JP5371216B2 - Method for producing organic-inorganic composite hydrogel - Google Patents

Method for producing organic-inorganic composite hydrogel Download PDF

Info

Publication number
JP5371216B2
JP5371216B2 JP2007211315A JP2007211315A JP5371216B2 JP 5371216 B2 JP5371216 B2 JP 5371216B2 JP 2007211315 A JP2007211315 A JP 2007211315A JP 2007211315 A JP2007211315 A JP 2007211315A JP 5371216 B2 JP5371216 B2 JP 5371216B2
Authority
JP
Japan
Prior art keywords
water
organic
inorganic composite
polymerization
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007211315A
Other languages
Japanese (ja)
Other versions
JP2009046532A (en
Inventor
正紀 宮本
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, DIC Corp filed Critical Kawamura Institute of Chemical Research
Priority to JP2007211315A priority Critical patent/JP5371216B2/en
Publication of JP2009046532A publication Critical patent/JP2009046532A/en
Application granted granted Critical
Publication of JP5371216B2 publication Critical patent/JP5371216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an organic-inorganic composite hydrogel by which the amount of a residual monomer can be made as small as possible without deteriorating high elasticity and toughness of a produced organic-inorganic composite hydrogel, and to further provide a method for producing an organic-inorganic composite hydrogel excellent in transparency and in deformation resistance at high temperature. <P>SOLUTION: The method for producing the organic-inorganic composite hydrogel includes preparing an aqueous dispersion in which a (meth)acrylamide-based monomer and a water-swellable clay mineral are dispersed in water or a liquid mixture of water and an organic solvent, and polymerizing the monomer in a polymerization temperature range of 40-100&deg;C in the absence of a polymerization catalyst. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、重合性ビニル基を有する水溶性有機モノマーの重合体と粘土鉱物により形成される有機無機複合ヒドロゲルの製造方法に関する。   The present invention relates to a method for producing an organic-inorganic composite hydrogel formed of a polymer of a water-soluble organic monomer having a polymerizable vinyl group and a clay mineral.

ポリアミド、ポリスチレン、ポリプロピレン、ポリイミド、ポリウレタンなどの有機高分子を粘土と複合させることによりナノコンポジットと呼ばれる高分子複合体が調製されている。得られた高分子複合体はアスペクト比の大きい粘土層を微細に分散させていることから、弾性率、熱変形温度、ガス透過性、および燃焼速度などが効果的に改良されることが報告されている(例えば非特許文献1参照)。   Polymer composites called nanocomposites have been prepared by combining organic polymers such as polyamide, polystyrene, polypropylene, polyimide, and polyurethane with clay. Since the resulting polymer composite has finely dispersed clay layers with a large aspect ratio, it has been reported that the elastic modulus, heat distortion temperature, gas permeability, and burning rate are effectively improved. (For example, refer nonpatent literature 1).

高分子複合体中に含まれる粘土鉱物量としては、性能強化の観点からは高い粘土鉱物含有量が望まれるが、より低い粘土鉱物量で効果的な性能強化が達成されることも重要である。これまでの研究では、粘土鉱物の含有量は、通常0.2〜5質量%の範囲であり、0.1質量%以下の高分子複合体や10質量%を超える高分子複合体を製造した例は、ほとんど報告されていない。これは粘土鉱物の含有率が低くなると性能向上の効果がほとんど現れず、一方、含有率が高くなると製造時の粘度増加が大きく、複合体中の粘土鉱物のナノスケールレベルにおける微細且つ均一な分散が達成できなかったり、複合体が脆くなり力学物性(強度や伸び)が大きく低下したりするためである。   As the amount of clay mineral contained in the polymer composite, a high clay mineral content is desired from the viewpoint of performance enhancement, but it is also important to achieve effective performance enhancement with a lower amount of clay mineral. . In previous studies, the content of clay minerals is usually in the range of 0.2 to 5% by mass, and a polymer complex of 0.1% by mass or less or a polymer complex of more than 10% by mass was produced. Few examples have been reported. This is because the effect of improving performance hardly appears when the content of clay mineral is low, while the increase in viscosity at the time of production is large when the content is high, and the fine and uniform dispersion of the clay mineral in the composite at the nanoscale level. This is because the composite material becomes brittle and mechanical properties (strength and elongation) are greatly reduced.

このような問題に対し、優れた力学物性を示すナノコンポジット材料として、広い範囲の粘土鉱物含有率において、粘土鉱物が有機高分子中に均一に分散した有機無機複合ヒドロゲルが開示されている(例えば特許文献1、特許文献2参照)。この報告によれば、水媒体中に水膨潤性粘土鉱物を分散させ、その後、アクリルアミドやメタクリルアミドの誘導体、(メタ)アクリル酸エステルなどのモノマーを添加して、重合開始剤及び触媒の存在下で該モノマーを重合させることにより、力学物性の良い有機無機複合ヒドロゲルを製造できることが記載されている。さらに、上記の有機無機複合ヒドロゲルにおいて、放射線や有機架橋剤を添加する手段によって、アミド基含有高分子と粘土鉱物の結合に加えて高分子鎖間に共有結合を形成させ、優れた力学物性と三次元網目の安定性を併せ持つ高分子ゲルが得られることが記載されている。(特許文献3、特許文献4参照)
しかし、この製造方法で得られる有機無機複合ヒドロゲルには未反応の残留モノマーが比較的多く含まれ、これを除去するために洗浄が必要であった。また、特に高温、加圧下において、自重による材料の形状変形が生じる場合があることから、耐変形性の改良が求められていた。
As a nanocomposite material exhibiting excellent mechanical properties for such problems, an organic-inorganic composite hydrogel in which clay minerals are uniformly dispersed in an organic polymer in a wide range of clay mineral content is disclosed (for example, (See Patent Document 1 and Patent Document 2). According to this report, a water-swellable clay mineral is dispersed in an aqueous medium, and then a monomer such as acrylamide or a derivative of methacrylamide or (meth) acrylic acid ester is added in the presence of a polymerization initiator and a catalyst. It is described that an organic-inorganic composite hydrogel having good mechanical properties can be produced by polymerizing the monomer. Furthermore, in the above-mentioned organic-inorganic composite hydrogel, by means of adding radiation or an organic crosslinking agent, in addition to the bond between the amide group-containing polymer and the clay mineral, a covalent bond is formed between the polymer chains, and excellent mechanical properties and It is described that a polymer gel having the stability of a three-dimensional network can be obtained. (See Patent Document 3 and Patent Document 4)
However, the organic-inorganic composite hydrogel obtained by this production method contains a relatively large amount of unreacted residual monomer, and washing is necessary to remove this. Further, since deformation of the material due to its own weight may occur particularly under high temperature and pressure, improvement in deformation resistance has been demanded.

