JP5438915B2 - Architectural finishing coating material - Google Patents

Architectural finishing coating material Download PDF

Info

Publication number
JP5438915B2
JP5438915B2 JP2008121109A JP2008121109A JP5438915B2 JP 5438915 B2 JP5438915 B2 JP 5438915B2 JP 2008121109 A JP2008121109 A JP 2008121109A JP 2008121109 A JP2008121109 A JP 2008121109A JP 5438915 B2 JP5438915 B2 JP 5438915B2
Authority
JP
Japan
Prior art keywords
coating material
mass
synthetic resin
building
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008121109A
Other languages
Japanese (ja)
Other versions
JP2009270324A (en
Inventor
圭一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kikusui Kagaku Kogyo KK
Original Assignee
Kikusui Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kikusui Kagaku Kogyo KK filed Critical Kikusui Kagaku Kogyo KK
Priority to JP2008121109A priority Critical patent/JP5438915B2/en
Publication of JP2009270324A publication Critical patent/JP2009270324A/en
Application granted granted Critical
Publication of JP5438915B2 publication Critical patent/JP5438915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、建築物の外壁等に用いられる建築仕上塗材であって、意匠性に富んだ建築仕上塗材に関するものである。   The present invention relates to a building finish coating material used for an outer wall of a building and the like, and relates to a building finish coating material rich in design.

従来、建築仕上塗材の製造においては、炭酸カルシウム等の充填材を塗材中に分散させるため、分散剤、湿潤剤等の界面活性剤を多く使用している(例えば、特許文献1、特許文献2、特許文献3参照。)。しかし、これらの界面活性剤は人間の皮膚への浸透力が強く、多量に摂取すると建築仕上塗材の塗装をする作業者の肌荒れ、湿疹、かゆみ等の症状を引き起こすおそれがあるという問題点があった。   Conventionally, in the production of architectural finishing coating materials, a surfactant such as a dispersant or a wetting agent is often used in order to disperse a filler such as calcium carbonate in the coating material (for example, Patent Document 1, Patent). Reference 2 and Patent Reference 3). However, these surfactants have a strong ability to penetrate human skin, and if they are ingested in large quantities, they may cause symptoms such as rough skin, eczema, and itching of workers who paint building finishes. there were.

特開平9−71752号公報(第2〜3頁)JP-A-9-71752 (pages 2 and 3) 国際公開WO2002/83326号のパンフレット(第2〜3頁)Pamphlet of International Publication WO2002 / 83326 (2nd to 3rd pages) 特開2001−2978号公報(第2〜3頁)JP 2001-2978 A (pages 2 to 3)

解決しようとする問題点は、建築物の外壁等に用いられる意匠性に富んだ建築仕上塗材において、該建築仕上塗材に含有させる界面活性剤の使用量を低減させる点である。   The problem to be solved is to reduce the amount of the surfactant used in the architectural finishing coating material in the architectural finishing coating material rich in design used for the outer wall of the building.

請求項1に記載の発明は、貯蔵容器への収容時における粘度が100〜500dPa・sである建築仕上塗材であって、該建築仕上塗材が、外表面に無機金属酸化物又は無機金属塩が付着された真比重0.20〜0.50ある平均粒子径10〜250μmの球状合成樹脂充填材を建築仕上塗材中に〜50質量%含有していることを最も主要な特徴とする。
The invention according to claim 1 is an architectural finish coating material having a viscosity of 100 to 500 dPa · s when accommodated in a storage container, and the architectural finish coating material has an inorganic metal oxide or inorganic metal on the outer surface. the most important feature that the salt contains 7-50 wt% spherical synthetic resin filler coating material in the finish building the deposition averaged particle size 10~250μm a true specific gravity of from 0.20 to 0.50 was And

請求項に記載の発明は、請求項1に記載の発明において、前記球状合成樹脂充填材が中空であることを最も主要な特徴とする。
The invention described in claim 2 is characterized in that, in the invention described in claim 1, the spherical synthetic resin filler is hollow.

請求項に記載の発明は、請求項に記載の発明において、前記球状合成樹脂充填材の平均殻厚が2〜30μmであることを最も主要な特徴とする。
The invention according to claim 3 is characterized in that, in the invention according to claim 2 , an average shell thickness of the spherical synthetic resin filler is 2 to 30 μm.

請求項1に記載の発明によれば、塗膜に凹凸上の意匠を形成させることが容易になるとともに、建築仕上塗材の製造時において界面活性剤の使用量を抑制することができ、球状合成樹脂充填材の飛散性が抑えられ、取扱いが容易になるという利点がある。
According to the first aspect of the present invention, it is easy to form an uneven design on the coating film, and the amount of the surfactant used during manufacturing of the architectural finish coating material can be reduced , and the spherical shape can be reduced. There is an advantage that the scattering property of the synthetic resin filler is suppressed and the handling becomes easy .

請求項に記載の発明によれば、増粘剤の使用量を抑制することができるいう利点がある。
According to the invention described in claim 2, there is advantage that can suppress the used amount of the thickener.

請求項に記載の発明によれば、建築仕上塗材の断熱効果が最適となるという利点がある。
According to invention of Claim 2 , there exists an advantage that the heat insulation effect of a building finishing coating material becomes the optimal.

以下、本発明を具体化した実施形態を図1〜図2に基づいて説明する。
本発明の建築仕上塗材は貯蔵容器への収容時における粘度が100〜500dPa・sであって、真比重0.20〜0.50ある平均粒子径10〜250μmの球状合成樹脂充填材を建築仕上塗材中に〜50質量%含有していることが必要である。その組成は例えば以下のようなものである。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Embodiments of the invention will be described below with reference to FIGS.
The building finish coating material of the present invention is a spherical synthetic resin filler having an average particle diameter of 10 to 250 μm having a viscosity of 100 to 500 dPa · s when stored in a storage container and a true specific gravity of 0.20 to 0.50. it is necessary to contain 7-50% by weight in the construction topcoat material. The composition is as follows, for example.

本発明の建築仕上塗材の組成例:希釈剤としての水50質量部、結合材としてのアクリル樹脂エマルジョン100質量部、球状合成樹脂充填材としてのアクリル樹脂中空体10質量部、添加剤1質量部。   Composition example of architectural finish coating material of the present invention: 50 parts by mass of water as a diluent, 100 parts by mass of an acrylic resin emulsion as a binder, 10 parts by mass of an acrylic resin hollow body as a spherical synthetic resin filler, 1 mass of additive Department.

前記貯蔵容器とは、建築仕上塗材が収容された状態で一定期間保管されるための容器をいう。例えば、一斗缶、丸缶、角缶、ペール缶等の金属容器、プラスチック缶、ビニール袋等のプラスチック容器、紙袋等の紙容器等が挙げられる。   The said storage container means the container for storing for a certain period in the state in which the building finishing coating material was accommodated. For example, metal containers such as Ito cans, round cans, square cans, and pail cans, plastic cans, plastic containers such as plastic bags, and paper containers such as paper bags.

前記収容時とは、貯蔵容器に建築仕上塗材が収容された状態をいう。   The time of accommodation means the state in which the building finishing coating material is accommodated in the storage container.

