silica powder with respect to the total volume of the hollow silica powder and the matrix for forming the transparent film is 5 to 60% by volume, preferably 8 to 55% by volume. If the amount of the powder is less than this, the effect of adding the powder cannot be obtained, and if the amount is more than this, the particles are aggregated, so that a highly transparent coating film cannot be obtained. Therefore, none is suitable for the present invention. The matrix material is preferably a highly transparent resin, such as a low molecular weight polyester resin, polyether resin, acrylic resin, epoxy resin, urethane resin, or silicone resin. Of these, acrylic resins are particularly preferable. For example, methyl methacrylate, butyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, pentaerythritol triacrylate, dipentaerythritol hexaacrylate, and the like, particularly methyl methacrylate is preferably used. These resins may be added in any form of a polymer or a monomer. In addition, after adding a polymer, it is preferable to heat to 50-100 degreeC, mixing a liquid, hold | maintain for a predetermined time, and to dissolve a polymer completely in a solvent. Thereafter, the liquid containing the powder, the transparent film forming matrix and the solvent is cooled to obtain the transparent film forming paint of the present invention. The amount of the solvent relative to the total amount of the hollow silica powder and the transparent film forming matrix is preferably adjusted as appropriate so that the viscosity of the coating material is a value suitable for coating (tens to tens of thousands mPa · s).

本発明の塗料を、樹脂製、ガラス製等の基材上に塗工することによって、透明被膜及び透明被膜付き基材が得られる。塗工の直前に、液に超音波振動を数分間加えることによって粉末の分散を強化しておくことが好ましい。塗工の方法として、スピンコート法、バーコート法、ディップコート法、グラビアコート法又はドクターブレード法等が用いられる。   By coating the coating material of the present invention on a resin or glass substrate, a transparent film and a substrate with a transparent film can be obtained. It is preferable to enhance the dispersion of the powder by applying ultrasonic vibration to the liquid for several minutes immediately before coating. As a coating method, a spin coating method, a bar coating method, a dip coating method, a gravure coating method, a doctor blade method, or the like is used.

本発明の中空シリカ粉末は分散性が良好であるため、これを用いて透明性が良好な被膜形成用塗料、透明被膜及び透明被膜付き基材を作製することができる。特に本発明の中空シリカ粉末は低屈折率であり、これを含む塗料、透明被膜及び透明被膜付き基材も低屈折率になるため、塗料を基材表面上に塗布してなる被膜付き基材は、優れた反射防止性能を発揮することができる。さらに本発明の中空シリカ粉末は高い耐アルカリ性を有するため、これを含む塗料を基材表面上に塗布してなる被膜付き基材は、洗浄効果が高いアルカリ性洗剤を用いて洗浄することが可能なため、優れた防汚性能を発揮することができる。 Since the hollow silica powder of the present invention has good dispersibility, it can be used to produce a coating material for forming a film, a transparent film, and a substrate with a transparent film. In particular, the hollow silica powder of the present invention has a low refractive index, and the coating material, transparent coating, and substrate with transparent coating also have a low refractive index. Can exhibit excellent antireflection performance. Furthermore, since the hollow silica powder of the present invention has a high alkali resistance, a coated substrate formed by coating a coating material containing this on the substrate surface can be cleaned using an alkaline detergent having a high cleaning effect. Therefore, excellent antifouling performance can be exhibited.

以下、本発明を実施例、比較例をあげて更に具体的に説明する。
実施例1
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
Example 1

300mLの四つ口カバー付き丸底セパラブルフラスコを反応器に用い、混合用の撹拌翼を上部から挿入した。脱イオン水280mLをフラスコに入れて、室温で窒素ガスを30分間バブリングした後、バブリングを止めて、以後は重合が終了するまでフラスコ内を窒素雰囲気とした。p−スチレンスルホン酸ナトリウム(和光純薬工業製、試薬)0.62g(3ミリモル)を含む水溶液10mLを加えて10分間撹拌した後、スチレン(和光純薬工業製、試薬特級)1.8g(17.4ミリモル)を加えて20分間撹拌を行い、さらに重合開始剤として、過硫酸カリウム(KPS、和光純薬工業製、試薬特級、純度95%)0.4g(1.5ミリモル)を含む水溶液10mLを加えた。なお、スチレンとp−スチレンスルホン酸ナトリウムのモル比は、5.8:1であった。撹拌を続けながらフラスコ内の温度を80℃まで上げて反応を行い、8時間保持することによって、ソープフリー重合ポリスチレン粒子からなる粉末が得られた。粉末を含む液の一部をスポイトで吸引し、微細試料捕集用の膜(コロジオン膜)上に滴下、乾燥後、透過型電子顕微鏡(TEM)観察に供した。TEM観察は日本電子製の透過型電子顕微鏡、2000FXを用い、加速電圧200kV、観察倍率20万倍の条件にて実施した。 A 300 mL round bottom separable flask with a four-neck cover was used in the reactor, and a stirring blade for mixing was inserted from above. 280 mL of deionized water was placed in the flask, and nitrogen gas was bubbled for 30 minutes at room temperature. Then, the bubbling was stopped, and thereafter the atmosphere in the flask was changed to a nitrogen atmosphere until the polymerization was completed. After adding 10 mL of an aqueous solution containing 0.62 g (3 mmol) of sodium p-styrenesulfonate (made by Wako Pure Chemical Industries, reagent) and stirring for 10 minutes, 1.8 g of styrene (made by Wako Pure Chemical Industries, reagent special grade) ( 17.4 mmol) is added and stirred for 20 minutes, and further contains 0.4 g (1.5 mmol) of potassium persulfate (KPS, Wako Pure Chemical Industries, reagent grade, purity 95%) as a polymerization initiator. 10 mL of an aqueous solution was added. The molar ratio of styrene to sodium p-styrene sulfonate was 5.8: 1. While continuing the stirring, the temperature in the flask was raised to 80 ° C. to carry out the reaction and maintained for 8 hours to obtain a powder composed of soap-free polymerized polystyrene particles. Part of the liquid containing the powder was sucked with a dropper, dropped onto a fine sample collection membrane (Colodion membrane), dried, and then subjected to observation with a transmission electron microscope (TEM). The TEM observation was performed using a JEOL transmission electron microscope, 2000FX, under conditions of an acceleration voltage of 200 kV and an observation magnification of 200,000 times.

