JP5202903B2 - Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group - Google Patents

Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group Download PDF

Info

Publication number
JP5202903B2
JP5202903B2 JP2007212812A JP2007212812A JP5202903B2 JP 5202903 B2 JP5202903 B2 JP 5202903B2 JP 2007212812 A JP2007212812 A JP 2007212812A JP 2007212812 A JP2007212812 A JP 2007212812A JP 5202903 B2 JP5202903 B2 JP 5202903B2
Authority
JP
Japan
Prior art keywords
acid group
organic
water
inorganic composite
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007212812A
Other languages
Japanese (ja)
Other versions
JP2009046553A (en
Inventor
明 王林
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2007212812A priority Critical patent/JP5202903B2/en
Publication of JP2009046553A publication Critical patent/JP2009046553A/en
Application granted granted Critical
Publication of JP5202903B2 publication Critical patent/JP5202903B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は医療、建築、土木、機械、運輸、電子部材、縫製、家庭用品、衛生用品、農業、食品などの分野で用いられる高分子ゲルに関するものである。   The present invention relates to a polymer gel used in the fields of medicine, architecture, civil engineering, machinery, transportation, electronic components, sewing, household goods, sanitary goods, agriculture, foods, and the like.

高吸水性樹脂が紙おむつや生理用品といった衛生材料の他、医療、食品、園芸、建築など多くの分野で広く使われている。このような高吸水性樹脂のうち、架橋ポリアクリル酸ナトリウム樹脂(PAc)は自重の数百倍から1000倍の水を吸収する性質を有する。しかし、ポリアクリル酸ナトリウムをわずかに架橋したもので、吸水後の力学特性が弱く、形が保持しにくい欠点がある。一方、水に均一分散している粘土鉱物の共存下に(メタ)アクリルアミド誘導体の重合を行わせることによって、数百kPa引張破断強度の有機無機複合ヒドロゲルが得られることが報告されている(特許文献1)。この有機無機複合ヒドロゲルは水を吸収し、大きく膨潤するだけでなく、吸水後の形が保持できる性質を有する。しかしながら、市販の高吸水樹脂と比べて、吸水率が低く、改良の余地がある。   Superabsorbent resins are widely used in many fields such as medical, food, horticulture, and architecture, as well as sanitary materials such as disposable diapers and sanitary products. Among such superabsorbent resins, the crosslinked sodium polyacrylate resin (PAc) has a property of absorbing water several hundred to 1000 times its own weight. However, it is a slightly cross-linked sodium polyacrylate, which has the disadvantage that its mechanical properties after water absorption are weak and its shape is difficult to maintain. On the other hand, it has been reported that an organic-inorganic composite hydrogel having a tensile breaking strength of several hundred kPa can be obtained by polymerizing a (meth) acrylamide derivative in the presence of clay mineral uniformly dispersed in water (patented) Reference 1). This organic-inorganic composite hydrogel not only absorbs water and swells greatly, but also has the property of retaining its shape after water absorption. However, the water absorption is lower than that of commercially available high water absorption resins, and there is room for improvement.

なお、特許文献2には、アクリルアミド系モノマーの重合体により製造される有機無機複合ヒドロゲルに関する技術が開示され、該重合体にはその他のモノマーとしてスルホン基やカルボキシル基を有するモノマーを共重合できることが記載されている。しかしながら、該文献にはそのようなモノマーを用いた有機無機複合ヒドロゲルの安定した製造方法の詳細については開示されていない。   Patent Document 2 discloses a technique related to an organic-inorganic composite hydrogel produced from a polymer of acrylamide monomers, and the polymer can be copolymerized with a monomer having a sulfone group or a carboxyl group as another monomer. Have been described. However, this document does not disclose details of a method for stably producing an organic-inorganic composite hydrogel using such a monomer.

特開2002-053629号公報JP 2002-053629 A 特開2006-169314号公報JP 2006-169314 A

本発明の目的は、高い力学物性を有するだけでなく、高い水膨潤性を有する新規な有機無機複合ヒドロゲルの製造方法を提供することにある。   An object of the present invention is to provide a method for producing a novel organic-inorganic composite hydrogel having not only high mechanical properties but also high water swellability.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた。その結果、(メタ)アクリルアミド誘導体及びカルボン酸基又はスルホン酸基を有する重合性モノマーと、水膨潤性粘土鉱物(B)と、水(C)との均一混合溶液中で、(メタ)アクリルアミド誘導体とカルボン酸基又はスルホン酸基を有する重合性モノマーとの共重合を行わせることによって得られる、カルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルにより上記課題を解決できることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, a (meth) acrylamide derivative and a (meth) acrylamide derivative in a homogeneous mixed solution of a polymerizable monomer having a carboxylic acid group or a sulfonic acid group, a water-swellable clay mineral (B), and water (C) It was found that the above problems can be solved by an organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group, which is obtained by copolymerizing a carboxylic acid group or a polymerizable monomer having a sulfonic acid group. It came to be completed.

即ち、本発明は、上記のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルの製造方法であって、(メタ)アクリルアミド又はその誘導体と、水膨潤性粘土鉱物(B)と、水(C)とを含む均一溶液を調製した後、カルボン酸基又はスルホン酸基を有する重合性モノマーを重合開始剤と同時に又は重合開始剤を添加した後に加えて、前記(メタ)アクリルアミド又はその誘導体と前記カルボン酸基又はスルホン酸基を有する重合性モノマーとを重合させることを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   That is, the present invention is a method for producing the above organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group, comprising (meth) acrylamide or a derivative thereof, a water-swellable clay mineral (B), and water (C And a polymerizable monomer having a carboxylic acid group or a sulfonic acid group is added simultaneously with the polymerization initiator or after the addition of the polymerization initiator, and the (meth) acrylamide or derivative thereof and the above The present invention provides a method for producing an organic-inorganic composite hydrogel characterized by polymerizing a polymerizable monomer having a carboxylic acid group or a sulfonic acid group.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルは有機無機複合ヒドロゲルの高い力学物性を保持し、従来の有機架橋ヒドロゲルと比べて優れた機械強度を有する。また、カルボン酸基又はスルホン酸基を有する重合性モノマーを分子鎖に導入したことによって、高い水膨潤性が得られ、高吸水性樹脂材料としての用途展開が可能になった。   The organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention retains the high mechanical properties of the organic-inorganic composite hydrogel, and has excellent mechanical strength as compared with conventional organic crosslinked hydrogels. In addition, by introducing a polymerizable monomer having a carboxylic acid group or a sulfonic acid group into the molecular chain, high water swellability was obtained, and application development as a highly water-absorbing resin material became possible.