前記建築仕上塗材の貯蔵容器への収容時における粘度は100〜500dPa・sであることが必要である。粘度が100〜500dPa・sであることにより、塗膜に凹凸上の意匠を形成させることが容易になる。前記建築仕上塗材の貯蔵容器への収容時における粘度が100dPa・s未満である場合には、塗膜に凹凸上の意匠を形成させることが困難であり、逆に500dPa・sを超える場合には、粘度が高すぎて施工が困難となる。   The viscosity of the building finish coating material when stored in the storage container needs to be 100 to 500 dPa · s. When the viscosity is 100 to 500 dPa · s, it becomes easy to form an uneven design on the coating film. When the viscosity of the building finish coating material when stored in a storage container is less than 100 dPa · s, it is difficult to form an uneven design on the coating film, and conversely when it exceeds 500 dPa · s. Since the viscosity is too high, the construction becomes difficult.

前記建築仕上塗材の貯蔵容器への収容時における粘度は、より好ましくは150〜350dPa・sであり、最も好ましくは200〜300dPa・sである。この範囲にあるとき、塗膜に凹凸上の意匠を形成させる場合において、作業が容易であるとともに凹凸の意匠の山部と谷部とでの塗膜厚の差が最適であるため、施工時の塗膜のひび割れを抑制することができる。また、粘度が150dPa・s未満の場合には、逆に350dPa・sを超える場合には貯蔵容器の内壁において、該内壁に建築仕上塗材が付着しやすくなり、該建築仕上塗材の表層だけが乾燥によって成膜し(以下、「皮張り」という。)、内壁と皮張りとの間に成膜していない建築仕上塗材層が形成される。該建築仕上塗材層は流動性がある上、貯蔵容器内は半密閉状態であるために乾燥が遅く、この流動性がある状態は長期間維持され、表面の皮張りを保持し続けることが困難である。その結果、貯蔵容器の開封時に皮張りの一部が落下することで貯蔵容器中の建築仕上塗材に混ざり、そのまま施工された場合には皮張りが塗膜に偏在して美観を損ねる恐れがある。   The viscosity of the building finish coating material when stored in a storage container is more preferably 150 to 350 dPa · s, and most preferably 200 to 300 dPa · s. When it is in this range, in the case of forming an uneven design on the coating film, the work is easy and the difference in coating thickness between the peak and valley portions of the uneven design is optimal. It is possible to suppress cracking of the coating film. In addition, when the viscosity is less than 150 dPa · s, conversely, when it exceeds 350 dPa · s, on the inner wall of the storage container, the building finish coating material tends to adhere to the inner wall, and only the surface layer of the building finish coating material A film is formed by drying (hereinafter referred to as “skinning”), and an architectural finish coating material layer is formed between the inner wall and the skinning. The architectural finish coating layer is fluid and the storage container is semi-sealed, so drying is slow, and this fluid state can be maintained for a long period of time and keep the skin on the surface. Have difficulty. As a result, when the storage container is opened, a part of the skin is dropped and mixed with the building finish coating material in the storage container. is there.

前記建築仕上塗材に含有されている増粘剤は固形分換算で好ましくは0.010〜0.001質量%であり、より好ましくは0.008〜0.002質量%であり、もっとも好ましくは0.006〜0.003質量%である。この範囲にあるとき、建築仕上塗材に適度な作業性を付与することができる。前記建築仕上塗材に含有されている増粘剤の含有量が固形分換算で0.001質量%未満の場合には、保水性が不足して塗布作業性が低下する恐れがある。逆に、0.010質量%を超える場合には、保水性が高すぎて建築仕上塗材の乾燥が遅くなる場合がある。 The thickener contained in the building finish coating material is preferably 0.010 to 0.001% by mass, more preferably 0.008 to 0.002% by mass, most preferably in terms of solid content. It is 0.006-0.003 mass%. When it exists in this range, moderate workability | operativity can be provided to a building finishing coating material. When the content of the thickener contained in the building finish coating material is less than 0.001% by mass in terms of solid content, water retention is insufficient and application workability may be deteriorated. On the contrary, when it exceeds 0.010 mass%, water retention is too high and drying of a building finish coating material may be slow.

前記球状合成樹脂充填材の組成は合成樹脂であることが必要である。球状合成樹脂充填材の組成が合成樹脂であることにより、表面の吸水及び吸油が抑制されることで建築仕上塗材の組成中において希釈剤としての水や有機溶剤等のうち、球状合成樹脂充填材に捕捉されない自由な希釈剤成分(以下、本実施形態におけるこの組成例では「自由水」と言う。)が多く存在できるため、建築仕上塗材の製造時において充填材の分散が容易になり、分散剤等の界面活性剤の使用量を抑制することができる。同様の理由により、造膜助剤、防凍剤等の使用量も抑制することができる。また、前記球状合成樹脂充填材の組成が合成樹脂であることにより、金属やガラスに比べて弾性に富むため、球状合成樹脂充填材の組成が合成樹脂であることにより、製造時におけるミキサー等の混合機による攪拌によってもその形状を維持することができる。   The composition of the spherical synthetic resin filler needs to be a synthetic resin. The composition of the spherical synthetic resin filler is a synthetic resin, so that water absorption and oil absorption on the surface are suppressed, so that the spherical synthetic resin filling out of water, organic solvents, etc. as a diluent in the composition of the building finish coating material Since there can be a lot of free diluent components (hereinafter referred to as “free water” in this composition example in the present embodiment) that are not trapped by the material, the dispersion of the filler is facilitated during the production of the building finish coating material. In addition, the amount of a surfactant such as a dispersant used can be suppressed. For the same reason, the amount of film-forming aid, antifreeze, etc. used can also be suppressed. In addition, since the composition of the spherical synthetic resin filler is a synthetic resin, it is richer in elasticity than metal and glass. The shape can be maintained by stirring with a mixer.

前記球状合成樹脂充填材の組成としての合成樹脂は例えば、アクリル樹脂、塩化ビニル樹脂、エチレン樹脂、プロピレン樹脂等が挙げられる。これらのうちアクリル樹脂を用いることが好ましい。アクリル樹脂を用いることにより、耐候性と柔軟性に富んだ建築仕上塗材を得ることができる。   Examples of the synthetic resin as the composition of the spherical synthetic resin filler include acrylic resin, vinyl chloride resin, ethylene resin, and propylene resin. Among these, it is preferable to use an acrylic resin. By using an acrylic resin, it is possible to obtain an architectural finish coating material that is rich in weather resistance and flexibility.

前記合成樹脂充填材の形状は球状であることが必要であり、略球状であることがより好ましく、真球状であることが最も好ましい。前記合成樹脂充填材の形状が球状であることにより、比表面積が最小となるため自由水が多く存在することができ、建築仕上塗材の製造時における球状合成樹脂充填材の分散が容易になって、界面活性剤の使用量を抑制することができる。   The shape of the synthetic resin filler needs to be spherical, more preferably approximately spherical, and most preferably true spherical. Since the shape of the synthetic resin filler is spherical, the specific surface area is minimized so that a large amount of free water can be present, and the dispersion of the spherical synthetic resin filler during the production of building finish coating materials is facilitated. Thus, the amount of the surfactant used can be suppressed.