特開2002−53762JP2002-53762 特開2004−143212JP-A-2004-143212 特開2005−113080JP 2005-1113080 A 特開2007−154092JP2007-154092A ピナバイアおよびベアル編(T.J.Pinnavaia and G. W.Beall Eds.)「ポリマークレイナノコンポジット」(Polymer-Clay Nano Composites ),ワイリー社(wiley)、2000年出版T.J. Pinnavaia and G. W. Beall Eds. "Polymer-Clay Nano Composites", Wiley, 2000.

本発明が解決しようとする課題は、有機無機複合ヒドロゲルの高弾力性及び強靭性を損なうことなく、残留モノマー量を極力低減させることが可能である有機無機複合ヒドロゲルの製造方法を提供することである。また、本発明の他の目的は、上記課題を達成し、更に、透明性及び高温での耐変形性に優れた有機無機複合ヒドロゲルの製造方法を提供することにある。   The problem to be solved by the present invention is to provide a method for producing an organic-inorganic composite hydrogel capable of reducing the residual monomer amount as much as possible without impairing the high elasticity and toughness of the organic-inorganic composite hydrogel. is there. Another object of the present invention is to provide a method for producing an organic-inorganic composite hydrogel that achieves the above-mentioned problems and is excellent in transparency and deformation resistance at high temperatures.

本発明者らは、上記課題を解決するため、上記従来技術で開示されている有機無機複合ヒドロゲルの製造方法について種々検討した。その結果、重合触媒を用いずに、重合反応を高温下で行なうことにより上記課題を解決できることを見出し、本発明を完成させた。   In order to solve the above-mentioned problems, the present inventors have studied various methods for producing organic-inorganic composite hydrogels disclosed in the above prior art. As a result, the present inventors have found that the above problems can be solved by carrying out the polymerization reaction at a high temperature without using a polymerization catalyst, thereby completing the present invention.

即ち、本発明は、(メタ)アクリルアミド系モノマーと水膨潤性粘土鉱物とが水または水と有機溶媒との混合液に分散した水分散液を製造し、重合触媒の不存在下で、40〜100℃の重合温度範囲にて前記モノマーを重合させることを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   That is, the present invention produces an aqueous dispersion in which a (meth) acrylamide monomer and a water-swellable clay mineral are dispersed in water or a mixture of water and an organic solvent, and in the absence of a polymerization catalyst, The present invention provides a method for producing an organic-inorganic composite hydrogel, wherein the monomer is polymerized in a polymerization temperature range of 100 ° C.

また、本発明は、N−メチル基を有するアクリルアミド系モノマーの重合体と水膨潤性粘土鉱物とが複合化して形成された三次元網目構造と、前記重合体の高分子鎖間に形成された化学結合による架橋構造とを併有することを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   The present invention also includes a three-dimensional network structure formed by combining a polymer of an acrylamide monomer having an N-methyl group and a water-swellable clay mineral, and a polymer chain of the polymer. The present invention also provides a method for producing an organic-inorganic composite hydrogel characterized by having a crosslinked structure by chemical bonding.

一般に、(メタ)アクリルアミドモノマーからなる従来のヒドロゲルの水系重合では、アミン触媒等で活性化させた低温での重合条件が用いられる。これに対し、本発明で開示する無触媒条件、及び高温重合での水系重合によって、残留モノマー量を高度に低減したり、物性を制御することは知られていない。   In general, in conventional water-based polymerization of hydrogels composed of (meth) acrylamide monomers, polymerization conditions at low temperatures activated by an amine catalyst or the like are used. On the other hand, it is not known that the amount of residual monomer is highly reduced or the physical properties are controlled by the non-catalytic conditions disclosed in the present invention and aqueous polymerization in high temperature polymerization.

本発明の製造方法によれば、低含有比率〜高含有比率までの広範囲の粘土鉱物の含有比率において、残留モノマー量が極力低減された有機無機複合ヒドロゲルを製造することができる。本発明により製造される有機無機複合ゲルでは、残留モノマー量が低減されることから、より安全性が高まる。更に、重合反応に使用する触媒は十分な安全性を保証されていないことから、該当触媒を用いないことによっても材料としての安全性が高まる。また、高温での反応により粘土鉱物が均一且つ微細に分散し易くなり、ゲル中における粘土鉱物の凝集物の生成を防止できる。その結果、透明性に優れた有機無機複合ゲルが得られる。   According to the production method of the present invention, it is possible to produce an organic-inorganic composite hydrogel in which the amount of residual monomer is reduced as much as possible in a wide range of content ratios of clay minerals from a low content ratio to a high content ratio. In the organic-inorganic composite gel produced according to the present invention, since the amount of residual monomer is reduced, safety is further improved. Furthermore, since the safety of the catalyst used for the polymerization reaction is not guaranteed, the safety of the material is increased even if the corresponding catalyst is not used. Further, the clay mineral can be easily dispersed uniformly and finely by the reaction at a high temperature, and the formation of aggregates of the clay mineral in the gel can be prevented. As a result, an organic-inorganic composite gel excellent in transparency can be obtained.