例えば、紙おむつを始め、食品加工用接触脱水シートや医療用吸収性ヒドロゲルなどでは高い水吸収性(水膨潤性)が求められている。これらの分野では、カルボン酸基又はスルホン酸基を有する重合性モノマーを用いた本発明の有機無機複合ヒドロゲルは、極めて優れた性能を発揮する。特に、アクリル酸を用いた有機無機複合ヒドロゲルは、市販の高吸水性樹脂と比べて、水膨潤性が著しく増大され、且つ、吸水後の形が保持でき、上述の分野で新規吸水性樹脂材料としての用途展開が期待される。   For example, high water absorbability (water swellability) is required for paper diapers, contact dehydration sheets for food processing, medical absorbent hydrogels, and the like. In these fields, the organic-inorganic composite hydrogel of the present invention using a polymerizable monomer having a carboxylic acid group or a sulfonic acid group exhibits extremely excellent performance. In particular, the organic-inorganic composite hydrogel using acrylic acid has a significantly increased water swellability as compared with a commercially available superabsorbent resin, and can retain its shape after absorbing water. Development of applications is expected.

本発明に用いる有機高分子(A)は、カルボン酸基又はスルホン酸基を有する重合性モノマーと(メタ)アクリルアミド及び/又はその誘導体との共重合によって得られるものであって、水に分散した水膨潤性粘土鉱物(B)と水素結合やイオン結合等の非共有結合により三次元網目を形成している。   The organic polymer (A) used in the present invention is obtained by copolymerization of a polymerizable monomer having a carboxylic acid group or a sulfonic acid group and (meth) acrylamide and / or a derivative thereof, and is dispersed in water. A three-dimensional network is formed by non-covalent bonds such as hydrogen bonds and ionic bonds with the water-swellable clay mineral (B).

有機高分子(A)を構成する(メタ)アクリルアミド又はその誘導体としては、N-置換アクリルアミド誘導体、N,N-ジ置換アクリルアミド誘導体、N-置換メタクリルアミド誘導体、N,N-ジ置換メタクリルアミド誘導体などが挙げられる。具体的には、アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N-シクロプロピルアクリルアミド、N-イソプロピルアクリルアミド、メタクリルアミド、N-メチルメタクリルアミド、N-シクロプロピルメタクリルアミド、N-イソプロピルメタクリルアミド、N,N-ジメチルアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N,N-ジエチルアクリルアミド、N-アクリロイルピロリディン、N-アクリロイルピペリディン、N-アクリロイルメチルホモピペラディン、N-アクリロイルメチルピペラディンなどが例示される。その中に、水溶液中でのポリマー物性(親水性と疎水性)がLCST(下限臨界共溶温度)を持つN-イソプロピルアクリルアミド、N,N-ジエチルアクリルアミドなどは機能性の観点から好ましく用いられる。   The (meth) acrylamide or its derivatives constituting the organic polymer (A) includes N-substituted acrylamide derivatives, N, N-disubstituted acrylamide derivatives, N-substituted methacrylamide derivatives, N, N-disubstituted methacrylamide derivatives. Etc. Specifically, acrylamide, N-methylacrylamide, N-ethylacrylamide, N-cyclopropylacrylamide, N-isopropylacrylamide, methacrylamide, N-methylmethacrylamide, N-cyclopropylmethacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-isopropylacrylamide, N-methyl-Nn-propylacrylamide, N, N-diethylacrylamide, N-acryloylpyrrolidine, N-acryloyl Examples include piperidin, N-acryloylmethyl homopiperazine, N-acryloylmethylpiperazine and the like. Among them, N-isopropylacrylamide, N, N-diethylacrylamide, and the like having polymer properties (hydrophilicity and hydrophobicity) in an aqueous solution having LCST (lower critical solution temperature) are preferably used from the viewpoint of functionality.

また、有機高分子(A)を構成するカルボン酸基又はスルホン酸基を有する重合性モノマーはカルボン酸基又はスルホン酸基を本有機無機複合ヒドロゲルに導入させるものであり、次のようなモノマーを用いることが好ましい。
(1)カルボン酸基を有するモノマー
アクリル酸、マレイン酸、イタコン酸、クロトン酸、フマル酸などの不飽和カルボン酸及びその塩類
(2)スルホン酸基を有するモノマー
2-アクリルアミド-2-メチルプロパンスルホン酸、メタクリルアミドスルホン酸、ビニルスルホン酸、アリルスルホン酸、p-スチレンスルホン酸及びこれらの塩類、メタクリロキシオキシエチルスルホン酸ナトリウムなど
これらの中でも、水膨潤性の優れた有機高分子が得られやすいとの観点から、アクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸が特に好ましく用いられる。
The polymerizable monomer having a carboxylic acid group or a sulfonic acid group constituting the organic polymer (A) is one for introducing a carboxylic acid group or a sulfonic acid group into the organic-inorganic composite hydrogel. It is preferable to use it.
(1) Monomers having a carboxylic acid group Unsaturated carboxylic acids such as acrylic acid, maleic acid, itaconic acid, crotonic acid, fumaric acid, and salts thereof
(2) Monomers having sulfonic acid groups
2-acrylamido-2-methylpropane sulfonic acid, methacrylamide sulfonic acid, vinyl sulfonic acid, allyl sulfonic acid, p-styrene sulfonic acid and their salts, sodium methacryloxyoxyethyl sulfonate, etc. Acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid are particularly preferably used from the viewpoint that an excellent organic polymer can be easily obtained.