TEM観察により、粒子径が50nm以下で、円形又は楕円形のTEM像を有する粒子の生成が確認された。100個の粒子像に対し、粒子像の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2 を粒子径として算出し、さらにこれらの算術平均値を平均粒子径としたところ、平均粒子径は26nmであった。 By TEM observation, it was confirmed that particles having a particle diameter of 50 nm or less and having a circular or elliptical TEM image were formed. For 100 particle images, the maximum length of the particle image (Dmax: maximum length at two points on the contour of the particle image) and the maximum length vertical length (DV-max: two straight lines parallel to the maximum length) When the image is sandwiched, the shortest length connecting two straight lines is measured, and the geometric mean value (Dmax × DV-max) 1/2 is calculated as the particle diameter. The average particle size was 26 nm.

ソープフリー重合ポリスチレン粒子を含む液を室温まで冷却後、ポリアリルアミン塩酸塩(PAH)がポリスチレン粒子に過度に吸着することを防ぐために電解質として水酸化ナトリウム(NaOH、和光純薬工業製、試薬特級)0.17g(4.2ミリモル)を加えた後、分子量15000のPAH(Aldrich製)0.087gを加えて15分間撹拌した。この時、液のpHは12であった。その後、20000回転(38000G)で2時間遠心沈降を行い、PAHで処理したポリスチレン粒子を捕集した。300mLの純水を加えて超音波分散(周波数44kHz、出力320W、1時間)を行い粒子を水中へ再分散させた後、分子量360000のポリビニルピロリドン(PVP、東京化成工業製)1.7gを加えて、15分間撹拌した。38000Gで2時間遠心沈降した後、エタノール(和光純薬工業製、試薬特級)300mLを加えてコア粒子を含む液体を水からエタノールに置換し、超音波分散によって粒子をエタノール中へ再分散させた。 After cooling the liquid containing soap-free polymerized polystyrene particles to room temperature, sodium hydroxide (NaOH, manufactured by Wako Pure Chemical Industries, special grade reagent) is used as an electrolyte to prevent polyallylamine hydrochloride (PAH) from being excessively adsorbed onto the polystyrene particles. After adding 0.17 g (4.2 mmol), 0.087 g of PAH (manufactured by Aldrich) having a molecular weight of 15000 was added and stirred for 15 minutes. At this time, the pH of the solution was 12. Thereafter, centrifugal sedimentation was performed at 20000 rpm (38000 G) for 2 hours, and polystyrene particles treated with PAH were collected. After 300 mL of pure water was added and ultrasonic dispersion (frequency 44 kHz, output 320 W, 1 hour) was performed to redisperse the particles in water, 1.7 g of polyvinylpyrrolidone (PVP, manufactured by Tokyo Chemical Industry Co., Ltd.) having a molecular weight of 360000 was added. And stirred for 15 minutes. After centrifugal sedimentation at 38000 G for 2 hours, 300 mL of ethanol (made by Wako Pure Chemical Industries, reagent special grade) was added to replace the liquid containing the core particles from water to ethanol, and the particles were redispersed in ethanol by ultrasonic dispersion. .

その後、シリカ源としてテトラエトキシシラン(TEOS、和光純薬工業製、試薬特級、95質量%)0.15g(0.7ミリモル)、さらにアンモニア5.7g(0.33モル、和光純薬工業製、精密分析用試薬、25%水溶液)及び水17g(0.95モル、前記アンモニア水の溶媒)を加えて、室温(20〜30℃)で3時間保持してコア粒子表面にシリカシェルの被覆を行った。その後38000Gで2時間遠心沈降して粒子を捕集し、70℃で12時間真空乾燥を行い、さらに大気中500℃で3時間加熱して白色粉末を得た。 Thereafter, 0.15 g (0.7 mmol) of tetraethoxysilane (TEOS, manufactured by Wako Pure Chemical Industries, reagent grade, 95% by mass) as a silica source, and further 5.7 g (0.33 mol, manufactured by Wako Pure Chemical Industries, Ltd.) , Reagent for precision analysis, 25% aqueous solution) and 17 g of water (0.95 mol, solvent of the ammonia water) were added and kept at room temperature (20-30 ° C.) for 3 hours to coat the surface of the core particles with silica shell Went. Thereafter, the particles were collected by centrifugal sedimentation at 38000 G for 2 hours, vacuum-dried at 70 ° C. for 12 hours, and further heated in air at 500 ° C. for 3 hours to obtain a white powder.

