JP5331971B2 - Polymer gel bonding method - Google Patents

Polymer gel bonding method Download PDF

Info

Publication number
JP5331971B2
JP5331971B2 JP2009146330A JP2009146330A JP5331971B2 JP 5331971 B2 JP5331971 B2 JP 5331971B2 JP 2009146330 A JP2009146330 A JP 2009146330A JP 2009146330 A JP2009146330 A JP 2009146330A JP 5331971 B2 JP5331971 B2 JP 5331971B2
Authority
JP
Japan
Prior art keywords
polymer
water
poly
polymer gel
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009146330A
Other languages
Japanese (ja)
Other versions
JP2011001481A (en
Inventor
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, DIC Corp filed Critical Kawamura Institute of Chemical Research
Priority to JP2009146330A priority Critical patent/JP5331971B2/en
Publication of JP2011001481A publication Critical patent/JP2011001481A/en
Application granted granted Critical
Publication of JP5331971B2 publication Critical patent/JP5331971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高分子ゲルの接合方法に関するものである。   The present invention relates to a polymer gel joining method.

高分子ゲルは有機高分子の三次元架橋物が水または有機溶媒を含んで膨潤したものであり、膨潤性やゴム状弾性を有するソフトマテリアルとして、医療・医薬、食品、土木、バイオエンジニアリング、スポーツ関連などの分野で広く用いられている(例えば、非特許文献1参照)。   Polymer gel is a three-dimensional cross-linked organic polymer that contains water or an organic solvent and swells. As a soft material with swelling and rubbery elasticity, it can be used for medical / medicine, food, civil engineering, bioengineering, sports. Widely used in related fields (for example, see Non-Patent Document 1).

かかる高分子ゲル材料を実際に使用するにあたっては、他の金属材料や有機ポリマー材料と同じように、目的に応じて複雑な形状に加工することが必要であり、そのため、高分子ゲル同士を接合できることが強く望まれていた。多くの金属材料や一部の有機ポリマー材料(例:ポリ塩化ビニル)において有効に用いられている接合方法として溶接技術があり、同様な方法により、高分子ゲルを加工することが出来れば極めて有効な成形加工ができると推定された。しかし、これまで高分子ゲルを接合する方法は知られていなかった。   When actually using such a polymer gel material, it is necessary to process it into a complicated shape according to the purpose, as with other metal materials and organic polymer materials. It was strongly desired to be able to do it. Welding technology is an effective joining method used in many metal materials and some organic polymer materials (eg, polyvinyl chloride), and it is extremely effective if polymer gels can be processed by the same method. It was estimated that it was possible to perform proper molding. However, a method for joining polymer gels has not been known so far.

また、水溶性有機モノマーの重合体と層状に剥離した水膨潤性粘土鉱物が分子レベルで複合化し、三次元網目を形成している有機ポリマーと水膨潤性粘土鉱物の複合高分子ゲルが知られている(特許文献1)。しかし、特許文献1は高分子ゲルを接合する方法に関しては開示していない。   In addition, a polymer polymer of water-swellable clay mineral and organic polymer that forms a three-dimensional network by combining water-soluble organic monomer polymer and water-swellable clay mineral peeled in layers is known. (Patent Document 1). However, Patent Document 1 does not disclose a method for joining polymer gels.

特開2002−53629号公報JP 2002-53629 A

「ゲルハンドブック」p226〜727、長田義仁、梶原莞爾編:エヌ・ティー・エヌ株式会社、1997年"Gel Handbook" p226-727, Yoshihito Nagata, Satoshi Sugawara: NTN Corporation, 1997

本発明が解決しようとする課題は、簡便にして効果的な高分子ゲルの接合方法を提供することである。   The problem to be solved by the present invention is to provide a simple and effective method for joining polymer gels.

本発明者らは、上記課題を解決すべく鋭意研究に取り組んだ結果、水溶性有機モノマーから得られる重合体と水膨潤性粘土鉱物とからなる三次元網目を有する高分子ゲルを用いること、且つ、その切断した面を用いることにより、高分子ゲルの接合が効果的に行えることを見いだし、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors use a polymer gel having a three-dimensional network composed of a polymer obtained from a water-soluble organic monomer and a water-swellable clay mineral, and The inventors have found that by using the cut surface, the polymer gel can be effectively bonded, and the present invention has been completed.

すなわち、本発明は、水溶性のラジカル重合性有機モノマーの重合体(A)と水膨潤性粘土鉱物(B)により形成された三次元網目構造を有する高分子ゲルの接合方法であって、接合しようとする高分子ゲルの双方の面、又はどちらか一方の面に切断面を形成し、該切断面同士又は該切断面と非切断面とを貼り合わせることにより高分子ゲルを接合することを特徴とする高分子ゲルの接合方法を提供するものである。   That is, the present invention is a method for joining a polymer gel having a three-dimensional network structure formed of a polymer (A) of a water-soluble radically polymerizable organic monomer and a water-swellable clay mineral (B). Forming a cut surface on both surfaces of one or both surfaces of the polymer gel to be bonded, and bonding the polymer gel by bonding the cut surfaces or the cut surface and the non-cut surface together A feature of the present invention is to provide a polymer gel bonding method.

本発明における高分子ゲルの接合方法を用いると、高分子ゲルを加工して任意の形状に成形することができ、高価な金型を作成して使用することなく、複雑な形状で且つ力学物性、膨潤性、機能性に優れた高分子ゲルが容易に調製できる。かかる高分子ゲルは、各種用途へ適用でき、特に医療材料、医療器具材料、再生医療材料、健康保持・スポーツ用具材料、美容材料、分析器具材料、工業材料、農業用材料、建築土木用材料などに有用である。   By using the polymer gel bonding method of the present invention, the polymer gel can be processed into a desired shape, and can be formed into a complex shape without using an expensive metal mold. In addition, a polymer gel excellent in swelling property and functionality can be easily prepared. Such polymer gel can be applied to various uses, in particular, medical materials, medical instrument materials, regenerative medical materials, health maintenance / sports equipment materials, beauty materials, analytical instrument materials, industrial materials, agricultural materials, architectural civil engineering materials, etc. Useful for.