本発明に用いる水膨潤性粘土鉱物(B)は、水に膨潤し均一分散可能なものであり、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。これらの粘土鉱物は、水溶性有機高分子のモノマーが重合する前の水溶液中で微細、且つ均一に分散していることが必要であり、特に水溶液中に単位層レベルで分散していることが望ましい。ここで、水溶液中に粘土鉱物の沈殿となるような粘土鉱物凝集体がないことが必要であり、より好ましくは1〜10層程度のナノオーターの厚みで分散しているもの、特に好ましくは1又は2層程度の厚みで分散しているものである。   The water-swellable clay mineral (B) used in the present invention is one that swells in water and can be uniformly dispersed, and is particularly preferably a layered clay mineral that can be uniformly dispersed in water at a molecular level (single layer) or at a level close thereto. is there. For example, water-swellable smectite or water-swellable mica is used. Specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Can be mentioned. These clay minerals need to be finely and uniformly dispersed in an aqueous solution before the monomer of the water-soluble organic polymer is polymerized. In particular, the clay mineral must be dispersed at the unit layer level in the aqueous solution. desirable. Here, it is necessary that there is no clay mineral aggregate that causes precipitation of clay mineral in the aqueous solution, more preferably one having a thickness of about 1 to 10 layers dispersed, particularly preferably 1 or It is dispersed with a thickness of about two layers.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルにおける有機高分子(A)と水に均一分散可能な水膨潤性粘土鉱物(B)との比率は、(A)と(B)とからなる三次元網目を有する有機無機ヒドロゲルが調製されれば良く、また用いる(A)や(B)の種類によっても異なり必ずしも限定されないが、ヒドロゲル合成の容易さや均一性の点からは、好ましくは前記水膨潤性粘土鉱物(B)と前記有機高分子(A)の質量比((B)/(A))は0.01〜10である。また、より好ましくは(B)/(A)の質量比が0.01〜5、特に好ましくは0.03〜2、最も好ましくは0.1〜1.0である。   The ratio of the organic polymer (A) and the water-swellable clay mineral (B) that can be uniformly dispersed in water in the organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention is (A) and (B). It is only necessary to prepare an organic-inorganic hydrogel having a three-dimensional network consisting of and is not necessarily limited depending on the types of (A) and (B) used, but is preferable from the viewpoint of the ease and uniformity of hydrogel synthesis. The mass ratio ((B) / (A)) of the water-swellable clay mineral (B) and the organic polymer (A) is 0.01-10. More preferably, the mass ratio of (B) / (A) is 0.01 to 5, particularly preferably 0.03 to 2, and most preferably 0.1 to 1.0.

(B)/(A)の質量比が0.01未満では、本発明のヒドロゲルの伸縮性が十分でない場合が多く、10を越えては、得られたヒドロゲルが脆くなるなどの製造上の問題が生じる場合がある。一方、(A)+(B)に対する(C)水の比率は、重合過程での水量調整、もしくはその後の膨潤や乾燥により、目的に応じて広い範囲で任意に設定できる。   When the mass ratio of (B) / (A) is less than 0.01, the stretchability of the hydrogel of the present invention is often insufficient, and when it exceeds 10, production problems such as brittleness of the resulting hydrogel occur. There is a case. On the other hand, the ratio of (C) water to (A) + (B) can be arbitrarily set within a wide range according to the purpose by adjusting the amount of water in the polymerization process or by subsequent swelling or drying.

また、有機高分子(A)のモノマー組成において、カルボン酸基又はスルホン酸基を有する重合性モノマーの共重合比率が高すぎると、得られたヒドロゲルの力学物性は低下する。一方、その共重合比率が低すぎると、本発明のヒドロゲルの高い吸水性は発揮出来なくなる。従って、有機高分子(A)中のカルボン酸基又はスルホン酸基を有する重合性モノマーの共重合比率としては、モノマー全体に対して0.1〜50モル%であることが好ましく、より好ましくは0.3〜40モル%であり、特に好ましくは0.5〜30モル%であり、1〜20モル%であることが最も好ましい。   Further, in the monomer composition of the organic polymer (A), when the copolymerization ratio of the polymerizable monomer having a carboxylic acid group or a sulfonic acid group is too high, the mechanical properties of the obtained hydrogel are lowered. On the other hand, if the copolymerization ratio is too low, the high water absorption of the hydrogel of the present invention cannot be exhibited. Therefore, the copolymerization ratio of the polymerizable monomer having a carboxylic acid group or a sulfonic acid group in the organic polymer (A) is preferably 0.1 to 50 mol% with respect to the whole monomer, more preferably 0.3 to It is 40 mol%, particularly preferably 0.5 to 30 mol%, and most preferably 1 to 20 mol%.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルには、低温側で透明及び/又は体積膨潤状態にあり、且つ高温側で不透明及び/又は体積収縮状態となる臨界温度(Tc)を有し、Tcを境にした上下の温度変化により透明性や体積を可逆的に変化できる特徴を有するものが含まれる。このような有機無機複合ヒドロゲルは有機モノマーとして水溶液中でLCST(下限臨界共溶温度)を示す有機モノマーを用いて調製できる。   The organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention has a critical temperature (Tc) that is transparent and / or volume swelled on the low temperature side and opaque and / or volume contracted on the high temperature side. And having the characteristic that the transparency and volume can be reversibly changed by changing the temperature above and below Tc. Such an organic-inorganic composite hydrogel can be prepared using an organic monomer exhibiting LCST (lower critical solution temperature) in an aqueous solution as an organic monomer.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルは、有機無機ヒドロゲルの特徴を保持しており、従来の有機架橋ゲルと比べて、高い吸水率を有する他、優れた力学物性などを示している。例えば、強度、伸び、タフネスなどの力学物性において、本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルは、有機架橋ゲルよりすべて優れていることが特徴である。   The organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention retains the characteristics of an organic-inorganic hydrogel and has a high water absorption rate as compared with a conventional organic crosslinked gel, as well as excellent mechanical properties, etc. Is shown. For example, the organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention is superior to an organic crosslinked gel in terms of mechanical properties such as strength, elongation, and toughness.