白色粉末の一部を、エタノール(和光純薬工業製、試薬特級)に、5質量%の割合で添加した後、超音波分散(周波数44kHz、出力320W、1時間)を行い、粒子をエタノール中へ分散させた。この液の一部をスポイトで吸引し、コロジオン膜上に滴下、乾燥後、TEM観察に供した。 A part of the white powder was added to ethanol (made by Wako Pure Chemical Industries, reagent grade) at a ratio of 5% by mass, and then subjected to ultrasonic dispersion (frequency 44 kHz, output 320 W, 1 hour), and the particles were added in ethanol. Dispersed. A part of this liquid was sucked with a dropper, dropped onto the collodion film, dried, and then subjected to TEM observation.

TEM観察により、粒子径が120nm以下で、外形が円形又は楕円形であり、内部に明るいコントラストの空洞部を有する粒子のTEM像が認められ、中空粒子からなる粉末の生成が確認された。100個の粒子像に対し、輪郭の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2 を粒子径として算出し、さらにこれらの算術平均値を平均粒子径としたところ、平均粒子径は39nmであった。 By TEM observation, a TEM image of particles having a particle diameter of 120 nm or less, an outer shape of a circle or an ellipse, and having a bright contrast cavity inside was confirmed, and the production of powder composed of hollow particles was confirmed. For 100 particle images, the maximum length of the contour (Dmax: maximum length at two points on the contour of the particle image) and the maximum vertical length (DV-max: two straight lines parallel to the maximum length) The shortest length connecting two straight lines vertically), and calculating the geometric mean value (Dmax × DV-max) 1/2 as the particle diameter, and further calculating the arithmetic average value of these When the average particle diameter was determined, the average particle diameter was 39 nm.

次いで、上記100個の粒子像に対し、内部の明るいコントラストの外縁の最大長(IDmax:粒子空洞部の外縁上の2点における最大長さ)、及び最大長垂直長(IDV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(IDmax×IDV−max)1/2 を空洞径として算出し、さらにこれらの算術平均値を平均空洞径としたところ、平均空洞径は27nmであった。{(平均粒子径)−(平均空洞径)}÷2 により算出されるシリカシェルの厚さは、6nmであった。 Next, for the 100 particle images, the maximum length of the outer edge of the inner bright contrast (IDmax: maximum length at two points on the outer edge of the particle cavity), and the maximum length vertical length (IDV-max: maximum length) When the image is sandwiched between two straight lines parallel to, the shortest length connecting the two straight lines is measured, and the geometric mean value (IDmax × IDV-max) 1/2 is calculated as the cavity diameter. Further, when these arithmetic average values were taken as the average cavity diameter, the average cavity diameter was 27 nm. The thickness of the silica shell calculated by {(average particle diameter) − (average cavity diameter)} / 2 was 6 nm.

大気中で加熱して得た白色粉末の一部をメノウ乳鉢を用いて解砕した。低屈折率の液体(住友スリーエム製、フロリナート、FC−72、FC−3283、FC−40)を単独で又は混合して屈折率標準液とし、これに解砕後の粉末を浸し、実体顕微鏡を用いて液浸法により粒子屈折率を測定したところ、1.29であった。またこの粉末約0.5gを、高温水分気化装置(三菱化学社製、VA−122)に入れて加熱し、200〜900℃で発生する水分をカールフィッシャー電量滴定法水分計(三菱化学社製、CA−100)に導入して定量した。200〜900℃で発生した水分の1個の分子が、1個のシラノール基に由来するものとして、水分量定量値から単位質量当たりの中空シリカ粉末が有するシラノール基由来の水分子数を求めた。さらにこの粉末0.2gを用い、全自動比表面積測定装置(マイクロデータ社製、マイクロソープ4232II)を用いBET一点法によって比表面積を測定した。単位質量当たりの水分子数を比表面積値(単位質量当たりの表面積値)で除することによって、中空シリカ粉末の単位表面積当たりのシラノール基量(個/nm)を測定したところ5.7個/nmであった。 Part of the white powder obtained by heating in the atmosphere was crushed using an agate mortar. A liquid with a low refractive index (Sumitomo 3M, Fluorinert, FC-72, FC-3283, FC-40), alone or mixed, is used as a refractive index standard solution. Using this, the particle refractive index was measured by the immersion method and found to be 1.29. Moreover, about 0.5 g of this powder is put into a high-temperature moisture vaporizer (Mitsubishi Chemical Co., Ltd., VA-122) and heated, and moisture generated at 200 to 900 ° C. is subjected to Karl Fischer coulometric titration moisture meter (Mitsubishi Chemical Co., Ltd.). , CA-100) and quantified. Assuming that one molecule of water generated at 200 to 900 ° C. is derived from one silanol group, the number of water molecules derived from the silanol group of the hollow silica powder per unit mass was determined from the moisture content quantitative value. . Further, 0.2 g of this powder was used, and the specific surface area was measured by a BET single point method using a fully automatic specific surface area measuring device (Microsoap 4232II, manufactured by Microdata). The amount of silanol groups (units / nm 2 ) per unit surface area of the hollow silica powder was measured by dividing the number of water molecules per unit mass by the specific surface area value (surface area value per unit mass). / Nm 2 .