本明細書では、上記の水溶性のラジカル重合性有機モノマーの重合体(A)を以下、水溶性有機モノマー重合体(A)と記載し、水溶性有機モノマー重合体(A)と水膨潤性粘土鉱物(B)とからなる三次元網目を有する高分子ゲルを有機ポリマー/クレイ複合高分子ゲルと記載する。   In this specification, the polymer (A) of the above water-soluble radical polymerizable organic monomer is hereinafter referred to as a water-soluble organic monomer polymer (A), and the water-soluble organic monomer polymer (A) and water swellability are described below. A polymer gel having a three-dimensional network composed of clay mineral (B) is referred to as an organic polymer / clay composite polymer gel.

本発明における高分子ゲルの接合方法は、水溶性有機モノマー重合体(A)と水膨潤性粘土鉱物(B)とからなる三次元網目を有する有機ポリマー/クレイ複合高分子ゲルを用い、その切断面を用いて高分子ゲルを接合することを基本とする。   The polymer gel bonding method in the present invention uses an organic polymer / clay composite polymer gel having a three-dimensional network composed of a water-soluble organic monomer polymer (A) and a water-swellable clay mineral (B), and the cutting thereof. It is based on joining polymer gels using surfaces.

本発明において用いる有機ポリマー/クレイ複合高分子ゲルは、特許文献1に記載の方法で得られるものと同等のものである。具体的には、水溶性有機モノマー重合体と層状に剥離した水膨潤性粘土鉱物が分子レベルで複合化し、三次元網目を形成しているものである。但し、水溶性有機ポリマー重合体と水膨潤性粘土鉱物との結合は、主に水素結合、イオン結合、配位結合のいずれかによるものである必要がある。ごく少量の共有結合を含むものは用いることが可能であるが、共有結合の導入量が増すと比較例において示すように急激に高分子ゲルの接合は行えなくなる。   The organic polymer / clay composite polymer gel used in the present invention is equivalent to that obtained by the method described in Patent Document 1. More specifically, a water-swellable organic monomer polymer and a water-swellable clay mineral separated in a layer form are combined at a molecular level to form a three-dimensional network. However, the bond between the water-soluble organic polymer polymer and the water-swellable clay mineral needs to be mainly due to any one of hydrogen bond, ionic bond, and coordination bond. Those containing a very small amount of covalent bond can be used, but as the amount of covalent bond introduced increases, the polymer gel cannot be joined rapidly as shown in the comparative example.

本発明における水溶性有機モノマーとしては、水に溶解する性質を有し、水に均一分散可能な水膨潤性粘土鉱物と相互作用を有するものが好ましく、例えば、粘土鉱物と水素結合、イオン結合、配位結合、共有結合等を形成できる官能基を有するものが好ましい。これらの官能基を有する水溶性有機モノマーとしては、具体的には、アミド基、アミノ基、エステル基、水酸基、テトラメチルアンモニウム基、シラノール基、エポキシ基などを有する重合性不飽和基含有水溶性有機モノマーが挙げられ、なかでもアミド基やエステル基を有する重合性不飽和基含有水溶性有機モノマーが好ましい。なお、本発明で言う水には、水単独以外に、水と混和する有機溶媒をとの混合溶媒で水を主成分とするものが含まれる。   As the water-soluble organic monomer in the present invention, those having a property of being dissolved in water and having an interaction with a water-swellable clay mineral that can be uniformly dispersed in water are preferable, for example, clay mineral and hydrogen bond, ionic bond, Those having a functional group capable of forming a coordination bond, a covalent bond and the like are preferable. Specific examples of water-soluble organic monomers having these functional groups include water-soluble polymerizable unsaturated groups having amide groups, amino groups, ester groups, hydroxyl groups, tetramethylammonium groups, silanol groups, epoxy groups, and the like. Examples thereof include organic monomers. Among them, a polymerizable unsaturated group-containing water-soluble organic monomer having an amide group or an ester group is preferable. The water referred to in the present invention includes a mixture of water and an organic solvent miscible with water in addition to water alone.

アミド基を有する重合性不飽和基含有水溶性有機モノマーの具体例としては、N−アルキルアクリルアミド、N,N−ジアルキルアクリルアミド、アクリルアミド等のアクリルアミド類、または、N−アルキルメタクリルアミド、N,N−ジアルキルメタクリルアミド、メタクリルアミド等のメタクリルアミド類が挙げられる。ここでアルキル基としては炭素数が1〜4のものが特に好ましく選択される。またエステル基を有する重合性不飽和基含有水溶性有機モノマーの具体例としては、メトキシエチルアクリレート、エトキシエチルアクリレート、メトキシエチルメタクリレート、エトキシエチルメタクリレートなどがあげられる。   Specific examples of the polymerizable unsaturated group-containing water-soluble organic monomer having an amide group include acrylamides such as N-alkylacrylamide, N, N-dialkylacrylamide, and acrylamide, or N-alkylmethacrylamide, N, N- And methacrylamides such as dialkylmethacrylamide and methacrylamide. Here, an alkyl group having 1 to 4 carbon atoms is particularly preferably selected. Specific examples of the polymerizable unsaturated group-containing water-soluble organic monomer having an ester group include methoxyethyl acrylate, ethoxyethyl acrylate, methoxyethyl methacrylate, and ethoxyethyl methacrylate.

