JP5456344B2 - Organic-inorganic composite hydrogel and method for producing the same - Google Patents

Organic-inorganic composite hydrogel and method for producing the same Download PDF

Info

Publication number
JP5456344B2
JP5456344B2 JP2009064218A JP2009064218A JP5456344B2 JP 5456344 B2 JP5456344 B2 JP 5456344B2 JP 2009064218 A JP2009064218 A JP 2009064218A JP 2009064218 A JP2009064218 A JP 2009064218A JP 5456344 B2 JP5456344 B2 JP 5456344B2
Authority
JP
Japan
Prior art keywords
water
organic
inorganic composite
hydrogel
acrylic monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009064218A
Other languages
Japanese (ja)
Other versions
JP2010215784A (en
Inventor
明 王林
和敏 原口
敢 武久
一高 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, DIC Corp filed Critical Kawamura Institute of Chemical Research
Priority to JP2009064218A priority Critical patent/JP5456344B2/en
Publication of JP2010215784A publication Critical patent/JP2010215784A/en
Application granted granted Critical
Publication of JP5456344B2 publication Critical patent/JP5456344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

本発明は衛生用品、農業、食品、医療、建築、土木、機械、運輸、電子部材、家庭用品、縫製などの分野で用いられる高分子ヒドロゲルに関するものである。   The present invention relates to a polymer hydrogel used in the fields of sanitary goods, agriculture, food, medicine, architecture, civil engineering, machinery, transportation, electronic components, household goods, sewing, and the like.

高分子ヒドロゲルは、架橋高分子のネットワークの中に多量の水を溶媒として含むことができるため、透明性、柔軟性、溶媒吸収性、特定溶質の吸着性や透過性などに優れており、分析、化学工業、農業、土木、建築、医療、医薬、食品など幅広い分野で、ソフトマテリアル、吸水材料、振動吸収材、高機能材料などとして広く用いることが期待されている。しかし、これまでの高分子ヒドロゲルは、機能性と力学物性の全てを兼ね備えたものはほとんど無く、特に高分子ヒドロゲルの多くは力学的に弱いまたは脆いという欠点を有していた。最も一般的に用いられる高分子ゲルは、高分子鎖間を、有機架橋剤を用いて、もしくはγ線や電子線を照射して、架橋したものであり、例えば、高吸水性樹脂としてポリアクリル酸ナトリウム架橋体などが良く知られている。しかし、高吸水性を得るため、ポリアクリル酸ナトリウムをわずかに架橋するもので、吸水後の力学特性が弱く、形が保持しにくい欠点がある。また、吸水性においてポリアクリル酸ナトリウム架橋体は純水中での吸水性能が高いものの、イオン性であるため、食塩水中では大幅に性能が低下することが知られている。   The polymer hydrogel can contain a large amount of water as a solvent in the network of crosslinked polymers, so it has excellent transparency, flexibility, solvent absorption, adsorbability and permeability of specific solutes, etc. They are expected to be widely used as soft materials, water-absorbing materials, vibration-absorbing materials, and high-performance materials in a wide range of fields such as chemical industry, agriculture, civil engineering, architecture, medicine, medicine and food. However, there have been few polymer hydrogels so far that have both functional properties and mechanical properties, and many of the polymer hydrogels have the disadvantage that they are particularly weak or brittle. The most commonly used polymer gel is one in which polymer chains are crosslinked by using an organic crosslinking agent or by irradiating γ rays or electron beams. A sodium acid cross-linked product is well known. However, in order to obtain high water absorption, sodium polyacrylate is slightly cross-linked, and there are disadvantages that the mechanical properties after water absorption are weak and the shape is difficult to maintain. Further, it is known that the sodium polyacrylate cross-linked product in water absorption has high water absorption performance in pure water, but is ionic, so that the performance is greatly reduced in saline.

これに対して、ポリ(N−イソプロピルアクリルアミド)やポリ(N,N−ジメチルアクリルアミド)のようなアクリルアミド誘導体とヘクトライトなどの水膨潤性無機粘土鉱物をナノメーターレベルで複合化して三次元網目を形成させて得られる有機無機複合ヒドロゲルは、極めて優れた力学物性を示すことが報告されている(特許文献1)。例えば、ジメチルアクリルアミドと粘土鉱物からなる有機無機複合ヒドロゲルは数十から数百kPa引張破断強度と1500%を超える破断伸びを有する。   In contrast, a three-dimensional network is formed by combining an acrylamide derivative such as poly (N-isopropylacrylamide) or poly (N, N-dimethylacrylamide) and a water-swellable inorganic clay mineral such as hectorite at the nanometer level. It has been reported that the organic-inorganic composite hydrogel obtained by the formation exhibits extremely excellent mechanical properties (Patent Document 1). For example, an organic-inorganic composite hydrogel composed of dimethylacrylamide and clay mineral has a tensile breaking strength of several tens to several hundreds kPa and a breaking elongation exceeding 1500%.

しかし、上述のアクリルアミド誘導体からなる有機無機複合ヒドロゲルは、優れた力学物性を有するが、水膨潤性において従来のアクリルアミド誘導体の有機架橋ゲルより高いものの、市販の高吸水樹脂であるポリアクリル酸ナトリウム架橋体と比べて吸水性が劣る。市場ニーズを応えるため、水、特に食塩水中での膨潤性の更なる改良が強く求められている。   However, the organic-inorganic composite hydrogel composed of the above-mentioned acrylamide derivative has excellent mechanical properties, but is higher in water swellability than the conventional acrylamide derivative organic cross-linked gel, but is a commercially available superabsorbent sodium polyacrylate cross-linked Water absorption is inferior compared to the body. In order to meet market needs, there is a strong demand for further improvement of the swellability in water, particularly saline.

一方、粘土鉱物存在下において、ジメチルアクリルアミドとポリエチレングリコール(PEG)鎖を有するアクリレートを併用して得られる有機無機複合ヒドロゲルが調湿材として用いることが出来ると報告されている(特許文献2)。しかし、この報告では、ポリエチレングリコール鎖のエチレングリコール繰り返し単位数が2〜9個のものを使用しており、PEG鎖長が短いため、食塩水中での膨潤性が低いものであった。   On the other hand, in the presence of clay minerals, it has been reported that an organic-inorganic composite hydrogel obtained by combining dimethylacrylamide and an acrylate having a polyethylene glycol (PEG) chain can be used as a humidity control material (Patent Document 2). However, in this report, a polyethylene glycol chain having 2 to 9 ethylene glycol repeating units was used, and the PEG chain length was short, so that the swelling property in saline was low.

特開2002−53762JP2002-53762 特開2007−297550JP2007-297550A

本発明が解決しようとする課題は、水溶性のアクリルモノマーの重合体と水膨潤性粘土鉱物とで形成される有機無機複合ヒドロゲルであって、優れた力学物性と高膨潤性を併せ持つヒドロゲル及びその乾燥体並びにそれらの製造方法を提供することにある。特に、本発明が解決しようとする課題は、食塩水中での膨潤性が良好なヒドロゲル及びその乾燥体並びにそれらの製造方法を提供することにある。   The problem to be solved by the present invention is an organic-inorganic composite hydrogel formed from a polymer of a water-soluble acrylic monomer and a water-swellable clay mineral, and a hydrogel having both excellent mechanical properties and high swellability It is in providing a dry body and those manufacturing methods. In particular, the problem to be solved by the present invention is to provide a hydrogel having good swellability in saline, a dried product thereof, and a method for producing them.

本発明は、水溶性のアクリルモノマーの重合体と水膨潤性粘土鉱物とで形成される有機無機複合ヒドロゲルであって、水溶性アクリルモノマーとして、下記式(1)で表されるモノマーを使用することにより、優れた力学物性と高膨潤性を併せ持つ有機無機複合ヒドロゲルを得られること、また、このヒドロゲルを低温で乾燥することによって優れた柔軟性と高膨潤性を併せ持つ有機無機複合体を見出し、完成させたものである。   The present invention is an organic-inorganic composite hydrogel formed from a polymer of a water-soluble acrylic monomer and a water-swellable clay mineral, and a monomer represented by the following formula (1) is used as the water-soluble acrylic monomer. Thus, an organic-inorganic composite hydrogel having both excellent mechanical properties and high swellability can be obtained, and an organic-inorganic composite having both excellent flexibility and high swellability can be found by drying the hydrogel at a low temperature. It has been completed.