次いで大気中で加熱して得た白色粉末の一部を、水酸化ナトリウム(関東化学製、試薬特級、97%)を用いてpH12に調整した水中に、10質量%の割合で加え、温度25℃で24時間保持した。その後、遠心沈降と、蒸留水中への超音波分散を5回繰り返して粉末に含まれる水酸化ナトリウムを除去し、6回目の遠心沈降で得た固形分を、70℃で12時間真空乾燥を行って得た白色粉末をメノウ乳鉢で解砕し、液浸法で粒子屈折率を測定したところ、1.29であった。 Next, a part of the white powder obtained by heating in the atmosphere was added at a rate of 10% by mass in water adjusted to pH 12 using sodium hydroxide (manufactured by Kanto Chemical Co., Ltd., reagent grade, 97%) at a temperature of 25%. Hold at 24 ° C. for 24 hours. Thereafter, centrifugal sedimentation and ultrasonic dispersion in distilled water are repeated five times to remove sodium hydroxide contained in the powder, and the solid content obtained by the sixth centrifugal sedimentation is vacuum dried at 70 ° C. for 12 hours. The white powder obtained was pulverized with an agate mortar and the particle refractive index was measured by the immersion method.

実施例2〜3
表1に示す条件の他は実施例1と同様にして中空シリカ粉末を作製し、平均粒子径、シリカシェルの厚さ、単位表面積当たりのシラノール基量及びアルカリ性水への浸漬前後における粒子屈折率の測定を実施例1と同様にして行い、結果を表2に示した。
Examples 2-3
A hollow silica powder was prepared in the same manner as in Example 1 except for the conditions shown in Table 1. The average particle diameter, the thickness of the silica shell, the amount of silanol groups per unit surface area, and the particle refractive index before and after immersion in alkaline water. Was measured in the same manner as in Example 1, and the results are shown in Table 2.

Figure 0005463099
Figure 0005463099

Figure 0005463099
Figure 0005463099

比較例1
容量300mLのセパラブルフラスコに、蒸留水200mL、ドデシル硫酸ナトリウム(SDS、和光純薬工業製、純度95%)2gを界面活性剤として加え、窒素ガスをバブリングしながら撹拌した。バブリングと撹拌を継続しながら30分経過した時点でスチレン20gを添加し、加熱を開始した。水温が80℃に達した時点でバブリングを止めて、過硫酸カリウム(KPS)0.4gを蒸留水10mLに溶解させて添加した。撹拌を継続しながら80℃で20分保持してスチレンを乳化重合させた後、メタクリロキシプロピルトリメトキシシラン(信越化学工業製、シランカップリング剤)1.5gを添加し、撹拌を継続しながら70℃で3時間保持して、生成した有機ポリマー(ポリスチレン)粒子にカップリング処理を実施した。
Comparative Example 1
To a separable flask having a capacity of 300 mL, 200 mL of distilled water and 2 g of sodium dodecyl sulfate (SDS, manufactured by Wako Pure Chemical Industries, Ltd., purity 95%) were added as a surfactant and stirred while bubbling nitrogen gas. When 30 minutes passed while continuing bubbling and stirring, 20 g of styrene was added and heating was started. When the water temperature reached 80 ° C., bubbling was stopped, and 0.4 g of potassium persulfate (KPS) was dissolved in 10 mL of distilled water and added. After emulsion polymerization of styrene by maintaining at 80 ° C. for 20 minutes while continuing stirring, 1.5 g of methacryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., silane coupling agent) is added, and stirring is continued. The resultant organic polymer (polystyrene) particles were subjected to coupling treatment by maintaining at 70 ° C. for 3 hours.

得られた有機ポリマー粒子を含む乳濁液200mLに対しエタノール600mLを加えた後、限外濾過フィルター(ポリエーテルスルフォン製、分画分子量30000、ザルトリウス社製、ビバフロー200)を用いたクロスフロー限外濾過を行って乳濁液が200mLになるまで濾液を排出して濃縮した。さらにエタノール600mLを加えて同様の操作で、200mLまで濃縮した。   After adding 600 mL of ethanol to 200 mL of the emulsion containing the obtained organic polymer particles, cross flow ultrafiltration using an ultrafiltration filter (manufactured by polyethersulfone, molecular weight cut off 30000, manufactured by Sartorius, Vivaflow 200) Filtration was performed and the filtrate was discharged and concentrated until the emulsion became 200 mL. Furthermore, ethanol 600mL was added and it concentrated to 200mL by the same operation.