かかる水溶性有機モノマー重合体としては、例えば、ポリ(N−メチルアクリルアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(アクリロイルモルフォリン)、ポリ(メタクリルアミド)、ポリ(N−メチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)、ポリ(N−メチル−N−エチルアクリルアミド)、ポリ(N−メチル−N−イソプロピルアクリルアミド)、ポリ(N−メチル−N−n−プロピルアクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−アクリロイルピロリディン)、ポリ(N−アクリロイルピペリディン)、ポリ(N−アクリロイルメチルホモピペラディン)、ポリ(N−アクリロイルメチルピペラディン)、ポリ(アクリルアミド)、ポリ(メトキシエチルアクリレート)、ポリ(エトキシエチルアクリレート)、ポリ(メトキシエチルメタクリレート)、ポリ(エトキシエチルメタクリレート)が例示される。この内、ポリ(N,N−ジメチルアクリルアミド)は本発明における接合方法において特に優れた接合効果を示す。また水溶性有機モノマー重合体としては、以上のような単一の重合性不飽和基含有水溶性有機モノマーからの重合体の他、これらから選ばれる複数の異なる重合性不飽和基含有水溶性有機モノマーを重合して得られる共重合体を用いることも有効である。また上記水溶性有機モノマーとそれ以外の有機溶媒可溶性重合性不飽和基含有有機モノマーとの共重合体も、本発明にいう一体化した高分子ゲルが達成出来るものであれば使用することができる。   Examples of the water-soluble organic monomer polymer include poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), and poly (acryloylmorpholine. ), Poly (methacrylamide), poly (N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (N, N-dimethylacrylamide), poly (N, N-dimethylaminopropylacrylamide), poly (N-methyl-N-ethylacrylamide), poly (N-methyl-N-isopropylacrylamide), poly (N-methyl-Nn-propylacrylamide), poly (N, N-diethylacrylamide), poly N-acryloylpyrrolidin), poly (N-acryloylpiperidine), poly (N-acryloylmethylhomopiperazine), poly (N-acryloylmethylpiperazine), poly (acrylamide), poly (methoxyethyl acrylate), Examples include poly (ethoxyethyl acrylate), poly (methoxyethyl methacrylate), and poly (ethoxyethyl methacrylate). Among these, poly (N, N-dimethylacrylamide) exhibits a particularly excellent bonding effect in the bonding method of the present invention. The water-soluble organic monomer polymer may be a polymer from a single polymerizable unsaturated group-containing water-soluble organic monomer as described above, or a plurality of different polymerizable unsaturated group-containing water-soluble organic materials selected from these. It is also effective to use a copolymer obtained by polymerizing monomers. A copolymer of the above water-soluble organic monomer and other organic solvent-soluble polymerizable unsaturated group-containing organic monomer can also be used as long as the integrated polymer gel according to the present invention can be achieved. .

本発明における水溶性有機モノマー重合体(A)は、上記水溶性有機モノマーを重合したものであり、水溶性または水を吸湿する性質を有する親水性(または両親媒性)を有する。さらに、熱、pHや光に応答する等といった機能性や、生体吸収性を含む生体適合性や生分解性などの特性を有しているものは用途に応じてより好ましく用いられる。例えば、水溶液中でのポリマー物性(例えば親水性と疎水性)が下限臨界共溶温度(Lower Critical Solution Temperature:LCST)前後のわずかな温度変化により大きく変化する特性を有する水溶性有機モノマー重合体などであり、具体的にはポリ(N−イソプロピルアクリルアミド)やポリ(N,N−ジエチルアクリルアミド)などが挙げられる。また生体適合性に優れたものとしては、ポリ(メトキシエチルアクリレート)やポリ(メタクリルアミド)などがあげられる。   The water-soluble organic monomer polymer (A) in the present invention is obtained by polymerizing the water-soluble organic monomer, and has water-solubility or hydrophilicity (or amphiphilicity) having a property of absorbing water. Furthermore, those having functionality such as response to heat, pH and light, and biocompatibility including bioabsorbability and biodegradability are more preferably used depending on the application. For example, water-soluble organic monomer polymers that have characteristics that polymer properties in aqueous solution (for example, hydrophilicity and hydrophobicity) change greatly with slight temperature changes before and after the lower critical solution temperature (LCST) Specific examples thereof include poly (N-isopropylacrylamide) and poly (N, N-diethylacrylamide). Examples of biocompatibility include poly (methoxyethyl acrylate) and poly (methacrylamide).

本発明における有機ポリマー/クレイ複合高分子ゲルに用いる粘土鉱物(B)としては、水に膨潤性を有するものであり、好ましくは水によって層間が膨潤する性質を有するものが用いられる。より好ましくは少なくとも一部が水中で層状に剥離して分散できるものであり、特に好ましくは水中で1ないし10層以内の厚みの層状に剥離して均一分散できる層状粘土鉱物である。例えば、水膨潤性スメクタイトや水膨潤性雲母などが用いられ、より具体的には、ナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト、水膨潤性合成雲母などが挙げられる。   As the clay mineral (B) used for the organic polymer / clay composite polymer gel in the present invention, those having a swelling property in water, preferably those having a property of swelling between layers by water are used. More preferably, it is a layered clay mineral that can be at least partially exfoliated and dispersed in layers in water, and particularly preferably a lamellar clay mineral that can be exfoliated and dispersed uniformly in water with a thickness of 1 to 10 layers. For example, water-swellable smectite or water-swellable mica is used. More specifically, water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, water-swellable synthetic mica, etc. Is mentioned.

本発明における水溶性有機モノマー重合体(A)に対する水膨潤性粘土鉱物(B)の質量比(B/A)は、0.01〜1.0であることが好ましく、より好ましくは、0.05〜0.7、特に好ましくは、0.1〜0.5である。この範囲であれば十分な高分子ゲルの接合面強度を得ることができる。   In the present invention, the mass ratio (B / A) of the water-swellable clay mineral (B) to the water-soluble organic monomer polymer (A) is preferably 0.01 to 1.0, more preferably 0.00. 05 to 0.7, particularly preferably 0.1 to 0.5. If it is this range, sufficient joint surface strength of the polymer gel can be obtained.