有機無機複合ヒドロゲルの力学物性は、ヒドロゲルの水含有率及び形状により異なるため、本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルの力学物性は、一定範囲内の水含有率及び断面積を持つヒドロゲルを用いて試験した結果で表される。本明細書では、具体的には、試験開始時のヒドロゲルの断面積(初期断面積)を0.237cm2にしたものを試験材料として用い、カルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲル中の前記水(C)の含有率(含水率)が90質量%のものについて力学物性の測定を行った。 Since the mechanical properties of the organic-inorganic composite hydrogel vary depending on the water content and shape of the hydrogel, the mechanical properties of the organic-inorganic composite hydrogel having a carboxylic acid group or sulfonic acid group of the present invention are within a certain range. It is expressed as a result of testing using a hydrogel having an area. In this specification, specifically, a hydrogel having a cross-sectional area (initial cross-sectional area) of 0.237 cm 2 at the start of the test is used as a test material, and an organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group is used. The physical properties of the water (C) having a water content (water content) of 90% by mass were measured.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルは、上記の水含有率と初期断面積のヒドロゲルを用いて測定した場合、引張強度が10〜500kPaであり、より好ましくは20〜450kPaであり、特に好ましくは30〜400kPaであること、更に引張破断伸びが100〜3000%であり、より好ましくは200〜2500%であり、特に好ましくは300〜2000%であるものが好ましい。   The organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention has a tensile strength of 10 to 500 kPa, more preferably 20 to 5 when measured using the hydrogel having the above water content and initial cross-sectional area. It is 450 kPa, particularly preferably 30 to 400 kPa, and further, the tensile elongation at break is 100 to 3000%, more preferably 200 to 2500%, and particularly preferably 300 to 2000%.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルにおいては、平衡膨潤度Wgel/Wdryが50以上であることが好ましい。ここで、平衡膨潤度Wgel/Wdryとは、乾燥ゲル1g当たりに膨潤したヒドロゲルの質量数である。Wdryはヒドロゲルの固形分であり、Wgelはヒドロゲルを大量の水に浸して、その重量を増加しなくなるまでの質量である。平衡膨潤度Wgel/Wdryは50〜5000であることがより好ましく、100〜4000であることが特に好ましい。   In the organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention, the equilibrium swelling degree Wgel / Wdry is preferably 50 or more. Here, the equilibrium swelling degree Wgel / Wdry is the mass number of the hydrogel swollen per 1 g of the dried gel. Wdry is the solid content of the hydrogel, and Wgel is the mass until the hydrogel is soaked in a large amount of water and does not increase its weight. The equilibrium swelling degree Wgel / Wdry is more preferably 50 to 5000, and particularly preferably 100 to 4000.

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルとしては、これまでの材料からは想像できないハイレベルの吸水性を有している。市販の高吸水性樹脂で最も優れた吸水性を持つポリアクリル酸ナトリウムでは、自重の100倍〜1000倍の水を吸収するが、本発明の実施例1の膨潤度は2000を越えた。即ち、自重(ゲルの固形分)の2000倍の水を吸収できる。   The organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention has a high level of water absorption that cannot be imagined from conventional materials. The commercially available sodium polyacrylate having the most excellent water-absorbing resin absorbs water 100 to 1000 times its own weight, but the swelling degree of Example 1 of the present invention exceeded 2000. That is, it can absorb water 2000 times its own weight (solid content of the gel).

本発明のカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルは、以下の方法で製造できる。有機高分子(A)のモノマーと、水に均一分散可能な水膨潤性粘土鉱物(B)と、水(C)とを含む均一溶液を調製後、層状剥離した水膨潤性粘土鉱物(B)の共存下に有機高分子(A)のモノマーの重合を行わせる。重合過程で有機高分子(A)のモノマーと水膨潤性粘土鉱物(B)との相互作用により水膨潤性粘土鉱物(B)がモノマーの架橋剤の働きをして、有機高分子(A)と水膨潤性粘土鉱物(B)との分子レベルでの複合化が達成され、三次元網目形成によりゲル化したカルボン酸基又はスルホン酸基を有する有機無機複合ヒドロゲルが得られる。   The organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group of the present invention can be produced by the following method. Water-swellable clay mineral (B) exfoliated in layers after preparing a uniform solution containing the monomer of organic polymer (A), water-swellable clay mineral (B) that can be uniformly dispersed in water, and water (C) The monomer of the organic polymer (A) is polymerized in the presence of. The water-swellable clay mineral (B) acts as a monomer cross-linking agent due to the interaction between the monomer of the organic polymer (A) and the water-swellable clay mineral (B) during the polymerization process, and the organic polymer (A) Complexation at the molecular level with the water-swellable clay mineral (B) is achieved, and an organic-inorganic composite hydrogel having a carboxylic acid group or a sulfonic acid group gelled by three-dimensional network formation is obtained.

具体的には、水中に微細分散した水膨潤性粘土鉱物(B)の水溶液に、(メタ)アクリルアミド誘導体を加え、低温にしてカルボン酸基又はスルホン酸基を有する重合性モノマーとラジカル重合開始剤を添加させ、引き続き、所定温度で重合を行わせる。ここで、カルボン酸基又はスルホン酸基を有する重合性モノマーの添加順序は重要である。先にアクリルアミド誘導体と一緒にカルボン酸基又はスルホン酸基を有する重合性モノマーを添加すると、粘土鉱物がカルボン酸基又はスルホン酸基と強い相互作用により凝集を生じてしまう。このようにして得られたヒドロゲルは白濁するだけでなく、力学物性も大きく低下する傾向を示す。また、粘土鉱物とカルボン酸基又はスルホン酸基との相互作用により、反応系が著しく増粘し、ゲル化する場合もある。そのため、重合開始剤は反応系内に分散できなくなり、均一なヒドロゲルが得られない。粘土鉱物の凝集を最小限に抑えるため、(メタ)アクリルアミド(誘導体)を先に粘土鉱物水分散液に加え、続いてカルボン酸基又はスルホン酸基を有する重合性モノマーと重合開始剤を一度に添加させること又は重合開始剤を加えた後にカルボン酸基又はスルホン酸基を有する重合性モノマーを添加させることによって、モノマーの分散と共にラジカル重合を行わせ、系全体をゲル化させる方法が有効に用いられる。重合開始剤とカルボン酸基又はスルホン酸基を有する重合性モノマーを別々に添加する場合は、重合開始剤を加えた直後にモノマーを加えることが好ましい。重合開始剤を加えると、先に水分散液中に添加されている(メタ)アクリルアミド(誘導体)の重合が開始する。したがって、重合開始剤を添加したら、できるだけ速やかにカルボン酸基又はスルホン酸基を有する重合性モノマーを添加すると、ランダム共重合が進み、本発明の効果を発揮する上で好ましい。   Specifically, a (meth) acrylamide derivative is added to an aqueous solution of a water-swellable clay mineral (B) finely dispersed in water, a polymerizable monomer having a carboxylic acid group or a sulfonic acid group at a low temperature, and a radical polymerization initiator. Then, polymerization is performed at a predetermined temperature. Here, the addition order of the polymerizable monomer having a carboxylic acid group or a sulfonic acid group is important. When a polymerizable monomer having a carboxylic acid group or a sulfonic acid group is first added together with the acrylamide derivative, the clay mineral is aggregated due to a strong interaction with the carboxylic acid group or the sulfonic acid group. The hydrogel obtained in this way not only becomes cloudy but also exhibits a tendency to greatly reduce the mechanical properties. In addition, the reaction system may remarkably thicken and gel due to the interaction between the clay mineral and the carboxylic acid group or sulfonic acid group. Therefore, the polymerization initiator cannot be dispersed in the reaction system, and a uniform hydrogel cannot be obtained. In order to minimize the aggregation of clay minerals, (meth) acrylamide (derivative) is first added to the clay mineral aqueous dispersion, followed by a polymerizable monomer having a carboxylic acid group or a sulfonic acid group and a polymerization initiator at once. Effectively used is a method in which radical polymerization is carried out together with the dispersion of the monomer by adding a polymerizable monomer having a carboxylic acid group or a sulfonic acid group after adding or adding a polymerization initiator, and gelling the entire system. It is done. When adding a polymerization initiator and a polymerizable monomer having a carboxylic acid group or a sulfonic acid group separately, it is preferable to add the monomer immediately after adding the polymerization initiator. When the polymerization initiator is added, polymerization of (meth) acrylamide (derivative) previously added to the aqueous dispersion starts. Therefore, when a polymerization initiator is added, it is preferable to add a polymerizable monomer having a carboxylic acid group or a sulfonic acid group as soon as possible to promote random copolymerization and exhibit the effects of the present invention.