前記球状合成樹脂充填材の平均粒子径は10〜250μmであることが必要であり、20〜200μmであることが好ましく、30〜150μmであることが最も好ましい。球状合成樹脂充填材の平均粒子径が10〜250μmであることにより、自由水の存在比が最適となる。球状合成樹脂充填材の平均粒子径が10μm未満の場合には、充填材の相対的な表面積が大きくなりすぎて自由水が少なくなってしまう。逆に250μmを超える場合には、自由水が多くなりすぎて結合剤を水分散体であるエマルジョンとして使用すると余剰の自由水の存在量が増えてしまうので、結合材の適度な使用量の設計が困難になる。   The spherical synthetic resin filler needs to have an average particle size of 10 to 250 μm, preferably 20 to 200 μm, and most preferably 30 to 150 μm. When the average particle diameter of the spherical synthetic resin filler is 10 to 250 μm, the abundance ratio of free water is optimized. When the average particle diameter of the spherical synthetic resin filler is less than 10 μm, the relative surface area of the filler becomes too large and free water is reduced. On the other hand, if it exceeds 250 μm, the amount of free water will increase so much that the amount of excess free water will be increased if the binder is used as an emulsion that is a water dispersion. Becomes difficult.

前記球状合成樹脂充填材は中空であることが好ましい。球状合成樹脂充填材が中空であることにより、該充填材の比重が軽くなるため、建築仕上塗材中における充填材の沈降のおそれが少なくなり、増粘剤の使用量を抑制することができる。また、屈折率の差が大きくなるため、塗膜の隠蔽性が向上し、酸化チタン等の白色顔料の使用量を抑制することができるとともに断熱効果を得ることができる。   The spherical synthetic resin filler is preferably hollow. Since the spherical synthetic resin filler is hollow, the specific gravity of the filler is reduced, so that the risk of sedimentation of the filler in the building finish coating material is reduced, and the amount of thickener used can be suppressed. . Moreover, since the difference in refractive index is increased, the concealability of the coating film is improved, the amount of white pigment such as titanium oxide used can be suppressed, and a heat insulating effect can be obtained.

前記球状合成樹脂充填材が中空である場合には、該球状合成樹脂充填材の平均粒子径は20〜200μmであることが好ましい。この範囲にあるとき、建築仕上塗材の断熱効果が最適になる。熱は対流と伝導により伝わるため、前記球状合成樹脂充填材の平均粒子径が小さいほど対流距離が長くなるため断熱効果に優れるが、前記球状合成樹脂充填材の平均粒子径が20μm未満である場合には、球状合成樹脂充填材の単位体積当たりの中空容積が減少するため、断熱効果が劣る。逆に前記球状合成樹脂充填材の平均粒子径が200μmを超える場合には、球状合成樹脂充填材の単位体積当たりの中空容積が増加するため、対流による熱伝導が生じやすく、断熱性に劣る。   When the spherical synthetic resin filler is hollow, the average particle diameter of the spherical synthetic resin filler is preferably 20 to 200 μm. When in this range, the thermal insulation effect of the building finish coating material is optimal. Since heat is transmitted by convection and conduction, the smaller the average particle size of the spherical synthetic resin filler, the longer the convection distance, and the better the heat insulating effect. However, when the average particle size of the spherical synthetic resin filler is less than 20 μm Since the hollow volume per unit volume of the spherical synthetic resin filler is reduced, the heat insulating effect is inferior. On the other hand, when the average particle diameter of the spherical synthetic resin filler exceeds 200 μm, the hollow volume per unit volume of the spherical synthetic resin filler increases, so that heat conduction due to convection is likely to occur and the heat insulation is poor.

前記球状合成樹脂充填材は建築仕上塗材中に2〜50質量%含有されていることが必要であり、より好ましくは5〜30質量%であり、最も好ましくは7〜20質量%である。この範囲にあるとき、建築仕上塗材に凹凸の意匠を付与させることが容易であるとともに、建築仕上塗材に含有されている増粘剤が固形分換算で0.01質量%未満であっても建築仕上塗材の貯蔵容器への収容時における粘度を100〜500dPa・sに保持することが容易になる。 The spherical synthetic resin filler is required to be contained in an architectural finishing coating material in an amount of 2 to 50% by mass, more preferably 5 to 30% by mass, and most preferably 7 to 20% by mass. When it is in this range, it is easy to impart an uneven design to the architectural finishing coating material, and the thickener contained in the architectural finishing coating material is less than 0.01% by mass in terms of solid content. However, it becomes easy to maintain the viscosity of 100 to 500 dPa · s when the building finish coating material is stored in the storage container.

前記球状合成樹脂充填材の真比重は0.20〜0.50あることが必要であり、より好ましくは0.20〜0.40最も好ましくは0.20〜0.30ある。この範囲にあるとき、建築仕上塗材の組成中における増粘剤の使用量を効果的に抑制することができる。中空球状合成樹脂充填材の真比重が0.20未満である場合には、充填材が軽すぎて建築仕上塗材の製造時において粉塵の飛散が生じやすくなり、作業者の健康に影響を及ぼすおそれがある。逆に0.50を超える場合には、比重が重すぎて増粘剤の使用量を効果的に減らすことができない。前記球状合成樹脂充填材の真比重が0.20〜0.40である場合には、貯蔵容器内に建築仕上塗材が収容されている状態で、貯蔵容器の内壁に建築仕上塗材が十分な厚さで付着するため、建築仕上塗材の表面の乾燥を抑制することができ、皮張りが生じにくくなる。
The true specific gravity of the spherical synthetic resin filler is required to be 0.20 to 0.50, more preferably 0.20 to 0.40, most preferably 0.20 to 0.30. When it exists in this range, the usage-amount of the thickener in the composition of a building finishing coating material can be suppressed effectively. When the true specific gravity of the hollow spherical synthetic resin filler is less than 0.20 , the filler is too light, and dust scattering is likely to occur during the manufacture of building finish coating materials, affecting the health of workers. There is a fear. On the other hand, if it exceeds 0.50, the specific gravity is too heavy and the amount of thickener used cannot be effectively reduced. When the true specific gravity of the spherical synthetic resin filler is 0.20 to 0.40, the architectural finish coating material is sufficient on the inner wall of the storage container while the architectural finish coating material is accommodated in the storage container. Since it adheres with a sufficient thickness, drying of the surface of the building finish coating material can be suppressed, and the skinning is less likely to occur.