本発明では、貼り合わせる前の接合対象面に、水溶性有機高分子(C)を塗布しておくことが接合強度を高めるために好ましい。用いる水溶性有機高分子(C)としては、水に溶解または混和することができる有機分子または有機高分子であり、特に水膨潤性粘土鉱物(B)と相互作用できるものが好ましい。具体的には、エーテル基、水酸基、カルボキシル基、アミド基、アミノ基などの親水性官能基を有する水溶性有機高分子であり、例として、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリ(ヒドロキシエチルアクリレート)、ポリ(ヒドロキシエチルメタクリレート)、ポリ(N−メチルアクリルアミド)、ポリ(N−エチルアクリルアミド)、ポリ(N−シクロプロピルアクリルアミド)、ポリ(N−イソプロピルアクリルアミド)、ポリ(アクリロイルモルフォリン)、ポリ(メタクリルアミド)、ポリ(N−メチルメタクリルアミド)、ポリ(N−シクロプロピルメタクリルアミド)、ポリ(N−イソプロピルメタクリルアミド)、ポリ(N,N−ジメチルアクリルアミド)、ポリ(N,N−ジメチルアミノプロピルアクリルアミド)、ポリ(N−メチル−N−エチルアクリルアミド)、ポリ(N−メチル−N−イソプロピルアクリルアミド)、ポリ(N−メチル−N−n−プロピルアクリルアミド)、ポリ(N,N−ジエチルアクリルアミド)、ポリ(N−アクリロイルピロリディン)、ポリ(N−アクリロイルピペリディン)、ポリ(N−アクリロイルメチルホモピペラディン)、ポリ(N−アクリロイルメチルピペラディン)、ポリ(アクリルアミド)、ポリアクリル酸、ヒアルロン酸、ポリエチレンイミン、ポリプロピレンイミン、アガロース、アルギン酸、カラギーナン、コラーゲン、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、セルロース誘導体、キタンサンガム、ジェランガム、キトサンなどが挙げられる。これらは単独または複数を組み合わせて用いられる。使用に当たっては、これら水溶性有機高分子をあらかじめ水または溶媒に溶解させておき、接合対象面に塗布する方法で用いられる。   In the present invention, it is preferable to apply the water-soluble organic polymer (C) to the surfaces to be bonded before bonding to increase the bonding strength. The water-soluble organic polymer (C) to be used is an organic molecule or an organic polymer that can be dissolved or mixed in water, and particularly those that can interact with the water-swellable clay mineral (B). Specifically, it is a water-soluble organic polymer having a hydrophilic functional group such as an ether group, a hydroxyl group, a carboxyl group, an amide group, and an amino group. Examples thereof include polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, (Hydroxyethyl acrylate), poly (hydroxyethyl methacrylate), poly (N-methylacrylamide), poly (N-ethylacrylamide), poly (N-cyclopropylacrylamide), poly (N-isopropylacrylamide), poly (acryloyl morpholine) Phosphorus), poly (methacrylamide), poly (N-methylmethacrylamide), poly (N-cyclopropylmethacrylamide), poly (N-isopropylmethacrylamide), poly (N, N-dimethylacrylamide) , Poly (N, N-dimethylaminopropylacrylamide), poly (N-methyl-N-ethylacrylamide), poly (N-methyl-N-isopropylacrylamide), poly (N-methyl-Nn-propylacrylamide) , Poly (N, N-diethylacrylamide), poly (N-acryloylpyrrolidine), poly (N-acryloylpiperidine), poly (N-acryloylmethylhomopiperadine), poly (N-acryloylmethylpiperazine) , Poly (acrylamide), polyacrylic acid, hyaluronic acid, polyethyleneimine, polypropyleneimine, agarose, alginic acid, carrageenan, collagen, methylcellulose, carboxymethylcellulose, hydroxypropylcellulose, cellulose derivatives, chitansan gum , Gellan gum, chitosan and the like. These may be used alone or in combination. In use, the water-soluble organic polymer is dissolved in water or a solvent in advance and applied to the surfaces to be joined.

本発明における接合方法は、水溶性有機モノマー重合体と水膨潤性粘土鉱物とからなる三次元網目を有する有機ポリマー/クレイ複合高分子ゲルを切断し、得られた切断面を用いて、該有機ポリマー/クレイ複合高分子ゲルを接合することにある。具体的には、切断面同士を貼り合わせて接合する場合と、切断面と非切断面を貼り合わせて接合する場合が含まれる。非切断面同士を用いる場合は、貼り合わせても十分な接合が得られない。切断の方法は既知の方法が用いられ特に限定されない。   In the bonding method of the present invention, an organic polymer / clay composite polymer gel having a three-dimensional network composed of a water-soluble organic monomer polymer and a water-swellable clay mineral is cut, and the resulting cut surface is used to cut the organic polymer / clay composite polymer gel. It is to join a polymer / clay composite polymer gel. Specifically, the case where the cut surfaces are bonded to each other and the case where the cut surfaces and the non-cut surface are bonded to each other are included. When non-cut surfaces are used, sufficient bonding cannot be obtained even if they are bonded together. A known method is used for the cutting method and is not particularly limited.

本発明においては、接合する面を貼り合わせた後、加熱、加圧、超音波照射のいずれか一つまたは複数の処理を行うことにより、貼り合わせた面の接合を促進し、強固にすることができる。加熱は20℃から100℃の間が用いられ、適切な温度は、有機ポリマー/クレイ複合高分子ゲルの組成により変化するが、より好ましくは、30℃〜90℃、特に好ましくは、40℃〜80℃である。一般に、高温になるほど短時間での接合促進となる。また、加圧によっても高分子ゲルの接合は促進される。加圧の圧力は、有機ポリマー/クレイ複合高分子ゲルが組成変形しない範囲であれば良く、組成および他の接合条件によって変化し、特に限定されない。一般に、加圧圧力が高いほど、接合効果は高い。更に、超音波照射によっても接合が促進される。照射時間や強度は有機ポリマー/クレイ複合高分子ゲルの組成や他の接合条件によって変化し、既知の装置条件の範囲で選択される。更に、水溶性有機高分子(C)をこれらの処理の前に塗布しておくと更に接合効果を高められる場合がある。   In the present invention, after bonding the surfaces to be bonded, the bonding of the bonded surfaces is promoted and strengthened by performing any one or more of heating, pressurization, and ultrasonic irradiation. Can do. The heating is performed between 20 ° C. and 100 ° C., and the appropriate temperature varies depending on the composition of the organic polymer / clay composite polymer gel, more preferably from 30 ° C. to 90 ° C., particularly preferably from 40 ° C. to 80 ° C. In general, the higher the temperature, the faster the bonding is promoted. The bonding of the polymer gel is also promoted by pressurization. The pressure of the pressurization is not particularly limited as long as the organic polymer / clay composite polymer gel does not undergo composition deformation and varies depending on the composition and other joining conditions. In general, the higher the pressure applied, the higher the bonding effect. Furthermore, bonding is also promoted by ultrasonic irradiation. The irradiation time and intensity vary depending on the composition of the organic polymer / clay composite polymer gel and other joining conditions, and are selected within the range of known apparatus conditions. Furthermore, if the water-soluble organic polymer (C) is applied before these treatments, the bonding effect may be further enhanced.