この乳濁液の一部を乾燥後、透過型電子顕微鏡にて拡大した粒子像を撮影した写真から100個の粒子像に対し、粒子像の最大長(Dmax:粒子画像の輪郭上の2点における最大長さ)、及び最大長垂直長(DV−max:最大長に平行な2本の直線で画像を挟んだ時、2直線間を垂直に結ぶ最短の長さ)を測長し、その相乗平均値(Dmax×DV−max)1/2 を粒子径として算出し、さらにこれらの算術平均値を平均粒子径としたところ、平均粒子径は30nmであった。   After drying a part of this emulsion, the maximum length of the particle image (Dmax: two points on the contour of the particle image) is obtained for 100 particle images from a photograph of the enlarged particle images with a transmission electron microscope. And the maximum vertical length (DV-max: the shortest length connecting two straight lines when the image is sandwiched between two straight lines parallel to the maximum length) The geometric average value (Dmax × DV-max) 1/2 was calculated as the particle diameter, and when these arithmetic average values were taken as the average particle diameter, the average particle diameter was 30 nm.

置換後の乳濁液を25℃まで冷却後150mL分取し、これに濃度25質量%のアンモニア水25mLを加えて撹拌しながら、25℃に保持した3Lのイソプロパノール(和光純薬工業製、99.9%)に徐々に添加した。この際イソプロパノールを満たした容器に超音波振動を加えることによって、乳濁液の分散を促進した。超音波振動印加を継続しながら、テトラエトキシシラン(TEOS)120mLを徐々に滴下した。これにより乳濁液中のポリスチレン粒子に、テトラエトキシシランの加水分解物であるシリカを主成分とするシリコン化合物を被覆し、コアシェル粒子を作製した。   150 mL of the emulsion after replacement was cooled to 25 ° C., and 25 mL of ammonia water having a concentration of 25% by mass was added thereto and stirred, and 3 L of isopropanol (manufactured by Wako Pure Chemical Industries, 99 9%). At this time, the dispersion of the emulsion was promoted by applying ultrasonic vibration to a container filled with isopropanol. While continuing to apply ultrasonic vibration, 120 mL of tetraethoxysilane (TEOS) was gradually added dropwise. As a result, the polystyrene particles in the emulsion were coated with a silicon compound mainly composed of silica, which is a hydrolyzate of tetraethoxysilane, to produce core-shell particles.

その後は実施例1と同様にして中空シリカ粉末を作製し、平均粒子径、シリカシェルの厚さ、単位表面積当たりのシラノール基量及びアルカリ性水への浸漬前後における粒子屈折率の測定を実施例1と同様にして行い、結果を表2に示した。   Thereafter, a hollow silica powder was prepared in the same manner as in Example 1, and the average particle diameter, the thickness of the silica shell, the amount of silanol groups per unit surface area, and the particle refractive index before and after immersion in alkaline water were measured in Example 1. The results are shown in Table 2.

実施例4
実施例1で得た中空シリカ粒子からなる白色粉末を、イソプロパノールに15質量%の割合で添加後、湿式ジェットミル(スギノマシン製、スターバースト)を用いて吐出圧力200MPaにて分散処理を行った。処理後の液体50gを秤り取り、セパラブルフラスコに充填し、マグネティックスターラーを用いて撹拌した。次いでメタクリロキシプロピルトリメトキシシラン(シランカップリング剤)を、質量で中空粒子の10分の1に相当する量(0.75g)を加えた後、ウォーターバスで撹拌しながら加熱を行い、70℃にて3時間保持した。冷却後、スラリーの10gを秤り取り、遠心沈降を行って沈殿物を得た。これに8.5gのイソプロパノールを添加・撹拌した後、遠心沈降を行って沈殿物を得る操作を5回繰り返して沈殿物を洗浄した。これを25℃で1日間真空乾燥した後、ガスクロマトグラフ質量分析(GC/MS)を行ったところ、シランカップリング剤に由来するメタクリル酸が検出され、中空粒子がシランカップリング剤で被覆されていることが判った。残りのスラリーを超音波式ホモジナイザー(ブランソン製)にて分散した。
Example 4
The white powder composed of the hollow silica particles obtained in Example 1 was added to isopropanol at a ratio of 15% by mass, and then subjected to dispersion treatment at a discharge pressure of 200 MPa using a wet jet mill (manufactured by Sugino Machine, Starburst). . 50 g of the treated liquid was weighed, filled into a separable flask, and stirred using a magnetic stirrer. Next, methacryloxypropyltrimethoxysilane (silane coupling agent) was added in an amount (0.75 g) corresponding to one-tenth of the hollow particles by mass, and then heated with stirring in a water bath at 70 ° C. For 3 hours. After cooling, 10 g of the slurry was weighed and centrifuged to obtain a precipitate. After adding and stirring 8.5 g of isopropanol to this, the operation of carrying out centrifugal sedimentation to obtain a precipitate was repeated 5 times to wash the precipitate. This was vacuum dried at 25 ° C. for 1 day, and then subjected to gas chromatograph mass spectrometry (GC / MS). As a result, methacrylic acid derived from the silane coupling agent was detected, and the hollow particles were coated with the silane coupling agent. I found out. The remaining slurry was dispersed with an ultrasonic homogenizer (Branson).