前記球状合成樹脂充填材が中空である場合において、その平均殻厚は好ましくは2〜30μmであり、より好ましくは4〜20μmであり、最も好ましくは6〜15μmである。この範囲にあることにより、建築仕上塗材の断熱効果が最適となる。前記球状合成樹脂充填材の平均殻厚が2μm未満である場合には、殻が薄すぎて建築仕上塗材の製造時における攪拌等の外部からの衝撃により殻が破れ、比表面積が増加することによって界面活性剤の低減効果が薄れてしまうとともに、独立気泡でなくなるために断熱効果が低下する。逆に30μmを超える場合には、殻が厚すぎて中空容積が減少するため断熱効果が低下する。   When the spherical synthetic resin filler is hollow, the average shell thickness is preferably 2 to 30 μm, more preferably 4 to 20 μm, and most preferably 6 to 15 μm. By being in this range, the heat insulating effect of the building finish coating material is optimal. When the average shell thickness of the spherical synthetic resin filler is less than 2 μm, the shell is too thin and the shell is broken by an external impact such as stirring during the production of a building finish coating material, and the specific surface area increases. As a result, the effect of reducing the surfactant is diminished, and the heat insulation effect is reduced because it is no longer a closed cell. On the other hand, when it exceeds 30 μm, the shell is too thick and the hollow volume is reduced, so that the heat insulating effect is lowered.

前記球状合成樹脂充填材の外表面には無機金属酸化物又は無機金属塩を付着させてあることが好ましい。前記球状合成樹脂充填材の外表面には無機金属酸化物又は無機金属塩を付着させてあることにより、球状合成樹脂充填材の飛散性が抑えられ、取扱いが容易になるとともに、建築仕上塗材の製造時における泡立ちが抑えられるため、消泡剤の使用量を抑制することができる。   It is preferable that an inorganic metal oxide or an inorganic metal salt is adhered to the outer surface of the spherical synthetic resin filler. By coating the outer surface of the spherical synthetic resin filler with an inorganic metal oxide or inorganic metal salt, the scattering property of the spherical synthetic resin filler is suppressed, and handling is facilitated. Since the foaming at the time of manufacture of is suppressed, the usage-amount of an antifoamer can be suppressed.

前記無機金属酸化物としては例えば、アルミナ、酸化チタン、酸化亜鉛、酸化マグネシウム、シリカ等が挙げられる。無機金属塩としては例えば、炭酸カルシウム、硫酸バリウム等が挙げられる。これらのうち、表面の親水性が高いものを用いることが好ましい。表面の親水性が高いものを用いることにより、建築仕上塗材の製造時において球状合成樹脂充填材の混和性に優れ、建築仕上塗材における分散剤、湿潤剤等の界面活性剤の使用量を抑制することができる。前記無機金属酸化物又は無機金属塩のうち、表面の親水性が高いものとしては例えば、アルミナ、シリカ、炭酸カルシウム等が挙げられる。これらのうち、安価で環境負荷の少ない炭酸カルシウムを用いることが好ましい。   Examples of the inorganic metal oxide include alumina, titanium oxide, zinc oxide, magnesium oxide, and silica. Examples of the inorganic metal salt include calcium carbonate and barium sulfate. Among these, it is preferable to use one having a high surface hydrophilicity. By using a material with high surface hydrophilicity, it is excellent in miscibility of spherical synthetic resin fillers in the production of architectural finishing coating materials, and the amount of surfactants such as dispersants and wetting agents used in architectural finishing coating materials can be reduced. Can be suppressed. Among the inorganic metal oxides or inorganic metal salts, examples of those having high surface hydrophilicity include alumina, silica, calcium carbonate and the like. Of these, it is preferable to use calcium carbonate which is inexpensive and has a low environmental impact.

前記炭酸カルシウムの外表面には、より親水性を付与させるためアルミナ、シリカ等を担持させることが好ましい。前記炭酸カルシウムの外表面にアルミナ、シリカ等を担持させることにより、親水性を増すことができるため、界面活性剤の使用量をさらに抑制することができる。   The outer surface of the calcium carbonate is preferably supported with alumina, silica or the like in order to impart more hydrophilicity. By supporting alumina, silica or the like on the outer surface of the calcium carbonate, the hydrophilicity can be increased, so that the amount of the surfactant used can be further suppressed.

前記希釈剤は水に限らず、アルコール、シンナー等、通常の塗料に用いるものであれば任意に使用することができる。   The diluent is not limited to water, and can be arbitrarily used as long as it is used for ordinary paints such as alcohol and thinner.

前記結合材はアクリル樹脂エマルジョンに限らず、溶剤に溶融された状態で用いても良く、粉体で用いても良い。また、その組成も通常の塗料に用いるものであれば任意に使用することができる。例えば、アクリル樹脂、酢酸ビニル樹脂、塩化ビニル樹脂、バーサチック酸ビニル樹脂、ウレタン樹脂、シリコーン樹脂、フッ素樹脂等が挙げられる。これらは単独で用いても良く、混合して用いても良い。また、2以上の組成のモノマーを共重合させて用いても良い。   The binder is not limited to an acrylic resin emulsion, and may be used in a melted state in a solvent, or may be used as a powder. Moreover, if the composition is also used for a normal coating material, it can be used arbitrarily. For example, acrylic resin, vinyl acetate resin, vinyl chloride resin, versatic vinyl resin, urethane resin, silicone resin, fluorine resin, and the like can be given. These may be used alone or in combination. Further, monomers having two or more compositions may be copolymerized and used.

前記添加剤は通常の塗料に用いられるものであれば任意に設定することができる。例えば、防腐剤、防藻剤、繊維、着色顔料等が挙げられる。   The additive can be arbitrarily set as long as it is used in ordinary paints. For example, a preservative, an algae, a fiber, a coloring pigment, etc. are mentioned.

以上のように構成された建築仕上塗材は表面に凹凸上の形状を設けることができ、軽量であるため作業性に優れ、断熱性に優れるとともに、界面活性剤、造膜助剤、凍結防止剤の使用量が抑制されているため、建築仕上塗材の塗装をする作業者の肌荒れ、湿疹、かゆみ等の症状を引き起こすおそれを低減させることができる。   Architectural finishing coating materials constructed as described above can be provided with irregular shapes on the surface and are lightweight, so that they have excellent workability and heat insulation, as well as surfactants, film-forming aids, and freeze protection. Since the amount of the agent used is suppressed, the risk of causing symptoms such as rough skin, eczema, and itching of an operator who paints a building finish coating material can be reduced.

以上のように構成された建築仕上塗材により形成される塗膜の断面は、例えば図1に示すようなものである。なお、図1では説明のため、球状合成樹脂充填材を実際よりも大きく、また含有量を疎に描いている。 The cross section of the coating film formed by the architectural finishing coating material configured as described above is, for example, as shown in FIG. In FIG. 1, for the sake of explanation, the spherical synthetic resin filler is drawn larger than the actual one and the content is sparsely drawn.

図1に示すように、本発明の建築仕上塗材により形成された塗膜は、基材としてのコンクリート1の表面に本発明の建築仕上塗材層2が形成されており、該建築仕上塗材層2には球状合成樹脂充填材としての平均粒子径40μmのアクリル樹脂中空体3が含有されている。図2に示すように、前記アクリル樹脂中空体3の外殻4には無機金属塩としての炭酸カルシウム5が付着している。   As shown in FIG. 1, the coating film formed by the architectural finishing coating material of the present invention has the architectural finishing coating material layer 2 of the present invention formed on the surface of concrete 1 as a base material. The material layer 2 contains an acrylic resin hollow body 3 having an average particle diameter of 40 μm as a spherical synthetic resin filler. As shown in FIG. 2, calcium carbonate 5 as an inorganic metal salt adheres to the outer shell 4 of the acrylic resin hollow body 3.