有機ポリマー/クレイ複合高分子ゲルの切断面を用いて、それらを貼り合わせるというシンプルな方法で高分子ゲルの接合ができる理由は必ずしも明確ではないが、以下のように推定される。有機ポリマー/クレイ複合高分子ゲルの切断面(表面)では、片末端がクレイに結合し他方が自由なダングリング鎖が数多く形成している。切断面が他の有機ポリマー/クレイ複合高分子ゲル面と張り合わされることにより、これらダングリング鎖の自由な片末端が他方のゲル表面近傍にあるクレイに結合することで貼り合わせ面の結合が生じると考えられる。このことは、有機ポリマー/クレイ複合高分子ゲルにおいては、隣接するクレイ間を結合しているポリマーの鎖長が長いこと(従って、それらが平均として半分に切断されて生じるダングリング鎖も長いこと)、及びポリマー/クレイ間結合が水素結合などの非共有結合であることによる。事実、切断しても(短い架橋点間分子量のため)長いダングリング鎖が生じない化学架橋ゲルでは、比較例1、2に示すように貼り合わせによる接合は生じない。また、有機ポリマー/クレイ複合高分子ゲルでもクレイ/有機ポリマーの比が高い(例:2.0(比較例3))場合は、同様にダングリング鎖が短いため有効な接合強度とならない。なお、切断面同士を貼り合わせる方がダングリング鎖の数が多いため一般により強い接合が可能となり、また、加熱、加圧、超音波照射などの処理は、ダングリング鎖の自由な片末端が相手方のクレイに結合するチャンスを増やすため、接合の促進に有効と推定される。   The reason why the polymer gel can be joined by a simple method of bonding them using the cut surfaces of the organic polymer / clay composite polymer gel is not necessarily clear, but is estimated as follows. On the cut surface (surface) of the organic polymer / clay composite polymer gel, a number of dangling chains that are bonded to the clay at one end and free at the other end are formed. By bonding the cut surface with the other organic polymer / clay composite polymer gel surface, the free end of these dangling chains is bonded to the clay in the vicinity of the other gel surface, thereby bonding the bonded surface. It is thought to occur. This means that in organic polymer / clay composite polymer gels, the chain length of the polymer bonding between adjacent clays is long (thus, the dangling chains that are generated when they are cut in half on average are long) ), And the polymer / clay bond is a non-covalent bond such as a hydrogen bond. In fact, as shown in Comparative Examples 1 and 2, bonding by bonding does not occur in a chemically crosslinked gel that does not produce long dangling chains (because of the short molecular weight between crosslinking points) even when cut. In addition, when the ratio of clay / organic polymer is high even in the organic polymer / clay composite polymer gel (example: 2.0 (Comparative Example 3)), the dangling chain is similarly short, so that the effective bonding strength is not obtained. In addition, since the number of dangling chains is greater when the cut surfaces are bonded together, generally stronger bonding is possible, and the treatment of heating, pressurization, ultrasonic irradiation, etc. requires a free end of the dangling chain. It is estimated to be effective in promoting bonding because it increases the chance of binding to the opponent's clay.

次いで本発明を実施例により、より具体的に説明するが、もとより本発明は、以下に示す実施例にのみ限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention more concretely, this invention is not limited only to the Example shown below from the first.

(実施例1、2)
水膨潤性粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG)を、水溶性有機モノマーには、N,N−ジメチルアクリルアミド(DMAA:興人株式会社製)を用いた。DMAAは精製により重合禁止剤を取り除いてから使用した。
(Examples 1 and 2)
For the water-swellable clay mineral, water-swellable synthetic hectorite (trademark Laponite XLG) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 is dissolved in water. N, N-dimethylacrylamide (DMAA: manufactured by Kojin Co., Ltd.) was used as the organic monomer. DMAA was used after removing the polymerization inhibitor by purification.

重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)をKPS/水=0.40/20(g/g)の割合で水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TEMED:和光純薬工業株式会社製)を使用した。   As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Inc.) was used as an aqueous solution at a ratio of KPS / water = 0.40 / 20 (g / g). As the catalyst, N, N, N ′, N′-tetramethylethylenediamine (TEMED: manufactured by Wako Pure Chemical Industries, Ltd.) was used.

20℃の恒温室において、平底ガラス容器に、純水38.04gと1.829gのラポナイトXLGを加え、無色透明の溶液を調製した。これにDMAA3.96gを加えて無色透明溶液を得た。次にKPS水溶液2.0gとTEMED32μlを攪拌しながら加え、この溶液を1cm×1cm×6cmの密閉した容器に移した後、20℃の恒温水槽中で20時間静置して重合を行った。これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から20時間後に、容器内に有機モノマー重合体と層状剥離した粘土鉱物からなる無色透明で均一な有機ポリマー(PDMAA)/クレイ複合高分子ゲルが生成した(クレイ/有機ポリマー=0.46)。得られた有機ポリマー/クレイ複合高分子を厚み0.5cmで2等分し、0.5cm×1cm×6cmの高分子ゲルを二つ得た。該高分子ゲルを(実施例1)では、切断面同士を0.5cmずつ重なるように、(実施例2)では切断面と非切断面が0.5cmずつ重なるように貼り合わせ、いずれの場合も、重なった部分に1cm当たり45gの荷重を加えて10時間密閉容器中で保持した。その結果、いずれも貼り合わせた部分が均一にしっかりと接合しているのが目視で確認された。得られた接合部分が中心にくるようにして、引っ張り試験を引っ張り試験装置(株式会社島津製作所製、卓上型万能試験機AGS−H)を用い、評点間距離=20mm、引っ張り速度=100mm/分にて行った。その結果、実施例1では強度=80kPa、破断伸び=900%が、実施例2では、強度=50kPa、破断伸び=500%が得られた。なお、同様にして合成した切断面接合部を有しない高分子ゲルの引っ張り試験は、強度=100kPa、破断伸び=1050%であった。 In a thermostatic chamber at 20 ° C., 38.04 g of pure water and 1.829 g of Laponite XLG were added to a flat bottom glass container to prepare a colorless and transparent solution. To this was added 3.96 g of DMAA to obtain a colorless transparent solution. Next, 2.0 g of KPS aqueous solution and 32 μl of TEMED were added with stirring, this solution was transferred to a sealed container of 1 cm × 1 cm × 6 cm, and then left to stand in a constant temperature water bath at 20 ° C. for polymerization for 20 hours. All operations from preparation of the solution to polymerization were performed in a nitrogen atmosphere in which oxygen was blocked. After 20 hours from the start of polymerization, a colorless transparent and uniform organic polymer (PDMAA) / clay composite polymer gel composed of an organic monomer polymer and a layered exfoliated clay mineral was formed in the container (clay / organic polymer = 0.46). ). The obtained organic polymer / clay composite polymer was divided into two equal parts with a thickness of 0.5 cm to obtain two polymer gels of 0.5 cm × 1 cm × 6 cm. In (Example 1), the polymer gel was bonded so that the cut surfaces overlap each other by 0.5 cm, and in (Example 2), the cut surface and the non-cut surface were overlapped by 0.5 cm each. In addition, a load of 45 g per 1 cm 2 was applied to the overlapped portion and held in a sealed container for 10 hours. As a result, it was visually confirmed that the bonded portions were uniformly and firmly joined. Using the tensile test device (manufactured by Shimadzu Corporation, desktop universal testing machine AGS-H), the distance between the scores = 20 mm, the pulling speed = 100 mm / min, so that the obtained joint portion is at the center. I went there. As a result, in Example 1, strength = 80 kPa and breaking elongation = 900% were obtained, and in Example 2, strength = 50 kPa and breaking elongation = 500% were obtained. In addition, the tensile test of the polymer gel which does not have the cut surface joint part synthesized similarly was strength = 100 kPa and breaking elongation = 1050%.