即ち、本発明は、水溶性アクリルモノマー(a)の重合体(A)と水膨潤性粘土鉱物(B)とで形成される有機無機複合ヒドロゲルであって、
前記水溶性アクリルモノマー(a)が、式(1)
That is, the present invention is an organic-inorganic composite hydrogel formed of a polymer (A) of a water-soluble acrylic monomer (a) and a water-swellable clay mineral (B),
The water-soluble acrylic monomer (a) has the formula (1)

Figure 0005456344
(式中、Rは、水素原子又はメチル基、Rは炭素数2又は3のアルキレン基、nは10〜99の整数、Yはメトキシ基又は水酸基を表す。)
で表されるモノマーを含有することを特徴とする有機無機複合ヒドロゲル及びその乾燥体を提供するものである。
Figure 0005456344
(In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 or 3 carbon atoms, n represents an integer of 10 to 99, and Y represents a methoxy group or a hydroxyl group.)
The organic-inorganic composite hydrogel characterized by containing the monomer represented by these, and its dry body are provided.

また、本発明は、上記の有機無機複合ヒドロゲルの製造方法であって、前記式(1)で表されるモノマーを含有する水溶性のアクリルモノマー(a)を水媒体と混合し、水膨潤性粘土鉱物(B)の共存下で前記水溶性のアクリルモノマー(a)を重合開始剤により重合することを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   The present invention also relates to a method for producing the organic-inorganic composite hydrogel, wherein the water-soluble acrylic monomer (a) containing the monomer represented by the formula (1) is mixed with an aqueous medium, The present invention provides a method for producing an organic-inorganic composite hydrogel characterized by polymerizing the water-soluble acrylic monomer (a) with a polymerization initiator in the presence of a clay mineral (B).

本発明の有機無機複合ヒドロゲルは、水溶性のアクリルモノマーの重合体と水膨潤性粘土鉱物とで形成されるヒドロゲルであるが、水溶性アクリルモノマーとして式(1)で表されるモノマーを使用することにより、得られる有機無機複合ヒドロゲルの生理食塩水中での膨潤性が大幅に向上した。また、本発明は式(1)で表されるモノマーを使用することにより、得られる有機無機複合ヒドロゲルの乾燥体の柔軟性が与えられ、膨潤性と共に使いやすさも顕著に改良される。更に、本発明は式(1)で表されるモノマーを用いることにより、アクリルモノマー、特にジメチルアクリルアミドの重合速度が抑制され、製造時に反応系内の溶液の増粘が起こらず、工業的に有機無機複合ヒドロゲルの製造は容易になる。   The organic-inorganic composite hydrogel of the present invention is a hydrogel formed from a polymer of a water-soluble acrylic monomer and a water-swellable clay mineral, and the monomer represented by the formula (1) is used as the water-soluble acrylic monomer. As a result, the swelling property of the obtained organic-inorganic composite hydrogel in physiological saline was greatly improved. In addition, by using the monomer represented by the formula (1) in the present invention, the flexibility of the dried organic-inorganic composite hydrogel obtained is given, and the usability as well as the swelling property are remarkably improved. Furthermore, in the present invention, by using the monomer represented by the formula (1), the polymerization rate of the acrylic monomer, particularly dimethylacrylamide, is suppressed, the solution in the reaction system does not thicken during the production, and it is industrially organic. The production of the inorganic composite hydrogel is facilitated.

実施例1,2,3及び比較例1,2で得られたヒドロゲルの破断強度と伸びを示す図である。FIG. 2 is a diagram showing the breaking strength and elongation of hydrogels obtained in Examples 1, 2, 3 and Comparative Examples 1, 2. 実施例1,2,3及び比較例1,2,3で得られたヒドロゲルの生理食塩水での膨潤度を示す図である。It is a figure which shows the swelling degree in the physiological saline of the hydrogel obtained by Example 1,2,3 and Comparative Example 1,2,3. 実施例4,5,6,7,8で得られたヒドロゲルの破断強度と伸びを示す図である。FIG. 4 is a graph showing the breaking strength and elongation of the hydrogels obtained in Examples 4, 5, 6, 7, and 8. 実施例4,5,6,7,8で得られたヒドロゲルの生理食塩水での膨潤度を示す図である。It is a figure which shows the swelling degree in the physiological saline of the hydrogel obtained in Example 4,5,6,7,8. 実施例9,10,11,12及び比較例4で得られたヒドロゲルの破断強度と伸びを示す図である。FIG. 6 is a graph showing the breaking strength and elongation of the hydrogels obtained in Examples 9, 10, 11, 12 and Comparative Example 4. 実施例9,10,11,12及び比較例4で得られたヒドロゲルの生理食塩水での膨潤度を示す図である。FIG. 6 is a graph showing the degree of swelling of the hydrogels obtained in Examples 9, 10, 11, 12 and Comparative Example 4 with physiological saline. 実施例9,10,11,12で得られたヒドロゲルの温度応答性を示す図である。It is a figure which shows the temperature responsiveness of the hydrogel obtained in Example 9,10,11,12. 実施例13,14,15及び比較例5で得られたヒドロゲルの破断強度と伸びを示す図である。FIG. 6 is a graph showing the breaking strength and elongation of hydrogels obtained in Examples 13, 14, 15 and Comparative Example 5. 実施例13,14,15及び比較例5で得られたヒドロゲルの生理食塩水での膨潤度を示す図である。6 is a graph showing the degree of swelling of the hydrogels obtained in Examples 13, 14, 15 and Comparative Example 5 with physiological saline. FIG.

本発明の有機無機複合ヒドロゲルは、水溶性のアクリルモノマー(a)の重合体(A)と水膨潤性粘土鉱物(B)とから構成される。   The organic-inorganic composite hydrogel of the present invention is composed of a water-soluble acrylic monomer (a) polymer (A) and a water-swellable clay mineral (B).

本発明の有機無機複合ヒドロゲルに用いられる水溶性アクリルモノマー(a)は、水に溶解する性質を有し、水に均一分散可能な水膨潤性の粘土鉱物(B)と相互作用を有するものであれば良く、例えば、アクリルアミド、メタクリルアミド、及びこれらの誘導体(N−またはN,N置換(メタ)アクリルアミド)やアクリル酸エステルが好ましく用いられる。   The water-soluble acrylic monomer (a) used in the organic-inorganic composite hydrogel of the present invention has a property of dissolving in water and interacting with a water-swellable clay mineral (B) that can be uniformly dispersed in water. For example, acrylamide, methacrylamide, and derivatives thereof (N- or N, N-substituted (meth) acrylamide) and acrylate esters are preferably used.

本発明に用いられる水溶性アクリルモノマー(a)としては、得られる有機無機複合ヒドロゲル及びその乾燥体の膨潤特性や柔軟性を向上させるために式(1)で表されるアクリルモノマーが使用される。   As the water-soluble acrylic monomer (a) used in the present invention, the acrylic monomer represented by the formula (1) is used in order to improve the swelling characteristics and flexibility of the obtained organic-inorganic composite hydrogel and its dried product. .

Figure 0005456344
(式中、Rは、水素原子又はメチル基、Rは炭素数2又は3のアルキレン基、nは10〜99の整数、Yはメトキシ基又は水酸基を表す。)
Figure 0005456344
(In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 or 3 carbon atoms, n represents an integer of 10 to 99, and Y represents a methoxy group or a hydroxyl group.)