本実施形態は以下に示す効果を発揮することができる。
・前記建築仕上塗材の貯蔵容器への収容時における粘度が100〜500dPa・sであることにより、塗膜に凹凸上の意匠を形成させることが容易になる。
This embodiment can exhibit the following effects.
-It becomes easy to form the design on an unevenness | corrugation in a coating film because the viscosity at the time of accommodation to the storage container of the said building finishing coating material is 100-500 dPa * s.

・前記球状合成樹脂充填材の組成が合成樹脂であることにより、表面の吸水及び吸油が抑制されることで建築仕上塗材の組成中において希釈剤としての水や有機溶剤等のうち、球状合成樹脂充填材に捕捉されない自由水が多く存在できるため、建築仕上塗材の製造時において充填材の分散が容易になり、分散剤等の界面活性剤の使用量を抑制することができる。   -The composition of the spherical synthetic resin filler is a synthetic resin, which suppresses water absorption and oil absorption on the surface, thereby reducing the spherical synthesis among water, organic solvents, etc. as a diluent in the composition of building finishing coating materials. Since there can be a lot of free water that is not captured by the resin filler, it is easy to disperse the filler during the production of a building finish coating material, and the amount of surfactant such as a dispersant can be suppressed.

・前記合成樹脂充填材の形状が球状であることにより、比表面積が最小となるため自由水が多く存在することができ、建築仕上塗材の製造時における球状合成樹脂充填材の分散が容易になって、界面活性剤の使用量を抑制することができる。   ・ Since the shape of the synthetic resin filler is spherical, the specific surface area is minimized, so there can be a lot of free water, and the dispersion of the spherical synthetic resin filler during the production of building finish coating materials is easy. Thus, the amount of the surfactant used can be suppressed.

・前記球状合成樹脂充填材の平均粒子径が10〜250μmであることにより、自由水の存在比が最適となるため、界面活性剤の使用量を抑制することができる。   -Since the average particle diameter of the said spherical synthetic resin filler is 10-250 micrometers, since the abundance ratio of free water becomes optimal, the usage-amount of surfactant can be suppressed.

・前記球状合成樹脂充填材は中空であることにより、該充填材の比重が軽くなるため、建築仕上塗材中における充填材の沈降のおそれがすくなくなり、増粘剤の使用量を抑制することができる。また、屈折率の差が大きくなるため、塗膜の隠蔽性が向上し、酸化チタン等の白色顔料の使用量を抑制することができる。   ・ Since the spherical synthetic resin filler is hollow, the specific gravity of the filler is reduced, so there is less risk of sedimentation of the filler in the building finish coating material, and the amount of thickener used is suppressed. Can do. Moreover, since the difference in refractive index is increased, the concealability of the coating film is improved, and the amount of white pigment such as titanium oxide used can be suppressed.

・前記球状合成樹脂充填材が建築仕上塗材中に2〜50質量%含有されていることにより、建築仕上塗材に含有されている増粘剤が固形分換算で0.01質量%未満であっても建築仕上塗材の貯蔵容器への収容時における粘度を100〜500dPa・sに保持することが容易になる。   -When the spherical synthetic resin filler is contained in the architectural finishing coating material in an amount of 2 to 50 mass%, the thickener contained in the architectural finishing coating material is less than 0.01 mass% in terms of solid content. Even if it exists, it becomes easy to hold | maintain the viscosity at the time of accommodation to the storage container of a building finishing coating material at 100-500 dPa * s.

・前記球状合成樹脂充填材の真比重が0.20〜0.50あることにより、建築仕上塗材の組成中における増粘剤の使用量を効果的に抑制することができる。
-When the true specific gravity of the spherical synthetic resin filler is 0.20 to 0.50 , the amount of thickener used in the composition of the building finish coating material can be effectively suppressed.

・前記球状合成樹脂充填材の外表面に無機金属酸化物又は無機金属塩を付着させることにより、球状合成樹脂充填材の飛散性が抑えられ、取扱いが容易になるとともに、建築仕上塗材の製造時における泡立ちが抑えられるため、消泡剤の使用量を抑制することができる。   ・ By attaching an inorganic metal oxide or inorganic metal salt to the outer surface of the spherical synthetic resin filler, the scattering property of the spherical synthetic resin filler is suppressed, the handling becomes easy, and the production of the building finish coating material Since foaming at the time is suppressed, the amount of antifoaming agent used can be suppressed.

・前記無機金属酸化物又は無機金属塩のうち、表面の親水性が高いものを用いることにより、建築仕上塗材の製造時において球状合成樹脂充填材の混和性に優れ、建築仕上塗材における分散剤、湿潤剤等の界面活性剤の使用量を抑制することができる。   -By using the inorganic metal oxide or inorganic metal salt having a high surface hydrophilicity, it is excellent in the miscibility of the spherical synthetic resin filler at the time of manufacturing the architectural finishing coating material, and is dispersed in the architectural finishing coating material. The amount of surfactants such as agents and wetting agents used can be suppressed.

・前記炭酸カルシウムの外表面には、より親水性を付与させるためアルミナ、シリカ等を担持させることが好ましい。前記炭酸カルシウムの外表面にアルミナ、シリカ等を担持させることにより、親水性を増すことができるため、界面活性剤の使用量をさらに抑制することができる。   -It is preferable to support alumina, silica or the like on the outer surface of the calcium carbonate in order to impart more hydrophilicity. By supporting alumina, silica or the like on the outer surface of the calcium carbonate, the hydrophilicity can be increased, so that the amount of the surfactant used can be further suppressed.

なお、本発明の前記実施形態を次のように変更して構成することもできる。
・前記実施形態においては基材としてのコンクリート1に直接建築仕上塗材層2を設けたが、基材と建築仕上塗材層2との間にプライマー層を設けても良い。
In addition, the said embodiment of this invention can also be changed and comprised as follows.
In the above embodiment, the architectural finishing coating material layer 2 is directly provided on the concrete 1 as the base material. However, a primer layer may be provided between the base material and the architectural finishing coating material layer 2.

このように構成した場合、建築仕上塗材を施工する際に基材としてのコンクリート1への吸水を抑制することができるため、塗装作業性に優れるとともに建築仕上塗材のひび割れを抑制することができる。   When comprised in this way, since it can suppress the water absorption to the concrete 1 as a base material when constructing a building finishing coating material, it is excellent in painting workability and can suppress cracking of the building finishing coating material. it can.

次に、前記実施形態から把握される請求項に記載した発明以外の技術的思想について、それらの効果と共に記載する。   Next, technical ideas other than the invention described in the claims ascertained from the embodiment will be described together with their effects.