(実施例3)
水膨潤性粘土鉱物には、[Mg5.34Li0.66Si20(OH)]Na 0.66の組成を有する水膨潤性合成ヘクトライト(商標ラポナイトXLG)を、水溶性有機モノマーには、N−イソプロピルアクリルアミド(NIPA:興人株式会社製)を用いた。NIPAは精製により重合禁止剤を取り除いてから使用した。
(Example 3)
For the water-swellable clay mineral, water-swellable synthetic hectorite (trademark Laponite XLG) having a composition of [Mg 5.34 Li 0.66 Si 8 O 20 (OH) 4 ] Na + 0.66 is dissolved in water. N-isopropylacrylamide (NIPA: manufactured by Kojin Co., Ltd.) was used as the organic monomer. NIPA was used after removing the polymerization inhibitor by purification.

重合開始剤は、ペルオキソ二硫酸カリウム(KPS:関東化学株式会社製)をKPS/水=0.40/20(g/g)の割合で水溶液にして使用した。触媒は、N,N,N’,N’−テトラメチルエチレンジアミン(TEMED:和光純薬工業株式会社製)を使用した。   As the polymerization initiator, potassium peroxodisulfate (KPS: manufactured by Kanto Chemical Co., Inc.) was used as an aqueous solution at a ratio of KPS / water = 0.40 / 20 (g / g). As the catalyst, N, N, N ′, N′-tetramethylethylenediamine (TEMED: manufactured by Wako Pure Chemical Industries, Ltd.) was used.

20℃の恒温室において、平底ガラス容器に、純水38.04gと0.61gのラポナイトXLGを加え、無色透明の溶液を調製した。これにNIPA4.52gを加えて無色透明溶液を得た。次にKPS水溶液2.0gとTEMED32μlを攪拌しながら加え、この溶液をこの溶液を1cm×1cm×6cmの密閉した容器に移した後、20℃の恒温水槽中で20時間静置して重合を行った。これらの溶液調製から重合までの操作は、全て酸素を遮断した窒素雰囲気下で行った。重合開始から20時間後に、容器内に有機モノマー重合体と層状剥離した粘土鉱物からなる無色透明で均一な有機ポリマー(PNIPA)/クレイ複合高分子ゲルが生成した(クレイ/有機ポリマー=0.135)。得られた有機ポリマー/クレイ複合高分子ゲルを厚み0.5cmで2等分し、0.5cm×1cm×6cmの高分子ゲルを二つ得た。該高分子ゲルの切断面同士を0.5cmずつ重なるように貼り合わせ、重なった部分に1cm当たり45gの荷重を加えて10時間密閉容器中で保持した。その結果、貼り合わせた部分が均一にしっかりと接合しているのが目視で確認された。得られた接合部分が中心にくるようにして、実施例1と同様にして引っ張り試験を行った。その結果、強度=30kPa、破断伸び=1100%が得られた。なお、同様にして合成した切断面接合部を有しない高分子ゲルの引っ張り試験は、強度=40kPa、破断伸び=1200%であった。 In a constant temperature room at 20 ° C., 38.04 g of pure water and 0.61 g of Laponite XLG were added to a flat bottom glass container to prepare a colorless and transparent solution. To this, 4.52 g of NIPA was added to obtain a colorless transparent solution. Next, 2.0 g of KPS aqueous solution and 32 μl of TEMED were added with stirring, and this solution was transferred to a sealed container of 1 cm × 1 cm × 6 cm, and then left to stand in a constant temperature water bath at 20 ° C. for 20 hours for polymerization. went. All operations from preparation of the solution to polymerization were performed in a nitrogen atmosphere in which oxygen was blocked. After 20 hours from the start of polymerization, a colorless transparent and uniform organic polymer (PNIPA) / clay composite polymer gel composed of an organic monomer polymer and layered exfoliated clay mineral was produced in the container (clay / organic polymer = 0.135). ). The obtained organic polymer / clay composite polymer gel was divided into two equal parts with a thickness of 0.5 cm to obtain two polymer gels of 0.5 cm × 1 cm × 6 cm. The cut surfaces of the polymer gel were bonded so as to overlap each other by 0.5 cm, and a load of 45 g per 1 cm 2 was applied to the overlapped portion and held in a sealed container for 10 hours. As a result, it was visually confirmed that the bonded portions were uniformly and firmly joined. A tensile test was conducted in the same manner as in Example 1 so that the obtained joined portion was at the center. As a result, strength = 30 kPa and elongation at break = 1100% were obtained. In addition, the tensile test of the polymer gel which does not have the cut surface joint part synthesized similarly was strength = 40 kPa and breaking elongation = 1200%.

(実施例4,5)
ラポナイトXLGを1.22g用いること(クレイ/有機ポリマー=0.31)以外は実施例1と同様にして合成した有機ポリマー(PDMAA)/クレイ複合高分子ゲルを、二個の1cm×1cm×3cmゲルとなるように、真ん中で切断した。二つに切断されたゲルの切断面が密着するように手で貼り合わせたものを密閉ガラス容器に入れ、(実施例4)では50℃で3時間、(実施例5)では80℃で30分間保持した。その後、ガラス容器から取り出した高分子ゲルは、切断面がどこか目視では解らない位、均一に接合していた。チャック間距離を30mmとする以外は実施例1と同様にして接合面が中心にくるようにして引っ張り試験を行った。その結果、(実施例4)では強度=100kPa、破断伸び=1550%が、(実施例5)では強度=102kPa、破断伸び=1540%が得られた。いずれの場合も、引っ張り試験での破断はチャック部において生じた。なお、同様にして合成した切断面接合部を有しない高分子ゲルの引っ張り試験は、強度=101kPa、破断伸び=1530%であった。
(Examples 4 and 5)
An organic polymer (PDMAA) / clay composite polymer gel synthesized in the same manner as in Example 1 except that 1.22 g of Laponite XLG was used (clay / organic polymer = 0.31) was used. The gel was cut in the middle to form a gel. What was bonded together by hand so that the cut surfaces of the two cut gels were in close contact with each other was put in a sealed glass container. Hold for a minute. Thereafter, the polymer gel taken out from the glass container was uniformly bonded to such an extent that the cut surface was not visually understood. A tensile test was performed in the same manner as in Example 1 except that the distance between chucks was set to 30 mm so that the joint surface was at the center. As a result, (Example 4) obtained strength = 100 kPa and breaking elongation = 1550%, and (Example 5) obtained strength = 102 kPa and breaking elongation = 1540%. In any case, the fracture in the tensile test occurred in the chuck portion. In addition, the tensile test of the polymer gel which does not have the cut surface joint part synthesize | combined similarly was intensity | strength = 101 kPa and breaking elongation = 1530%.

(実施例6、7、8)
ラポナイトXLGを3.5g(実施例6)または0.10g(実施例7)または4.5g(実施例8)用いること、およびDMAAを3.96g(実施例6および実施例8)または5.94g(実施例7)用いることを除くと実施例4と同様にして有機ポリマー(PDMAA)/クレイ複合高分子ゲルを得た。クレイ/有機ポリマーは実施例6では0.88、実施例7では0.0168、実施例8では1.29である。実施例4と同様にして、切断面を作成し、貼り合わせて得られた接合面を中心に含む高分子ゲルの引っ張り試験を行った。その結果、いずれの場合も目視で貼り合わせ面が接合しているのが観察された。測定された破断強度は、接合面を有しない同じゲルの35%(実施例6)、98%(実施例7)、11%(実施例8)であった。
(Examples 6, 7, and 8)
4. Use 3.5 g (Example 6) or 0.10 g (Example 7) or 4.5 g (Example 8) of Laponite XLG and 3.96 g (Example 6 and Example 8) or 5. An organic polymer (PDMAA) / clay composite polymer gel was obtained in the same manner as in Example 4 except that 94 g (Example 7) was used. The clay / organic polymer is 0.88 in Example 6, 0.0168 in Example 7, and 1.29 in Example 8. In the same manner as in Example 4, a cut surface was prepared, and a tensile test was performed on a polymer gel including a bonded surface obtained by bonding. As a result, in each case, it was observed that the bonded surfaces were visually joined. The measured breaking strengths were 35% (Example 6), 98% (Example 7) and 11% (Example 8) of the same gel having no joint surface.

(実施例9)
加熱ではなく、超音波照射を30分行ったことを除くと実施例4と同様にして切断面を貼り合わせた有機ポリマー/クレイ複合高分子ゲルを得た。実施例4と同様にして行った引っ張り試験において、強度=85kPa、破断伸び=1310%が得られた。
Example 9
An organic polymer / clay composite polymer gel having a cut surface bonded thereto was obtained in the same manner as in Example 4 except that ultrasonic irradiation was performed for 30 minutes instead of heating. In a tensile test performed in the same manner as in Example 4, strength = 85 kPa and elongation at break = 1310% were obtained.

(実施例10、11)
貼り合わせる前に、切断面に、ポリ(N,N−ジメチルアクリルアミド)水溶液(濃度:4質量%)を塗布すること(実施例10)、ポリビニルアルコール水溶液(濃度:4質量%)を塗布すること(実施例11)、そして常温で1cm当たり20gの荷重を加えて10時間保持することを除くと、実施例4と同様にして切断面を貼り合わせた有機ポリマー/クレイ複合高分子ゲルを得た。実施例4と同様にして行った引っ張り試験において、実施例10では、強度=85kPa、破断伸び=1210%が、実施例11では強度=60kPa、破断伸び=850%が得られた。
(Examples 10 and 11)
Before bonding, apply a poly (N, N-dimethylacrylamide) aqueous solution (concentration: 4% by mass) to the cut surface (Example 10), and apply a polyvinyl alcohol aqueous solution (concentration: 4% by mass). (Example 11) Then, an organic polymer / clay composite polymer gel in which the cut surfaces were bonded in the same manner as in Example 4 was obtained except that a load of 20 g per 1 cm 2 was applied at room temperature and held for 10 hours. It was. In the tensile test performed in the same manner as in Example 4, in Example 10, strength = 85 kPa and breaking elongation = 1210% were obtained, and in Example 11, strength = 60 kPa and breaking elongation = 850% were obtained.

(比較例1、2)
クレイの代わりに有機架橋剤(N,N’メチレンビスアクリルアミド)をモノマーに対して1モル%用いる以外は、実施例1と同様にして化学架橋(PDMAA)高分子ゲルを合成した。得られたゲルを比較例1では実施例1と同様にして、比較例2では実施例4と同様にして、切断面を作り、それらを貼り合わせることによって接合を試みた。しかし、いずれでも容易に二つに分離する状態のままで、高分子ゲルの接合は生じなかった。
(Comparative Examples 1 and 2)
A chemically crosslinked (PDMAA) polymer gel was synthesized in the same manner as in Example 1 except that 1 mol% of an organic crosslinking agent (N, N′methylenebisacrylamide) was used instead of clay. In the comparative example 1, the obtained gel was made in the same manner as in Example 1, and in Comparative Example 2 in the same manner as in Example 4, cut surfaces were formed, and bonding was attempted by bonding them together. However, in either case, the polymer gel remained in a state of being easily separated into two, and the polymer gel was not joined.

(比較例3)
非切断面同士を貼り合わせること以外は、実施例1と同様な実験を行い、貼り合わせによる接合を試みたが、測定された破断強度は、接合面を有しない同じゲルの1%以下で容易に剥離し、有効な接合は行えなかった。
(Comparative Example 3)
Except for bonding non-cut surfaces, the same experiment as in Example 1 was performed and bonding by bonding was attempted. The measured breaking strength was easily 1% or less of the same gel having no bonding surface. As a result, it was not possible to perform effective bonding.

Claims (4)

水溶性のラジカル重合性有機モノマーの重合体(A)と水膨潤性粘土鉱物(B)により形成された三次元網目構造を有する高分子ゲルの接合方法であって、接合しようとする高分子ゲルの双方の面、又はどちらか一方の面に切断面を形成し、該切断面同士又は該切断面と非切断面とを貼り合わせることにより高分子ゲルを接合することを特徴とする高分子ゲルの接合方法。   A method for joining a polymer gel having a three-dimensional network structure formed of a polymer (A) of a water-soluble radically polymerizable organic monomer and a water-swellable clay mineral (B), the polymer gel to be joined The polymer gel is characterized in that a cut surface is formed on both or both surfaces and the polymer gel is bonded by bonding the cut surfaces or the cut surface and the non-cut surface together. Joining method. 前記有機モノマーから得られる重合体(A)に対する水膨潤性粘土鉱物(B)の質量比(B/A)が、0.01〜1である請求項1記載の高分子ゲルの接合方法。   The method for joining polymer gels according to claim 1, wherein the mass ratio (B / A) of the water-swellable clay mineral (B) to the polymer (A) obtained from the organic monomer is 0.01 to 1. 接合する面を張り合わせた後、加熱、加圧及び超音波照射のいずれか一つまたは複数の処理を行うことにより、両者の接合を行なう請求項1又は2記載の高分子ゲルの接合方法。 The method for bonding polymer gels according to claim 1 or 2, wherein after bonding the surfaces to be bonded together, one or a plurality of treatments of heating, pressurization and ultrasonic irradiation are performed to bond the two. 前記切断面又は接合しようとする非切断面に、水溶性有機高分子(C)を塗布した後に、接合する請求項1〜3のいずれか一つに記載の高分子ゲルの接合方法。   The method for joining polymer gels according to any one of claims 1 to 3, wherein the water-soluble organic polymer (C) is applied to the cut surface or the non-cut surface to be joined, and then joined.
JP2009146330A 2009-06-19 2009-06-19 Polymer gel bonding method Active JP5331971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009146330A JP5331971B2 (en) 2009-06-19 2009-06-19 Polymer gel bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009146330A JP5331971B2 (en) 2009-06-19 2009-06-19 Polymer gel bonding method

Publications (2)

Publication Number Publication Date
JP2011001481A JP2011001481A (en) 2011-01-06
JP5331971B2 true JP5331971B2 (en) 2013-10-30

Family

ID=43559704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009146330A Active JP5331971B2 (en) 2009-06-19 2009-06-19 Polymer gel bonding method

Country Status (1)

Country Link
JP (1) JP5331971B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162648A (en) * 2010-02-09 2011-08-25 Kawamura Institute Of Chemical Research Method of bonding polymer gel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9481771B2 (en) * 2012-09-18 2016-11-01 Riken Method for adhering hydrogels
WO2015030079A1 (en) * 2013-08-27 2015-03-05 国立大学法人大阪大学 Joined body joined by chemical bonding at material interface, and joining method for joined body
WO2015076205A1 (en) * 2013-11-20 2015-05-28 日産化学工業株式会社 Method for bonding hydrogels
JP7059625B2 (en) * 2017-12-26 2022-04-26 Dic株式会社 Organic-inorganic composite hydrogel precursor composition, organic-inorganic composite hydrogel, organic-inorganic composite hydrogel junction, and method for producing the same.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232402A (en) * 2004-02-23 2005-09-02 Kawamura Inst Of Chem Res Polymer composite, its stretched product and process for producing polymer composite
JP4776187B2 (en) * 2004-07-21 2011-09-21 Dic株式会社 Organic / inorganic composite polymer gel and method for producing the same
JP4861681B2 (en) * 2005-11-04 2012-01-25 一般財団法人川村理化学研究所 Polymer gel laminate and method for producing the same
JP5285839B2 (en) * 2006-01-31 2013-09-11 一般財団法人川村理化学研究所 Method for producing polymer composite gel
JP2007224061A (en) * 2006-02-21 2007-09-06 Yokohama National Univ Method for reversibly controlling joining force between members
JP2011001482A (en) * 2009-06-19 2011-01-06 Kawamura Inst Of Chem Res Polymer gel, polymer gel dispersion, polymer gel composite, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162648A (en) * 2010-02-09 2011-08-25 Kawamura Institute Of Chemical Research Method of bonding polymer gel

Also Published As

Publication number Publication date
JP2011001481A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
Saito et al. Robust bonding and one-step facile synthesis of tough hydrogels with desirable shape by virtue of the double network structure
JP5331971B2 (en) Polymer gel bonding method
JP5132278B2 (en) Method for producing organic-inorganic composite hydrogel
JP5556174B2 (en) Hydrogel and method for producing the same
JP5132300B2 (en) Method for producing cationic organic / inorganic composite hydrogel
Kim et al. Non-swellable, cytocompatible pHEMA-alginate hydrogels with high stiffness and toughness
CN105199281A (en) Novel hydrogel with ultrahigh mechanical strength and chemical stability
JP3914501B2 (en) Polymer gel composite and method for producing the same
JP2011153174A (en) Organic-inorganic composite hydrogel, dried body thereof and method for producing them
JP2009270032A (en) Hydrogel and method for producing it
JP5285839B2 (en) Method for producing polymer composite gel
JP2010254800A (en) Organic/inorganic composite
JP2011001482A (en) Polymer gel, polymer gel dispersion, polymer gel composite, and method for producing the same
JP2010260929A (en) Pregel solution and polymer composition, and process for producing polymer composition
JP5456344B2 (en) Organic-inorganic composite hydrogel and method for producing the same
JP5644036B2 (en) Hydrogel and method for producing the same
JP5133209B2 (en) Organogel and method for producing the same
JP2011178843A (en) Method for bonding gel body to another gel body
JP5202903B2 (en) Method for producing organic-inorganic composite hydrogel having carboxylic acid group or sulfonic acid group
JP2009256629A (en) Organic-inorganic composite hydrogel and method for producing the same
JP4269107B2 (en) Method for producing clay mineral-containing hydrogel
JP2011213793A (en) Method for producing organic-inorganic composite hydrogel
JP4297666B2 (en) Optically anisotropic
JP2011132491A (en) Gel, gel dried body, and methods for producing these
JP5544719B2 (en) Gel and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130710

R150 Certificate of patent or registration of utility model

Ref document number: 5331971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250