また、水溶性アクリルモノマー(a)としては、(メタ)アクリルアミド、N−置換(メタ)アクリルアミド及びアクリロイルモルホリンなどから選択される1種以上のモノマーを併用することが好ましく、具体的には、N-メチルアクリルアミド、N-エチルアクリルアミド、N-シクロプロピルアクリルアミド、N-イソプロピルアクリルアミド、N-メチルメタクリルアミド、N-シクロプロピルメタクリルアミド、N-イソプロピルメタクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N,N-ジエチルアクリルアミド、アクリロイルモルフォリン、N-アクリロイルピロリディン、N-アクリロイルピペリディン、N-アクリロイルメチルホモピペラディン、N-アクリロイルメチルピペラディンなどが例示される。中でも、膨潤性の観点から、N,N−ジメチルアクリルアミドと式(1)で表されるモノマーとを併用することが好ましく、生体に対する安全性の観点から、アクリロイルモルホリンと式(1)で表されるモノマーとを併用することが好ましく、機能性の観点から、LCST(下限臨界共溶温度)を持つN-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミドと式(1)で表されるモノマーとを併用することが好ましい。   The water-soluble acrylic monomer (a) is preferably used in combination with one or more monomers selected from (meth) acrylamide, N-substituted (meth) acrylamide, acryloylmorpholine, and the like. -Methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, N-methylmethacrylamide, N-cyclopropylmethacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N-methyl- N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, acryloylmorpholine, N-acryloylpyrrolidine, N-acryloylpiperidine, N -Acrylloy Methyl homo piperazinyl Laden, such as N- acryloyl methylpiperazinyl Laden are exemplified. Of these, N, N-dimethylacrylamide and the monomer represented by formula (1) are preferably used in combination from the viewpoint of swelling, and acryloylmorpholine and formula (1) are represented from the viewpoint of safety to living bodies. From the viewpoint of functionality, N-isopropylacrylamide, N, N-diethylacrylamide having LCST (lower critical solution temperature) and a monomer represented by the formula (1) are used in combination. It is preferable to do.

本発明の有機無機複合ヒドロゲルは、優れた力学物性と膨潤特性を示すため、また、ヒドロゲルの製造を容易に行うために、上記式(1)で表されるアクリルモノマーとアミド基を有するアクリルモノマーとの共重合体として用いられる必要がある。重合の際に用いられる全アクリルモノマーに含まれる式(1)で表されるアクリルモノマーの使用比率は、好ましくは1質量%〜70質量%であり、より好ましくは3質量%〜60質量%であり、5質量%〜50質量%が特に好ましい。全アクリルモノマー中の式(1)で表されるアクリルモノマーの含有率がこの範囲であると、得られる有機無機複合ヒドロゲル及びその乾燥体の膨潤特性や柔軟性等の物性向上に十分な効果が得られ、またヒドロゲルの力学物性が大幅に低下することがなく、好ましい。   The organic-inorganic composite hydrogel of the present invention exhibits excellent mechanical properties and swelling characteristics, and also facilitates the production of the hydrogel, so that the acrylic monomer having the amide group and the acrylic monomer represented by the above formula (1) Need to be used as a copolymer. The use ratio of the acrylic monomer represented by the formula (1) included in all acrylic monomers used in the polymerization is preferably 1% by mass to 70% by mass, more preferably 3% by mass to 60% by mass. Yes, 5 mass%-50 mass% is especially preferable. When the content of the acrylic monomer represented by the formula (1) in all acrylic monomers is within this range, the organic-inorganic composite hydrogel obtained and its dried product have sufficient effects for improving physical properties such as swelling characteristics and flexibility. It is preferable because it is obtained and the mechanical properties of the hydrogel are not significantly lowered.

本発明で用いられている式(1)で表されるアクリルモノマーのエチレングリコール繰り返し単位数は10〜99個のものを適宜に選択することができる。一般的には、エチレングリコール繰り返し単位数を増えることにつれ、得られる有機無機複合ヒドロゲルの生理食塩水での膨潤度が高くなる傾向を示す。したがって、式(1)のモノマーのエチレングリコール繰り返し単位数は、好ましくは14〜99個であり、より好ましくは20〜60個であり、45〜60個であることが特に好ましい。   The number of ethylene glycol repeating units of the acrylic monomer represented by the formula (1) used in the present invention can be appropriately selected from 10 to 99. In general, as the number of ethylene glycol repeating units increases, the degree of swelling of the resulting organic-inorganic composite hydrogel in physiological saline tends to increase. Therefore, the number of ethylene glycol repeating units of the monomer of formula (1) is preferably 14 to 99, more preferably 20 to 60, and particularly preferably 45 to 60.

また、併用する(メタ)アクリルアミド誘導体の種類によって、エチレングリコールの繰り返し単位数の最適範囲が異なる。例えば、ジメチルアクリルアミドと式(1)で表されるモノマーとを併用する系では、高い生理食塩水での膨潤度を得るため、式(1)のモノマーのエチレングリコール繰り返し単位数は、好ましくは10〜99個であり、より好ましくは23〜60個であり、45〜60個であることが特に好ましい。   In addition, the optimum range of the number of repeating units of ethylene glycol varies depending on the type of (meth) acrylamide derivative used in combination. For example, in a system in which dimethylacrylamide and the monomer represented by formula (1) are used in combination, the number of ethylene glycol repeating units in the monomer of formula (1) is preferably 10 in order to obtain a high degree of swelling in physiological saline. It is -99 pieces, More preferably, it is 23-60 pieces, It is especially preferable that it is 45-60 pieces.

本発明に用いる水膨潤性粘土鉱物(B)は、水又は水溶液中で層間が膨潤する性質を有することが必要である。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、更に好ましくは水中で1ないし10層以内の厚みに、特に好ましくは水中で1ないし3層以内の厚みに層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などを用いることができ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母が挙げられる。   The water-swellable clay mineral (B) used in the present invention needs to have a property of swelling between layers in water or an aqueous solution. More preferably, at least a part can be peeled and dispersed in layers in water, more preferably in water to a thickness of 1 to 10 layers, particularly preferably in water to a thickness of 1 to 3 layers. It is a layered clay mineral that can be dispersed uniformly. For example, water-swellable smectite and water-swellable mica can be used. Specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica Is mentioned.

本発明に用いる有機無機複合ヒドロゲルを構成する水溶性アクリルモノマー(a)と粘土鉱物(B)との比率は、用いる水溶性アクリルモノマーや粘土鉱物の種類により適宜選択されるが、溶媒の中で両者が三次元網目を形成する範囲が好ましく、水膨潤性粘土鉱物(B)/水溶性アクリルモノマー(a)の重合体(A)の質量比として好ましくは0.01〜5、より好ましくは0.03〜3、特に好ましくは0.05〜1.5である。かかる質量比の範囲であれば、調製が容易であり、高延伸性を保ったまま、広い範囲において制御された弾性率(柔らかさ)および高強度が得られる。   The ratio of the water-soluble acrylic monomer (a) and the clay mineral (B) constituting the organic-inorganic composite hydrogel used in the present invention is appropriately selected depending on the type of the water-soluble acrylic monomer and clay mineral used. The range in which both form a three-dimensional network is preferable, and the mass ratio of the water-swellable clay mineral (B) / water-soluble acrylic monomer (a) polymer (A) is preferably 0.01 to 5, more preferably 0. 0.03 to 3, particularly preferably 0.05 to 1.5. Within such a mass ratio range, preparation is easy, and a controlled elastic modulus (softness) and high strength can be obtained over a wide range while maintaining high stretchability.

本発明に用いる有機無機複合ヒドロゲルには、溶媒として水以外にも水と混和する有機溶媒との混合溶媒を含んでいるものも含まれる。   The organic-inorganic composite hydrogel used in the present invention includes a solvent containing a mixed solvent with an organic solvent miscible with water in addition to water.

本発明において有機無機複合ヒドロゲルに含まれる水又は溶媒の量は、目的に応じて設定され一概には規定されないが、好ましくは有機無機複合ヒドロゲル中のアクリルモノマーの重合体と水膨潤性粘土鉱物との合計質量に対する水又は溶媒の質量比が50以下のものが用いられ、さらに好ましくは0.1〜30のものが用いられる。   In the present invention, the amount of water or solvent contained in the organic-inorganic composite hydrogel is set according to the purpose and is not unconditionally defined, but is preferably a polymer of an acrylic monomer in the organic-inorganic composite hydrogel, Those having a mass ratio of water or solvent to the total mass of 50 or less are more preferably 0.1-30.

本発明に用いる有機無機複合ヒドロゲルは、水溶性アクリルモノマーの重合体(A)と水膨潤性粘土鉱物(B)とから構成される三次元網目構造を有することから、20kPa以上の引っ張り強度、および200%以上の破断伸びといった優れた物性を実現できる柔軟且つ強靭な材料であり、好ましくは、引っ張り強度が25kPa以上、破断伸びが300%以上の物性を有する。   Since the organic-inorganic composite hydrogel used in the present invention has a three-dimensional network structure composed of a polymer (A) of a water-soluble acrylic monomer and a water-swellable clay mineral (B), a tensile strength of 20 kPa or more, and It is a flexible and tough material that can realize excellent physical properties such as an elongation at break of 200% or more, and preferably has a tensile strength of 25 kPa or more and an elongation at break of 300% or more.