シランカップリング剤被覆・分散後のスラリーの30gを秤り取りナス型フラスコに充填した。これにメチルイソブチルケトン(和光純薬工業製、純度99.5%)300gを加え、ロータリーエバポレーターを用いて85℃のウォーターバス中で蒸留を行い、溶媒を置換した。残留物が33gになった時点で加熱を止め、25℃まで冷却してスラリーを得た。このスラリーの水分量をカールフィッシャー法で測定し、これを100質量%から差し引いた残部を中空シリカ粉末と有機溶媒の合計量と見なした結果、合計量は99.6質量%であった。さらに、ガスクロマトグラフ質量分析(GC/MS)によって、メチルイソブチルケトン及びイソプロパノールの含有量を分析した結果、それぞれ75質量%及び9質量%であった。次いでスラリーを超音波式ホモジナイザーにて分散した。 30 g of the slurry after coating / dispersing the silane coupling agent was weighed and filled into an eggplant-shaped flask. To this, 300 g of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.5%) was added, and distillation was performed in a water bath at 85 ° C. using a rotary evaporator to replace the solvent. When the amount of the residue reached 33 g, the heating was stopped and the mixture was cooled to 25 ° C. to obtain a slurry. The water content of this slurry was measured by the Karl Fischer method, and the balance obtained by subtracting it from 100% by mass was regarded as the total amount of the hollow silica powder and the organic solvent. As a result, the total amount was 99.6% by mass. Furthermore, as a result of analyzing content of methyl isobutyl ketone and isopropanol by gas chromatograph mass spectrometry (GC / MS), they were 75 mass% and 9 mass%, respectively. Next, the slurry was dispersed with an ultrasonic homogenizer.

実施例5
実施例4で得たイソプロパノール置換後のスラリー(中空粒子15質量%を含む)4.2g(中空粒子0.63gに相当)を秤り取り、これに被膜形成用マトリックスとしてペンタエリスリトールトリアクリレート(Aldrich製)0.71g、紫外線硬化剤(チバスペシャリティケミカルズ社製、光重合開始剤、商品名:イルガキュア907)0.05g、イソプロパノール54.3gを加えて混合し、透明被膜形成用塗料を調製した。
Example 5
4.2 g (corresponding to 0.63 g of hollow particles) of the slurry after substitution with isopropanol obtained in Example 4 (including 15% by mass of hollow particles) was weighed, and pentaerythritol triacrylate (Aldrich) was used as a film-forming matrix. 0.71 g, UV curing agent (manufactured by Ciba Specialty Chemicals, photopolymerization initiator, trade name: Irgacure 907), 0.05 g and 54.3 g of isopropanol were added and mixed to prepare a coating for forming a transparent film.

これを、スピンコーター(トキワ真空機材製、SPN−4500V)を用いて回転数1500rpmで回転させた厚さ80μmの透明なトリアセチルセルロース(TAC)基材上に滴下して塗膜を形成した。塗膜を室温で保持して乾燥させた後、UVランプを用いて照射線量200mJ/cmの紫外線を数秒間照射して塗膜を硬化し、被膜(厚さ約100nm)付き基材を作製した。この被膜付き基材のヘーズ(曇り度)をヘーズメーター(日本電色工業製、NDH−5000)を用い、JIS K 1736の方法で測定したところ0.1%であった。この被膜にアルカリ性洗剤(花王マジックリン)を噴霧し、5分間放置した後スポンジで拭き、水洗して洗剤を除去、乾燥後に再度ヘーズを測定したところ、0.1%であった。 This was dropped on a transparent triacetylcellulose (TAC) substrate having a thickness of 80 μm that was rotated at 1500 rpm using a spin coater (manufactured by Tokiwa Vacuum Equipment Co., Ltd., SPN-4500V) to form a coating film. After the coating film is kept at room temperature and dried, ultraviolet rays with an irradiation dose of 200 mJ / cm 2 are irradiated for several seconds using a UV lamp to cure the coating film, and a substrate with a coating film (thickness of about 100 nm) is produced. did. The haze (cloudiness) of the coated substrate was measured by a method of JIS K 1736 using a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.) and found to be 0.1%. The film was sprayed with an alkaline detergent (Kao Magiclin), left for 5 minutes, wiped with a sponge, washed with water to remove the detergent, and after drying, the haze was measured again to be 0.1%.