更に、本発明により製造される有機無機複合ゲルは、フィルム状、平板状等の平面形状に成形され、製造される場合がある。このような形状では、高温加圧下での滅菌条件や長期の保存においても、変形せずに所期の形状及び厚みが維持されることが必要である。本発明の製造方法によれば高温での耐変形性に優れた有機無機複合ヒドロゲルを製造することができる。特に、N、N−ジメチルアクリルアミド、N−メチルアクリルアミド、N、N−メチルエチルアクリルアミドのようなN−メチル基を有する反応性モノマーを使用した場合、アミド基含有高分子と粘土鉱物を介した架橋構造に加えて、N−メチル基部位での一部を共有結合で結合した高分子鎖間の化学架橋が生成し弾性率の上昇が生じると推定されるため、耐変形性が優れたものとなる。これにより、有機架橋剤や放射線の照射を使用することなく、有機無機複合ヒドロゲルの耐変形性を高めることができ、形状の保持が容易となる。したがって、放射線照射では制御が困難であった厚みのあるフィルム形状や大型ブロック状の有機無機複合ヒドロゲルにおいても、耐変形性の向上に寄与する。   Furthermore, the organic-inorganic composite gel produced according to the present invention may be produced by being formed into a planar shape such as a film shape or a flat plate shape. In such a shape, it is necessary to maintain the desired shape and thickness without deformation even under sterilization conditions under high temperature and pressure and long-term storage. According to the production method of the present invention, an organic-inorganic composite hydrogel excellent in deformation resistance at high temperatures can be produced. In particular, when a reactive monomer having an N-methyl group, such as N, N-dimethylacrylamide, N-methylacrylamide, N, N-methylethylacrylamide, is used, cross-linking via an amide group-containing polymer and a clay mineral In addition to the structure, it is estimated that chemical cross-linking between polymer chains in which a part of the N-methyl group moiety is covalently bonded is generated, resulting in an increase in elastic modulus. Become. Thereby, the deformation resistance of the organic-inorganic composite hydrogel can be enhanced without using an organic crosslinking agent or radiation, and the shape can be easily maintained. Therefore, even in a thick film shape or a large block organic-inorganic composite hydrogel that has been difficult to control by irradiation, it contributes to the improvement of deformation resistance.

本発明の製造方法は、(メタ)アクリルアミド系モノマーと水膨潤性粘土鉱物とが水または水と有機溶媒との混合液に分散した水分散液を製造し、その後、重合触媒の不存在下で、40〜100℃の重合温度範囲にて前記モノマーを重合させることを特徴とする有機無機複合ヒドロゲルの製造方法である。   The production method of the present invention produces an aqueous dispersion in which a (meth) acrylamide monomer and a water-swellable clay mineral are dispersed in water or a mixture of water and an organic solvent, and then in the absence of a polymerization catalyst. , A method for producing an organic-inorganic composite hydrogel, wherein the monomer is polymerized in a polymerization temperature range of 40 to 100 ° C.

(有機無機複合ヒドロゲル)
本発明で製造する有機無機複合ヒドロゲルは、水溶性有機高分子と水に均一分散可能な水膨潤性粘土鉱物と水とを必須の構成成分とし、水溶性有機高分子と水膨潤性粘土鉱物が分子レベルで複合化された三次元網目の中に水を取り込んだヒドロゲルである。
(Organic inorganic composite hydrogel)
The organic-inorganic composite hydrogel produced by the present invention comprises a water-swellable organic polymer, a water-swellable clay mineral that can be uniformly dispersed in water, and water as essential constituents, and the water-soluble organic polymer and the water-swellable clay mineral comprise It is a hydrogel that incorporates water in a three-dimensional network complexed at the molecular level.

((メタ)アクリルアミド系モノマー)
本発明で使用する(メタ)アクリルアミド系モノマーとしては、水に溶解する性質を有し、水に均一分散可能な水膨潤性粘土鉱物と相互作用を有するものが好ましい。なお、本発明で使用する水としては、水単独以外に、水と混和する有機溶媒との混合溶媒であり、水を主成分とするものが含まれる。
((Meth) acrylamide monomer)
As the (meth) acrylamide monomer used in the present invention, those having properties of dissolving in water and interacting with a water-swellable clay mineral that can be uniformly dispersed in water are preferable. In addition, as water used by this invention, it is a mixed solvent with the organic solvent mixed with water other than water alone, and the thing which has water as a main component is contained.

(メタ)アクリルアミド系モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく選択される。中でも、N、N−ジメチルアクリルアミド、N−メチルアクリルアミド、N、N−メチルエチルアクリルアミドのようなN−メチル基を有する反応性モノマーを使用すると耐変形性がより優れたものとなるので好ましい。   Specific examples of (meth) acrylamide monomers include acrylamides such as N-alkyl acrylamide, N, N-dialkyl acrylamide and acrylamide, or N-alkyl methacrylamide, N, N-dialkyl methacrylamide and methacrylamide. And methacrylamides. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably selected. Among them, it is preferable to use a reactive monomer having an N-methyl group such as N, N-dimethylacrylamide, N-methylacrylamide, N, N-methylethylacrylamide, because the deformation resistance becomes more excellent.

また(メタ)アクリルアミド系モノマーの重合体としては、単一の(メタ)アクリルアミド系モノマーの重合体の他、これらから選ばれる複数の異なる(メタ)アクリルアミド系モノマーを重合して得られる共重合体を用いることも有効である。また上記(メタ)アクリルアミド系モノマーとそれ以外の有機溶媒可溶性の重合性不飽和基含有有機モノマーとの共重合体も、得られた重合体が水溶性や親水性を示すものであれば使用することができる。   In addition, as a polymer of (meth) acrylamide monomers, in addition to a polymer of a single (meth) acrylamide monomer, a copolymer obtained by polymerizing a plurality of different (meth) acrylamide monomers selected from these It is also effective to use Also, a copolymer of the above (meth) acrylamide monomer and other organic solvent-soluble polymerizable unsaturated group-containing organic monomer is used as long as the obtained polymer exhibits water solubility or hydrophilicity. be able to.

(水膨潤性粘土鉱物)
本発明で用いる水膨潤性粘土鉱物は、水に膨潤し、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。中でも水膨潤性ヘクトライトや水膨潤性サポナイトを用いると有機無機複合ヒドロゲルの透明性が優れ、好ましい。
(Water-swelling clay mineral)
As the water-swellable clay mineral used in the present invention, those having a property of swelling in water and preferably swelling between layers by water are used. More preferably, it is a layered clay mineral that can be at least partially exfoliated and dispersed in layers in water, and particularly preferably a lamellar clay mineral that can be exfoliated and dispersed uniformly in water with a thickness of 1 to 10 layers. For example, water-swellable smectite or water-swellable mica is used. More specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Is mentioned. Among them, the use of water-swellable hectorite or water-swellable saponite is preferable because the transparency of the organic-inorganic composite hydrogel is excellent.

(重合触媒)
重合触媒としては、例えば3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが好ましく用いられる。しかしながら、本発明の製造方法では、重合触媒は実質的に使用しない。重合触媒を使用した場合、反応温度の上昇に伴い力学物性において破断強度の著しい低下が生じる。このことから、形状保持性の低下を招き、また前述の安全性の観点からも重合触媒を用いない製造法が好ましい。
(Polymerization catalyst)
As the polymerization catalyst, for example, a tertiary amine compound such as N, N, N ′, N′-tetramethylethylenediamine or β-dimethylaminopropionitrile is preferably used. However, the polymerization catalyst is not substantially used in the production method of the present invention. When a polymerization catalyst is used, a significant decrease in breaking strength occurs in mechanical properties with an increase in reaction temperature. For this reason, a shape-retaining property is lowered, and a production method that does not use a polymerization catalyst is preferable from the viewpoint of safety.

(重合開始剤)
本発明において用いられる重合開始剤としては、公知のラジカル重合開始剤や触媒を適時選択して用いることができる。好ましくは水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA−044、V−50、V−501(いずれも和光純薬工業株式会社製)の他、Fe 2+ と過酸化水素との混合物などが例示される。中でもペルオキソ二硫酸カリウムを使用することが好ましい。
(Polymerization initiator)
As the polymerization initiator used in the present invention, a known radical polymerization initiator or catalyst can be selected and used in a timely manner. Preferably, those having water dispersibility and uniformly contained in the entire system are preferably used. Specifically, water-soluble peroxides such as potassium peroxodisulfate and ammonium peroxodisulfate, water-soluble azo compounds such as VA-044, V-50, and V-501 (all manufactured by Wako Pure Chemical Industries, Ltd.) ), And a mixture of Fe 2+ and hydrogen peroxide. Of these, potassium peroxodisulfate is preferably used.

(製造方法)
以下に、本発明の製造方法の好ましい実施形態について説明するが、これは一例であり、本発明の効果を損なわない範囲において、種々の実施形態を採ることができる。
(Production method)
Hereinafter, preferred embodiments of the production method of the present invention will be described, but this is an example, and various embodiments can be adopted within a range not impairing the effects of the present invention.

本発明の有機無機複合ヒドロゲルの製造方法においては、(メタ)アクリルアミド系モノマーは、活性アルミナカラムを用いて重合禁止剤を取り除いてから使用することが好ましく、重合開始剤は約2%の濃度に純水で希釈し、水溶液にして使用することが好ましく、水は、イオン交換水を蒸留した純水を用い、高純度窒素を予め3時間以上バブリングさせ、含有酸素を除去してから使用することが好ましい。   In the method for producing the organic-inorganic composite hydrogel of the present invention, the (meth) acrylamide monomer is preferably used after removing the polymerization inhibitor using an activated alumina column, and the polymerization initiator is at a concentration of about 2%. It is preferable to dilute with pure water and use it as an aqueous solution. Use pure water obtained by distilling ion-exchanged water, bubbling high-purity nitrogen in advance for 3 hours or more, and use it after removing oxygen. Is preferred.

(工程1)
内部を窒素置換した反応容器に、純水と(メタ)アクリルアミド系モノマーを加え、これに水膨潤性粘土鉱物を添加して、(メタ)アクリルアミド系モノマーと水膨潤性粘土鉱物とが水に分散した均一な水分散液を製造する。この際、特許文献1及び特許文献2に記載されている通り、純水と水膨潤性粘土鉱物からなる分散液を製造し、その後、(メタ)アクリルアミド系モノマーを添加する順を採っても良いが、本発明では、あらかじめ純水と(メタ)アクリルアミド系モノマーの混合液を製造し、次いで、混合液中に水膨潤性粘土鉱物を添加して均一な水分散液を製造することが好ましい。そのような工程順を採ることにより、水膨潤性粘土鉱物がより均一に純水と(メタ)アクリルアミド系モノマーの混合液中に分散しやすくなり、力学特性、透明性等がより優れた有機無機複合ヒドロゲルを製造することができる。
(Process 1)
Add pure water and (meth) acrylamide monomer to the reaction vessel purged with nitrogen, add water-swellable clay mineral to it, and disperse (meth) acrylamide monomer and water-swellable clay mineral in water A uniform aqueous dispersion is produced. At this time, as described in Patent Document 1 and Patent Document 2, a dispersion liquid composed of pure water and a water-swellable clay mineral may be manufactured, and then a (meth) acrylamide monomer may be added. However, in the present invention, it is preferable to produce a mixture of pure water and a (meth) acrylamide monomer in advance, and then add a water-swellable clay mineral to the mixture to produce a uniform aqueous dispersion. By adopting such a process order, the water-swellable clay mineral can be more uniformly dispersed in a mixed solution of pure water and a (meth) acrylamide monomer, and the organic inorganic having better mechanical properties, transparency, etc. Composite hydrogels can be produced.

また、純水と(メタ)アクリルアミド系モノマーの混合液中に水膨潤性粘土鉱物を添加する際には、より高シェアの攪拌装置を用いることが好ましい。例えば、アンカー翼、タービン翼、ファウドラー翼、フルゾーン翼、マックスブレンド翼、半月翼等を用いることができる。   In addition, when adding a water-swellable clay mineral to a mixed liquid of pure water and a (meth) acrylamide monomer, it is preferable to use a stirrer having a higher share. For example, an anchor wing, a turbine wing, a fiddler wing, a full zone wing, a max blend wing, a meniscus wing and the like can be used.

(メタ)アクリルアミド系モノマーの重合物と水膨潤性粘土鉱物の量比は、水または水と有機溶媒との混合液からなる溶媒の中で両者が三次元網目を形成する範囲が好ましく、水膨潤性粘土鉱物/(メタ)アクリルアミド系モノマーの重合物の質量比として好ましくは0.01〜3、より好ましくは0.1〜3、特に好ましくは0.3〜2.5である。その質量比が0.01未満では、有効な三次元網目を形成することが困難となり、一方、3を越えると水均一な膨潤性粘土鉱物の層状剥離した分散が困難となる場合が多い。   The amount ratio of the polymer of the (meth) acrylamide monomer and the water-swellable clay mineral is preferably in the range where both form a three-dimensional network in a solvent composed of water or a mixture of water and an organic solvent. The mass ratio of the functional clay mineral / (meth) acrylamide monomer polymer is preferably 0.01 to 3, more preferably 0.1 to 3, and particularly preferably 0.3 to 2.5. When the mass ratio is less than 0.01, it is difficult to form an effective three-dimensional network, while when it exceeds 3, it is often difficult to disperse the water-like swellable clay mineral in a layered manner.

(工程2)
次に、重合開始剤溶液を加え、密栓をし、40〜100℃の恒温水槽中で10〜30時間程度静置して重合を行なう。
(Process 2)
Next, a polymerization initiator solution is added, sealed, and allowed to stand in a constant temperature water bath at 40 to 100 ° C. for about 10 to 30 hours for polymerization.

(メタ)アクリルアミド系モノマーの重合物と重合開始剤の量比は、重合開始剤/(メタ)アクリルアミド系モノマーの重合物の質量比として好ましくは0.001〜0.10、より好ましくは0.005〜0.01である。その質量比が0.001未満では、有効な三次元網目を形成することが困難となり、一方、0.10を越えるとモノマー/クレイ溶液中での重合開始剤の分散が困難となる場合が多い。   The mass ratio of the polymer of the (meth) acrylamide monomer and the polymerization initiator is preferably 0.001 to 0.10, more preferably 0.00 as the mass ratio of the polymerization initiator / (meth) acrylamide monomer polymer. 005 to 0.01. If the mass ratio is less than 0.001, it is difficult to form an effective three-dimensional network, while if it exceeds 0.10, it is often difficult to disperse the polymerization initiator in the monomer / clay solution. .

なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行うことが好ましい。重合開始から1〜30時間で反応容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な有機無機複合ヒドロゲルが生成する。   In addition, it is preferable to perform all these operations from preparation of a solution to superposition | polymerization in nitrogen atmosphere which interrupted | blocked oxygen. Within 1 to 30 hours from the start of polymerization, a colorless transparent and uniform organic-inorganic composite hydrogel having elasticity and toughness consisting of organic polymer and clay mineral is formed in the reaction vessel.

重合反応を行う場合、上記の水分散液を製造した容器内で重合反応を行っても良いが、重合開始剤を添加後、速やかに所望の形状の容器内に水分散液を移して、フィルム状、平板状等、目的とする形状の有機無機複合ヒドロゲルとすることもできる。   When carrying out the polymerization reaction, the polymerization reaction may be carried out in the container in which the aqueous dispersion is produced, but after adding the polymerization initiator, the aqueous dispersion is immediately transferred into the container of the desired shape, and the film It is also possible to obtain an organic-inorganic composite hydrogel having a desired shape such as a shape or a flat shape.

(有機無機複合ヒドロゲルの力学物性)
本発明の製造方法によれば、強度、伸び、タフネスなどの力学物性に優れた有機無機複合ヒドロゲルを製造することができる。有機無機複合ヒドロゲルの力学物性は、ヒドロゲルの水含有率により異なるため、有機無機複合ヒドロゲルの力学物性や機械的性質は、一定範囲内の水含有率をもつヒドロゲルを用いて試験した結果で表わす。具体的には水(C)を{有機成分(A)+無機成分(B)}に対して600〜1000重量%含むヒドロゲルを用いるか、もしくは水溶性有機高分子(A)の10倍量(重量比)の水(C)を含んだものを用いて試験した結果で表わす。
(Mechanical properties of organic-inorganic composite hydrogel)
According to the production method of the present invention, an organic-inorganic composite hydrogel having excellent mechanical properties such as strength, elongation, and toughness can be produced. Since the mechanical properties of the organic-inorganic composite hydrogel vary depending on the water content of the hydrogel, the mechanical properties and mechanical properties of the organic-inorganic composite hydrogel are expressed as a result of testing using a hydrogel having a water content within a certain range. Specifically, a hydrogel containing 600 to 1000% by weight of water (C) with respect to {organic component (A) + inorganic component (B)} is used, or 10 times the amount of water-soluble organic polymer (A) ( It is expressed as a result of a test using water (C) containing water (C).

更に、本発明で製造する有機無機複合ヒドロゲルは、破断伸びが大きく、断面積が試験途中で変化するため、試験開始時のヒドロゲルの断面積(初期断面積)を0.237cm2(半径0.275cmの円に相当)にしたものを試験材料として用いて規定する。 Furthermore, since the organic-inorganic composite hydrogel produced in the present invention has a large elongation at break and the cross-sectional area changes during the test, the cross-sectional area (initial cross-sectional area) of the hydrogel at the start of the test is 0.237 cm 2 (radius 0. 275 cm equivalent) is used as a test material.

本発明で製造する有機無機複合ヒドロゲルとして力学的強度が要求される用途に使用する場合は、水含有率が600〜1000重量%、初期断面積が0.237cm2であるヒドロゲルを用いて測定したときに、引っ張り破断荷重が0.1N以上、好ましくは0.5N以上、より好ましくは1N以上、特に好ましくは2N以上であるものが望ましい。
また、引っ張り破断伸びが100%以上、より好ましくは200%以上、更に好ましくは300%以上、特に好ましくは500%以上であること、更に引っ張り伸び100%での荷重が0.01N以上、より好ましくは0.05N以上であること、特に好ましくは0.1N以上である特徴を有するものが望ましい。
(本発明で製造する有機無機複合ヒドロゲルの用途)
得られた有機無機複合ヒドロゲルは、高い透明性、低残留モノマー、高温での耐変形性に優れた特徴を生かし、振動吸収材料、延伸装置部品材料、人工臓器用材料、治療用材料、光学材料などとして用いられる。
When the organic / inorganic composite hydrogel produced in the present invention is used for an application requiring mechanical strength, it is measured using a hydrogel having a water content of 600 to 1000% by weight and an initial cross-sectional area of 0.237 cm 2 . Sometimes, it is desirable that the tensile breaking load is 0.1 N or more, preferably 0.5 N or more, more preferably 1 N or more, and particularly preferably 2 N or more.
Further, the tensile breaking elongation is 100% or more, more preferably 200% or more, further preferably 300% or more, particularly preferably 500% or more, and the load at a tensile elongation of 100% is more preferably 0.01 N or more. Is preferably 0.05N or more, particularly preferably having a characteristic of 0.1N or more.
(Use of organic-inorganic composite hydrogel produced in the present invention)
The obtained organic / inorganic composite hydrogel utilizes the characteristics of high transparency, low residual monomer, and excellent deformation resistance at high temperature. Vibration absorbing material, stretching device component material, artificial organ material, therapeutic material, optical material Used as such.

次いで本発明を実施例により、具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。
(原料の精製方法)
粘土鉱物には、[Mg 5.34 Li0.66 Si20 (OH) ]Na0.66 の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッドアディティブ社製)を用いた。水溶性有機モノマーとしてはN,N−ジメチルアクリルアミド(DMAA:株式会社興人社製)を用い、DMAA100mlに対して活性アルミナカラム(和光純薬株式会社製)5gの容積で重合禁止剤を取り除いてから使用した。重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)を2%の濃度に純水で希釈し、水溶液にして使用した。水は、イオン交換水を蒸留した純水を用い、高純度窒素を予め3時間以上バブリングさせ含有酸素を除去してから使用した。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited only to the Example shown below from the first.
(Raw material purification method)
As the clay mineral, a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood Additive Co., Ltd.) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na 0.66 + is used. Using. As the water-soluble organic monomer, N, N-dimethylacrylamide (DMAA: manufactured by Kojin Co., Ltd.) was used, and the polymerization inhibitor was removed in a volume of 5 g of activated alumina column (manufactured by Wako Pure Chemical Industries, Ltd.) with respect to 100 ml of DMAA. Used from. As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Inc.) was diluted with pure water to a concentration of 2% and used as an aqueous solution. Pure water obtained by distilling ion-exchanged water was used as water, and high-purity nitrogen was bubbled in advance for 3 hours or more to remove the contained oxygen.

(実施例1)
内部を窒素置換したガラス容器に、純水19.00gとDMAA1.98gを加え、これにラポナイトXLG0.64gを撹拌子で強撹拌しながら添加して、無色透明の溶液を調製した。次に、KPS水溶液1gを加え、密栓をし、50℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
Example 1
Into a glass container purged with nitrogen, 19.00 g of pure water and 1.98 g of DMAA were added, and 0.64 g of Laponite XLG was added thereto with vigorous stirring with a stirrer to prepare a colorless and transparent solution. Next, 1 g of an aqueous KPS solution was added, sealed, and allowed to stand in a constant temperature water bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(実施例2)
実施例1と同様に反応溶液を調製し、40℃の恒温水槽中で18時間静置して重合を行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Example 2)
A reaction solution was prepared in the same manner as in Example 1 and allowed to stand for 18 hours in a constant temperature water bath at 40 ° C. for polymerization. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(実施例3)
実施例1と同様に反応溶液を調製し、95℃の恒温水槽中で18時間静置して重合を行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Example 3)
A reaction solution was prepared in the same manner as in Example 1 and allowed to stand in a constant temperature water bath at 95 ° C. for 18 hours for polymerization. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(実施例4)
内部を窒素置換したガラス容器に、純水19.00gとアルミナカラムによって重合禁止剤を除去したN−アクリロイルモルフォリン(ACMO:株式会社興人社製)2.82gを加え、これにラポナイトXLG0.64gを強撹拌しながら添加して無色透明の溶液を調製した。次に、KPS水溶液1gを加え、密栓をし、50℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が540質量%のヒドロゲルであった。
Example 4
To a glass container purged with nitrogen inside, 19.00 g of pure water and 2.82 g of N-acryloylmorpholine (ACMO: manufactured by Kojin Co., Ltd.) from which the polymerization inhibitor was removed by an alumina column were added, and LAPONITE XLG0. A colorless and transparent solution was prepared by adding 64 g with vigorous stirring. Next, 1 g of an aqueous KPS solution was added, sealed, and allowed to stand in a constant temperature water bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 540% by mass.

(実施例5)
内部を窒素置換したガラス容器に、純水19.00gとDMAA1.98gを加え、これに水膨潤性モンモリロナイトであるクニピアF(クニミネ工業株式会社製)0.64gを撹拌子で強撹拌しながら添加して、乳白色の溶液を調製した。次に、KPS水溶液1gを加え、密栓をし、50℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Example 5)
To a glass container purged with nitrogen, add 19.00 g of pure water and 1.98 g of DMAA, and add 0.64 g of water-swellable montmorillonite, Kunipia F (manufactured by Kunimine Kogyo Co., Ltd.) with strong stirring. A milky white solution was prepared. Next, 1 g of an aqueous KPS solution was added, sealed, and allowed to stand in a constant temperature water bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(比較例1)
内部を窒素置換したガラス容器に、純水19.00gとラポナイトXLG0.64gからなる無色透明の溶液を調製した。これにDMAA1.98gを加え無色透明溶液を得た。次に、重合触媒としてN,N,N’,N’−テトラメチルエチレンジアミン18μL、KPS水溶液1gを加え、密栓をし、20℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Comparative Example 1)
A colorless and transparent solution consisting of 19.00 g of pure water and 0.64 g of Laponite XLG was prepared in a glass container purged with nitrogen. To this was added 1.98 g of DMAA to obtain a colorless transparent solution. Next, 18 μL of N, N, N ′, N′-tetramethylethylenediamine and 1 g of an aqueous KPS solution were added as polymerization catalysts, sealed, and allowed to stand in a constant temperature water bath at 20 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(比較例2)
内部を窒素置換したガラス容器に、純水19.00gとDMAA1.98gを加え、これにラポナイトXLG0.64gを撹拌子で強撹拌しながら添加して、無色透明の溶液を調製した。次に、KPS水溶液1gを加え、密栓をし、35℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Comparative Example 2)
Into a glass container purged with nitrogen, 19.00 g of pure water and 1.98 g of DMAA were added, and 0.64 g of Laponite XLG was added thereto with vigorous stirring with a stirrer to prepare a colorless and transparent solution. Next, 1 g of a KPS aqueous solution was added, sealed, and allowed to stand in a constant temperature water bath at 35 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(比較例3)
内部を窒素置換したガラス容器に、純水19.00gとラポナイトXLG0.64gからなる無色透明の溶液を調製した。これにDMAA1.98gを加え無色透明溶液を得た。次に、重合触媒としてN,N,N’,N’−テトラメチルエチレンジアミン18μL、KPS水溶液1gを加え、密栓をし、50℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Comparative Example 3)
A colorless and transparent solution consisting of 19.00 g of pure water and 0.64 g of Laponite XLG was prepared in a glass container purged with nitrogen. To this was added 1.98 g of DMAA to obtain a colorless transparent solution. Next, 18 μL of N, N, N ′, N′-tetramethylethylenediamine and 1 g of an aqueous KPS solution were added as polymerization catalysts, sealed, and allowed to stand in a constant temperature water bath at 50 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(比較例4)
内部を窒素置換したガラス容器に、純水19.00gとラポナイトXLG0.64gからなる無色透明の溶液を調製した。これにACMO2.82gを加え無色透明溶液を得た。次に、重合触媒としてN,N,N’,N’−テトラメチルエチレンジアミン18μL、KPS水溶液1gを加え、密栓をし、20℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、ガラス管容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Comparative Example 4)
A colorless and transparent solution consisting of 19.00 g of pure water and 0.64 g of Laponite XLG was prepared in a glass container purged with nitrogen. A colorless transparent solution was obtained by adding 2.82 g of ACMO thereto. Next, 18 μL of N, N, N ′, N′-tetramethylethylenediamine and 1 g of an aqueous KPS solution were added as polymerization catalysts, sealed, and allowed to stand in a constant temperature water bath at 20 ° C. for 18 hours for polymerization. The operations from preparation of the solution to polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. After 18 hours from the start of polymerization, a colorless transparent and uniform columnar polymer gel having elasticity and toughness consisting of organic polymer and clay mineral was formed in the glass tube container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(残留モノマー量の評価方法)
各実施例、比較例で製造した有機無機複合体ヒドロゲルの残留モノマーの量は、以下の方法にて測定した。測定値を表1にまとめた。合成したヒドロゲル2.0gと純水100gをミキサー(オスターブレンダー;大阪ケミカル株式会社製)に入れ、15700回転で5分間処理し、ゲルスラリー液を得た。このスラリー液を80℃で1時間加熱撹拌し、抽出液を調整した。抽出液を冷却後、メンブランフィルター(細孔径:0.45μm)でゲル成分を除去し、HPLC(日本ウォータース社製; Separation Module 2695、UV Detector 2487; カラム:ジーエルサイエンス株式会社製Inertsil ODS−3 4.6mmID×250mm; 溶離溶媒組成:アセトニトリル/水=20/80; 検出波長:230nm)を用いて残留DMAAモノマー及びACMOモノマーを一点検量線法により定量した。
(Evaluation method of residual monomer amount)
The amount of residual monomer of the organic-inorganic composite hydrogel produced in each example and comparative example was measured by the following method. The measured values are summarized in Table 1. The synthesized hydrogel (2.0 g) and pure water (100 g) were placed in a mixer (Oster Blender; manufactured by Osaka Chemical Co., Ltd.) and treated at 15700 rpm for 5 minutes to obtain a gel slurry. This slurry was heated and stirred at 80 ° C. for 1 hour to prepare an extract. After cooling the extract, the gel component was removed with a membrane filter (pore size: 0.45 μm), and HPLC (Nippon Waters, Separation Module 2695, UV Detector 2487; Column: Inertsil ODS-3, GL Sciences Inc. 4.6 mm ID × 250 mm; Elution solvent composition: acetonitrile / water = 20/80; detection wavelength: 230 nm), and residual DMAA monomer and ACMO monomer were quantified by a one-point calibration curve method.

Figure 0005371216
Figure 0005371216

(透明性の評価方法)
各実施例、比較例で製造した有機無機複合体ヒドロゲルの耐変形性は、以下の方法にて測定した。測定値を表3にまとめた。合成したヒドロゲルの透過率を、濁度計(日本電色工業(株)社製濁度計 300A)を用いて測定した。
(Transparency evaluation method)
The deformation resistance of the organic-inorganic composite hydrogel produced in each example and comparative example was measured by the following method. The measured values are summarized in Table 3. The transmittance of the synthesized hydrogel was measured using a turbidimeter (turbidimeter 300A manufactured by Nippon Denshoku Industries Co., Ltd.).

Figure 0005371216
Figure 0005371216

(耐変形性の評価方法)
各実施例、比較例で製造した有機無機複合体ヒドロゲルの耐変形性は、以下の方法にて測定した。測定値を表3にまとめた。DMAAを反応性モノマーに使用して合成した円柱状ヒドロゲル(高さ30mm×径27mm)を底面の直径が90cmのビーカー内に自立させ、120℃/2気圧の水蒸気下で60分保持した。室温/大気圧に戻した後のヒドロゲルの高さを計測し、変化率を求めた。
(Evaluation method for deformation resistance)
The deformation resistance of the organic-inorganic composite hydrogel produced in each example and comparative example was measured by the following method. The measured values are summarized in Table 3. A cylindrical hydrogel (height 30 mm × diameter 27 mm) synthesized using DMAA as a reactive monomer was self-supported in a beaker having a bottom diameter of 90 cm, and held for 60 minutes under water vapor at 120 ° C./2 atm. The height of the hydrogel after returning to room temperature / atmospheric pressure was measured to determine the rate of change.

Figure 0005371216
Figure 0005371216

Claims (3)

(メタ)アクリルアミド系モノマーと水膨潤性粘土鉱物とが水または水と有機溶媒との混合液に分散した水分散液を製造し、有機架橋剤及び重合触媒の不存在下で、40〜100℃の重合温度範囲にて前記モノマーを重合させることを特徴とする有機無機複合ヒドロゲルの製造方法であって、残留モノマー量が40ppm以下である有機無機複合ヒドロゲルの製造方法。 An aqueous dispersion in which a (meth) acrylamide monomer and a water-swellable clay mineral are dispersed in water or a mixed liquid of water and an organic solvent is produced, and 40 to 100 ° C. in the absence of an organic crosslinking agent and a polymerization catalyst. A method for producing an organic-inorganic composite hydrogel, characterized in that the monomer is polymerized in a polymerization temperature range of: wherein the residual monomer amount is 40 ppm or less . 前記水膨潤性粘土鉱物が、水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト及び水膨潤性雲母から選ばれる少なくとも一種である請求項1記載の有機無機複合ヒドロゲルの製造方法。   The method for producing an organic-inorganic composite hydrogel according to claim 1, wherein the water-swellable clay mineral is at least one selected from water-swellable hectorite, water-swellable montmorillonite, water-swellable saponite, and water-swellable mica. 前記(メタ)アクリルアミド系モノマーが、N−メチル基を有するアクリルアミド系モノマーである請求項1又は2記載の有機無機複合ヒドロゲルの製造方法。   The method for producing an organic-inorganic composite hydrogel according to claim 1 or 2, wherein the (meth) acrylamide monomer is an acrylamide monomer having an N-methyl group.
JP2007211315A 2007-08-14 2007-08-14 Method for producing organic-inorganic composite hydrogel Active JP5371216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007211315A JP5371216B2 (en) 2007-08-14 2007-08-14 Method for producing organic-inorganic composite hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007211315A JP5371216B2 (en) 2007-08-14 2007-08-14 Method for producing organic-inorganic composite hydrogel

Publications (2)

Publication Number Publication Date
JP2009046532A JP2009046532A (en) 2009-03-05
JP5371216B2 true JP5371216B2 (en) 2013-12-18

Family

ID=40499057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007211315A Active JP5371216B2 (en) 2007-08-14 2007-08-14 Method for producing organic-inorganic composite hydrogel

Country Status (1)

Country Link
JP (1) JP5371216B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138192A (en) * 2014-01-23 2015-07-30 株式会社リコー Organ model for manipulation training
JP6520266B2 (en) 2015-03-20 2019-05-29 株式会社リコー Hydrogel precursor liquid and liquid set for stereolithography, and method for producing hydrogel shaped body and stereolith using the same
US20220033538A1 (en) * 2018-12-17 2022-02-03 Dic Corporation Organic-inorganic composite hydrogel precursor composition, and organic-inorganic composite hydrogel
CN112047452A (en) * 2020-09-15 2020-12-08 华东理工大学 Composite hydrogel for water purification and preparation method and application method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2001135803A (en) * 1999-05-26 2003-07-27 Альберта Ресерч Консил Инк. (Ca) Reinforced polymer / clay alloy with a network structure

Also Published As

Publication number Publication date
JP2009046532A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
Su et al. Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels
Zhao et al. Mechanically strong and thermosensitive macromolecular microsphere composite poly (N-isopropylacrylamide) hydrogels
JP5132278B2 (en) Method for producing organic-inorganic composite hydrogel
Nikolaidis et al. Effect of the type of organic modifier on the polymerization kinetics and the properties of poly (methyl methacrylate)/organomodified montmorillonite nanocomposites
US9334337B2 (en) Enhanced water swellable compositions
JP5132300B2 (en) Method for producing cationic organic / inorganic composite hydrogel
JP4776187B2 (en) Organic / inorganic composite polymer gel and method for producing the same
Weian et al. Synthesis and properties of a novel hydrogel nanocomposites
US20150210824A1 (en) Nanocomposite microgels, methods of manufacture, and uses thereof
Sarkar et al. Reduced graphene oxide decorated superporous polyacrylamide based interpenetrating network hydrogel as dye adsorbent
JP5371216B2 (en) Method for producing organic-inorganic composite hydrogel
Win et al. Covalently cross-linked layered double hydroxide nanocomposite hydrogels with ultrahigh water content and excellent mechanical properties
JP2004143212A (en) Polymer composite, drawn product thereof and method for producing polymer composite
JP2005232402A (en) Polymer composite, its stretched product and process for producing polymer composite
JP3914501B2 (en) Polymer gel composite and method for producing the same
EP2607404A1 (en) Composition and preparation of hydrogel nanocomposites with improved mechanical properties and use thereof.
JP2010254800A (en) Organic/inorganic composite
JP2009062478A (en) Continuous production method of organic-inorganic composite hydrogel
JP4730725B2 (en) Method for producing polymer hydrogel
JP5598833B2 (en) Method for producing organic / inorganic composite hydrogel
JP5456344B2 (en) Organic-inorganic composite hydrogel and method for producing the same
JP5435835B2 (en) Polymer gel and method for producing the same
JP2008074925A (en) Borate group-containing organic inorganic composite hydrogel and method for producing the same
JP4297666B2 (en) Optically anisotropic
JP4914157B2 (en) Amino group-containing organic-inorganic composite hydrogel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130314

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130917

R150 Certificate of patent or registration of utility model

Ref document number: 5371216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250