本発明における有機無機複合ヒドロゲルは、イオン性を持たないため耐塩性に優れ、食塩水中での膨潤性が極めて高い。食塩水膨潤性の高低は、食塩水で膨潤した状態のヒドロゲルの質量(Wgel)をゲルの固形分質量(Wdry)で除した食塩水膨潤度(Wgel)/(Wdry)により判断できる。本発明のヒドロゲルは、生理食塩水中での(Wgel)/(Wdry)が20〜120であることが好ましい。より好ましくは25〜100である。   Since the organic-inorganic composite hydrogel in the present invention does not have ionicity, it is excellent in salt resistance and extremely swellable in saline. The level of salt water swellability can be judged by the salt water swelling degree (Wgel) / (Wdry) obtained by dividing the mass (Wgel) of the hydrogel swollen by the saline by the solid content mass (Wdry) of the gel. The hydrogel of the present invention preferably has (Wgel) / (Wdry) of 20 to 120 in physiological saline. More preferably, it is 25-100.

本発明の有機無機複合ヒドロゲルには、低温側で透明及び/又は体積膨潤状態にあり、且つ高温側で不透明及び/又は体積収縮状態となる臨界温度(Tc)を有し、Tcを境にした上下の温度変化により透明性や体積を可逆的に変化できる特徴を有するものが含まれる。このような有機無機複合ヒドロゲルは有機モノマーとして水溶液中でLCST(下限臨界共溶温度)を示す感温性モノマー、例えばN-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミドを用いて調製できる。ポリエチレングリコール鎖を有する式(1)のアクリルモノマーと共重合する場合、感温性モノマーのLCSTが消失する傾向がある。高い水膨潤性と感温性を併せ持つため、全モノマー中の式(1)のアクリルモノマーの含有比率は、好ましくは2〜50質量%であり、より好ましくは4〜45質量%であり、特に好ましくは6〜40質量%である。式(1)で表されるアクリルモノマーの含有率が2質量%より少ないと、得られる有機無機複合ヒドロゲルの食塩水膨潤性向上に十分な効果が得られなく、また50質量%より多くなると、ヒドロゲルの温度応答性が無くなる恐れがあり、好ましくない。   The organic-inorganic composite hydrogel of the present invention has a critical temperature (Tc) that is transparent and / or volume swelled on the low temperature side and opaque and / or volume contracted on the high temperature side, with Tc as the boundary. Those having the characteristics that the transparency and volume can be reversibly changed by the temperature change up and down are included. Such an organic-inorganic composite hydrogel can be prepared using a temperature-sensitive monomer exhibiting LCST (lower critical solution temperature) in an aqueous solution as an organic monomer, such as N-isopropylacrylamide or N, N-diethylacrylamide. When copolymerizing with an acrylic monomer of formula (1) having a polyethylene glycol chain, the LCST of the thermosensitive monomer tends to disappear. In order to have both high water swellability and temperature sensitivity, the content ratio of the acrylic monomer of the formula (1) in all monomers is preferably 2 to 50% by mass, more preferably 4 to 45% by mass, especially Preferably it is 6-40 mass%. When the content of the acrylic monomer represented by the formula (1) is less than 2% by mass, a sufficient effect for improving the saline swelling property of the obtained organic-inorganic composite hydrogel cannot be obtained, and when the content is more than 50% by mass, There is a possibility that the temperature responsiveness of the hydrogel may be lost, which is not preferable.

本発明に用いる有機無機複合ヒドロゲルの製造方法は、水溶性アクリルモノマー(a)を水膨潤性粘土鉱物(B)の共存下での重合反応によって行われる。重合反応は、ラジカル重合開始剤を使用する慣用のラジカル重合方法により行わせることが出来る。具体的には、まず、水溶性アクリルモノマー(a)と水膨潤性粘土鉱物(B)と水を含む均一分散液を調製した後、水膨潤性粘土鉱物(B)共存下で窒素雰囲気中水溶性アクリルモノマー(a)を重合させることにより、有機無機複合ヒドロゲルを調製する。ここで層状に剥離した水膨潤性粘土鉱物(B)が架橋剤の働きをすることにより水溶性アクリルモノマー(a)の重合体(A)と水膨潤性粘土鉱物(B)との三次元網目を形成した有機無機複合ヒドロゲルが得られる。該有機無機複合ヒドロゲルはこのように形成された三次元網目構造を有することにより、その内部に水又は水と有機溶媒との水溶液を保持することができると共に、上記の優れた物性を達成できる。   The organic-inorganic composite hydrogel used in the present invention is produced by a polymerization reaction of a water-soluble acrylic monomer (a) in the presence of a water-swellable clay mineral (B). The polymerization reaction can be carried out by a conventional radical polymerization method using a radical polymerization initiator. Specifically, first, a uniform dispersion containing a water-soluble acrylic monomer (a), a water-swellable clay mineral (B), and water is prepared, and then water-soluble in a nitrogen atmosphere in the presence of the water-swellable clay mineral (B). An organic-inorganic composite hydrogel is prepared by polymerizing the polymerizable acrylic monomer (a). Here, the water-swellable clay mineral (B) exfoliated in layers forms a three-dimensional network of the polymer (A) of the water-soluble acrylic monomer (a) and the water-swellable clay mineral (B) by acting as a crosslinking agent. An organic-inorganic composite hydrogel having formed therein is obtained. Since the organic-inorganic composite hydrogel has a three-dimensional network structure formed in this way, it can hold water or an aqueous solution of water and an organic solvent in the interior and achieve the above-described excellent physical properties.

ラジカル重合開始剤及び重合促進剤としては、慣用のラジカル重合開始剤及び重合促進剤のうちから適宜選択して用いることが出来、好ましくは水に分散性を有し、系全体に均一に含まれるものを用いることができる。特に好ましくは層状に剥離した水膨潤性粘土鉱物(B)と強い相互作用を有するラジカル重合開始剤である。具体的には、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物などを好ましく使用できる。水溶性アゾ化合物としては、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく使用できる。その他、ポリエチレンオキシド鎖を有する水溶性ラジカル開始剤なども使用できる。また重合促進剤としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどを好適に使用できる。   The radical polymerization initiator and the polymerization accelerator can be appropriately selected from conventional radical polymerization initiators and polymerization accelerators, preferably have water dispersibility and are uniformly contained in the entire system. Things can be used. Particularly preferred is a radical polymerization initiator having a strong interaction with the water-swellable clay mineral (B) exfoliated in layers. Specifically, water-soluble peroxides such as potassium peroxodisulfate, ammonium peroxodisulfate, and water-soluble azo compounds can be preferably used. As the water-soluble azo compound, VA-044, V-50, V-501 and the like manufactured by Wako Pure Chemical Industries, Ltd. can be preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain can also be used. As the polymerization accelerator, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine and β-dimethylaminopropionitrile can be preferably used.

上記重合反応時の温度は、一般的に用いる水溶性アクリルモノマー(a)、重合促進剤及び開始剤の種類などに合わせて適宜選択され、例えば0℃〜100℃の範囲に設定出来るが、用いる水溶性アクリルモノマー(a)の種類によって最適な重合温度が異なる。例えば、ジメチルアクリルアミド及びイソプロピルアクリルアミドと式(1)で表されるモノマーとを併用する系では、20℃での低温重合が最も好ましい。これに対して、アクリロイルモルホリン(ACMO)と式(1)で表されるモノマーとを併用する系では、20℃での低温で両モノマーは重合していくと相分離が生じるため、より高い重合温度、例えば50℃での重合が好ましい。重合時間は重合促進剤、開始剤、重合温度、重合溶液量(厚み)などの重合条件によって異なり、一概に規定できないが、一般に数十秒〜十数時間の間で調整すればよい。   The temperature at the time of the polymerization reaction is appropriately selected according to the types of water-soluble acrylic monomers (a), polymerization accelerators and initiators that are generally used, and can be set in the range of 0 ° C. to 100 ° C., for example. The optimum polymerization temperature varies depending on the type of water-soluble acrylic monomer (a). For example, in a system using dimethylacrylamide and isopropylacrylamide in combination with the monomer represented by the formula (1), low temperature polymerization at 20 ° C. is most preferable. On the other hand, in a system using acryloylmorpholine (ACMO) and the monomer represented by formula (1) in combination, phase separation occurs when both monomers are polymerized at a low temperature of 20 ° C. Polymerization at a temperature, for example 50 ° C., is preferred. The polymerization time varies depending on polymerization conditions such as a polymerization accelerator, an initiator, a polymerization temperature, and a polymerization solution amount (thickness) and cannot be generally defined, but generally may be adjusted between several tens of seconds to several tens of hours.