上記のラジカル重合反応は、ラジカル重合開始剤及び/又は放射線照射など公知の方法により行わせることができる。ラジカル重合開始剤及び触媒としては、公知慣用のラジカル重合開始剤及び触媒を適時選択して用いることができる。好ましくは水分散性を有し、系全体に均一に含まれるものが用いられる。   The above radical polymerization reaction can be performed by a known method such as radical polymerization initiator and / or radiation irradiation. As the radical polymerization initiator and the catalyst, known and commonly used radical polymerization initiators and catalysts can be appropriately selected and used. Preferably, those having water dispersibility and uniformly contained in the entire system are used.

具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、VA-044, V-50, V-501の他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤などが挙げられる。一方、触媒としては、3級アミン化合物であるN,N,N',N'-テトラメチルエチレンジアミンやβ-ジメチルアミノプロピオ二トリルなどがもちろん用いられるが、本発明では、モノマーとして用いられているカルボン酸基又はスルホン酸基を有する重合性モノマーは触媒の働きをしているため、上述のラジカル重合触媒を添加しなくてもよい。   Specifically, as the polymerization initiator, water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, V-501, And water-soluble radical initiators having an ethylene oxide chain. On the other hand, as the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine and β-dimethylaminopropionitryl are of course used, but in the present invention, they are used as monomers. Since the polymerizable monomer having a carboxylic acid group or a sulfonic acid group functions as a catalyst, the above-mentioned radical polymerization catalyst may not be added.

重合温度は、開始剤の種類にあわせて0℃〜100℃の範囲で設定できる。重合時間も他の重合条件によって異なり、一般に数十秒〜数十時間の間で行われる。   The polymerization temperature can be set in the range of 0 ° C. to 100 ° C. according to the type of initiator. The polymerization time varies depending on other polymerization conditions, and is generally carried out for several tens of seconds to several tens of hours.

本発明は、次の実施例によって更に具体的に説明する。
(測定条件)
以下の実施例及び比較例において、引張り試験は、島津製作所(株)製卓上型万能試験機AGS-Hを用いて、未精製の丸棒状のヒドロゲル(直径=5.5mm)をチャック部での滑りのないようにして引っ張り試験装置に装着し、標点間距離=30mm、引っ張り速度=100mm/分にて測定を行った。光透過率の温度依存性は、角柱状の透明ポリスチレンセルにヒドロゲルを合成し、そのまま日本分光(株)製紫外可視分光光度計V-530を用いて測定した。水膨潤度は直径5.5mmの丸棒状ヒドロゲル約0.2gを大量の水の中に浸して、その質量増加の時間依存性から求めた。
The invention is further illustrated by the following examples.
(Measurement condition)
In the following examples and comparative examples, the tensile test was performed by sliding an unpurified round bar-shaped hydrogel (diameter = 5.5 mm) at the chuck part using a desktop universal testing machine AGS-H manufactured by Shimadzu Corporation. The sample was mounted on a tensile test apparatus so that the distance between the gauges was 30 mm and the tensile speed was 100 mm / min. The temperature dependence of the light transmittance was measured using a UV-visible spectrophotometer V-530 manufactured by JASCO Corporation as it was by synthesizing a hydrogel in a prismatic transparent polystyrene cell. The degree of water swelling was determined from the time dependence of the mass increase of about 0.2 g of a round rod-shaped hydrogel having a diameter of 5.5 mm immersed in a large amount of water.