比較例2
実施例1に代えて比較例1の中空シリカ粉末を使用した他は、実施例4と全く同様にして、比較例1の中空シリカ粉末を含むスラリーを作製し、さらに実施例5と全く同様にして比較例1の中空シリカ粉末と被膜形成用マトリックスとを含む被膜付き基材を作製した。この被膜付き基材のヘーズをヘーズメーターを用いて測定したところ0.2%であった。この被膜にアルカリ性洗剤を噴霧し、5分間放置した後スポンジで拭き、水洗して洗剤を除去、乾燥後に再度ヘーズを測定したところ、0.6%であった。
Comparative Example 2
A slurry containing the hollow silica powder of Comparative Example 1 was prepared in the same manner as in Example 4 except that the hollow silica powder of Comparative Example 1 was used instead of Example 1. Further, the same procedure as in Example 5 was performed. Thus, a coated substrate containing the hollow silica powder of Comparative Example 1 and a coating forming matrix was prepared. It was 0.2% when the haze of this base material with a film was measured using the haze meter. The film was sprayed with an alkaline detergent, left for 5 minutes, then wiped with a sponge, washed with water to remove the detergent, and after drying, the haze was measured again to be 0.6%.

本発明の中空シリカ粉末及びこれを分散してなるスラリーは、反射防止材、低誘電率材、断熱材等の充填材、ドラッグデリバリーシステムのための担体などに好適に用いることができる。
とりわけ、本発明の中空シリカ粉末及びこれを分散してなるスラリーを用いた透明被膜形成用塗料及び被膜付き基材は、優れた耐アルカリ性及び透明性を有する。
The hollow silica powder of the present invention and a slurry obtained by dispersing the hollow silica powder can be suitably used for fillers such as antireflection materials, low dielectric constant materials, and heat insulating materials, carriers for drug delivery systems, and the like.
In particular, the coating material for forming a transparent film and the substrate with a film using the hollow silica powder of the present invention and a slurry obtained by dispersing the hollow silica powder have excellent alkali resistance and transparency.

Claims (3)

コアが有機ポリマー、シェルがシリカであるコアシェル粒子からなる粉末を製造した後にコアを除去する、中空シリカ粉末の製造方法において、
(A)コアとなる有機ポリマー粒子は、重合性モノマーを主成分としてこれにイオン性コモノマーを、モル比で150:1〜2:1の割合で共重合させてなるソープフリー重合によって平均粒子径5〜90nmの粒子を製造し、
(B)その後この有機ポリマー粒子を含む液体に、陽イオン性水溶性高分子を加えた後、非イオン性水溶性高分子を加え、さらにコア粒子を含む液体を水からアルコールに置換した後、アルコキシシラン、水及び塩基性物質を添加してシリカを被覆し、平均粒子径が5〜120nm、シリカシェルの厚さが1〜35nmのコアシェル粒子からなる粉末を製造し、その後コアを除去することを特徴とする、中空シリカ粉末の製造方法。
In the method for producing hollow silica powder, the core is removed after producing a powder composed of core-shell particles in which the core is an organic polymer and the shell is silica.
(A) The organic polymer particles used as the core have an average particle size by soap-free polymerization in which a polymerizable monomer is a main component and an ionic comonomer is copolymerized at a molar ratio of 150: 1 to 2: 1. Producing 5 to 90 nm particles,
(B) Then, after adding a cationic water-soluble polymer to the liquid containing the organic polymer particles, adding a nonionic water-soluble polymer, and further substituting the liquid containing the core particles from water to alcohol, Adding alkoxysilane, water and a basic substance to coat silica, producing a powder composed of core-shell particles having an average particle diameter of 5 to 120 nm and a silica shell thickness of 1 to 35 nm, and then removing the core A process for producing hollow silica powder, characterized in that
重合性モノマーがスチレン、イオン性コモノマーがp−スチレンスルホン酸塩であることを特徴とする、請求項に記載の中空シリカ粉末の製造方法。 The method for producing a hollow silica powder according to claim 1 , wherein the polymerizable monomer is styrene and the ionic comonomer is p-styrene sulfonate. 陽イオン性水溶性高分子が、分子量1000〜15000のポリアリルアミン塩酸塩、非イオン性水溶性高分子が、分子量10000〜1000000のポリビニルピロリドンであることを特徴とする、請求項又は請求項に記載の中空シリカ粉末の製造方法。 Cationic water-soluble polymer, polyallylamine hydrochloride with a molecular weight of 1,000 to 15,000, nonionic water-soluble polymer, characterized in that it is a polyvinylpyrrolidone having a molecular weight of 10,000 to 1,000,000, according to claim 1 or claim 2 The manufacturing method of the hollow silica powder as described in 2.
JP2009191591A 2009-08-21 2009-08-21 Hollow silica powder, production method and use thereof Active JP5463099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191591A JP5463099B2 (en) 2009-08-21 2009-08-21 Hollow silica powder, production method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191591A JP5463099B2 (en) 2009-08-21 2009-08-21 Hollow silica powder, production method and use thereof

Publications (2)

Publication Number Publication Date
JP2011042527A JP2011042527A (en) 2011-03-03
JP5463099B2 true JP5463099B2 (en) 2014-04-09

Family

ID=43830254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191591A Active JP5463099B2 (en) 2009-08-21 2009-08-21 Hollow silica powder, production method and use thereof

Country Status (1)