本発明の有機無機複合ヒドロゲルは、その特性、例えば弾性率(硬さ)を改良する目的で、該有機無機複合ヒドロゲル中のアクリルモノマーの重合体の一部を共有結合により架橋させることが出来る。該有機無機複合ヒドロゲル中のアクリルモノマーの重合体の一部を共有結合させることにより、溶媒を吸収して膨潤した時に形状の安定性が向上する。   In the organic-inorganic composite hydrogel of the present invention, a part of the polymer of the acrylic monomer in the organic-inorganic composite hydrogel can be crosslinked by a covalent bond for the purpose of improving its properties such as elastic modulus (hardness). By covalently bonding a part of the polymer of the acrylic monomer in the organic-inorganic composite hydrogel, the shape stability is improved when the solvent is absorbed and swollen.

アクリルモノマーの重合体の一部を共有結合によって架橋させる方法は、該有機無機複合ヒドロゲルの柔軟性や強靱性を保持できる限り、特に方法が限定されるわけではないが、例えば、有機架橋剤を用いる方法や該有機無機複合ヒドロゲルに放射線を照射して、アクリルモノマーの重合体相互で共有結合させる方法が挙げられる。   The method for cross-linking a part of the polymer of acrylic monomer by covalent bond is not particularly limited as long as the flexibility and toughness of the organic-inorganic composite hydrogel can be maintained. Examples thereof include a method used and a method in which the organic-inorganic composite hydrogel is irradiated with radiation to covalently bond the acrylic monomer polymers to each other.

本発明の有機無機複合ヒドロゲルは、重合時に重合容器の形状を変化させたり、重合後に切削加工したりすることにより種々の大きさや形状に調製でき、例えば、フィルム状、平板状、繊維状、棒状、円柱状、中空状、筒状、らせん状、あるいは球状など任意の形状とすることができる。特にフィルム状のヒドロゲルでは、その高い生理食塩水膨潤性から創傷被覆材として好適に用いられる。例えば、ヒドロゲルフィルムで傷口を覆って貼り付けて、傷口表面を細菌から保護し、傷口から出てくる侵出液を吸収し、かつ、乾いた創傷面にも湿潤環境を供与し、傷の痛みを軽減しつつ、治癒を促進することができる。   The organic-inorganic composite hydrogel of the present invention can be prepared in various sizes and shapes by changing the shape of the polymerization vessel at the time of polymerization, or by cutting after polymerization, for example, film shape, flat plate shape, fiber shape, rod shape A cylindrical shape, a hollow shape, a cylindrical shape, a spiral shape, or a spherical shape can be used. In particular, a film-like hydrogel is suitably used as a wound dressing because of its high physiological saline swelling property. For example, covering the wound with a hydrogel film, protecting the wound surface from bacteria, absorbing exudate from the wound, and also providing a moist environment to the dry wound surface, sore the wound Healing can be promoted while reducing.

また、本発明には、得られた有機無機複合ヒドロゲルを慣用の方法で乾燥し、溶媒の一部もしくは全部を除去した有機無機複合体を得ることが出来る。かかる乾燥温度は80℃以下であることが好ましく、より好ましくは60℃以下である。乾燥温度は80℃を超えると、重合体の一部に共有結合による架橋が生じるため、得られる有機無機複合体の食塩水膨潤性が低下する恐れがあり、好ましくない。乾燥時間は用いるヒドロゲルフィルムの厚み、乾燥方法及び乾燥温度によって異なるが、通常数時間から数十時間である。   In the present invention, the obtained organic-inorganic composite hydrogel can be dried by a conventional method to obtain an organic-inorganic composite from which part or all of the solvent has been removed. Such a drying temperature is preferably 80 ° C. or lower, more preferably 60 ° C. or lower. When the drying temperature exceeds 80 ° C., crosslinking due to a covalent bond occurs in a part of the polymer, so that the salt swellability of the obtained organic-inorganic composite may be lowered, which is not preferable. The drying time varies depending on the thickness of the hydrogel film to be used, the drying method and the drying temperature, but is usually several hours to several tens of hours.

本発明は、式(1)で表されるアクリルモノマーを用いることによって、得られる有機無機複合体に柔軟性が与えられる。その柔軟さは、用いる式(1)で表されるアクリルモノマーの使用量及び粘土鉱物の含有率によって異なる。例えば、上述のヒドロゲルフィルムを乾燥することによって得た0.1〜0.3mm厚みの乾燥フィルムでは、90°繰り返し曲げられても割れないことを基準とした場合、用いる式(1)で表されるアクリルモノマーの使用量は全モノマーに対して20質量%以上が好ましく、より好ましくは25質量%以上であり、特に好ましくは30質量%以上である。また、用いる粘土鉱物の含有率は固形分に対して20質量%以下が好ましく、より好ましくは16質量%以下であり、特に好ましくは13質量%以下である。かかる式(1)で表されるアクリルモノマーの使用量及び粘土鉱物の含有率が上述の範囲であれば、得られる有機無機複合体フィルムは人間の体にフィットする柔軟性を持ち、そのままでも、又は水に浸してヒドロゲルフィルムに再生して、創傷被覆材として用いることができる。   In the present invention, flexibility is imparted to the obtained organic-inorganic composite by using the acrylic monomer represented by the formula (1). The softness | flexibility changes with the usage-amount of the acrylic monomer represented by Formula (1) to be used, and the content rate of a clay mineral. For example, a dry film having a thickness of 0.1 to 0.3 mm obtained by drying the hydrogel film described above is represented by the formula (1) used on the basis that it is not broken even if it is repeatedly bent by 90 °. The amount of acrylic monomer used is preferably 20% by mass or more, more preferably 25% by mass or more, and particularly preferably 30% by mass or more based on the total monomers. Further, the content of the clay mineral to be used is preferably 20% by mass or less, more preferably 16% by mass or less, and particularly preferably 13% by mass or less with respect to the solid content. If the amount of the acrylic monomer represented by the formula (1) and the content of the clay mineral are within the above ranges, the obtained organic-inorganic composite film has flexibility to fit the human body, Alternatively, it can be immersed in water and regenerated into a hydrogel film to be used as a wound dressing.

本発明は、次の実施例及び比較例によって更に具体的に説明するが、これに限定されるものではない。   The present invention will be described more specifically with reference to the following examples and comparative examples, but is not limited thereto.

(測定条件)
<破断強度と伸びの測定>
以下の実施例及び比較例において、破断強度と伸びを測定するための引張り試験は、島津製作所(株)製卓上型万能試験機AGS−Hを用いて、未精製のフィルム状のヒドロゲル(厚み=2.5mm、幅=10mm)をチャック部での滑りのないようにして引っ張り試験装置に装着し、標点間距離=30mm、引っ張り速度=100mm/分にて測定を行った。
<生理食塩水中で膨潤度の測定>
ヒドロゲルの生理食塩水中での膨潤度は両辺30mm、厚み2.5mmのフィルム状ヒドロゲルを大量の生理食塩水の中に浸して、その質量増加の時間依存性から求めた。また、ヒドロゲルフィルム乾燥体の生理食塩水中での膨潤度は、厚み約0.2mmの乾燥フィルム約 0.03gを50mlの37℃生理食塩水の中に25〜100時間浸して、質量増加しなくなるまでの平衡膨潤度を測定した。
<柔軟性の評価>
ヒドロゲルフィルムから得られた厚み約0.1〜0.2mmの乾燥フィルムにおいて、150°繰り返し曲げられるものは◎で優れた柔軟性を表し、90°繰り返し曲げられるものは○で柔軟性ありを表し、90°曲げて割れたものは×で柔軟性なしを表す。
<光透過率の測定>
光透過率の温度依存性は、角柱状の透明ポリスチレンセルにヒドロゲルを合成し、そのまま日本分光(株)製紫外可視分光光度計V-530を用いて測定した。
(Measurement condition)
<Measurement of breaking strength and elongation>
In the following Examples and Comparative Examples, a tensile test for measuring the breaking strength and elongation was performed using an unpurified film-like hydrogel (thickness = thickness) using a tabletop universal testing machine AGS-H manufactured by Shimadzu Corporation. (2.5 mm, width = 10 mm) was attached to a tensile test apparatus without slipping at the chuck portion, and measurement was performed at a distance between gauge points = 30 mm and a pulling speed = 100 mm / min.
<Measurement of swelling degree in physiological saline>
The degree of swelling of the hydrogel in physiological saline was determined from the time dependence of the increase in mass of a film-like hydrogel having both sides of 30 mm and a thickness of 2.5 mm immersed in a large amount of physiological saline. In addition, the degree of swelling of the dried hydrogel film in physiological saline was determined by immersing about 0.03 g of a dry film having a thickness of about 0.2 mm in 50 ml of 37 ° C. physiological saline for 25 to 100 hours until the mass did not increase. The equilibrium swelling degree was measured.
<Evaluation of flexibility>
In a dry film having a thickness of about 0.1 to 0.2 mm obtained from a hydrogel film, those that can be bent 150 ° repeatedly represent excellent flexibility with ◎, those that can be bent 90 ° repeatedly represent ○ with flexibility, 90 ° Bending and cracking means “no flexibility”.
<Measurement of light transmittance>
The temperature dependence of the light transmittance was measured using a UV-visible spectrophotometer V-530 manufactured by JASCO Corporation as it was by synthesizing a hydrogel in a prismatic transparent polystyrene cell.

(試薬)
・ 粘土鉱物
XLG: 水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)
・モノマー
DMAA: N,N-ジメチルアクリルアミド(和光純薬工業株式会社製)、活性アルミナを用いて重合禁止剤を取り除いてから使用した。
NIPAM: N-イソプロピルアクリルアミド(興人株式会社製)、トルエンとヘキサンの混合溶媒を用いて再結晶し無色針状結晶に精製してから用いた。
ACMO: アクリロイルモルフォリン(興人株式会社製)、活性アルミナを用いて重合禁止剤を取り除いてから使用した。
DEAA: N,N-ジエチルアクリルアミド(興人株式会社製)、活性アルミナを用いて重合禁止剤を取り除いてから使用した。
AM-90G: CH2=CHCO(OC2H4)nOCH3 n=9 NKエステルAM-90G(新中村化学株式会社製)、試薬そのまま使用した。
AM-130G: CH2=CHCO(OC2H4)nOCH3 n=13 分子量 550 NKエステルAM-130G(新中村化学株式会社製)、試薬そのまま使用した。
AM-230G: CH2=CHCO(OC2H4)nOCH3 n=23 分子量1000 NKエステルAM-230G(新中村化学株式会社製)、試薬そのまま使用した。
M-450G: CH2=C(CH3)CO(OCH2CH2)nOCH3 n=45 分子量2000 NKエステルM-450G(新中村化学株式会社製)、試薬そのまま使用した。
M-900G: CH2=C(CH3)CO(OCH2CH2)nOCH3 n=90 分子量4000 NKエステルM-900G(新中村化学株式会社製)、試薬そのまま使用した。
PME-2000: CH2=C(CH3)CO(OCH2CH2)nOCH3 n=45 分子量2000 ブレンマPME-2000
(日油株式会社製)、試薬そのまま使用した。
PME-4000: CH2=C(CH3)CO(OCH2CH2)nOCH3 n=90 分子量4000 ブレンマPME-4000(日油株式会社製)、試薬そのまま使用した。
BIS:N,N’-メチレンビスアクリルアミド(関東化学株式会社製)、試薬そのまま使用した。
・重合開始剤
KPS: ペルオキソ二硫酸カリウム(関東化学株式会社製)、KPS/水=0.2/10(g/g)の割合で純水で希釈し、水溶液にして使用した。
・重合触媒
TEMED:N,N,N',N'-テトラメチルエチレンジアミン(和光純薬工業株式会社製)
(reagent)
・ Clay minerals
XLG: Water-swellable synthetic hectorite (Trademark LAPONITE XLG, manufactured by Nippon Silica Co., Ltd.)
·monomer
DMAA: N, N-dimethylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.), activated alumina was used after removing the polymerization inhibitor.
NIPAM: N-isopropylacrylamide (manufactured by Kojin Co., Ltd.), recrystallized using a mixed solvent of toluene and hexane and purified to colorless needle crystals before use.
ACMO: Used after removing the polymerization inhibitor using acryloylmorpholine (manufactured by Kojin Co., Ltd.) and activated alumina.
DEAA: N, N-diethylacrylamide (manufactured by Kojin Co., Ltd.) and activated alumina were used after removing the polymerization inhibitor.
AM-90G: CH 2 = CHCO (OC 2 H 4 ) nOCH 3 n = 9 NK ester AM-90G (manufactured by Shin-Nakamura Chemical Co., Ltd.), the reagent was used as it was.
AM-130G: CH 2 = CHCO (OC 2 H 4 ) nOCH 3 n = 13 Molecular weight 550 NK ester AM-130G (manufactured by Shin-Nakamura Chemical Co., Ltd.), the reagent was used as it was.
AM-230G: CH 2 = CHCO (OC 2 H 4 ) nOCH 3 n = 23 Molecular weight 1000 NK ester AM-230G (manufactured by Shin-Nakamura Chemical Co., Ltd.), the reagent was used as it was.
M-450G: CH 2 ═C (CH 3 ) CO (OCH 2 CH 2 ) nOCH 3 n = 45 Molecular weight 2000 NK ester M-450G (manufactured by Shin-Nakamura Chemical Co., Ltd.), the reagent was used as it was.
M-900G: CH 2 = C (CH 3 ) CO (OCH 2 CH 2 ) nOCH 3 n = 90 Molecular weight 4000 NK ester M-900G (manufactured by Shin-Nakamura Chemical Co., Ltd.), the reagent was used as it was.
PME-2000: CH 2 = C (CH 3 ) CO (OCH 2 CH 2 ) nOCH 3 n = 45 Molecular weight 2000 Blemma PME-2000
(Manufactured by NOF Corporation), the reagent was used as it was.
PME-4000: CH 2 = C (CH 3 ) CO (OCH 2 CH 2 ) nOCH 3 n = 90 Molecular weight 4000 Blemma PME-4000 (manufactured by NOF Corporation), the reagent was used as it was.
BIS: N, N′-methylenebisacrylamide (manufactured by Kanto Chemical Co., Inc.) and the reagent were used as they were.
・ Polymerization initiator
KPS: potassium peroxodisulfate (manufactured by Kanto Chemical Co., Inc.), diluted with pure water at a ratio of KPS / water = 0.2 / 10 (g / g) and used as an aqueous solution.
・ Polymerization catalyst
TEMED: N, N, N ', N'-tetramethylethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.)

(実施例1と比較例1,2,3)
平底ガラス容器に、純水28.5gを攪拌しながら、0.96gのXLGを添加して無色透明の溶液を調製した。これにDMAA 5.4gとPME-2000 0.6g(モノマー合計に対して10質量%)を加え、15分間窒素バブリングした。続いて、氷浴下、TEMED24μl、KPS水溶液1.5gを順次攪拌して加え、均一溶液を得た。得られた均一溶液を予め窒素置換したポリスチレン製容器(8cm×12cm)に酸素に触れないようにして移した後、蓋を密栓し、20℃で静置重合を行った。24時間後にポリスチレン容器内に伸縮性、強靭性のあるフィルム状のヒドロゲルが生成された。得られたヒドロゲルを50℃、減圧下にて乾燥して水分を除いたヒドロゲル乾燥体を得た。このゲル乾燥体を20℃の水に浸漬することにより、乾燥前と同じ形状の伸縮性のあるヒドロゲルに戻ることが確認された。
(Example 1 and Comparative Examples 1, 2, 3)
While stirring 28.5 g of pure water in a flat bottom glass container, 0.96 g of XLG was added to prepare a colorless and transparent solution. DMAA 5.4g and PME-2000 0.6g (10 mass% with respect to the monomer total) were added to this, and nitrogen bubbling was carried out for 15 minutes. Subsequently, 24 μl of TEMED and 1.5 g of an aqueous KPS solution were sequentially added in an ice bath to obtain a uniform solution. The obtained uniform solution was transferred to a polystyrene container (8 cm × 12 cm) previously purged with nitrogen so as not to come into contact with oxygen, and then the lid was tightly sealed, followed by standing polymerization at 20 ° C. After 24 hours, a film-like hydrogel having elasticity and toughness was formed in the polystyrene container. The obtained hydrogel was dried at 50 ° C. under reduced pressure to obtain a dried hydrogel from which moisture was removed. It was confirmed that by immersing this dried gel in water at 20 ° C., it returned to a stretchable hydrogel having the same shape as before drying.

上述のように本実施例で得られたゲルは、有機高分子の合成において架橋剤を添加していないにもかかわらず、均一なヒドロゲルとなること、ヒドロゲルから水分を除いて得られるゲル乾燥体を水に浸漬することにより再びもとの形状のヒドロゲルに戻ることなどから、有機高分子と粘土鉱物が分子レベルで複合化した三次元網目が水中で形成されていると結論された。   As described above, the gel obtained in the present example is a uniform hydrogel despite the absence of a crosslinking agent in the synthesis of organic polymer, and a dried gel obtained by removing water from the hydrogel. It was concluded that a three-dimensional network in which organic polymers and clay minerals were combined at the molecular level was formed in water.

未精製のフィルム状のヒドロゲルを所定形状に切り出して引っ張り試験と生理食塩水での膨潤実験を行い、その結果を図1,図2に示す。また、式(1)のアクリルモノマーを使わない比較例1、式(1)のアクリルモノマーの代わりにポリエチレングリコール(PEG)鎖長の短いPEGアクリレートを用いた比較例2、粘土鉱物の変わりに有機架橋剤を用いた比較例3のヒドロゲルをそれぞれ実施例1と同様に合成し、引張特性と生理食塩水での膨潤性を評価した。図1に示したように式(1)のアクリルモノマーを用いた実施例は比較例1,2と比べてヒドロゲルが柔らかくなるが、まだ十分強い破断強度を保持した。一方、生理食塩水での膨潤性において、図2に示したように実施例1は比較例より膨潤度及び膨潤速度が大幅に向上した。なお、比較例3のゲルが極めて脆弱で引っ張り試験を行おうとしたが、チャックに装着前に殆どのサンプルが壊れた。また、チャックに軽く装着したものでも試験直後に破断し、物性値は得られなかった。   An unpurified film-like hydrogel was cut into a predetermined shape and subjected to a tensile test and a swelling experiment with physiological saline. The results are shown in FIGS. Further, Comparative Example 1 in which the acrylic monomer of formula (1) is not used, Comparative Example 2 in which PEG acrylate having a short polyethylene glycol (PEG) chain length is used in place of the acrylic monomer of formula (1), and organic instead of clay mineral The hydrogels of Comparative Example 3 using a crosslinking agent were synthesized in the same manner as in Example 1, and the tensile properties and the swelling properties with physiological saline were evaluated. As shown in FIG. 1, in the example using the acrylic monomer of the formula (1), the hydrogel was softer than the comparative examples 1 and 2, but still had a sufficiently high breaking strength. On the other hand, in the swelling property with physiological saline, as shown in FIG. 2, the degree of swelling and the swelling speed of Example 1 were significantly improved as compared with the comparative example. Although the gel of Comparative Example 3 was extremely brittle, an attempt was made to conduct a tensile test, but most of the samples were broken before being attached to the chuck. Moreover, even those lightly attached to the chuck were broken immediately after the test, and no physical property values were obtained.

(実施例2,3)
式(1)で表されるアクリルモノマーの使用量及び種類を変えた以外は実施例1とほぼ同様にして実施例2,3のヒドロゲルを調製した。図1及び図2に示したように実施例2,3は比較例と比べて、高い力学物性を保持した上、生理食塩水での膨潤度と膨潤速度が大幅に向上した。
(Examples 2 and 3)
Hydrogels of Examples 2 and 3 were prepared in substantially the same manner as in Example 1 except that the amount and type of the acrylic monomer represented by the formula (1) were changed. As shown in FIG. 1 and FIG. 2, Examples 2 and 3 maintained higher mechanical properties than the comparative example, and significantly improved the degree of swelling and the swelling rate in physiological saline.

(実施例4〜8)
表2に示した組成で、実施例1とほぼ同様にして実施例4,5,6,7,8のヒドロゲルを調製した。図3及び図4に示したように実施例4〜8はいずれも比較例と比べて、力学物性を大きく低下せず、生理食塩水での膨潤度と膨潤速度が向上した。特に式(1)で表わされるアクリルモノマーの含有比率の高い実施例8は極めて高い膨潤度を示した。
(Examples 4 to 8)
Hydrogels of Examples 4, 5, 6, 7, and 8 were prepared in the same manner as in Example 1 with the compositions shown in Table 2. As shown in FIG. 3 and FIG. 4, Examples 4 to 8 did not significantly reduce the mechanical properties compared with the comparative example, and the swelling degree and swelling speed in physiological saline were improved. In particular, Example 8 having a high content of the acrylic monomer represented by the formula (1) showed a very high degree of swelling.

(実施例9〜12,比較例4)
DMAAの代わりにNIPAMを用いて、表3に示した組成で実施例1と同様にして、それぞれのヒドロゲルフィルムを調製した。また、式(1)のアクリルモノマーを用いない以外は実施例と同じように比較例4を調製した。図5に示したように式(1)のアクリルモノマーを用いた実施例は比較例と比べてヒドロゲルが柔らかくなるが、まだ十分高い破断強度と伸びを保持した。一方、生理食塩水での膨潤性において、図6に示したように実施例の膨潤度はいずれも比較例より向上した。特に式(1)のアクリルモノマーの含有比率の高い実施例11は高い膨潤度を示した。また、図7に示したように、実施例は親水性の式(1)のアクリルモノマーを用いたにもかかわらず、得られたヒドロゲルは34℃付近に光透過率が大きく変化し、明確なLCST(下限臨界共溶温度)を有することがわかった。
(Examples 9-12, Comparative Example 4)
Each hydrogel film was prepared in the same manner as in Example 1 using NIPAM instead of DMAA and the composition shown in Table 3. Further, Comparative Example 4 was prepared in the same manner as in Example except that the acrylic monomer of formula (1) was not used. As shown in FIG. 5, in the example using the acrylic monomer of the formula (1), the hydrogel was softer than the comparative example, but still maintained a sufficiently high breaking strength and elongation. On the other hand, in the swelling property with physiological saline, as shown in FIG. 6, the swelling degree of each example was improved as compared with the comparative example. In particular, Example 11 having a high content of the acrylic monomer of formula (1) showed a high degree of swelling. In addition, as shown in FIG. 7, although the examples used hydrophilic acrylic monomers of the formula (1), the obtained hydrogel had a large change in light transmittance around 34 ° C. It was found to have LCST (Lower Critical Solution Temperature).

(実施例13〜15,比較例5)
DMAAの代わりにACMOを用いて、表4に示した組成と合成条件で実施例1と同様にして、それぞれのヒドロゲルフィルムを調製した。また、式(1)のアクリルモノマーを用いない以外は実施例と同じように比較例5を調製した。図8及び図9に示したように実施例13〜15はいずれも比較例と比べて、力学物性を大きく低下せず、生理食塩水での膨潤度と膨潤速度が向上した。
(Examples 13-15, Comparative Example 5)
Each hydrogel film was prepared using ACMO instead of DMAA in the same manner as in Example 1 under the composition and synthesis conditions shown in Table 4. Further, Comparative Example 5 was prepared in the same manner as in Example except that the acrylic monomer of formula (1) was not used. As shown in FIGS. 8 and 9, all of Examples 13 to 15 did not significantly reduce the mechanical properties as compared with the comparative example, and the swelling degree and swelling speed in physiological saline were improved.

