JP2009062478A - Continuous production method of organic-inorganic composite hydrogel - Google Patents

Continuous production method of organic-inorganic composite hydrogel Download PDF

Info

Publication number
JP2009062478A
JP2009062478A JP2007232617A JP2007232617A JP2009062478A JP 2009062478 A JP2009062478 A JP 2009062478A JP 2007232617 A JP2007232617 A JP 2007232617A JP 2007232617 A JP2007232617 A JP 2007232617A JP 2009062478 A JP2009062478 A JP 2009062478A
Authority
JP
Japan
Prior art keywords
water
reaction solution
organic
inorganic composite
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007232617A
Other languages
Japanese (ja)
Inventor
Masanori Miyamoto
正紀 宮本
Kazutoshi Haraguchi
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP2007232617A priority Critical patent/JP2009062478A/en
Publication of JP2009062478A publication Critical patent/JP2009062478A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous production method of organic-inorganic composite hydrogel, by which a water-swellable clay mineral can uniformly be dispersed and a mixed solution can continuously be transferred even after a catalyst and a polymerization initiator are added and mixed. <P>SOLUTION: The continuous production method comprises: a step of continuously dispersing an water-soluble organic monomer having a polymerizable vinyl group and a water-swellable clay mineral into water by using a vibrating agitator (i) and then continuously dispersing a polymerization initiator by a vibrating agitator (ii); and a step of polymerizing the water-soluble organic monomer. The vibrating agitators (i), (ii) each have a cylindrical casing whose upper and lower surfaces are closed, a flow passage inside the casing, through which a reaction solution flows, an introducing port for introducing the reaction solution, which is provided at one of the upper and lower surfaces, and a flow-out port provided at the other surface. Further, the vibrating agitators (i), (ii) each have an agitation body reciprocatively movable in the flow direction of the reaction solution. The continuous production method of the organic-inorganic composite hydrogel has a mechanism for agitating the reaction solution by the agitation body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、(メタ)アクリルアミド系モノマーの重合体と水膨潤性粘土鉱物とから形成される三次元網目構造を有する有機無機複合ヒドロゲルの連続的な製造方法に関する。   The present invention relates to a continuous production method of an organic-inorganic composite hydrogel having a three-dimensional network structure formed from a polymer of (meth) acrylamide monomers and a water-swellable clay mineral.

アクリルアミド系ヒドロゲルやアクリル酸エステル系ヒドロゲルは優れた水膨潤性を示し、その特徴を生かして医療材料、吸排水材料、土壌改良材料などに有用な材料である。特に、優れた力学物性を示すナノコンポジット材料として、粘土鉱物が有機高分子中に均一に分散した有機無機複合ヒドロゲルが本発明の考案者らによって開示されている(例えば特許文献1、2)。この報告によれば、水媒体中に水膨潤性粘土鉱物を分散させ、その後、アクリルアミドやメタクリルアミドの誘導体のモノマーを添加して、重合開始剤及び触媒の存在下で該モノマーを重合させることにより、力学物性の良い有機無機複合ヒドロゲルを製造できることが記載されている。   Acrylamide-based hydrogels and acrylate-based hydrogels exhibit excellent water swellability, and are useful materials for medical materials, water-absorbing and drainage materials, soil improvement materials and the like by taking advantage of their characteristics. In particular, as nanocomposite materials exhibiting excellent mechanical properties, organic-inorganic composite hydrogels in which clay minerals are uniformly dispersed in organic polymers have been disclosed by the inventors of the present invention (for example, Patent Documents 1 and 2). According to this report, a water-swellable clay mineral is dispersed in an aqueous medium, and then a monomer of an acrylamide or methacrylamide derivative is added to polymerize the monomer in the presence of a polymerization initiator and a catalyst. It is described that an organic-inorganic composite hydrogel having good mechanical properties can be produced.

かかる有機無機複合ヒドロゲルの製造では、有機無機複合ヒドロゲルの力学物性、水膨潤性能、透明性を発揮させるために水膨潤性粘土鉱物のナノスケールでの均一分散、及び触媒と重合開始剤の均一混合処理が重要である。これまでの当該有機無機複合ヒドロゲルの製造法では、本水膨潤性粘土鉱物の均一分散処理、及び重合開始剤と触媒の添加・混合をバイアル容器あるいはタンク内での撹拌で行っている。タンク内撹拌による水膨潤性粘土鉱物の分散処理の場合、凝集しやすい水膨潤性粘土鉱物の分散を達成するために水膨潤性粘土鉱物を極めてゆっくりと添加する必要がある。このため、大量のスケールで分散を完了するまでに工程時間が多く必要、あるいは均一分散が達成されない場合があった。また、重合開始剤添加・混合の際には添加後数分でゲル化による急激な粘度上昇が生じるため、開始剤添加後の大量の反応調製液を移送することが困難であり、大型の成型物を得ることができなかった。   In the production of the organic-inorganic composite hydrogel, uniform dispersion of the water-swellable clay mineral at the nanoscale and uniform mixing of the catalyst and the polymerization initiator are performed in order to exhibit the mechanical properties, water-swelling performance, and transparency of the organic-inorganic composite hydrogel. Processing is important. In the conventional method for producing the organic-inorganic composite hydrogel, the water-swellable clay mineral is uniformly dispersed and the polymerization initiator and the catalyst are added and mixed by stirring in a vial container or tank. In the case of the dispersion treatment of the water-swellable clay mineral by stirring in the tank, it is necessary to add the water-swellable clay mineral very slowly in order to achieve the dispersion of the water-swellable clay mineral that tends to aggregate. For this reason, a large amount of process time is required to complete dispersion on a large scale, or uniform dispersion may not be achieved. In addition, when adding or mixing a polymerization initiator, a rapid increase in viscosity occurs due to gelation within a few minutes after the addition, making it difficult to transfer a large amount of the reaction preparation solution after addition of the initiator. I couldn't get anything.