Country Link
JP (1) JP5463099B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995199B2 (en) * 2012-03-08 2016-09-21 国立大学法人 東京大学 Transition metal complex-encapsulated silica nanoparticles, transition metal oxide cluster-encapsulated silica nanoparticles, transition metal cluster-encapsulated silica nanoparticles, and production methods thereof
JP6011056B2 (en) * 2012-06-20 2016-10-19 富士電機株式会社 Nanocomposite resin composition
JP5859390B2 (en) * 2012-06-28 2016-02-10 三井化学株式会社 Method for producing thermal insulation composition
JP2014034488A (en) * 2012-08-08 2014-02-24 Canon Inc Production method of dispersion liquid of hollow particle, production method of antireflection film, and production method of optical element
JP5600718B2 (en) * 2012-10-12 2014-10-01 Dic株式会社 Method for producing hollow silica nanoparticles
TW201422528A (en) * 2012-10-10 2014-06-16 Dainippon Ink & Chemicals Core-shell silica nanoparticles and production method thereof, hollow silica nanoparticle production method using same, and hollow silica nanoparticles obtained by said production method
KR101920975B1 (en) * 2013-07-10 2018-11-21 유미코아 Silicon-based powder and electrode containing the same
JP2016156055A (en) * 2015-02-24 2016-09-01 トヨタ自動車株式会社 Thermal insulation material
KR101659709B1 (en) 2016-05-18 2016-09-26 주식회사 나노신소재 Hollow-type aluminosilicate nanoparticle and preparation method thereof
JP6905446B2 (en) * 2017-10-24 2021-07-21 花王株式会社 Method for producing hollow silica particles
JP7218651B2 (en) * 2019-03-28 2023-02-07 日本ゼオン株式会社 Hollow silica particles, dispersions of hollow silica particles, and films
US11168201B2 (en) 2019-05-14 2021-11-09 Nissan Chemical Corporation Silica sol dispersed in ketone solvent and resin composition
JP7360294B2 (en) * 2019-09-30 2023-10-12 日揮触媒化成株式会社 Particles containing silica and having a cavity inside an outer shell, a method for producing the same, a coating liquid containing the particles, and a substrate with a transparent coating containing the particles
JP2023128890A (en) * 2022-03-04 2023-09-14 宇部エクシモ株式会社 Hollow inorganic particles, resin composition containing hollow inorganic particles, package for semiconductors in which resin composition is used, and method for producing hollow inorganic particles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5457179B2 (en) * 2007-06-26 2014-04-02 電気化学工業株式会社 Method for producing hollow particles

Also Published As

Publication number Publication date
JP2011042527A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP5463099B2 (en) Hollow silica powder, production method and use thereof
JP5576799B2 (en) Composite particle and method for producing the same, hollow particle, method for producing the same and use
JP5057199B2 (en) Method for producing hollow SiO2 fine particle dispersion, coating composition, and substrate with antireflection coating
TWI488813B (en) Hollow silica fine particles, a transparent film-forming composition containing the same, and a substrate having a transparent film
Otsuka et al. Poly (methyl methacrylate)(PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals
JP5152444B2 (en) Method for producing porous silica particles, resin composition for antireflection film, article having antireflection film, and antireflection film
JP5275562B2 (en) Powdered silica composite particles and production method thereof, silica composite particle dispersion, and resin composition
JP5457179B2 (en) Method for producing hollow particles
TW201619259A (en) Surface-modified metal oxide particle dispersion liquid, method for producing same, surface-modified metal oxide particle-silicone resin composite composition and the body, optical member and light emitting device
JP5627662B2 (en) Method for producing surface-treated silica-based particles
WO2006129411A1 (en) DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
WO2010150677A1 (en) Method for producing silica-based fine particle-dispersed sol, silica-based fine particle-dispersed sol, coating composition containing the silica-based fine particle-dispersed sol, curable coating film, and base with curable coating film
JP2010143806A (en) Surface-treated silica-based particle and process of manufacturing same
CN104968719A (en) Hydrophilized silicone particles and making method
JP6323861B2 (en) Method for producing surface-modified mesoporous silica nanoparticles
KR20110044140A (en) Hydrophobic core-shell silica particle, hollow silica particle, and manufacturing methods thereof
JP5241199B2 (en) Method for producing fibrous hollow silica fine particles and substrate with antireflection coating
JP5284632B2 (en) Conductive fibrous hollow silica fine particle dispersoid and process for producing the same
JP6214412B2 (en) Core-shell type oxide fine particle dispersion, method for producing the same, and use thereof
JP2020019700A (en) Organic-inorganic hybrid film, surface stress sensor, and method for producing organic-inorganic hybrid film
Kang et al. A novel surface modification of Sb2O3 nanoparticles with a combination of cationic surfactant and silane coupling agent
JP2010030791A (en) Method for producing silica hollow particle
JP2006342023A (en) Hollow silica sol and hollow silica fine particle
JP2012007059A (en) Composite particle and method of manufacturing the same
TWI482804B (en) Production method of hydrophilized microparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R150 Certificate of patent or registration of utility model

Ref document number: 5463099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250