(試薬)
・粘土鉱物
XLG: 水膨潤性合成ヘクトライト(商標ラポナイトXLG、日本シリカ株式会社製)
クニピアF: 高純度モンモリロナイト(クニミネ工業株式会社製)
・モノマー
DMAA: ジメチルアクリルアミド(和光純薬工業株式会社製)、活性アルミナを用いて重合禁止剤を取り除いてから使用した。
NIPAM: N-イソプロピルアクリルアミド(興人株式会社製)、トルエンとヘキサンの混合溶媒を用いて再結晶し無色針状結晶に精製してから用いた。
AAc: アクリル酸(和光純薬工業株式会社製)
MAc: マレイン酸(和光純薬工業株式会社製)
AMPS: 2-アクリルアミド-2-メチルプロパンスルホン酸(和光純薬工業株式会社製)
BIS: N,N'-メチレンビスアクリルアミド(関東化学株式会社製)
・重合開始剤
KPS: ペルオキソ二硫酸カリウム(関東化学株式会社製)、KPS/水=0.2/10(g/g)の割合で純水で希釈し、水溶液にして使用した。
・重合触媒
TEMED: N,N,N',N'-テトラメチルエチレンジアミン(和光純薬工業株式会社製)
(reagent)
・ Clay minerals
XLG: Water-swellable synthetic hectorite (Trademark LAPONITE XLG, manufactured by Nippon Silica Co., Ltd.)
Kunipia F: High-purity montmorillonite (Kunimine Industries Co., Ltd.)
·monomer
DMAA: Used after removing the polymerization inhibitor using dimethylacrylamide (manufactured by Wako Pure Chemical Industries, Ltd.) and activated alumina.
NIPAM: N-isopropylacrylamide (manufactured by Kojin Co., Ltd.), recrystallized using a mixed solvent of toluene and hexane and purified to colorless needle crystals before use.
AAc: Acrylic acid (Wako Pure Chemical Industries, Ltd.)
MAc: Maleic acid (Wako Pure Chemical Industries, Ltd.)
AMPS: 2-acrylamido-2-methylpropanesulfonic acid (Wako Pure Chemical Industries, Ltd.)
BIS: N, N'-methylenebisacrylamide (manufactured by Kanto Chemical Co., Inc.)
・ Polymerization initiator
KPS: potassium peroxodisulfate (manufactured by Kanto Chemical Co., Inc.), diluted with pure water at a ratio of KPS / water = 0.2 / 10 (g / g) and used as an aqueous solution.
・ Polymerization catalyst
TEMED: N, N, N ', N'-tetramethylethylenediamine (manufactured by Wako Pure Chemical Industries, Ltd.)

(実施例1)
内径25mm,長さ80mmの平底ガラス容器に、純水19gと0.6gのクニピアFを攪拌して均一な溶液を調製した。これにDMAA 1.8gを加え、15分間窒素バブリングした。続いて、氷浴下、KPS水溶液0.2gを攪拌して加えた直後に、AAc 0.2g(モノマー合計に対して13mol%)を加え、均一溶液を得た。得られた均一溶液を速やかに底の閉じた内径5.5mm,長さ150mmのガラス管容器に酸素に触れないようにして移した後、上部を密栓し、20℃で静置重合を行った。15時間後にガラス管容器内に伸縮性、強靭性のある均一な棒状のヒドロゲルが生成された。ヒドロゲルは大量の水に浸して精製した。得られた精製ヒドロゲルを100℃、減圧下にて乾燥して水分を除いたヒドロゲル乾燥体を得た。ゲル乾燥体を20℃の水に浸漬することにより、乾燥前と同じ形状の伸縮性のあるヒドロゲルに戻ることが確認された。また、ゲル乾燥体の熱重量分析(セイコー電子工業株式会社製TG-DTA220:空気流通下、10℃/分で600℃まで昇温)を行い、B/A=0.3(質量比)を得た。
(Example 1)
A uniform solution was prepared by stirring 19 g of pure water and 0.6 g of Kunipia F in a flat bottom glass container having an inner diameter of 25 mm and a length of 80 mm. DMAA 1.8g was added to this, and nitrogen bubbling was carried out for 15 minutes. Subsequently, immediately after adding 0.2 g of KPS aqueous solution with stirring in an ice bath, 0.2 g of AAc (13 mol% with respect to the total amount of monomers) was added to obtain a uniform solution. The obtained uniform solution was immediately transferred to a glass tube container having an inner diameter of 5.5 mm and a length of 150 mm with a closed bottom so as not to come into contact with oxygen, and the upper part was sealed and subjected to stationary polymerization at 20 ° C. After 15 hours, a uniform rod-like hydrogel having elasticity and toughness was formed in the glass tube container. The hydrogel was purified by immersion in a large amount of water. The obtained purified hydrogel was dried at 100 ° C. under reduced pressure to obtain a dried hydrogel from which moisture was removed. It was confirmed that when the dried gel was immersed in water at 20 ° C., it returned to a stretchable hydrogel having the same shape as before drying. Also, thermogravimetric analysis of the dried gel (TG-DTA220 manufactured by Seiko Denshi Kogyo Co., Ltd .: raised to 600 ° C. at 10 ° C./min under air flow) gave B / A = 0.3 (mass ratio). .

以上から、本実施例で得られたゲルは、仕込み組成に沿った成分比を有する、有機高分子(N,N-ジメチルアクリルアミドとアクリル酸の共重合体)と粘土鉱物と水からなるヒドロゲルであること、有機高分子の合成において架橋剤を添加していないにもかかわらず、均一なヒドロゲルとなること、ヒドロゲルから水分を除いて得られるゲル乾燥体を水に浸漬することにより再びもとの形状のヒドロゲルに戻ることなどから、有機高分子と粘土鉱物が分子レベルで複合化した三次元網目が水中で形成されていると結論された。   From the above, the gel obtained in this example is a hydrogel composed of an organic polymer (a copolymer of N, N-dimethylacrylamide and acrylic acid), a clay mineral, and water having a component ratio according to the charged composition. Even if no cross-linking agent is added in the synthesis of the organic polymer, it becomes a uniform hydrogel, and the gel dried product obtained by removing water from the hydrogel is immersed in water again. From returning to the shape of the hydrogel, it was concluded that a three-dimensional network composed of organic polymers and clay minerals at the molecular level was formed in water.

なお、粘土鉱物を共存させない以外は同様な条件で合成した有機高分子は高分子水溶液となりヒドロゲルとはならなかった。   The organic polymer synthesized under the same conditions except that no clay mineral coexists became a polymer aqueous solution and did not become a hydrogel.

未精製の丸棒状のヒドロゲルの引っ張り試験を行い、その結果を図1に示す。また、水膨潤性の測定結果を図2に示す。   A tensile test was conducted on an unpurified round rod-shaped hydrogel, and the results are shown in FIG. In addition, the measurement result of water swellability is shown in FIG.

実施例1と同様な組成の比較例1では、クニピアFとDMAAの水溶液に、AAcを攪拌して加えた。溶液は直ちに著しく増粘した。その後、KPS水溶液を添加したが、KPS水溶液は反応系に均一に分散できなくて、引張り測定サンプルを作れなかった。   In Comparative Example 1 having the same composition as that of Example 1, AAc was added to an aqueous solution of Kunipia F and DMAA with stirring. The solution immediately thickened significantly. Thereafter, an aqueous KPS solution was added, but the aqueous KPS solution could not be uniformly dispersed in the reaction system, and a tensile measurement sample could not be made.