(実施例16と比較例6)
表5に示した組成で実施例1と同様にして実施例16のヒドロゲルフィルムを調製した。次に、このゲルフィルムを純水で洗浄し、室温で一晩風乾した後、更に4時間、50℃で熱風乾燥した。得られた乾燥フィルムは90°に繰り返して曲げられて、優れた柔軟性を示した。また、37℃の生理食塩水での膨潤度も高い値を示した。これに対して、式(1)で表わされるモノマーを用いない以外は実施例16と同様にして調製された比較例6の乾燥フィルムは極めて脆く、90°に曲げようとしたが、曲げられず割れた。これらの測定結果を表5に示す。
(実施例17〜19)
(Example 16 and Comparative Example 6)
A hydrogel film of Example 16 was prepared in the same manner as in Example 1 with the composition shown in Table 5. Next, the gel film was washed with pure water, air-dried overnight at room temperature, and then further hot-air dried at 50 ° C. for 4 hours. The resulting dry film was repeatedly bent at 90 ° and showed excellent flexibility. In addition, the degree of swelling in physiological saline at 37 ° C. also showed a high value. In contrast, the dry film of Comparative Example 6 prepared in the same manner as in Example 16 except that the monomer represented by the formula (1) was not used was extremely brittle and tried to bend at 90 °, but was not bent. cracked. These measurement results are shown in Table 5.
(Examples 17 to 19)

式(1)で表わされるモノマーの使用量及び粘土鉱物含有率を変えた以外は実施例16と同様にして実施例17,18,19の乾燥フィルムを作製した。柔軟性及び37℃生理食塩水での膨潤率を表5にまとめて示す。粘土鉱物含有率が低く、かつ式(1)のモノマー含有率が高い実施例17は150°に繰り返し曲げることができて、極めて優れた柔軟性を示した。   Dry films of Examples 17, 18, and 19 were produced in the same manner as Example 16 except that the amount of the monomer represented by the formula (1) and the clay mineral content were changed. Table 5 summarizes the flexibility and the swelling ratio in 37 ° C. physiological saline. Example 17 having a low clay mineral content and a high monomer content of the formula (1) could be repeatedly bent at 150 °, and exhibited extremely excellent flexibility.

(実施例20〜25)
表6に示した組成及び合成条件で実施例16と同様にして、実施例20〜25の乾燥フィルムを作製した。フィルムの柔軟性及び37℃の生理食塩水での膨潤率はいずれも良好で、その値を表6にまとめて示す。
(Examples 20 to 25)
Dry films of Examples 20 to 25 were produced in the same manner as in Example 16 with the compositions and synthesis conditions shown in Table 6. Both the flexibility of the film and the swelling rate with physiological saline at 37 ° C. are good, and the values are summarized in Table 6.

Figure 0005456344
Figure 0005456344

Figure 0005456344
Figure 0005456344

Figure 0005456344
Figure 0005456344

Figure 0005456344
Figure 0005456344

Figure 0005456344
Figure 0005456344

Figure 0005456344
Figure 0005456344

Claims (5)

水溶性アクリルモノマー(a)の重合体(A)と水膨潤性粘土鉱物(B)とで形成される
有機無機複合ヒドロゲルであって、
前記水溶性アクリルモノマー(a)が、式(1)
Figure 0005456344
(式中、Rは、水素原子又はメチル基、Rは炭素数2又は3のアルキレン基、nは14〜99の整数、Yはメトキシ基又は水酸基を表す。)
で表されるモノマーを含有することを特徴とする有機無機複合ヒドロゲル。
An organic-inorganic composite hydrogel formed of a polymer (A) of a water-soluble acrylic monomer (a) and a water-swellable clay mineral (B),
The water-soluble acrylic monomer (a) has the formula (1)
Figure 0005456344
(In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 or 3 carbon atoms, n represents an integer of 14 to 99, and Y represents a methoxy group or a hydroxyl group.)
The organic-inorganic composite hydrogel characterized by containing the monomer represented by these.
前記重合体(A)が、式(1)で表されるモノマーを全モノマー成分に対して1質量%〜70質量%含有する水溶性アクリルモノマー(a)を重合して得られる重合体である請求項1記載の有機無機複合ヒドロゲル。 The polymer (A) is a polymer obtained by polymerizing a water-soluble acrylic monomer (a) containing 1% by mass to 70% by mass of the monomer represented by the formula (1) with respect to all monomer components. The organic-inorganic composite hydrogel according to claim 1. 請求項1又は2記載の有機無機複合ヒドロゲルを乾燥することにより得られる有機無機複合体。 An organic-inorganic composite obtained by drying the organic-inorganic composite hydrogel according to claim 1 or 2. 80℃以下の温度で乾燥する請求項3記載の有機無機複合体。 The organic-inorganic composite according to claim 3, which is dried at a temperature of 80 ° C or lower. 請求項1又は2記載の有機無機複合ヒドロゲルの製造方法であって、
前記式(1)で表されるモノマーを水媒体と混合し、水膨潤性粘土鉱物(B)の共存下で前記水溶性のアクリルモノマー(a)を重合開始剤により重合することを特徴とする有機無機複合ヒドロゲルの製造方法。
A method for producing an organic-inorganic composite hydrogel according to claim 1 or 2,
The monomer represented by the formula (1) is mixed with an aqueous medium, and the water-soluble acrylic monomer (a) is polymerized with a polymerization initiator in the presence of the water-swellable clay mineral (B). A method for producing an organic-inorganic composite hydrogel.
JP2009064218A 2009-03-17 2009-03-17 Organic-inorganic composite hydrogel and method for producing the same Active JP5456344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009064218A JP5456344B2 (en) 2009-03-17 2009-03-17 Organic-inorganic composite hydrogel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009064218A JP5456344B2 (en) 2009-03-17 2009-03-17 Organic-inorganic composite hydrogel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010215784A JP2010215784A (en) 2010-09-30
JP5456344B2 true JP5456344B2 (en) 2014-03-26

Family

ID=42974954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009064218A Active JP5456344B2 (en) 2009-03-17 2009-03-17 Organic-inorganic composite hydrogel and method for producing the same

Country Status (1)

Country Link
JP (1) JP5456344B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014503715A (en) * 2010-11-08 2014-02-13 アンコル インターナショナル コーポレイション Induction welding waterproof
JP6107417B2 (en) * 2013-05-23 2017-04-05 Dic株式会社 Zwitterion-containing polymer gel
EP3351571B1 (en) * 2015-09-15 2022-01-05 Ricoh Company, Ltd. Polymer, resin composition, light control material, optical waveguide material, athermal optical element, color display element, and optical material
JP2018154785A (en) * 2017-03-21 2018-10-04 株式会社リコー Polymer composition, and optical material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5187711B2 (en) * 2006-02-09 2013-04-24 一般財団法人川村理化学研究所 Antithrombogenic material and composition for antithrombogenic material
JP2009256629A (en) * 2008-03-17 2009-11-05 Kawamura Inst Of Chem Res Organic-inorganic composite hydrogel and method for producing the same

Also Published As

Publication number Publication date
JP2010215784A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5132278B2 (en) Method for producing organic-inorganic composite hydrogel
JP5132300B2 (en) Method for producing cationic organic / inorganic composite hydrogel
Carlsson et al. Nano-hybrid self-crosslinked PDMA/silica hydrogels
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
JP4776187B2 (en) Organic / inorganic composite polymer gel and method for producing the same
JP2009270048A (en) Method for producing organic-inorganic composite hydrogel having carboxylate structure group or carboxy anion structure group
JP3914489B2 (en) Polymer composite, stretched product thereof, and method for producing polymer composite
JP2011153174A (en) Organic-inorganic composite hydrogel, dried body thereof and method for producing them
JP5456344B2 (en) Organic-inorganic composite hydrogel and method for producing the same
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP3914501B2 (en) Polymer gel composite and method for producing the same
JP2007125762A (en) Polymer gel laminate and its manufacturing method
JP2010254800A (en) Organic/inorganic composite
JP5331971B2 (en) Polymer gel bonding method
JP5598833B2 (en) Method for producing organic / inorganic composite hydrogel
JP5202903B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group
JP2007117275A (en) Wound dressing material
JP4730725B2 (en) Method for producing polymer hydrogel
JP2011153175A (en) Organic-inorganic composite hydrogel, dried body thereof and method for producing them
JP4914157B2 (en) Amino group-containing organic-inorganic composite hydrogel and method for producing the same
JP2005000182A (en) Blood compatible material
JP2009256629A (en) Organic-inorganic composite hydrogel and method for producing the same
JP5704382B2 (en) Gel, gel dried body, and production method thereof
JP4840747B2 (en) Organic-inorganic composite gel foam and method for producing the same
JP6107417B2 (en) Zwitterion-containing polymer gel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5456344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250