・前記無機金属塩がアルミナ、シリカ、炭酸カルシウムから選択されることを特徴とする請求項3に記載の建築仕上塗材。
このように構成した場合、無機金属塩の親水性により、建築仕上塗材の製造時において球状合成樹脂充填材の混和性に優れ、建築仕上塗材における分散剤、湿潤剤等の界面活性剤の使用量を抑制することができる。
The architectural finishing coating material according to claim 3, wherein the inorganic metal salt is selected from alumina, silica, and calcium carbonate.
When configured in this way, due to the hydrophilicity of the inorganic metal salt, it is excellent in the miscibility of the spherical synthetic resin filler at the time of production of the architectural finish coating material. The amount used can be suppressed.

以下、実施例についての比較試験により、従来の技術に比べた本発明の顕著な効果を説明する。
試験は、実施例及び比較例の建築仕上塗材を製造し、塗材の性状を観察することにより行った。同時に該塗材のコテ塗り作業性及び吹き付け作業性についても確認した。コテ塗りは角鏝でスレート板に塗りつけることにより評価し、吹き付けはリシンガンを用いて評価した。
Hereinafter, the remarkable effect of the present invention as compared with the prior art will be described by comparative tests on the examples.
The test was performed by manufacturing the architectural finishing coating materials of Examples and Comparative Examples and observing the properties of the coating materials. At the same time, the ironing workability and spraying workability of the coating material were also confirmed. The iron coating was evaluated by applying to the slate plate with a square hook, and the spraying was evaluated using a lysing gun.

(実施例1)
実施例1の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂中空体(真比重0.2、平均粒子径40μm)20質量部。
Example 1
The composition of the building finishing coating material of Example 1 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and a calcium carbonate-supported acrylic resin hollow body (true specific gravity 0.2) as a spherical synthetic resin filler. , Average particle diameter 40 μm) 20 parts by mass.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は110dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 110 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good.

(実施例2)
実施例2の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂中空体(真比重0.2、平均粒子径40μm)20質量部、増粘剤0.008質量部。
(Example 2)
The composition of the building finishing coating material of Example 2 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and a calcium carbonate-supported acrylic resin hollow body (true specific gravity 0.2) as a spherical synthetic resin filler. , Average particle diameter 40 μm) 20 parts by mass, thickener 0.008 parts by mass.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は117dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 117 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good.

(実施例3)
実施例3の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂中空体(真比重0.2、平均粒子径40μm)2質量部。
(Example 3)
The composition of the building finishing coating material of Example 3 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and a calcium carbonate-supported acrylic resin hollow body (true specific gravity 0.2) as a spherical synthetic resin filler. , Average particle diameter 40 μm) 2 parts by mass.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は103dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 103 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good.

(参考例1)
参考例1の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としてのアクリル樹脂中空体(真比重0.1、平均粒子径40μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
(Reference Example 1)
The composition of the architectural finish coating material of Reference Example 1 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and an acrylic resin hollow body (true specific gravity 0.1, average particle) as a spherical synthetic resin filler. (Diameter 40 μm) 70 parts by mass, 0.1 parts by mass of surfactant, 10 parts by mass of water as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は486dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 486 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good.

(実施例4)
実施例4の建築仕上塗材の組成は、結合材としてのアクリル−シリコーン共重合樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂中空体(真比重0.2、平均粒子径40μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
Example 4
The composition of the building finish coating material of Example 4 is 160 parts by mass of an acrylic-silicone copolymer resin emulsion (solid content 50% by mass) as a binder, and a calcium carbonate-supported acrylic resin hollow body (true) as a spherical synthetic resin filler. Specific gravity 0.2, average particle diameter 40 μm) 70 parts by mass, surfactant 0.1 part by mass, water 10 parts by mass as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は404dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 404 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good.

(実施例5)
実施例5の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としてのアルミナ担持アクリル樹脂中空体(真比重0.2、平均粒子径80μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
(Example 5)
The composition of the building finish coating material of Example 5 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and an alumina-supported acrylic resin hollow body (true specific gravity 0.2, as a spherical synthetic resin filler). (Average particle diameter 80 μm) 70 parts by mass, 0.1 parts by mass of a surfactant, 10 parts by mass of water as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は421dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 421 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good.

(実施例6)
実施例6の建築仕上塗材の組成は、結合材としてのスチレン−アクリル共重合樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂中空体(真比重0.2、平均粒子径120μm、平均殻厚10μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
(Example 6)
The composition of the building finishing coating material of Example 6 is 160 parts by mass of a styrene-acrylic copolymer resin emulsion (solid content 50% by mass) as a binder, and a calcium carbonate-supporting acrylic resin hollow body (true) as a spherical synthetic resin filler. Specific gravity 0.2, average particle diameter 120 μm, average shell thickness 10 μm) 70 parts by mass, surfactant 0.1 part by mass, water 10 parts by weight as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は398dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、軽く滑らかな作業性であり、吹き付け作業性も良好であった。このときの塗膜の熱伝導率は、0.08W/K・mであった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 398 dPa · s. When the finished coating material was coated on a slate plate, it was light and smooth, and the spraying workability was also good. The thermal conductivity of the coating film at this time was 0.08 W / K · m.

(参考例2)
参考例2の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としての球状アクリル樹脂(真比重0.4、平均粒子径200μm)70質量部。
(Reference Example 2)
The composition of the architectural finishing coating material of Reference Example 2 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and a spherical acrylic resin (true specific gravity 0.4, average particle diameter) as a spherical synthetic resin filler. 200 μm) 70 parts by mass.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は250dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 250 dPa · s. When the finished coating material was coated on a slate plate, the workability was smooth and the spraying workability was also good.

(実施例7)
実施例7の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、球状合成樹脂充填材としてのアルミナ担持球状アクリル樹脂(真比重0.4、平均粒子径200μm)70質量部。
(Example 7)
The composition of the building finish coating material of Example 7 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and alumina-supported spherical acrylic resin (true specific gravity 0.4, average) as a spherical synthetic resin filler (Particle diameter 200 μm) 70 parts by mass.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は216dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、滑らかな作業性であり、吹き付け作業性も良好であった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 216 dPa · s. When the finished coating material was coated on a slate plate, the workability was smooth and the spraying workability was also good.

(実施例8)
実施例8の建築仕上塗材の組成は、結合材としてのスチレン−アクリル共重合樹脂エマルジョン(固形分45質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂(真比重0.4、平均粒子径100μm、平均殻厚1.0μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
(Example 8)
The composition of the building finish coating material of Example 8 was 160 parts by mass of a styrene-acrylic copolymer resin emulsion (solid content 45% by mass) as a binder, and a calcium carbonate-supporting acrylic resin (true specific gravity 0) as a spherical synthetic resin filler. .4, average particle diameter 100 μm, average shell thickness 1.0 μm) 70 parts by mass, surfactant 0.1 parts by mass, and 10 parts by mass of water as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は370dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、滑らかな作業性であり、吹き付け作業性も良好であった。このときの塗膜の熱伝導率は、0.48W/K・mであった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 370 dPa · s. When the finished coating material was coated on a slate plate, the workability was smooth and the spraying workability was also good. The thermal conductivity of the coating film at this time was 0.48 W / K · m.

(実施例9)
実施例9の建築仕上塗材の組成は、結合材としてのスチレン−アクリル共重合樹脂エマルジョン(固形分45質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂(真比重0.4、平均粒子径100μm、平均殻厚25μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
Example 9
The composition of the architectural finish coating material of Example 9 is 160 parts by mass of a styrene-acrylic copolymer resin emulsion (solid content 45% by mass) as a binder, and a calcium carbonate-supporting acrylic resin (true specific gravity 0) as a spherical synthetic resin filler. .4, average particle diameter 100 μm, average shell thickness 25 μm) 70 parts by mass, surfactant 0.1 part by mass, and 10 parts by mass of water as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は350dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、滑らかな作業性であり、吹き付け作業性も良好であった。このときの塗膜の熱伝導率は0.25W/K・mであった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 350 dPa · s. When the finished coating material was coated on a slate plate, the workability was smooth and the spraying workability was also good. The thermal conductivity of the coating film at this time was 0.25 W / K · m.

(実施例10)
実施例10の建築仕上塗材の組成は、結合材としてのスチレン−アクリル共重合樹脂エマルジョン(固形分45質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂(真比重0.4、平均粒子径100μm、平均殻厚5μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
(Example 10)
The composition of the building finish coating material of Example 10 is 160 parts by mass of a styrene-acrylic copolymer resin emulsion (solid content 45% by mass) as a binder, and a calcium carbonate-supporting acrylic resin (true specific gravity 0) as a spherical synthetic resin filler. .4, average particle diameter 100 μm, average shell thickness 5 μm) 70 parts by mass, surfactant 0.1 parts by mass, and 10 parts by mass of water as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は350dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、滑らかな作業性であり、吹き付け作業性も良好であった。このときの塗膜の熱伝導率は0.21W/K・mであった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 350 dPa · s. When the finished coating material was coated on a slate plate, the workability was smooth and the spraying workability was also good. The thermal conductivity of the coating film at this time was 0.21 W / K · m.

(比較例1)
比較例1の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、充填材としての炭酸カルシウム(真比重2.6、平均粒子径40μm)20質量部。
(Comparative Example 1)
The composition of the architectural finishing coating material of Comparative Example 1 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and 20% by mass of calcium carbonate (true specific gravity 2.6, average particle size 40 μm) as a filler. Department.

試験の結果、建築仕上塗材は炭酸カルシウムが沈降し、製造時の粘度は20dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、脱水を生じて塗りつけることが困難であり、吹き付けを行ったところダレを生じた。   As a result of the test, in the building finishing coating material, calcium carbonate was precipitated, and the viscosity at the time of production was 20 dPa · s. When the finished coating material was coated on a slate plate, it was difficult to apply it due to dehydration, and dripping occurred when sprayed.

(比較例2)
比較例2の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、充填材としての炭酸カルシウム(真比重2.6、平均粒子径40μm)20質量部、増粘剤0.008質量部。
(Comparative Example 2)
The composition of the architectural finish coating material of Comparative Example 2 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder, and 20% by mass of calcium carbonate (true specific gravity 2.6, average particle size 40 μm) as a filler. Parts, thickener 0.008 parts by mass.

試験の結果、建築仕上塗材は炭酸カルシウムが沈降し、製造時の粘度は21dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、脱水を生じて塗りつけることが困難であり、吹き付けを行ったところダレを生じた。   As a result of the test, in the building finishing coating material, calcium carbonate was precipitated, and the viscosity at the time of production was 21 dPa · s. When the finished coating material was coated on a slate plate, it was difficult to apply it due to dehydration, and dripping occurred when sprayed.

(比較例3)
比較例3の建築仕上塗材の組成は、結合材としてのアクリル樹脂エマルジョン(固形分50質量%)160質量部、充填材としてのアルミナ(真比重4.0、平均粒子径80μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。
(Comparative Example 3)
The composition of the architectural finishing coating material of Comparative Example 3 is 160 parts by mass of an acrylic resin emulsion (solid content 50% by mass) as a binder and 70 parts by mass of alumina (true specific gravity 4.0, average particle diameter 80 μm) as a filler. , 0.1 part by weight of a surfactant, 10 parts by weight of water as a diluent.

試験の結果、建築仕上塗材はアルミナが沈降し、製造時の粘度は18dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、脱水を生じて塗りつけることが困難であり、吹き付けを行ったところダレを生じた。   As a result of the test, alumina was precipitated in the building finishing coating material, and the viscosity at the time of production was 18 dPa · s. When the finished coating material was coated on a slate plate, it was difficult to apply it due to dehydration, and dripping occurred when sprayed.

(実施例11)
実施例11の建築仕上塗材の組成は、結合材としてのスチレン−アクリル共重合樹脂エマルジョン(固形分45質量%)160質量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂(真比重0.4、平均粒子径100μm、平均殻厚40μm)70質量部、界面活性剤0.1質量部、希釈剤としての水10質量部。

(Example 11)
The composition of the building finish coating material of Example 11 is 160 parts by mass of a styrene-acrylic copolymer resin emulsion (solid content 45% by mass) as a binder, and a calcium carbonate-supporting acrylic resin (true specific gravity 0) as a spherical synthetic resin filler. 0.4, average particle diameter 100 μm, average shell thickness 40 μm) 70 parts by mass, surfactant 0.1 parts by mass, water 10 parts by mass as a diluent.

試験の結果、建築仕上塗材は正常に製造でき、製造時の粘度は350dPa・sであった。できあがった塗材をスレート板にコテ塗したところ、滑らかな作業性であり、吹き付け作業性も良好であった。このときの塗膜の熱伝導率は0.54W/K・mであった。   As a result of the test, the building finish coating material was able to be produced normally, and the viscosity at the time of production was 350 dPa · s. When the finished coating material was coated on a slate plate, the workability was smooth and the spraying workability was also good. The thermal conductivity of the coating film at this time was 0.54 W / K · m.

(比較例4)
比較例4の建築仕上塗材の組成は、結合材としてのスチレン−アクリル樹脂エマルジョン(固形分50質量%)160重量部、球状合成樹脂充填材としての炭酸カルシウム担持アクリル樹脂中空体(真比重0.2、平均粒子径350μm)70質量部。界面活性剤0.1質量部、希釈材としての水10質量部。
(Comparative Example 4)
The composition of the architectural finish coating material of Comparative Example 4 is 160 parts by weight of a styrene-acrylic resin emulsion (solid content 50% by mass) as a binder, and a calcium carbonate-supporting acrylic resin hollow body (true true gravity 0) as a spherical synthetic resin filler. .2, average particle diameter 350 μm) 70 parts by mass. Surfactant 0.1 part by weight, water 10 parts by weight as a diluent.

試験の結果、建築仕上塗材はアクリル樹脂中空体の一部が沈降し、製造時の粘度は50dPa・sであった。できあがった塗材をスレート板にコテ塗りしたところ、塗りつけることが困難であり、吹き付けを行ったところ、ダレを生じた。   As a result of the test, a part of the acrylic resin hollow body settled in the building finishing coating material, and the viscosity at the time of production was 50 dPa · s. When the finished coating material was applied to a slate plate with a soldering iron, it was difficult to apply, and when sprayed, sagging occurred.

なお、本明細書に記載されている技術的思想は以下に示す発明者により創作された。
段落番号[0001]〜[0088]に記載されている技術的思想は加藤圭一により創作された。また、願書に添付した特許請求の範囲、明細書の著作者は加藤圭一である。
In addition, the technical idea described in the present specification was created by the following inventors.
The technical idea described in paragraph numbers [0001] to [0088] was created by Junichi Kato. The author of the claims and specification attached to the application is Shinichi Kato.

本発明の建築仕上塗材層の例を示した模式断面図である。It is the schematic cross section which showed the example of the architectural finishing coating material layer of this invention. 本発明の建築仕上塗材層に含有される球状合成樹脂充填材の例を示した模式断面図である。It is the schematic cross section which showed the example of the spherical synthetic resin filler contained in the building finishing coating material layer of this invention.

符号の説明Explanation of symbols

1 コンクリート
2 建築仕上塗材層
3 球状合成樹脂充填材
4 球状合成樹脂充填材の外殻
5 炭酸カルシウム
DESCRIPTION OF SYMBOLS 1 Concrete 2 Coating finishing coating layer 3 Spherical synthetic resin filler 4 Outer shell of spherical synthetic resin filler 5 Calcium carbonate

Claims (3)

貯蔵容器への収容時における粘度が100〜500dPa・sである建築仕上塗材であって、該建築仕上塗材が、外表面に無機金属酸化物又は無機金属塩が付着された真比重0.20〜0.50ある平均粒子径10〜250μmの球状合成樹脂充填材を建築仕上塗材中に〜50質量%含有していることを特徴とする建築仕上塗材。 An architectural finishing coating material having a viscosity of 100 to 500 dPa · s when accommodated in a storage container, wherein the architectural finishing coating material has an true specific gravity of 0. A building finishing coating material comprising 7 to 50% by mass of a spherical synthetic resin filler having an average particle size of 10 to 250 μm of 20 to 0.50 in the building finishing coating material. 前記球状合成樹脂充填材が中空であることを特徴とする請求項1に記載の建築仕上塗材。 The architectural finishing coating material according to claim 1 , wherein the spherical synthetic resin filler is hollow. 前記球状合成樹脂充填材の平均殻厚が2〜30μmであることを特徴とする請求項2に記載の建築仕上塗材。
The building finishing coating material according to claim 2 , wherein the spherical synthetic resin filler has an average shell thickness of 2 to 30 μm.
JP2008121109A 2008-05-07 2008-05-07 Architectural finishing coating material Active JP5438915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121109A JP5438915B2 (en) 2008-05-07 2008-05-07 Architectural finishing coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008121109A JP5438915B2 (en) 2008-05-07 2008-05-07 Architectural finishing coating material

Publications (2)

Publication Number Publication Date
JP2009270324A JP2009270324A (en) 2009-11-19
JP5438915B2 true JP5438915B2 (en) 2014-03-12

Family

ID=41437125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121109A Active JP5438915B2 (en) 2008-05-07 2008-05-07 Architectural finishing coating material

Country Status (1)

Country Link
JP (1) JP5438915B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181951B2 (en) * 2013-03-19 2017-08-16 ニチハ株式会社 Architectural board and method for producing architectural board
JP6207071B2 (en) * 2013-11-19 2017-10-04 関西ペイント株式会社 Matte thermal barrier coating composition and coating film forming method using the composition

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619061B2 (en) * 1988-04-15 1994-03-16 新日鐵化学株式会社 Solar heat shielding coating composition and coating structure
JPH02212344A (en) * 1989-02-13 1990-08-23 Katei Kagaku Kogyo Kk Composition for interior wall
JPH0710965B2 (en) * 1989-12-08 1995-02-08 トヨタ自動車株式会社 Coating material for gap adjusting film layer
JP4460768B2 (en) * 1998-02-24 2010-05-12 松本油脂製薬株式会社 Thermally expandable microcapsule, method for producing the same and method for using the same
JP2000313841A (en) * 1999-10-22 2000-11-14 Rikuo Himeno Coating material composition
JP3583734B2 (en) * 2001-04-20 2004-11-04 山本窯業化工株式会社 Aggregate for granite-like coating material, coating material for granite-like surface finish, and granite-like surface finish coating method
JP4224351B2 (en) * 2002-08-30 2009-02-12 エスケー化研株式会社 Method for forming coating film for building interior
JP2004107459A (en) * 2002-09-18 2004-04-08 Kikusui Chemical Industries Co Ltd Two-material type aggregate-containing coating material and use method thereof
JP2004225281A (en) * 2003-01-21 2004-08-12 Kikusui Chemical Industries Co Ltd Water repellent powder type building finishing material
JP4224350B2 (en) * 2003-06-04 2009-02-12 エスケー化研株式会社 Method for forming coating film for building interior
JP2005016291A (en) * 2003-06-28 2005-01-20 Iljin Cps Co Ltd Composition for buildings, and its method of application
JP2006102670A (en) * 2004-10-06 2006-04-20 Sk Kaken Co Ltd Method for forming heat-insulating coating film
JP4770443B2 (en) * 2005-01-04 2011-09-14 宇部興産株式会社 Iron coating cement composition and cured product obtained by blending the same

Also Published As

Publication number Publication date
JP2009270324A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
TWI375705B (en)
RU2698751C2 (en) Silicate plaster mass, light plaster consisting of this silicate plaster mass, and use of said silicate plaster mass to produce light plasters
RU2251563C2 (en) Corrosion resistant and heat-retention coat based 0n hollow microsphere mixture
KR102206016B1 (en) crack resistance insulating paint
BR112013019197B1 (en) inorganic dry powder architectural paint
ES2592226T3 (en) Coating composition that shows less clogging, fast drying speed and related methods
CN102212301A (en) Renovating coating for waterborne ceramic tiles and preparation method thereof
CA2906367C (en) Superhydrophilic coating composition
ES2741598T5 (en) Aqueous treatment mass for walls, ceilings or floors of buildings
CN105949842A (en) Waterproof and ultraviolet resistant paint for building exterior walls
CN112137421A (en) Coating and cooking utensil
CN115087630A (en) Ceramic composite material
JP5438915B2 (en) Architectural finishing coating material
CN105949841A (en) Waterproof and stain resistant paint for building interior walls
CN102337062A (en) Water-based thermal insulation coating and preparation method thereof
JP6308957B2 (en) Water-resistant coating composition for chipping resistance
JP2011219754A (en) Radiation paint composition, radiation coating material and method of manufacturing radiation coating material
CN107189605B (en) Reflective heat-insulating water-in-water multicolor paint and preparation method thereof
CN105860619A (en) Water-based shop primer composition and anticorrosion steel
JP5173121B2 (en) Water-based coating composition
CN103773156A (en) Foaming type elastic insulating anti-corrosive coating in floating-roof cabin of storage tank and preparation method thereof
JP2008038002A (en) Luminous coating material and article coated with the same
KR20030087450A (en) Composition for aqueous insulating coatings and insulating material using the same
JP3142165B2 (en) Aqueous chipping resistant paint composition
JP6841087B2 (en) How to manufacture paint kits and paint compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Ref document number: 5438915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250