(実施例2,3及び比較例2)
表1に示した組成で、実施例1と同様に実施例2,3のカルボン酸基を有するヒドロゲルを合成した。これらのヒドロゲルはカルボン酸基を含まない比較例2のヒドロゲルと比べて、強度と弾性率が大きくなった(図1)。また、水膨潤性において、カルボン酸基を有するヒドロゲルの実施例は比較例を大きく超え、優れた吸水性を示した(図2)。
(Examples 2, 3 and Comparative Example 2)
A hydrogel having the carboxylic acid group of Examples 2 and 3 was synthesized in the same manner as in Example 1 with the composition shown in Table 1. These hydrogels had higher strength and elastic modulus than the hydrogel of Comparative Example 2 containing no carboxylic acid group (FIG. 1). Moreover, in the water swellability, the examples of hydrogels having carboxylic acid groups greatly exceeded the comparative examples, and showed excellent water absorption (FIG. 2).

(実施例4,5及び比較例3)
表1に示した組成で、実施例1と同様に実施例4,5のカルボン酸基を有するヒドロゲルを合成した。また、粘土鉱物の変わりに有機架橋剤を用いて、比較例3のカルボン酸基を有する有機架橋ゲルを合成した。比較例3のゲルが極めて脆弱で引っ張り試験を行おうとしたが、チャックに装着前に殆どのサンプルが壊れた。また、チャックに軽く装着したものでも試験直後に破断し、物性値は得られなかった。これに対して、実施例4と5は優れた力学特性を示した(図3)。また、図4に示したように、実施例4,5の水膨潤性は比較例3より大きかった。なお、光透過率の温度依存性を測定したところ、実施例4と5は明確なLCSTを示した(図5)。
(Examples 4, 5 and Comparative Example 3)
Hydrogels having carboxylic acid groups of Examples 4 and 5 were synthesized in the same manner as in Example 1 with the compositions shown in Table 1. Further, an organic crosslinking gel having a carboxylic acid group of Comparative Example 3 was synthesized using an organic crosslinking agent instead of the clay mineral. The gel of Comparative Example 3 was extremely fragile and an attempt was made to conduct a tensile test, but most of the samples were broken before being attached to the chuck. Moreover, even those lightly attached to the chuck were broken immediately after the test, and no physical property values were obtained. In contrast, Examples 4 and 5 exhibited excellent mechanical properties (FIG. 3). Further, as shown in FIG. 4, the water swellability of Examples 4 and 5 was larger than that of Comparative Example 3. When the temperature dependence of the light transmittance was measured, Examples 4 and 5 showed clear LCST (FIG. 5).

(実施例6,7,8及び比較例4)
表1に示した組成で、実施例1と同様に実施例6,7,8のカルボン酸基又はスルホン酸基を有するヒドロゲルを合成した。図6及び図7に示したように、実施例6,7,8のヒドロゲルは優れた力学特性と水膨潤性を示した。
(Examples 6, 7, 8 and Comparative Example 4)
Hydrogels having carboxylic acid groups or sulfonic acid groups of Examples 6, 7, and 8 were synthesized in the same manner as in Example 1 with the compositions shown in Table 1. As shown in FIGS. 6 and 7, the hydrogels of Examples 6, 7, and 8 showed excellent mechanical properties and water swellability.

また、実施例6と同様な組成の比較例4では、XLGとDMAAの水溶液に、AAcNa水溶液を攪拌して加えた。溶液は直ちにゲル化した。ゲル化後にKPS水溶液を添加しようとしてもKPS水溶液は反応系に分散できなくて、引張り測定サンプルを作れなかった。   In Comparative Example 4 having the same composition as that of Example 6, an AAcNa aqueous solution was added to an aqueous solution of XLG and DMAA with stirring. The solution immediately gelled. Even if an aqueous KPS solution was added after gelation, the aqueous KPS solution could not be dispersed in the reaction system, and a tensile measurement sample could not be made.

Figure 0005202903
Figure 0005202903

実施例1,2,3及び比較例2で得られたヒドロゲルの強度と伸びを示す図である。FIG. 4 is a diagram showing the strength and elongation of hydrogels obtained in Examples 1, 2, 3 and Comparative Example 2. 実施例1,2,3及び比較例2で得られたヒドロゲルの水膨潤度を示す図である。2 is a graph showing the water swelling degree of hydrogels obtained in Examples 1, 2, 3 and Comparative Example 2. FIG. 実施例4,5で得られたヒドロゲルの強度と伸びを示す図である。FIG. 4 is a view showing the strength and elongation of the hydrogel obtained in Examples 4 and 5. 実施例4,5及び比較例3で得られたヒドロゲルの水膨潤度を示す図である。FIG. 4 is a graph showing the water swelling degree of hydrogels obtained in Examples 4 and 5 and Comparative Example 3. 実施例4,5で得られたヒドロゲルの光透過率の温度依存性を示す図である。FIG. 4 is a graph showing the temperature dependence of the light transmittance of the hydrogels obtained in Examples 4 and 5. 実施例6,7,8で得られたヒドロゲルの強度と伸びを示す図である。FIG. 4 is a graph showing the strength and elongation of hydrogels obtained in Examples 6, 7, and 8. 実施例6,7,8で得られたヒドロゲルの水膨潤度を示す図である。FIG. 6 is a graph showing the water swelling degree of the hydrogels obtained in Examples 6, 7, and 8.