特開2002−53762JP2002-53762 特開2004−143212JP-A-2004-143212

したがって、本発明の目的は、分散を完了するまでに工程時間が多く必要であり、ナノスケールでの水膨潤性粘土鉱物の均一分散が難しく、更に、重合開始剤の添加後数分でゲル化による急激な粘度上昇が生じるため、重合開始剤添加後は反応溶液の移送ができない、といった有機無機複合ヒドロゲルを量産する場合における課題を解決し、水膨潤性粘土鉱物の均一分散が可能であり、触媒と重合開始剤を添加し、混合した後であっても連続的に移送可能であり、大量スケールであっても安定した生産が可能である有機無機複合ヒドロゲルの連続製造方法を提供することである。   Therefore, the object of the present invention is that it takes a lot of process time to complete the dispersion, it is difficult to uniformly disperse the water-swellable clay mineral at the nanoscale, and further gelation occurs within a few minutes after the addition of the polymerization initiator. The problem of mass production of organic-inorganic composite hydrogels such that the reaction solution cannot be transferred after the addition of a polymerization initiator is possible due to the sudden increase in viscosity caused by the solution, and the water-swellable clay mineral can be uniformly dispersed. By providing a continuous production method of an organic-inorganic composite hydrogel that can be continuously transferred even after a catalyst and a polymerization initiator are added and mixed, and can be stably produced even on a large scale. is there.

本発明者は、当該有機無機複合ヒドロゲルの製造法における課題に鑑み、鋭意研究を進めた結果、振動式撹拌機を水膨潤性粘土鉱物の均一分散、及び触媒と重合開始剤の添加・混合の両工程に利用することによって、有機無機複合ヒドロゲルの連続的処理による大量製造ができることを見出した。   As a result of diligent research in view of the problems in the method for producing the organic-inorganic composite hydrogel, the inventor of the present invention dispersed a water-swelling clay mineral uniformly and added and mixed the catalyst and the polymerization initiator. It has been found that mass production by continuous treatment of an organic-inorganic composite hydrogel can be achieved by using both steps.

即ち、本発明は重合性ビニル基を有する水溶性有機モノマーと水膨潤性粘土鉱物とを振動式攪拌機(i)を用いて連続的に水中に分散させ、反応液を製造する工程、重合開始剤を振動式攪拌機(ii)により前記反応液中に連続的に分散させる工程、前記重合開始剤が分散した反応液中の前記水溶性有機モノマーを重合させる工程を順次行なう有機無機複合ヒドロゲルの製造方法であり、前記振動式攪拌機(i)及び振動式攪拌機(ii)が、上下端面が閉塞された筒状のケーシングと、該ケーシング内部に前記反応液が流通する流通路と、前記上下端面の一方に設けられた前記反応液の導入口と、他方の端面に設けられた流出口とを備え、更に、前記流通路に配設され、前記反応液の流通方向に往復運動可能であり、軸部と該軸部の周囲に取り付けられた攪拌羽根とからなる攪拌体を備えており、前記反応液の流通方向に往復運動する攪拌体により、前記反応液を攪拌する機構を有することを特徴とする有機無機複合ヒドロゲルの製造方法を提供するものである。   That is, the present invention is a process for producing a reaction liquid by continuously dispersing a water-soluble organic monomer having a polymerizable vinyl group and a water-swellable clay mineral in water using a vibration stirrer (i), a polymerization initiator, Of the organic-inorganic composite hydrogel in which the step of continuously dispersing the water-soluble organic monomer in the reaction liquid in which the polymerization initiator is dispersed is sequentially dispersed in the reaction liquid using a vibration stirrer (ii) And the vibration stirrer (i) and the vibration stirrer (ii) include a cylindrical casing with the upper and lower end surfaces closed, a flow passage through which the reaction liquid flows, and one of the upper and lower end surfaces. The reaction solution introduction port provided on the other end face, and an outlet provided on the other end face, and further disposed in the flow passage, and capable of reciprocating in the flow direction of the reaction solution, And agitation attached around the shaft Provided is a method for producing an organic-inorganic composite hydrogel comprising a stirrer composed of roots and having a mechanism for stirring the reaction liquid by a stirrer that reciprocates in the flow direction of the reaction liquid. It is.

振動式撹拌機を用いた連続処理によって、大量生産スケールにおける工程時間の短縮、自動化等が可能となり、生産性の向上を図ることができる。   Through continuous processing using a vibration stirrer, process time on a mass production scale can be shortened, automated, and the like, and productivity can be improved.

本発明は、
(1)重合性ビニル基を有する水溶性有機モノマーと水膨潤性粘土鉱物とを振動式攪拌機(i)を用いて連続的に水中に分散させ、反応液を製造する工程、
(2)重合開始剤及び触媒を振動式攪拌機(ii)により前記反応液中に連続的に分散させる工程、
(3)前記重合開始剤が分散した反応液中の前記水溶性有機モノマーを重合させる工程を順次行なう有機無機複合ヒドロゲルの製造方法である。
The present invention
(1) a step of producing a reaction solution by continuously dispersing a water-soluble organic monomer having a polymerizable vinyl group and a water-swellable clay mineral in water using a vibration stirrer (i),
(2) a step of continuously dispersing the polymerization initiator and the catalyst in the reaction solution with a vibration stirrer (ii),
(3) A method for producing an organic-inorganic composite hydrogel in which the steps of polymerizing the water-soluble organic monomer in the reaction liquid in which the polymerization initiator is dispersed are sequentially performed.

(有機無機複合ヒドロゲル)
本発明で製造する有機無機複合ヒドロゲルは、水溶性有機高分子と水に均一分散可能な水膨潤性粘土鉱物と水とを必須の構成成分とし、水溶性有機高分子と水膨潤性粘土鉱物が分子レベルで複合化された三次元網目の中に水を取り込んだヒドロゲルである。
(Organic inorganic composite hydrogel)
The organic-inorganic composite hydrogel produced by the present invention comprises a water-swellable organic polymer, a water-swellable clay mineral that can be uniformly dispersed in water, and water as essential constituents, and the water-soluble organic polymer and the water-swellable clay mineral comprise It is a hydrogel that incorporates water in a three-dimensional network complexed at the molecular level.

(重合性ビニル基を有する水溶性有機モノマー)
本発明で使用する重合性ビニル基を有する水溶性有機モノマーは、水に溶解する性質を有し、水に均一分散可能な水膨潤性粘土鉱物と相互作用を有し、非共有結合を形成できるものが好ましく、例えば、粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。これらの官能基を有する水溶性有機モノマーとしては、具体的には、アミド基、アミノ基、エステル基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する重合性不飽和基含有水溶性有機モノマーが挙げられ、なかでもアミド基やエステル基を有する重合性不飽和基含有水溶性有機モノマーが好ましい。特にアクリルアミド系モノマーが好ましい。なお、本発明で使用する水としては、水単独以外に、水と混和する有機溶媒との混合溶媒であり、水を主成分とするものが含まれる。
(Water-soluble organic monomer having a polymerizable vinyl group)
The water-soluble organic monomer having a polymerizable vinyl group used in the present invention has a property of dissolving in water, interacts with a water-swellable clay mineral that can be uniformly dispersed in water, and can form a non-covalent bond. Those having a functional group capable of forming a hydrogen bond, an ionic bond, a coordination bond, a covalent bond and the like with a clay mineral are preferable. Specific examples of water-soluble organic monomers having these functional groups include water-soluble polymerizable unsaturated groups having amide groups, amino groups, ester groups, hydroxyl groups, tetramethylammonium groups, silanol groups, epoxy groups, and the like. Examples thereof include organic monomers. Among them, a polymerizable unsaturated group-containing water-soluble organic monomer having an amide group or an ester group is preferable. Particularly preferred are acrylamide monomers. In addition, as water used by this invention, it is a mixed solvent with the organic solvent mixed with water other than water alone, and the thing which has water as a main component is contained.

アミド基を有する重合性ビニル基含有水溶性モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく選択される。またエステル基を有する重合性ビニル基含有水溶性有機モノマーの具体例としては、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどがあげられる。   Specific examples of the polymerizable vinyl group-containing water-soluble monomer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, and acrylamide, or N-alkylmethacrylamide, N, N-dialkylmethacrylate. And methacrylamides such as amide and methacrylamide. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably selected. Specific examples of the polymerizable vinyl group-containing water-soluble organic monomer having an ester group include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, and ethoxyethyl methacrylate.

またかかる水溶性有機モノマーの重合体としては、単一の(メタ)アクリルアミド系モノマーの重合体や(メタ)アクリル酸エステル系モノマーの重合体の他、これらから選ばれる複数の異なる水溶性有機モノマーを重合して得られる共重合体を用いることも有効である。また上記の水溶性有機モノマーとそれ以外の有機溶媒可溶性の重合性不飽和基含有有機モノマーとの共重合体も、得られた重合体が水溶性や親水性を示すものであれば使用することができる。   Examples of the polymer of the water-soluble organic monomer include a single (meth) acrylamide monomer polymer and a (meth) acrylate monomer polymer, and a plurality of different water-soluble organic monomers selected from these. It is also effective to use a copolymer obtained by polymerizing. Also, a copolymer of the above water-soluble organic monomer and other organic solvent-soluble polymerizable unsaturated group-containing organic monomer should be used as long as the obtained polymer exhibits water solubility or hydrophilicity. Can do.

水と混和する有機溶剤としては、メタノール、エタノール、プロパノール、グリセリン、ジグリセリン、ポリグリセリン、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド及びそれらの混合溶媒が挙げられる。   Organic solvents that are miscible with water include methanol, ethanol, propanol, glycerin, diglycerin, polyglycerin, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, acetone, methyl ethyl ketone, methyl isobutyl ketone, tetrahydrofuran, dimethylacetamide, dimethylformamide, Examples thereof include dimethyl sulfoxide and a mixed solvent thereof.

(水膨潤性粘土鉱物)
本発明で用いる水膨潤性粘土鉱物は、水に膨潤し、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。中でも水膨潤性ヘクトライトや水膨潤性サポナイトを用いると有機無機複合ヒドロゲルの透明性が優れ、好ましい。
(Water-swelling clay mineral)
As the water-swellable clay mineral used in the present invention, those having a property of swelling in water and preferably swelling between layers by water are used. More preferably, it is a layered clay mineral that can be at least partially exfoliated and dispersed in layers in water, and particularly preferably a lamellar clay mineral that can be exfoliated and dispersed uniformly in water with a thickness of 1 to 10 layers. For example, water swellable smectite or water swellable mica is used. More specifically, water swellable hectorite containing sodium as an interlayer ion, water swellable montmorillonite, water swellable saponite, water swellable synthetic mica, etc. Is mentioned. Among them, the use of water-swellable hectorite or water-swellable saponite is preferable because the transparency of the organic-inorganic composite hydrogel is excellent.

(重合開始剤および重合触媒)
本発明で使用される重合開始剤および触媒としては、慣用のラジカル重合開始剤および触媒のうちから適宜選択して用いることができる。好ましくは水に分散性を有し、系全体に均一に含まれるものが用いられる。特に好ましくは層状に剥離した粘土鉱物と強い相互作用を有するカチオン系ラジカル重合開始剤である。具体的には、重合開始剤として水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えば、和光純薬工業株式会社製のVA−044、V−50、V−501などが好ましく用いられる。その他、ポリエチレンオキシド鎖を有する水溶性のラジカル開始剤なども用いられる。
(Polymerization initiator and polymerization catalyst)
The polymerization initiator and catalyst used in the present invention can be appropriately selected from conventional radical polymerization initiators and catalysts. Preferably, those having dispersibility in water and uniformly contained in the entire system are used. Particularly preferred is a cationic radical polymerization initiator having a strong interaction with the clay mineral exfoliated in layers. Specifically, a water-soluble peroxide as a polymerization initiator, such as potassium peroxodisulfate or ammonium peroxodisulfate, a water-soluble azo compound, for example, VA-044, V-50 manufactured by Wako Pure Chemical Industries, Ltd. V-501 or the like is preferably used. In addition, a water-soluble radical initiator having a polyethylene oxide chain is also used.

また触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンやβ−ジメチルアミノプロピオニトリルなどが好ましく用いられる。重合温度は、用いる水溶性有機高分子、重合触媒および開始剤の種類などに合わせて0℃〜100℃の範囲に設定する。   As a catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine and β-dimethylaminopropionitrile are preferably used. The polymerization temperature is set in the range of 0 ° C. to 100 ° C. according to the type of water-soluble organic polymer, polymerization catalyst and initiator used.

(製造方法)
以下に、本発明の製造方法の好ましい実施形態について説明する。
本発明の有機無機複合ヒドロゲルの製造方法においては、水溶性有機モノマーは、活性アルミナカラムを用いて重合禁止剤を取り除いてから使用することが好ましく、重合開始剤は約2%、触媒は3.2%の濃度に純水で希釈し、水溶液にして使用することが好ましく、水は、イオン交換水を蒸留した純水を用い、高純度窒素を予めバブリングさせ、含有酸素を除去してから使用することが好ましい。
(Production method)
Below, preferable embodiment of the manufacturing method of this invention is described.
In the method for producing the organic-inorganic composite hydrogel of the present invention, the water-soluble organic monomer is preferably used after removing the polymerization inhibitor using an activated alumina column, the polymerization initiator is about 2%, and the catalyst is 3. It is preferable to dilute with pure water to a concentration of 2% and use it as an aqueous solution. Use pure water obtained by distilling ion-exchanged water, bubbling high-purity nitrogen in advance, and removing oxygen contained. It is preferable to do.

(工程1)
内部を窒素置換したタンクに純水と水溶性有機モノマーを加え、モノマー水溶液を調製する。次に、定量ポンプを用いて送られたモノマー水溶液に、粉体フィーダーを用いて水膨潤性粘土鉱物をポンプ上で連続添加し、この混合液を振動式撹拌機(i)に移送・分散することにより、水溶性有機モノマーと水膨潤性粘土鉱物とが水に均一分散した溶液を製造する。
水溶性有機モノマーの重合物と水膨潤性粘土鉱物の量比は、水または水と有機溶媒との混合液からなる溶媒の中で両者が三次元網目を形成する範囲が好ましく、水膨潤性粘土鉱物/水溶性有機モノマーの重合物の質量比として好ましくは0.01〜3、より好ましくは0.1〜3、特に好ましくは0.3〜2.5である。その質量比が0.01未満では、有効な三次元網目を形成することが困難となり、一方、3を越えると水均一な膨潤性粘土鉱物の層状剥離した分散が困難となる場合が多い。
(Process 1)
Pure water and a water-soluble organic monomer are added to a tank whose interior is purged with nitrogen to prepare an aqueous monomer solution. Next, a water-swellable clay mineral is continuously added on the pump using a powder feeder to the monomer aqueous solution sent using the metering pump, and this mixed solution is transferred and dispersed to the vibration stirrer (i). As a result, a solution in which the water-soluble organic monomer and the water-swellable clay mineral are uniformly dispersed in water is produced.
The amount ratio of the polymer of the water-soluble organic monomer and the water-swellable clay mineral is preferably within a range in which both form a three-dimensional network in a solvent composed of water or a mixture of water and an organic solvent. The mass ratio of the mineral / water-soluble organic monomer polymer is preferably 0.01 to 3, more preferably 0.1 to 3, and particularly preferably 0.3 to 2.5. When the mass ratio is less than 0.01, it is difficult to form an effective three-dimensional network, while when it exceeds 3, it is often difficult to disperse the water-like swellable clay mineral in a layered manner.

(工程2)
次に、工程1で調製した水溶性有機モノマーと水膨潤性粘土鉱物とが水に均一分散した溶液を振動式撹拌機(ii)に送液し、振動式撹拌機(ii)に設けられた2つの添加剤投入口から触媒溶液と重合開始剤溶液を添加・撹拌する。連続的に排出される反応溶液を窒素シールした重合容器に移し、20〜100℃で10〜30時間程度重合を行なう。
(Process 2)
Next, a solution in which the water-soluble organic monomer and the water-swellable clay mineral prepared in Step 1 were uniformly dispersed in water was fed to the vibration stirrer (ii) and provided in the vibration stirrer (ii). The catalyst solution and the polymerization initiator solution are added and stirred from the two additive inlets. The continuously discharged reaction solution is transferred to a nitrogen-sealed polymerization vessel, and polymerization is carried out at 20 to 100 ° C. for about 10 to 30 hours.

水溶性有機モノマーの重合物と重合開始剤の量比は、重合開始剤/水溶性有機モノマーの重合物の質量比として好ましくは0.001〜0.10、より好ましくは0.005〜0.01である。その質量比が0.001未満では、有効な三次元網目を形成することが困難となり、一方、0.10を越えるとモノマー/クレイ溶液中での重合開始剤の分散が困難となる場合が多い。   The amount ratio of the polymer of the water-soluble organic monomer and the polymerization initiator is preferably 0.001 to 0.10, more preferably 0.005 to 0.00 as the mass ratio of the polymerization initiator / polymer of the water-soluble organic monomer. 01. If the mass ratio is less than 0.001, it is difficult to form an effective three-dimensional network, while if it exceeds 0.10, it is often difficult to disperse the polymerization initiator in the monomer / clay solution. .

なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行うことが好ましい。重合開始から1〜30時間で反応容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な有機無機複合ヒドロゲルが生成する。
重合反応を行う場合、重合開始剤を添加した反応溶液を所望の形状の反応容器内に移して、フィルム状、平板状等、目的とする形状の有機無機複合ヒドロゲルとすることができる。
In addition, it is preferable to perform all these operations from preparation of a solution to superposition | polymerization in nitrogen atmosphere which interrupted | blocked oxygen. Within 1 to 30 hours from the start of polymerization, a colorless transparent and uniform organic-inorganic composite hydrogel having elasticity and toughness consisting of organic polymer and clay mineral is formed in the reaction vessel.
When performing a polymerization reaction, the reaction solution to which a polymerization initiator is added can be transferred into a reaction vessel having a desired shape to obtain an organic-inorganic composite hydrogel having a desired shape such as a film shape or a flat plate shape.

(振動式撹拌機)
本発明で使用する振動式撹拌機としては、本発明の効果を得られるものであれば公知の振動式攪拌機を用いることができる。中でも前記振動式攪拌機(i)及び振動式攪拌機(ii)が、上下端面が閉塞された筒状のケーシングと、該ケーシング内部に前記反応液が流通する流通路と、前記上下端面の一方に設けられた前記反応液の導入口と、他方の端面に設けられた流出口とを備え、更に、前記流通路に配設され、前記反応液の流通方向に往復運動可能であり、軸部と該軸部の周囲に取り付けられた攪拌羽根とからなる攪拌体を備えており、前記反応液の流通方向に往復運動する攪拌体により、前記反応液を攪拌する機構を有する装置であることが好ましい。
(Vibrating stirrer)
As the vibration stirrer used in the present invention, a known vibration stirrer can be used as long as the effects of the present invention can be obtained. Among them, the vibration stirrer (i) and the vibration stirrer (ii) are provided in one of the cylindrical casing with the upper and lower end surfaces closed, the flow passage through which the reaction liquid flows, and the upper and lower end surfaces. The reaction liquid inlet and the outlet provided on the other end face, and further disposed in the flow path, reciprocating in the flow direction of the reaction liquid, It is preferable that the apparatus includes a stirring body including a stirring blade attached around the shaft portion, and has a mechanism for stirring the reaction liquid by a stirring body that reciprocates in the flow direction of the reaction liquid.

上記の好ましい振動式攪拌機の例を図1により詳細に説明する。図1の振動式攪拌機は、内部に反応液が流通する流通路が設けられた筒状のケーシング1と、前記ケーシング1内に配置され、振動源(図示せず)に接続された軸部3と該軸部3の周囲に取り付けられた撹拌羽根4とからなる撹拌体2と、前記ケーシング1の内部に原料を導入する原料導入口6と、流出口7を有する撹拌混合装置である。   An example of the preferred vibratory stirrer will be described in more detail with reference to FIG. 1 includes a cylindrical casing 1 provided with a flow passage through which a reaction liquid flows, and a shaft portion 3 disposed in the casing 1 and connected to a vibration source (not shown). And an agitating and mixing apparatus having an agitating body 2 comprising a stirring blade 4 attached to the periphery of the shaft portion 3, a raw material inlet 6 for introducing the raw material into the casing 1, and an outlet 7.

撹拌体2を振動撹拌(振動方向8)させることによって、均一撹拌を行いながら、撹拌された物を後方に送り出すことができる。これにより、二次凝集を発生させることなく、また撹拌された物が高粘度になったとしても、ケーシング内に撹拌された物が滞留することがなく、円滑に撹拌混合操作を行うことができる。前記ケーシング1内部には、前記流通路を仕切り板5によって仕切った1つ以上の撹拌室が設けられている。仕切り板5を設けることによって、ケーシング1内の流通路に乱流が生じ、より撹拌効率が向上する。
上記のような振動攪拌装置としては、バイブロミキサー(冷化工業社製)がある。
By stirring the stirring body 2 with vibration (vibration direction 8), it is possible to feed the stirred object backward while performing uniform stirring. Thereby, even if the agitated material becomes highly viscous without causing secondary aggregation, the agitated material does not stay in the casing, and the agitation and mixing operation can be performed smoothly. . In the casing 1, one or more stirring chambers in which the flow path is partitioned by a partition plate 5 are provided. By providing the partition plate 5, a turbulent flow is generated in the flow passage in the casing 1, and the stirring efficiency is further improved.
As such a vibration agitating apparatus, there is a Vibro mixer (manufactured by Chilling Industries Co., Ltd.).

次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示
す実施例にのみ限定されるものではない。
EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not limited only to the Example shown below from the first.

(原料の精製方法)
粘土鉱物には、[Mg 5.34 Li0.66 Si20 (OH) ]Na0.66 の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG、ロックウッドアディティブ社製)を用いた。水溶性有機モノマーとしてはN,N−ジメチルアクリルアミド(DMAA:株式会社興人社製)を用い、DMAA1Lに対して活性アルミナカラム(和光純薬株式会社製)50gの容積で重合禁止剤を取り除いてから使用した。重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)を2%の濃度に純水で希釈し、水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TEMED:関東化学株式会社製)を3.2%の濃度に純水で希釈し、水溶液にして使用した。水は、イオン交換水を蒸留した純水を用い、高純度窒素を予めバブリングさせ含有酸素を除去してから使用した。
(Raw material purification method)
As the clay mineral, a water-swellable synthetic hectorite (trademark Laponite XLG, manufactured by Rockwood Additive Co., Ltd.) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na 0.66 + is used. Using. As the water-soluble organic monomer, N, N-dimethylacrylamide (DMAA: manufactured by Kojin Co., Ltd.) was used, and the polymerization inhibitor was removed in a volume of 50 g of activated alumina column (manufactured by Wako Pure Chemical Industries, Ltd.) with respect to DMAA1L. Used from. As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Inc.) was diluted with pure water to a concentration of 2% and used as an aqueous solution. As the catalyst, N, N, N ′, N′-tetramethylethylenediamine (TEMED: manufactured by Kanto Chemical Co., Inc.) was diluted with pure water to a concentration of 3.2% and used as an aqueous solution. Pure water obtained by distilling ion-exchanged water was used as water, and high purity nitrogen was bubbled in advance to remove oxygen contained.

(実施例1)
内部を窒素置換した溶液タンクに、純水:DMAA9.3:1の割合でモノマー水溶液を調製した。このモノマー水溶液を定量ポンプを用いて1.5L/分で、ラポナイトXLGを粉体フィーダーを用いて46g/分で、撹拌しながらそれぞれ連続供給し、ポンプ(兵神装備社製;モーノポンプ)で振動式撹拌機(バイブロミキサー M35−V1.5;冷化工業社製)へ連続移送した。振動式撹拌機内で強撹拌(25振動/秒;撹拌時間5秒)してラポナイトXLGを均一分散し、無色透明の溶液を連続的に調製した。
Example 1
A monomer aqueous solution was prepared in a pure water: DMAA 9.3: 1 ratio in a solution tank purged with nitrogen. This monomer aqueous solution was continuously supplied with stirring at 1.5 L / min using a metering pump and Laponite XLG at 46 g / min using a powder feeder while stirring and vibrated with a pump (manufactured by Hyojin Equipment Co., Ltd .; MONO pump). The mixture was continuously transferred to a mechanical stirrer (Vibro mixer M35-V1.5; manufactured by Chilling Industries Co., Ltd.). By vigorously stirring in a vibration stirrer (25 vibrations / second; stirring time 5 seconds), Laponite XLG was uniformly dispersed, and a colorless and transparent solution was continuously prepared.

上記の無色透明の均一分散液を、連続的にもう一台の振動式撹拌機(バイブロミキサー M35−V1.5;冷化工業社製)へ1.5L/分で移送し、70mL/分で供給されるKPS水溶液と、35mL/分で供給されるTEMED水溶液とを振動式撹拌機に設置された2つの添加剤投入口から別々に添加し、混合を行った。振動式撹拌機から連続的に排出された反応溶液を、内部を窒素置換した重合容器に充填し、20℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、密閉容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。   The above colorless and transparent uniform dispersion was continuously transferred to another vibratory stirrer (Vibro mixer M35-V1.5; manufactured by Kyoku Kogyo Co., Ltd.) at 1.5 L / min, and at 70 mL / min. The supplied KPS aqueous solution and the TEMED aqueous solution supplied at 35 mL / min were separately added from the two additive inlets installed in the vibration type stirrer and mixed. The reaction solution continuously discharged from the vibration type stirrer was filled in a polymerization vessel purged with nitrogen, and allowed to stand in a constant temperature water bath at 20 ° C. for 18 hours for polymerization. The operations from the preparation of the solution to the polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. 18 hours after the start of the polymerization, an elastic and tough, colorless, transparent, and uniform cylindrical polymer gel composed of organic polymer and clay mineral was formed in a sealed container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(実施例2)
内部を窒素置換した溶液タンクに、純水:DMAA26.7:1の割合でモノマー水溶液を調製した。このモノマー水溶液を定量ポンプを用いて1.5L/分で、ラポナイトXLGを粉体フィーダーを用いて114g/分で、撹拌しながらそれぞれ連続供給し、ポンプ(兵神装備社製;モーノポンプ)で振動式撹拌機(バイブロミキサー M35−V1.5;冷化工業社製)へ連続移送した。振動式撹拌機内で強撹拌(25振動/秒;撹拌時間5秒)してラポナイトXLGを均一分散し、無色透明の溶液を連続的に調製した。
(Example 2)
A monomer aqueous solution was prepared in a pure water: DMAA 26.7: 1 ratio in a solution tank purged with nitrogen. This monomer aqueous solution was continuously supplied with stirring at 1.5 L / min using a metering pump and Laponite XLG at 114 g / min using a powder feeder while being stirred, and vibrated with a pump (manufactured by Hyojin Equipment Co., Ltd .; MONO pump). The mixture was continuously transferred to a mechanical stirrer (Vibro mixer M35-V1.5; manufactured by Chilling Industries Co., Ltd.). By vigorously stirring in a vibration stirrer (25 vibrations / second; stirring time 5 seconds), Laponite XLG was uniformly dispersed, and a colorless and transparent solution was continuously prepared.

上記の無色透明の均一分散液を、連続的にもう一台の振動式撹拌機(バイブロミキサー M35−V1.5;冷化工業社製)へ1.5L/分で移送し、70mL/分で供給されるKPS水溶液と、35mL/分で供給されるTEMED水溶液とを振動式撹拌機に設置された2つの添加剤投入口から別々に添加し、混合を行った。振動式撹拌機から連続的に排出された反応溶液を、内部を窒素置換した重合容器に充填し、20℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、密閉容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が855質量%のヒドロゲルであった。   The above colorless and transparent uniform dispersion was continuously transferred to another vibratory stirrer (Vibro mixer M35-V1.5; manufactured by Kyoku Kogyo Co., Ltd.) at 1.5 L / min, and at 70 mL / min. The supplied KPS aqueous solution and the TEMED aqueous solution supplied at 35 mL / min were separately added from the two additive inlets installed in the vibration type stirrer and mixed. The reaction solution continuously discharged from the vibration type stirrer was filled in a polymerization vessel purged with nitrogen, and allowed to stand in a constant temperature water bath at 20 ° C. for 18 hours for polymerization. The operations from the preparation of the solution to the polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. 18 hours after the start of the polymerization, an elastic and tough, colorless, transparent, and uniform cylindrical polymer gel composed of organic polymer and clay mineral was formed in a sealed container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 855 mass%.

(比較例1)
内部を窒素置換したステンレス容器(底部が曲面状、内径30cm、高さ40cm)に、純水18.5kgとDMAA1.98kgを加え、これにラポナイトXLG0.64kgをアンカー翼(翼径:20cm、高さ5cm×2段)で強撹拌(200回転/分)しながら1分間かけて添加した。無色透明の溶液が得られるまでに15分を要した。その後、TEMED溶液0.5kgを加えてラポナイトXLGの分散液(調整用液)を調製した。上記の調製溶液に、KPS水溶液1kgを加え、20℃の恒温水槽中で静置した。KPS添加後から重合が開始し粘度が上昇するまでに2分を要した。
(Comparative Example 1)
18.5 kg of pure water and 1.98 kg of DMAA are added to a stainless steel container (the bottom is curved, the inner diameter is 30 cm, the height is 40 cm), and Laponite XLG 0.64 kg is added to the anchor blade (blade diameter: 20 cm, high height). (5 cm × 2 stages) with vigorous stirring (200 rpm) for 1 minute. It took 15 minutes to obtain a clear and colorless solution. Thereafter, 0.5 kg of the TEMED solution was added to prepare a dispersion of Laponite XLG (adjustment liquid). 1 kg of an aqueous KPS solution was added to the above prepared solution, and left standing in a constant temperature water bath at 20 ° C. It took 2 minutes from the addition of KPS until the polymerization started and the viscosity increased.

(比較例2)
内部を窒素置換したステンレス容器(底部が曲面状、内径30cm、高さ40cm)に、純水18.5kgとDMAA0.69kgを加え、これにラポナイトXLG1.60kgをアンカー翼(翼径:20cm、高さ5cm×2段)で強撹拌(200回転/分)しながら1分間かけて添加した。30分間撹拌を続けたが、水膨潤したラポナイトXLGが固まり、無色透明の溶液は得られなかった。
(Comparative Example 2)
Pure water 18.5 kg and DMAA 0.69 kg are added to a stainless steel container (bottom surface is curved, inner diameter 30 cm, height 40 cm) with nitrogen inside, and Laponite XLG 1.60 kg is added to the anchor blade (blade diameter: 20 cm, high (5 cm × 2 stages) with vigorous stirring (200 rpm) for 1 minute. Stirring was continued for 30 minutes, but the water-swollen laponite XLG hardened and a colorless and transparent solution could not be obtained.

(比較例3)
比較例1で調製したステンレス容器内の調製溶液を1.5L/分でスタティックミキサー(ノリタケ・カンパニー社製、N40;内径11mm、長さ200mm)へ移送し、70mL/分で供給されるKPS水溶液と混合を行った。スタティックミキサーから連続的に排出された反応溶液を、内部を窒素置換した密閉タンクに充填し、50℃の恒温水槽中で18時間静置して重合を行った。なお、これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から18時間後に、密閉容器内に有機高分子と粘土鉱物からなる弾力性、強靭性のある無色透明で均一な円柱状の高分子ゲルが生成した。合成された高分子ゲルは水含有率([水/ゲル乾燥物]×100=)が760質量%のヒドロゲルであった。
(Comparative Example 3)
The prepared solution in the stainless steel container prepared in Comparative Example 1 was transferred to a static mixer (N40, manufactured by Noritake Co., Ltd., N40; inner diameter 11 mm, length 200 mm) at 1.5 L / min, and supplied at 70 mL / min. And mixing. The reaction solution continuously discharged from the static mixer was filled in a sealed tank whose interior was purged with nitrogen, and allowed to stand in a constant temperature water bath at 50 ° C. for 18 hours for polymerization. The operations from the preparation of the solution to the polymerization were all performed in a nitrogen atmosphere in which oxygen was blocked. 18 hours after the start of the polymerization, an elastic and tough, colorless, transparent, and uniform cylindrical polymer gel composed of organic polymer and clay mineral was formed in a sealed container. The synthesized polymer gel was a hydrogel having a water content ([water / gel dried product] × 100 =) of 760% by mass.

(残留モノマー量の評価方法)
各実施例、比較例で製造した有機無機複合体ヒドロゲルの残留モノマーの量は、以下の方法にて測定した。測定値を表1にまとめた。合成したヒドロゲル2.0gと純水100gをミキサー(オスターブレンダー;大阪ケミカル株式会社製)に入れ、15700回転で5分間処理し、ゲルスラリー液を得た。このスラリー液を80℃で1時間加熱撹拌し、抽出液を調整した。抽出液を冷却後、メンブランフィルター(細孔径:0.45μm)でゲル成分を除去し、HPLC(日本ウォータース社製; Separation Module 2695、UV Detector 2487; カラム:ジーエルサイエンス株式会社製Inertsil ODS−3 4.6mmID×250mm; 溶離溶媒組成:アセトニトリル/水=20/80; 検出波長:230nm)を用いて残留DMAAモノマーを一点検量線法により定量した。
(Evaluation method of residual monomer amount)
The amount of residual monomer of the organic-inorganic composite hydrogel produced in each example and comparative example was measured by the following method. The measured values are summarized in Table 1. The synthesized hydrogel (2.0 g) and pure water (100 g) were placed in a mixer (Oster Blender; manufactured by Osaka Chemical Co., Ltd.) and treated at 15700 rpm for 5 minutes to obtain a gel slurry. This slurry was heated and stirred at 80 ° C. for 1 hour to prepare an extract. After cooling the extract, the gel component was removed with a membrane filter (pore size: 0.45 μm), and HPLC (Nippon Waters, Separation Module 2695, UV Detector 2487; Column: Inertsil ODS-3, GL Sciences Inc. 4.6 mm ID × 250 mm; elution solvent composition: acetonitrile / water = 20/80; detection wavelength: 230 nm), and the residual DMAA monomer was quantified by a one-check calibration method.

Figure 2009062478
Figure 2009062478

Figure 2009062478
Figure 2009062478

(本発明で製造する有機無機複合ヒドロゲルの用途)
得られた有機無機複合ヒドロゲルは、優れた透明性、力学物性などを併せ持ち、その特徴を生かして、生活用品、医薬・医療、農業、土木、工業分野等の広い範囲で、特に振動吸収材料、延伸装置部品材料、人工臓器用材料、治療用材料、光学材料などに有用な材料である。
(Use of organic-inorganic composite hydrogel produced in the present invention)
The obtained organic-inorganic composite hydrogel has excellent transparency, mechanical properties, etc., taking advantage of its characteristics, in a wide range of daily necessities, medicine / medical, agriculture, civil engineering, industrial fields, etc., especially vibration absorbing materials, It is a material useful for stretching device component materials, artificial organ materials, therapeutic materials, optical materials, and the like.

本発明で用いる振動式撹拌機の一例を示す断面図である。It is sectional drawing which shows an example of the vibration type stirrer used by this invention. 本発明の連続製造工程の全体を示す概略図である。It is the schematic which shows the whole continuous manufacturing process of this invention.

符号の説明Explanation of symbols

1:ケーシング
2:撹拌体
3:軸
4:攪拌羽根
5:仕切板
6:導入口
7:流出口
8;振動方向
1: Casing 2: Stirring body 3: Shaft 4: Stirring blade 5: Partition plate 6: Inlet 7: Outlet 8; Direction of vibration

Claims (1)

重合性ビニル基を有する水溶性有機モノマーと水膨潤性粘土鉱物とを振動式攪拌機(i)を用いて連続的に水中に分散させ、反応液を製造する工程、
重合開始剤を振動式攪拌機(ii)により前記反応液中に連続的に分散させる工程、
前記重合開始剤が分散した反応液中の前記水溶性有機モノマーを重合させる工程を順次行なう有機無機複合ヒドロゲルの製造方法であり、
前記振動式攪拌機(i)及び振動式攪拌機(ii)が、
上下端面が閉塞された筒状のケーシングと、該ケーシング内部に前記反応液が流通する流通路と、前記上下端面の一方に設けられた前記反応液の導入口と、他方の端面に設けられた流出口とを備え、
更に、前記流通路に配設され、前記反応液の流通方向に往復運動可能であり、軸部と該軸部の周囲に取り付けられた攪拌羽根とからなる攪拌体を備えており、
前記反応液の流通方向に往復運動する攪拌体により、前記反応液を攪拌する機構を有することを特徴とする有機無機複合ヒドロゲルの製造方法。
A step of continuously dispersing a water-soluble organic monomer having a polymerizable vinyl group and a water-swellable clay mineral in water using a vibration stirrer (i) to produce a reaction solution,
A step of continuously dispersing a polymerization initiator in the reaction solution by a vibration stirrer (ii),
A method for producing an organic-inorganic composite hydrogel that sequentially performs a step of polymerizing the water-soluble organic monomer in a reaction solution in which the polymerization initiator is dispersed,
The vibration stirrer (i) and the vibration stirrer (ii) are
A cylindrical casing with the upper and lower end surfaces closed, a flow passage through which the reaction solution flows, an inlet for the reaction solution provided on one of the upper and lower end surfaces, and an end surface provided on the other end surface An outlet and
Furthermore, it is disposed in the flow passage and is capable of reciprocating in the flow direction of the reaction solution, and includes a stirring body including a shaft portion and a stirring blade attached around the shaft portion,
A method for producing an organic-inorganic composite hydrogel, comprising a mechanism for stirring the reaction liquid by a stirring body that reciprocates in the flow direction of the reaction liquid.
JP2007232617A 2007-09-07 2007-09-07 Continuous production method of organic-inorganic composite hydrogel Pending JP2009062478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232617A JP2009062478A (en) 2007-09-07 2007-09-07 Continuous production method of organic-inorganic composite hydrogel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232617A JP2009062478A (en) 2007-09-07 2007-09-07 Continuous production method of organic-inorganic composite hydrogel

Publications (1)

Publication Number Publication Date
JP2009062478A true JP2009062478A (en) 2009-03-26

Family

ID=40557357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232617A Pending JP2009062478A (en) 2007-09-07 2007-09-07 Continuous production method of organic-inorganic composite hydrogel

Country Status (1)

Country Link
JP (1) JP2009062478A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013223A1 (en) 2009-07-29 2011-02-03 パイオニア株式会社 Speaker device
WO2011077560A1 (en) 2009-12-25 2011-06-30 パイオニア株式会社 Speaker vibrator and speaker device
JP2013522448A (en) * 2010-03-20 2013-06-13 レリプサ, インコーポレイテッド Continuous process for preparing polyfluoroacrylate particles
JP2015199810A (en) * 2014-04-07 2015-11-12 日産化学工業株式会社 Method for producing hydrogel
JP2021169616A (en) * 2016-03-24 2021-10-28 シーカ テクノロジー アクチェンゲゼルシャフト Single component or multicomponent composition for producing hydrogel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013223A1 (en) 2009-07-29 2011-02-03 パイオニア株式会社 Speaker device
WO2011077560A1 (en) 2009-12-25 2011-06-30 パイオニア株式会社 Speaker vibrator and speaker device
JP2013522448A (en) * 2010-03-20 2013-06-13 レリプサ, インコーポレイテッド Continuous process for preparing polyfluoroacrylate particles
US9228028B2 (en) 2010-03-20 2016-01-05 Relypsa, Inc. Continuous process for preparing polyfluoroacrylate particles
JP2015199810A (en) * 2014-04-07 2015-11-12 日産化学工業株式会社 Method for producing hydrogel
JP2021169616A (en) * 2016-03-24 2021-10-28 シーカ テクノロジー アクチェンゲゼルシャフト Single component or multicomponent composition for producing hydrogel

Similar Documents

Publication Publication Date Title
d'Agosto et al. RAFT‐mediated polymerization‐induced self‐assembly
Capek On inverse miniemulsion polymerization of conventional water-soluble monomers
Lotierzo et al. Synthesis of Janus and patchy particles using nanogels as stabilizers in emulsion polymerization
US8921444B2 (en) Process for the modification of polymers, in particular polymer nanoparticles
JP2017524797A (en) Synthesis of acrylic polymers in a flow reactor.
JP2009062478A (en) Continuous production method of organic-inorganic composite hydrogel
EP2630163B1 (en) Ultra fast process for the preparation of polymer nanoparticles
US20200325384A1 (en) Re-assembling polymer particle package for conformance control and fluid loss control
JP4368892B2 (en) Method for producing water-soluble porous polymer and water-soluble porous polymer
CN1646570A (en) Nanoscale polymerized hydrocarbon particles and methods of making and using such particles
US20230183174A1 (en) Novel sulfobetaine monomers, process for preparing same, and uses thereof
Dao et al. Synthesis of UHMW star-shaped AB block copolymers and their flocculation efficiency in high-ionic-strength environments
Dispenza et al. Radiation processing of polymers in aqueous media
Lu et al. Tailoring pH-responsive acrylic acid microgels with hydrophobic crosslinks for drug release
WO2017164003A1 (en) Method for producing organic-inorganic composite hydrogel
Patil et al. CdS quantum dots doped tuning of deswelling kinetics of thermoresponsive hydrogels based on poly (2-(2-methoxyethoxy) ethyl methacrylate)
JP5371216B2 (en) Method for producing organic-inorganic composite hydrogel
JP4474974B2 (en) Method for producing polymer hydrogel
Sun et al. Formation of n-Hexane-in-DMF Nonaqueous Pickering Emulsions: ABC Triblock Worms versus AB Diblock Worms
Wang et al. Preparation of shell cross-linked nanoparticles via miniemulsion RAFT polymerization
JP2005290072A (en) Method for producing hydrogel containing clay mineral
KR20030031090A (en) Synthesis of Unsaturated Polyester Nanocomposites Containing Silver Nanoparticles
WO1990004610A1 (en) Process for producing particulate polymer
JP2005247963A (en) Method for producing polymer hydrogel
JP2922936B2 (en) Method for producing particulate polymer