Claims (7)

有機高分子(A)と、水膨潤性粘土鉱物(B)とが三次元網目を形成している有機無機複合ヒドロゲルの製造方法であって、(メタ)アクリルアミド又はその誘導体と、前記水膨潤性粘土鉱物(B)と、水(C)とを含む均一溶液を調製した後、カルボン酸基又はスルホン酸基を有する重合性モノマーを重合開始剤と同時に又は重合開始剤を添加した後に加えて、前記(メタ)アクリルアミド又はその誘導体と前記カルボン酸基又はスルホン酸基を有する重合性モノマーとを重合させることにより前記有機高分子(A)を製造することを特徴とする有機無機複合ヒドロゲルの製造方法。 A method for producing an organic-inorganic composite hydrogel in which an organic polymer (A) and a water-swellable clay mineral (B) form a three-dimensional network, comprising (meth) acrylamide or a derivative thereof, and the water-swelling property After preparing a homogeneous solution containing clay mineral (B) and water (C), a polymerizable monomer having a carboxylic acid group or a sulfonic acid group is added simultaneously with the polymerization initiator or after the addition of the polymerization initiator, A method for producing an organic-inorganic composite hydrogel, characterized in that the organic polymer (A) is produced by polymerizing the (meth) acrylamide or a derivative thereof and the polymerizable monomer having a carboxylic acid group or a sulfonic acid group. . 前記水膨潤性粘土鉱物(B)と前記有機高分子(A)の質量比((B)/(A))が0.01〜10である請求項1に記載の有機無機複合ヒドロゲルの製造方法。 2. The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein a mass ratio ((B) / (A)) of the water-swellable clay mineral (B) and the organic polymer (A) is 0.01 to 10. 前記カルボン酸基を有する重合性モノマーが、アクリル酸又はその塩、或いはマレイン酸又はその塩である請求項1又は2に記載の有機無機複合ヒドロゲルの製造方法。 3. The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein the polymerizable monomer having a carboxylic acid group is acrylic acid or a salt thereof, or maleic acid or a salt thereof. 前記スルホン酸基を有する重合性モノマーが、2-アクリルアミド-2-メチルプロパンスルホン酸又はその塩である請求項1〜3のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to any one of claims 1 to 3, wherein the polymerizable monomer having a sulfonic acid group is 2-acrylamido-2-methylpropanesulfonic acid or a salt thereof. 前記有機高分子(A)中のカルボン酸基又はスルホン酸基を有する重合性モノマーの共重合比率が50モル%以下である請求項1〜4のいずれかに記載の有機無機複合ヒドロゲルの製造方法。 The method for producing an organic-inorganic composite hydrogel according to any one of claims 1 to 4, wherein a copolymerization ratio of a polymerizable monomer having a carboxylic acid group or a sulfonic acid group in the organic polymer (A) is 50 mol% or less. . 請求項1〜5のいずれかに記載の製造方法により得られる有機無機複合ヒドロゲルであって、前記水(C)の含有率(含水率)が90質量%の時点における、引っ張り強度が10kPa〜500kPaであり、且つ破断伸びが100%〜3000%である有機無機複合ヒドロゲル。 An organic-inorganic composite hydrogel obtained by the production method according to any one of claims 1 to 5, wherein the tensile strength is 10 kPa to 500 kPa when the content (water content) of water (C) is 90% by mass. An organic-inorganic composite hydrogel having an elongation at break of 100% to 3000%. 水による平衡膨潤度Wgel/Wdryが50〜5000である請求項6に記載の有機無機複合ヒドロゲル。 The organic-inorganic composite hydrogel according to claim 6, wherein the equilibrium swelling degree Wgel / Wdry with water is 50 to 5,000.
JP2007212812A 2007-08-17 2007-08-17 Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group Expired - Fee Related JP5202903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007212812A JP5202903B2 (en) 2007-08-17 2007-08-17 Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007212812A JP5202903B2 (en) 2007-08-17 2007-08-17 Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group

Publications (2)

Publication Number Publication Date
JP2009046553A JP2009046553A (en) 2009-03-05
JP5202903B2 true JP5202903B2 (en) 2013-06-05

Family

ID=40499075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007212812A Expired - Fee Related JP5202903B2 (en) 2007-08-17 2007-08-17 Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group

Country Status (1)

Country Link
JP (1) JP5202903B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518134B2 (en) 2010-12-15 2016-12-13 The Procter & Gamble Company Water-absorbent surface-modified-clay linked polymers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398383B2 (en) * 2009-06-30 2014-01-29 一般財団法人川村理化学研究所 Organic-inorganic composite particles, method for producing the same, and method for producing organic-inorganic composite hydrogel particles
WO2011001657A1 (en) 2009-07-01 2011-01-06 独立行政法人科学技術振興機構 Polyionic dendrimer and hydrogel comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9518134B2 (en) 2010-12-15 2016-12-13 The Procter & Gamble Company Water-absorbent surface-modified-clay linked polymers

Also Published As

Publication number Publication date
JP2009046553A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
JP5132278B2 (en) Method for producing organic-inorganic composite hydrogel
JP5132300B2 (en) Method for producing cationic organic / inorganic composite hydrogel
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
JP4759165B2 (en) Organic / inorganic composite hydrogel and method for producing the same
JP5246855B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylate structure or carboxyanion structure group
EP0693508B1 (en) Temperature-sensitive water-absorbing/desorbing polymer composition
Yang et al. Multi-responsive nanocomposite hydrogels with high strength and toughness
Liu et al. Highly stretchable and tough pH-sensitive hydrogels with reversible swelling and recoverable deformation
JP4776187B2 (en) Organic / inorganic composite polymer gel and method for producing the same
He et al. Tough and super-resilient hydrogels synthesized by using peroxidized polymer chains as polyfunctional initiating and cross-linking centers
JP5398383B2 (en) Organic-inorganic composite particles, method for producing the same, and method for producing organic-inorganic composite hydrogel particles
JP3914501B2 (en) Polymer gel composite and method for producing the same
Ma et al. Restorable, high-strength poly (N-isopropylacrylamide) hydrogels constructed through chitosan-based dual macro-cross-linkers with rapid response to temperature jumps
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP5202903B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group
JP2010254800A (en) Organic/inorganic composite
JP5598833B2 (en) Method for producing organic / inorganic composite hydrogel
JP5456344B2 (en) Organic-inorganic composite hydrogel and method for producing the same
JP4914157B2 (en) Amino group-containing organic-inorganic composite hydrogel and method for producing the same
JP2008074925A (en) Borate group-containing organic inorganic composite hydrogel and method for producing the same
Tripathi et al. Preparation and evaluation of composite microspheres of polyacrylamide‐grafted polysaccharides
JP5371216B2 (en) Method for producing organic-inorganic composite hydrogel
JP6107417B2 (en) Zwitterion-containing polymer gel
JP5654208B2 (en) Organic inorganic composite gel
JP4730725B2 (en) Method for producing polymer hydrogel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees