JP6207071B2 - Matte thermal barrier coating composition and coating film forming method using the composition - Google Patents

Matte thermal barrier coating composition and coating film forming method using the composition Download PDF

Info

Publication number
JP6207071B2
JP6207071B2 JP2013239278A JP2013239278A JP6207071B2 JP 6207071 B2 JP6207071 B2 JP 6207071B2 JP 2013239278 A JP2013239278 A JP 2013239278A JP 2013239278 A JP2013239278 A JP 2013239278A JP 6207071 B2 JP6207071 B2 JP 6207071B2
Authority
JP
Japan
Prior art keywords
resin
thermal barrier
barrier coating
coating composition
matte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013239278A
Other languages
Japanese (ja)
Other versions
JP2015098543A (en
Inventor
杉島 正見
正見 杉島
増田 豊
豊 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2013239278A priority Critical patent/JP6207071B2/en
Priority to CN201410658874.6A priority patent/CN104650685B/en
Publication of JP2015098543A publication Critical patent/JP2015098543A/en
Application granted granted Critical
Publication of JP6207071B2 publication Critical patent/JP6207071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/004Reflecting paints; Signal paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、仕上がり性、下地隠蔽性、遮熱性及び断熱性に優れた艶消し塗膜を得ることが可能な艶消し遮熱塗料組成物、該組成物による艶消し遮熱塗膜の形成方法、並びに該形成方法により遮熱塗膜が形成された塗装物品に関する。 The present invention relates to a matte thermal barrier coating composition capable of obtaining a matte coating excellent in finish, base concealing property, thermal barrier and heat insulation, and a method for forming a matte thermal barrier coating using the composition The present invention also relates to a coated article on which a thermal barrier coating film is formed by the forming method.

従来から平均粒子径が数μm〜50μm程度のシリカ粒子、セラミック粒子、ポリマービーズ、中空樹脂粒子などの艶消し剤を配合した艶消し塗料組成物が知られている。   2. Description of the Related Art Matting coating compositions containing a matting agent such as silica particles, ceramic particles, polymer beads, and hollow resin particles having an average particle size of about several μm to 50 μm are known.

一方、省エネの観点から近年遮熱性と断熱性の高い塗膜への要望が高まってきている。上記シリカ粒子やポリマービーズは塗料用艶消し剤として多く使用することによって光の反射率が増大するものの、塗膜の遮熱性の向上への寄与は小さく、また、断熱性の向上への寄与はほとんどない。   On the other hand, from the viewpoint of energy saving, there has been an increasing demand for coating films having high heat shielding properties and heat insulation properties. Although the above-mentioned silica particles and polymer beads increase the light reflectance by using many as a matting agent for paints, the contribution to improving the heat shielding property of the coating film is small, and the contribution to improving the heat insulation is not rare.

特許文献1及び2にはホウ化ケイ素セラミックのバブル粒子を用いた高い日射反射率(遮熱性)と断熱性とを有する艶消し塗料組成物が開示されている。しかし、この塗料組成物から得られる塗膜は下地の隠蔽性に劣り、上記バブル粒子の含有量が多いと、塗料の貯蔵安定性が低下する、或いは得られた塗膜が劣化しやすくなるという問題があった。   Patent Documents 1 and 2 disclose matte paint compositions having high solar reflectance (heat shielding properties) and heat insulation properties using silicon boride ceramic bubble particles. However, the coating film obtained from this coating composition is inferior in the concealability of the base, and if the content of the bubble particles is large, the storage stability of the coating is lowered, or the obtained coating film is liable to deteriorate. There was a problem.

高い艶消し効果を与える中空樹脂粒子を添加した塗料組成物が特許文献3に記載されている。このような中空樹脂粒子は、得られる塗膜の断熱性の向上に対して該粒子内部の空気層の寄与が期待できるものの、該塗膜は下地の隠蔽性に劣り、有機溶剤を含む塗料に適用した場合、該塗料の貯蔵安定性に劣ることがあった。   Patent Document 3 discloses a coating composition to which hollow resin particles that give a high matting effect are added. Although such hollow resin particles can be expected to contribute to the improvement of the heat insulation of the resulting coating film, the coating layer is inferior in the concealment property of the base, and it can be used as a paint containing an organic solvent. When applied, the storage stability of the paint may be inferior.

多孔質炭酸カルシウムとチタン白を含む特許文献4に記載された塗料組成物は、高い光反射率と低光沢とを両立する塗膜を目的とするものであるが、艶消し効果をより高めるためには上記多孔質炭酸カルシウムの粒子径を大きくするか、その濃度を高める必要があった。しかし、粒子径を大きくすると塗膜の光反射率や隠蔽性が低下し、濃度を高くすると耐水性等の塗膜性能が低下することがあり、特に塗膜の屋外適性に劣ることがあった。   The coating composition described in Patent Document 4 containing porous calcium carbonate and titanium white is intended for a coating film that achieves both high light reflectance and low gloss, but to further enhance the matte effect. However, it was necessary to increase the particle diameter of the porous calcium carbonate or increase its concentration. However, when the particle size is increased, the light reflectance and concealing property of the coating film are reduced, and when the concentration is increased, the coating performance such as water resistance may be deteriorated. .

特開平11−323197号公報JP 11-323197 A 特開2004−010903号公報JP 2004-010903 A 特開2010−31161号公報JP 2010-31161 A 特開2012−92289号公報JP 2012-92289 A

本発明の目的は、チタン白及び樹脂(Z)を含む平均粒子径が1〜50μmの多孔質粒子(A)と、樹脂(B)とを含む、仕上がり性、下地隠蔽性、遮熱性及び断熱性に優れた艶消し塗膜を形成可能な艶消し遮熱塗料組成物、該組成物を用いた艶消し遮熱塗膜の形成方法、並びに該形成方法により遮熱塗膜が形成された塗装物品を提供することである。   An object of the present invention is to provide finish, base concealability, heat shielding and heat insulation, including porous particles (A) having an average particle diameter of 1 to 50 μm containing titanium white and resin (Z), and resin (B). Matte thermal barrier coating composition capable of forming matte coating with excellent properties, method of forming matte thermal barrier coating using the composition, and coating with thermal barrier coating formed by the formation method It is to provide an article.

本発明者らは上記目的を達成するために鋭意検討を重ねた結果、本発明を完成するに至った。すなわち、本発明は以下の項からなる。   As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. That is, the present invention comprises the following items.

項1.チタン白及び樹脂(Z)を含む平均粒子径が1〜50μmの多孔質粒子(A)と、樹脂(B)とを含む艶消し遮熱塗料組成物であって、多孔質粒子(A)の固形分質量を基準として上記チタン白が4.0〜45.0質量%の範囲内であり、樹脂(B)の質量を基準として多孔質粒子(A)を5〜30質量%含むことを特徴とする艶消し遮熱塗料組成物。 Item 1. A matte thermal barrier coating composition comprising a porous particle (A) having an average particle diameter of 1 to 50 μm containing titanium white and a resin (Z) and a resin (B), wherein the porous particle (A) The titanium white content is in the range of 4.0 to 45.0 mass% based on the solid content mass, and contains 5 to 30 mass% of porous particles (A) based on the mass of the resin (B). A matte thermal barrier coating composition.

項2.多孔質粒子(A)が平均粒子径10〜300nmの範囲内の粒子が凝集して形成されたものであり、多孔質粒子(A)の見掛け密度が0.5〜1.3g/cm3の範囲内であることを特徴とする項1に記載の艶消し遮熱塗料組成物。   Item 2. The porous particles (A) are formed by aggregation of particles having an average particle diameter of 10 to 300 nm, and the apparent density of the porous particles (A) is in the range of 0.5 to 1.3 g / cm 3. Item 2. The matte thermal barrier coating composition according to Item 1, wherein

項3.樹脂(Z)が、不飽和基及び酸基を有する樹脂(a)、アミノ基を有する化合物(b)並びにラジカル重合性不飽和モノマー(c)を反応させてなるものである項1又は2に記載の艶消し遮熱塗料組成物。   Item 3. Item 1 or 2 wherein the resin (Z) is obtained by reacting a resin (a) having an unsaturated group and an acid group, a compound (b) having an amino group, and a radical polymerizable unsaturated monomer (c). The matte thermal barrier coating composition as described.

項4.項1〜3の何れか一項に記載の艶消し遮熱塗料組成物を乾燥膜厚が20〜70μmの範囲内となるように塗装することを特徴とする艶消し遮熱塗膜の形成方法。   Item 4. The matte thermal barrier coating composition according to any one of items 1 to 3, wherein the matte thermal barrier coating composition is applied so that the dry film thickness is in the range of 20 to 70 μm. .

項5.チタン白を含むプライマー塗料組成物を塗装してプライマー塗膜を形成し、該プライマー塗膜上に項1〜3の何れか一項に記載の艶消し遮熱塗料組成物を塗装して成る艶消し遮熱複層塗膜の形成方法であって、上記プライマー塗膜の白色度(L値)が80〜98の範囲内であることを特徴とする艶消し遮熱塗膜の形成方法。   Item 5. A primer coating composition containing titanium white is applied to form a primer coating, and the matte thermal barrier coating composition according to any one of Items 1 to 3 is applied onto the primer coating. A method for forming a matte thermal barrier coating film, wherein the primer coating has a whiteness (L value) in the range of 80 to 98.

項6.項4又は5に記載の遮熱塗膜の形成方法により遮熱塗膜が形成された塗装物品。   Item 6. Item 6. A coated article on which a thermal barrier coating film is formed by the method for forming a thermal barrier coating film according to item 4 or 5.

本発明の艶消し遮熱塗料組成物は、仕上がり性、下地隠蔽性、遮熱性及び断熱性に優れた艶消し遮熱塗膜を形成可能なものであり、また、もうひとつの発明である該塗料組成物を用いた塗装方法は、建築物の外壁や屋根、鋼構造物などの表面に上記の優れた性能の艶消し遮熱塗膜を形成するために特に有用である。   The matte thermal barrier coating composition of the present invention is capable of forming a matte thermal barrier coating film excellent in finish, base concealing property, thermal barrier and heat insulating properties, and is another invention. The coating method using the coating composition is particularly useful for forming the above-described matte thermal barrier coating film having excellent performance on the outer wall, roof, steel structure and the like of a building.

本発明の艶消し遮熱塗料組成物(以下、「遮熱塗料組成物」と記すことがある)は、チタン白及び樹脂(Z)を含む平均粒子径が1〜50μmの多孔質粒子(A)と、樹脂(B)とを含む艶消し遮熱塗料組成物であって、多孔質粒子(A)の固形分質量を基準として上記チタン白が4.0〜45.0質量%の範囲内であり、樹脂(B)の質量を基準として多孔質粒子(A)を5〜30質量%含むことを特徴とする。 The matte thermal barrier coating composition of the present invention (hereinafter sometimes referred to as “thermal barrier coating composition”) is a porous particle having an average particle diameter of 1 to 50 μm containing titanium white and a resin (Z) (A ) And resin (B), wherein the titanium white is in the range of 4.0 to 45.0 mass% based on the solid content mass of the porous particles (A). And 5 to 30% by mass of the porous particles (A) based on the mass of the resin (B).

多孔質粒子(A)
多孔質粒子(A)の製造方法は特に限定されず、公知の方法により製造することができ、例えば、特開昭50−29691号公報やWO2004/029116号公報等に記載された方法を挙げることができる。
Porous particles (A)
The method for producing the porous particles (A) is not particularly limited, and can be produced by a known method, for example, the methods described in JP-A-50-29691, WO2004 / 029116, etc. Can do.

多孔質粒子(A)に含まれる樹脂(Z)は、特に限定されるものではないが、不飽和基及び酸基を有する樹脂(a)[本明細書において「樹脂(a)」と記すことあり]、アミノ基を有する化合物(b)並びにラジカル重合性不飽和モノマー(c)を反応させて得られる樹脂であることが、該粒子の製造が容易な点で好ましい。   The resin (Z) contained in the porous particles (A) is not particularly limited, but is a resin (a) having an unsaturated group and an acid group [denoted as “resin (a)” in the present specification. Yes], and a resin obtained by reacting the compound (b) having an amino group and the radical polymerizable unsaturated monomer (c) is preferable from the viewpoint of easy production of the particles.

多孔質粒子(A)の製造方法は、具体的には、樹脂(a)、アミノ基を有する化合物(b)、ラジカル重合性不飽和モノマー(c)並びにチタン白を含む混合物(M)を、水性分散樹脂(d)を含む水性媒体中で分散し、得られた水性分散液にラジカル重合開始剤(e)を添加してラジカル重合反応を含む反応を行うことによって、チタン白及び樹脂(Z)を含む多孔質粒子(A)を水性媒体中の分散粒子として得る方法を挙げることができる。上記反応においてアミノ基を有する化合物(b)は、樹脂(a)が有する不飽和基と、付加反応することが好ましい。得られた多孔質粒子(A)は水性媒体中に分散した状態のものを用いるか、又は揮発成分を除去して得られた粉体状のものを用いることによって、本発明の遮熱塗料組成物を得ることができる。   Specifically, the production method of the porous particles (A) includes a resin (a), a compound (b) having an amino group, a radical polymerizable unsaturated monomer (c) and a mixture (M) containing titanium white, By dispersing in an aqueous medium containing the aqueous dispersion resin (d) and adding a radical polymerization initiator (e) to the resulting aqueous dispersion to perform a reaction including a radical polymerization reaction, titanium white and resin (Z ) Containing porous particles (A) as dispersed particles in an aqueous medium. In the above reaction, the compound (b) having an amino group is preferably subjected to an addition reaction with the unsaturated group of the resin (a). The obtained porous particles (A) are dispersed in an aqueous medium or used in the form of powder obtained by removing volatile components, whereby the thermal barrier coating composition of the present invention is used. You can get things.

多孔質粒子(A)の製造方法は上記方法に限定されるものではなく、例えば、ラジカル重合性不飽和モノマー(c)を2分割して、その一方のモノマー(c1)は混合物(M)に含め、水性分散樹脂(d)を含む水性媒体中で混合物(M)を分散し、得られた水性分散液にラジカル重合開始剤(e1)を添加して重合反応を行い、次いで他方のモノマー(c2)とラジカル重合開始剤(e2)とを添加して重合反応を行う工程を経るなど、適宜変更してもよい。   The production method of the porous particles (A) is not limited to the above method. For example, the radical polymerizable unsaturated monomer (c) is divided into two, and one monomer (c1) is mixed into the mixture (M). In addition, the mixture (M) is dispersed in an aqueous medium containing the aqueous dispersion resin (d), and the radical polymerization initiator (e1) is added to the obtained aqueous dispersion to perform a polymerization reaction, and then the other monomer ( You may change suitably, such as passing through the process of adding c2) and a radical polymerization initiator (e2), and performing a polymerization reaction.

上記多孔質粒子(A)の製造における上記ラジカル重合反応は、常温〜90℃の温度で30分〜12時間程度で行うことができる。   The radical polymerization reaction in the production of the porous particles (A) can be performed at a temperature of room temperature to 90 ° C. for about 30 minutes to 12 hours.

なお、本明細書において、上記「水性媒体」とは水、または水と有機溶媒とを混合した媒体であって水を50質量%以上含む媒体のことを意味する。   In the present specification, the “aqueous medium” means water or a medium obtained by mixing water and an organic solvent and containing 50% by mass or more of water.

樹脂(a)は、不飽和基及び酸基を有している樹脂であれば、公知のものを使用することができ、例えば、ポリエステル樹脂、アルキド樹脂、アクリル樹脂、ポリウレタン樹脂、ポリオレフィン樹脂、ポリブタジエン系樹脂などの樹脂に公知の方法により不飽和基及び酸基を導入した樹脂を使用することができる。多孔質粒子の安定性と製造容易性の観点から樹脂(a)として不飽和基及び酸基を有するポリエステル樹脂が好適に使用できる。なお、本明細書において、不飽和基及び酸基を有する上記ポリエステル樹脂を「ポリエステル系樹脂(a´)」と記すことがある。   As the resin (a), a known resin can be used as long as it has an unsaturated group and an acid group. For example, polyester resin, alkyd resin, acrylic resin, polyurethane resin, polyolefin resin, polybutadiene can be used. A resin in which an unsaturated group and an acid group are introduced into a resin such as a series resin by a known method can be used. From the viewpoint of the stability of the porous particles and the ease of production, a polyester resin having an unsaturated group and an acid group can be suitably used as the resin (a). In the present specification, the polyester resin having an unsaturated group and an acid group may be referred to as “polyester resin (a ′)”.

樹脂(a)の有する酸基としては、例えば、スルホン酸基、カルボン酸基、リン酸基等を挙げることができ、特にカルボン酸基が製造の容易性の点から好適である。樹脂(a)の酸価は、5〜50mgKOH/gの範囲内であることが好ましい。   Examples of the acid group possessed by the resin (a) include a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group. A carboxylic acid group is particularly preferred from the viewpoint of ease of production. The acid value of the resin (a) is preferably in the range of 5 to 50 mgKOH / g.

ポリエステル系樹脂(a´)は、従来から公知の方法により製造することができ、例えば、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、テトラヒドロフタル酸、無水テトラヒドロフタル酸、メチルテトラヒドロ無水フタル酸、テトラブロモ無水フタル酸、テトラクロロ無水フタル酸、無水ヘット酸、無水ハイミック酸、ジシクロペンタジエンと無水マレイン酸との反応物等の不飽和多塩基酸を1種又は2種以上含む多塩基酸と、多価アルコールとをエステル化反応せしめることにより製造することができる。   The polyester-based resin (a ′) can be produced by a conventionally known method. For example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, tetrahydrophthalic acid, tetrahydrophthalic anhydride, methyl Contains one or more unsaturated polybasic acids such as tetrahydrophthalic anhydride, tetrabromophthalic anhydride, tetrachlorophthalic anhydride, het anhydride, hymic anhydride, and a reaction product of dicyclopentadiene and maleic anhydride It can be produced by esterifying a polybasic acid and a polyhydric alcohol.

ポリエステル系樹脂(a´)の製造において、上記不飽和多塩基酸といっしょに用いることのできる、その他の多塩基酸としては、フタル酸、無水フタル酸、ハロゲン化無水フタル酸、イソフタル酸、テレフタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸、コハク酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、1,12−ドデカン2酸,2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸無水物、4,4´−ビフェニルジカルボン酸、またこれらのジアルキルエステル等の多塩基酸を挙げることができ、これらは1種又は2種以上を用いることができる。   Other polybasic acids that can be used with the unsaturated polybasic acid in the production of the polyester resin (a ′) include phthalic acid, phthalic anhydride, halogenated phthalic anhydride, isophthalic acid, terephthalic acid. Acid, hexahydrophthalic acid, hexahydrophthalic anhydride, hexahydroterephthalic acid, hexahydroisophthalic acid, succinic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, 1,12-dodecanedioic acid, 2,6-naphthalene Listed are polybasic acids such as dicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic anhydride, 4,4'-biphenyldicarboxylic acid, and dialkyl esters thereof. These can use 1 type (s) or 2 or more types.

前記多価アルコールは、1分子中に2個以上の水酸基を有する化合物であり、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、ネオペンチルグリコール、1,2−又は1,3−プロパンジオール、1,6−ヘキサンジオール、1,4−ジメチロールシクロヘキサン、ジプロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、ビス(ヒドロキシメチル)キシレンなどの2価アルコール;グリセリン、1,1,1−トリメチロールプロパン、1,2,3−ブタントリオール、ペンタエリスリトール、ジペンタエリスリトールなどの3価以上のアルコール等を挙げることができ、これらは1種又は2種以上を用いることができる。   The polyhydric alcohol is a compound having two or more hydroxyl groups in one molecule. For example, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, neopentyl glycol, 1,2- or 1,3 A dihydric alcohol such as propanediol, 1,6-hexanediol, 1,4-dimethylolcyclohexane, dipropylene glycol, butanediol, pentanediol, hexanediol, cyclohexanedimethanol, bis (hydroxymethyl) xylene; glycerin, Examples include trivalent or higher alcohols such as 1,1,1-trimethylolpropane, 1,2,3-butanetriol, pentaerythritol, dipentaerythritol, and the like. Rukoto can.

ポリエステル系樹脂(a´)は、必要に応じて1価のカルボン酸化合物やアルコール化合物を、前記多塩基酸や多価アルコールといっしょに用いて、製造してもよい。   The polyester-based resin (a ′) may be produced using a monovalent carboxylic acid compound or an alcohol compound together with the polybasic acid or polyhydric alcohol as necessary.

ポリエステル系樹脂(a´)は、公知の方法で製造することができ、前記多塩基酸、多価アルコールおよび必要に応じてその他の成分を混合し、溶媒存在下または無溶媒で120〜300℃の温度に加熱し、通常2時間〜24時間縮合反応させることによって製造することができる。   The polyester-based resin (a ′) can be produced by a known method. The polybasic acid, the polyhydric alcohol, and other components as necessary are mixed, and in the presence of a solvent or without solvent, a temperature of 120 to 300 ° C. It can manufacture by heating to the temperature of this, and carrying out a condensation reaction normally for 2 hours-24 hours.

ポリエステル系樹脂(a´)を得るための前記以外の製造方法としては、カルボキシル基、水酸基等の官能基を有するポリエステル樹脂と、上記官能基と反応して化学結合を形成することが可能な官能基を有する不飽和化合物とを反応せしめて不飽和基を有するポリエステル系樹脂(a´)を得る方法を挙げることができる。   Other production methods for obtaining the polyester-based resin (a ′) include a polyester resin having a functional group such as a carboxyl group and a hydroxyl group, and a function capable of reacting with the functional group to form a chemical bond. Examples thereof include a method of obtaining a polyester resin (a ′) having an unsaturated group by reacting with an unsaturated compound having a group.

ポリエステル系樹脂(a´)は、多孔質粒子(A)の固形分質量を基準として20〜80質量%の範囲内で用いることが好ましい。   The polyester resin (a ′) is preferably used within a range of 20 to 80% by mass based on the solid content mass of the porous particles (A).

アミノ基を有する化合物(b)としては、例えば、モルホリン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルエタノールアミン等の1価アミン化合物、エチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン等の多価アミン化合物を挙げることができる。アミノ基を有する化合物(b)は、樹脂(a)の質量を基準として、0.5〜10.0質量%の範囲内で用いることが好ましい。   Examples of the compound (b) having an amino group include monovalent amine compounds such as morpholine, triethylamine, monoethanolamine, diethanolamine and dimethylethanolamine, and polyvalent amine compounds such as ethylenediamine, diethylenetriamine and dipropylenetriamine. it can. The compound (b) having an amino group is preferably used within a range of 0.5 to 10.0% by mass based on the mass of the resin (a).

前記チタン白は、多孔質粒子(A)の固形分質量を基準として4.0〜45.0質量%、好ましくは4.0〜40.0質量%の範囲内で用いることができる。チタン白が4.0質量%よりも少ないと得られる塗膜の隠蔽性と遮熱性が不十分になることがある。また、チタン白が45.0質量%よりも多いと多孔質粒子(A)の製造が困難になることがある。 The titanium white can be used in the range of 4.0 to 45.0 mass%, preferably 4.0 to 40.0 mass%, based on the solid content mass of the porous particles (A). If the amount of titanium white is less than 4.0 % by mass, the resulting coating film may have insufficient concealability and heat shielding properties. Moreover, when there are more titanium whites than 45.0 mass%, manufacture of a porous particle (A) may become difficult.

前記チタン白の平均粒子径は、塗膜の隠蔽性の点から0.1〜0.4μmの範囲内であることが好ましい。また塗膜の耐候性の点からルチルタイプを選択することが好ましい。   The average particle diameter of the titanium white is preferably in the range of 0.1 to 0.4 μm from the viewpoint of the concealability of the coating film. Moreover, it is preferable to select a rutile type from the point of the weather resistance of a coating film.

ラジカル重合性不飽和モノマー(c)は、公知のものを使用することができ、例えば、スチレン;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル等のビニルエステル類;メチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレ−ト、イソボルニル(メタ)アクリレート等の(メタ)アクリル酸エステル類;アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ネオペンチルグリコールジアクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ジアリルテレフタレート、エチレンビス(メタ)アクリルアミド等のラジカル重合性不飽和基を1分子中に2個以上有するモノマー等を挙げることができる。これらのモノマーは1種又は2種以上を用いてもよい。   As the radically polymerizable unsaturated monomer (c), known ones can be used, for example, styrene; vinyl esters such as vinyl acetate, vinyl butyrate and vinyl laurate; methyl (meth) acrylate, butyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, tridecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, etc. (Meth) acrylic acid esters: allyl (meth) acrylate, ethylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, neopentyl glycol diacrylate, 1,6-hexanediol di (meth) Acrylate, diallyl terephthalate, a monomer or the like having two or more radical polymerizable unsaturated group such as ethylenebis (meth) acrylamide in a molecule. These monomers may be used alone or in combination of two or more.

ラジカル重合性不飽和モノマー(c)は、多孔質粒子(A)の固形分質量を基準として、5〜50質量%の範囲内で用いることが好ましい。   The radically polymerizable unsaturated monomer (c) is preferably used within a range of 5 to 50% by mass based on the solid content mass of the porous particles (A).

なお、本明細書において、「(メタ)アクリレート」は、アクリレート又はメタクリレートを意味し、「(メタ)アクリル酸」は、アクリル酸又はメタクリル酸を意味する。また、「(メタ)アクリロイル」は、アクリロイル又はメタクリロイルを意味し、「(メタ)アクリルアミド」は、アクリルアミド又はメタクリルアミドを意味する。   In the present specification, “(meth) acrylate” means acrylate or methacrylate, and “(meth) acrylic acid” means acrylic acid or methacrylic acid. “(Meth) acryloyl” means acryloyl or methacryloyl, and “(meth) acrylamide” means acrylamide or methacrylamide.

水性分散樹脂(d)は、前記混合物(M)を水性媒体中で粒子状に安定に分散させるために使用する。水性分散樹脂(d)は、例えば、ポリビニルアルコール、カルボキシアルキルセルロース、ポリビニルピロリドン、ポリ(メタ)アクリルアミド系ポリマー、ポリエチレングリコール、ゼラチン、デンプン、ポリアルギン酸、ポリ(メタ)アクリル酸系ポリマー等の水に溶解または分散可能な樹脂を挙げることができ、これらは1種または2種以上を用いることができる。水性分散樹脂(d)は必要に応じて、公知の中和剤と併用して用いることができる。水性分散樹脂(d)は、混合物(M)の質量を基準として、0.1〜20質量%の範囲内で使用することが好ましい。また、上記水性媒体中における水性分散樹脂(d)の濃度は、0.1〜40質量%の範囲内であることが混合物(M)の安定な分散状態を維持する点で好ましい。   The aqueous dispersion resin (d) is used for stably dispersing the mixture (M) in the form of particles in an aqueous medium. The aqueous dispersion resin (d) is, for example, in water such as polyvinyl alcohol, carboxyalkyl cellulose, polyvinyl pyrrolidone, poly (meth) acrylamide polymer, polyethylene glycol, gelatin, starch, polyalginic acid, poly (meth) acrylic acid polymer. Resins that can be dissolved or dispersed can be mentioned, and these can be used alone or in combination of two or more. The aqueous dispersion resin (d) can be used in combination with a known neutralizing agent, if necessary. The aqueous dispersion resin (d) is preferably used within a range of 0.1 to 20% by mass based on the mass of the mixture (M). In addition, the concentration of the aqueous dispersion resin (d) in the aqueous medium is preferably in the range of 0.1 to 40% by mass from the viewpoint of maintaining a stable dispersion state of the mixture (M).

ラジカル重合開始剤(e)は、公知の化合物を使用することができ、例えば、アゾビスイソブチロニトリル、アゾビス(2,4−ジメチルバレロニトリル)等のアゾ化合物、ジベンゾイルパーオキシド、ジ−tert−ブチルパーオキサイド、クメンハイドロパーオキサイド等の有機過酸化物、過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩、過酸化水素等の無機過酸化物等を挙げることができる。さらに、上記過酸化物の重合開始剤は、必要に応じて硫酸第一鉄、塩化第一鉄、ロンガリット、二酸化チオ尿素、エリソルビン酸、酒石酸、糖類等の公知の還元剤を1種又は2種以上を添加して、レドックス開始剤として使用してもよい。   As the radical polymerization initiator (e), known compounds can be used. For example, azo compounds such as azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile), dibenzoyl peroxide, di- Examples thereof include organic peroxides such as tert-butyl peroxide and cumene hydroperoxide, persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate, and inorganic peroxides such as hydrogen peroxide. Further, the peroxide polymerization initiator may be one or two known reducing agents such as ferrous sulfate, ferrous chloride, Rongalite, thiourea dioxide, erythorbic acid, tartaric acid, and saccharides, if necessary. The above may be added and used as a redox initiator.

多孔質粒子(A)は、該粒子内部が架橋構造を有していることが本発明の艶消し塗料組成物の貯蔵安定性の観点から好ましい。上記架橋構造を得るために、多孔質粒子(A)の製造において、アミノ基を有する化合物(b)として1分子中に1級又は2級アミノ基を2個以上有する多価アミン化合物を使用したり、ラジカル重合性不飽和モノマー(c)として1分子中にラジカル重合性不飽和基を2個以上有するモノマーを使用してもよい。   The porous particles (A) preferably have a crosslinked structure inside the particles from the viewpoint of the storage stability of the matte coating composition of the present invention. In order to obtain the crosslinked structure, a polyvalent amine compound having two or more primary or secondary amino groups in one molecule is used as the compound (b) having an amino group in the production of the porous particles (A). Alternatively, a monomer having two or more radically polymerizable unsaturated groups in one molecule may be used as the radically polymerizable unsaturated monomer (c).

前記混合物(M)は、上記成分以外のその他成分として公知の有機溶媒;大豆油脂肪酸、亜麻仁油脂肪酸、ヤシ油脂肪酸、オレイン酸等の飽和又は不飽和脂肪酸類;大豆油、亜麻仁油等の油類;石油樹脂、アルキド樹脂等を含んでもよい。   The mixture (M) is a known organic solvent as other components other than the above components; saturated or unsaturated fatty acids such as soybean oil fatty acid, linseed oil fatty acid, coconut oil fatty acid, oleic acid; oils such as soybean oil and linseed oil A petroleum resin, an alkyd resin, etc.

混合物(M)の調整に際して、前記チタン白は、樹脂(a)と混合して分散機により分散したものを用いてもよいが、樹脂(a)以外の公知の顔料分散樹脂や顔料分散剤と前記チタン白とを混合して分散機により分散し、ペースト状にしたものを用いても良い。上記分散は、有機溶媒、水、ラジカル重合性不飽和モノマー(c)等を前記チタン白と一緒に混合して行ってもよい。   In preparing the mixture (M), the titanium white may be mixed with the resin (a) and dispersed by a disperser, but a known pigment dispersion resin or pigment dispersant other than the resin (a) may be used. The titanium white may be mixed and dispersed by a disperser to form a paste. The dispersion may be performed by mixing an organic solvent, water, a radical polymerizable unsaturated monomer (c), etc. together with the titanium white.

前記製造方法により製造された多孔質粒子(A)は、平均粒子径10〜300nmの範囲内の粒子が凝集して形成されたものであり(図1の多孔質粒子内部壁面の電子顕微鏡写真を参照)、多孔質粒子内部には球状の孔が多数存在する(図2の多孔質粒子断面の電子顕微鏡写真を参照)。このような構造のために多孔質粒子(A)は機械的強度や化学的安定性に優れており、本発明の遮熱塗料組成物中において該粒子内部の空隙を安定に維持し、塗膜中においても隠蔽力、艶消し効果、遮熱及び断熱性などの機能を発揮できるものと考えられる。   The porous particles (A) produced by the production method are formed by agglomeration of particles having an average particle diameter of 10 to 300 nm (an electron micrograph of the inner wall surface of the porous particles in FIG. 1). (Refer to FIG. 2.) Many spherical pores exist inside the porous particles (see the electron micrograph of the cross section of the porous particles in FIG. 2). Due to such a structure, the porous particles (A) are excellent in mechanical strength and chemical stability, and stably maintain voids inside the particles in the thermal barrier coating composition of the present invention. Even inside, it is considered that functions such as hiding power, matting effect, heat shielding and heat insulation can be exhibited.

なお、本明細書における多孔質粒子(A)の固形分質量とは、例えば、前記製造方法により多孔質粒子(A)が製造され、水性媒体中に分散した分散液として得られた場合、上記分散液を約2グラム秤量してブリキ皿等の開放容器に入れ、105℃で3時間加熱乾燥した場合の不揮発分の百分率(固形分%)を求め、その値を用いて不揮発分の質量に換算した値を意味する。   In addition, the solid content mass of the porous particles (A) in the present specification is, for example, when the porous particles (A) are produced by the production method and obtained as a dispersion dispersed in an aqueous medium. About 2 grams of the dispersion is weighed and placed in an open container such as a tin plate, and the percentage of non-volatile content (solid content%) when heated and dried at 105 ° C. for 3 hours is determined. It means the converted value.

多孔質粒子(A)の粒子径や該粒子内部の空隙の量は、多孔質粒子(A)の製造工程における前記各成分の組成、各工程におる分散力、分散時間等により制御が可能であるため、目的に応じて上記要因を適宜調整することができる。   The particle diameter of the porous particles (A) and the amount of voids inside the particles can be controlled by the composition of the respective components in the production process of the porous particles (A), the dispersion force in each process, the dispersion time, and the like. Therefore, the above factors can be appropriately adjusted according to the purpose.

なお、本明細書において多孔質粒子(A)の見掛け密度は、日本粉体工業技術協会規格 SAP 02−82(1982年)に準じて測定した値である。また、多孔質粒子(A)の見掛け密度は、揮発成分を除去して得られた乾燥多孔質粒子(A)の見掛け密度である。   In the present specification, the apparent density of the porous particles (A) is a value measured according to Japan Powder Industry Technical Association Standard SAP 02-82 (1982). The apparent density of the porous particles (A) is the apparent density of the dried porous particles (A) obtained by removing volatile components.

多孔質粒子(A)の見掛け密度は、0.5〜1.3g/cm、好ましくは1.1〜0.6g/cm、さらに好ましくは0.9〜0.7g/cmの範囲内である。上記見掛け密度が、0.5g/cmよりも小さいと多孔質粒子(A)の機械的強度が低くなることがあり、1.3g/cmよりも大きいと、塗膜の艶消し性や遮熱性が不十分になることがある。 The apparent density of the porous particles (A) is in the range of 0.5 to 1.3 g / cm 3 , preferably 1.1 to 0.6 g / cm 3 , more preferably 0.9 to 0.7 g / cm 3 . Is within. When the apparent density is less than 0.5 g / cm 3, the mechanical strength of the porous particles (A) may be lowered. When the apparent density is greater than 1.3 g / cm 3 , Thermal insulation may be insufficient.

多孔質粒子(A)の平均粒子径は1〜50μm、好ましくは2〜30μmの範囲内である。上記平均粒子径が1μmよりも小さいと艶消し効果が不十分になることがあり、50μmよりも大きいと遮熱性が劣ることがある。   The average particle diameter of the porous particles (A) is 1 to 50 μm, preferably 2 to 30 μm. If the average particle size is smaller than 1 μm, the matting effect may be insufficient, and if it is larger than 50 μm, the heat shielding property may be inferior.

なお、チタン白及び多孔質粒子(A)の平均粒子径は、マイクロトラック粒度分布測定装置MT3300(商品名、日機装社製)を用いてレーザー回折散乱法によって測定した体積基準粒度分布のメジアン径を意味する。また、多孔質粒子(A)を構成する平均粒子径が約10〜300nmの範囲内の微小粒子の平均粒子径の値は、電子顕微鏡観察により得られた値である。   The average particle size of the titanium white and porous particles (A) is the median size of the volume-based particle size distribution measured by the laser diffraction scattering method using a microtrack particle size distribution measuring device MT3300 (trade name, manufactured by Nikkiso Co., Ltd.). means. Moreover, the value of the average particle diameter of the microparticles within the range where the average particle diameter constituting the porous particles (A) is about 10 to 300 nm is a value obtained by observation with an electron microscope.

樹脂(B)
樹脂(B)は、塗料分野で通常使用できる塗膜形成能を有する樹脂である限り特に制限なく使用することができ、代表例として、アクリル樹脂、アルキド樹脂、ポリエステル樹脂、エポキシ樹脂、フッ素樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリオレフィン樹脂、シリコン樹脂、石油樹脂;これら2種以上の樹脂を公知の方法により結合させてなる変性樹脂等の1種又は2種以上の混合樹脂を挙げることができる。また、樹脂(B)は、塗料分野で公知の官能基を1種又は2種以上を有してもよい。
Resin (B)
The resin (B) can be used without particular limitation as long as it is a resin having a film-forming ability that can be usually used in the paint field. Representative examples include acrylic resins, alkyd resins, polyester resins, epoxy resins, fluororesins, One or two or more kinds of mixed resins such as a vinyl chloride resin, a polyamide resin, a polyolefin resin, a silicon resin, a petroleum resin; a modified resin obtained by bonding these two or more kinds of resins by a known method can be given. Moreover, resin (B) may have 1 type (s) or 2 or more types of functional groups well-known in the coating-materials field | area.

艶消し遮熱塗料組成物
本発明の艶消し遮熱塗料組成物は、多孔質粒子(A)と樹脂(B)とを含む艶消し遮熱塗料組成物であって、樹脂(B)の質量を基準として多孔質粒子(A)を固形分質量で5〜30質量%含み、さらに必要に応じて、塗料組成物に使用される公知の硬化剤、顔料、分散剤、添加剤、溶媒等を含むことができる。
Matte Thermal Barrier Paint Composition The matte thermal barrier paint composition of the present invention is a matte thermal barrier paint composition containing porous particles (A) and a resin (B), and the mass of the resin (B). The porous particles (A) are contained in a solid content of 5 to 30% by mass based on the above, and, if necessary, known curing agents, pigments, dispersants, additives, solvents and the like used in the coating composition. Can be included.

多孔質粒子(A)が5質量%よりも少ないと得られる塗膜の艶消し性や遮熱効果が不十分なことがあり、30質量%よりも多いと艶消しおよび遮熱効果が飽和して、塗料の原材料コストが高くなることがある。   When the amount of the porous particles (A) is less than 5% by mass, the matte property and the heat shielding effect of the coating film obtained may be insufficient. When the amount is more than 30% by mass, the matte and the heat shielding effect are saturated. Therefore, the raw material cost of the paint may be high.

上記溶媒としては、水、有機溶媒、水と有機溶媒の混合物を挙げることができ、適宜選択して用いることができる。   Examples of the solvent include water, an organic solvent, and a mixture of water and an organic solvent, which can be appropriately selected and used.

本発明の艶消し遮熱塗料組成物は、多孔質粒子(A)と樹脂(B)とを上記質量の範囲内で含んでいる限り、水性塗料、溶剤型塗料、粉体塗料、無溶剤塗料等の何れの塗料形態の組成物であってもよい。   As long as the matte thermal barrier coating composition of the present invention contains the porous particles (A) and the resin (B) within the above-mentioned mass range, a water-based coating, a solvent-based coating, a powder coating, and a solvent-free coating The composition may be in any form of paint.

艶消し遮熱塗膜の形成方法
本発明の艶消し遮熱塗料組成物は、ローラー塗装、刷毛塗装、流し塗装、ロールコーター塗装、ディップ塗装、電着塗装、静電塗装、スプレー塗装等の公知の方法により被塗物に塗装することができる。本発明の遮熱塗料組成物を上塗り塗料組成物として使用した場合、得られた塗膜の乾燥膜厚が20〜70μmの範囲内において安定した塗膜品質を得ることができる。
Method for forming matte thermal barrier coating The matte thermal barrier coating composition of the present invention is known for roller coating, brush coating, sink coating, roll coater coating, dip coating, electrodeposition coating, electrostatic coating, spray coating, etc. It can be applied to an object by the method described above. When the thermal barrier coating composition of the present invention is used as a top coating composition, a stable coating quality can be obtained when the obtained coating has a dry film thickness in the range of 20 to 70 μm.

一般にローラー塗装においては、得られる塗膜の膜厚はバラツキを生じ易く、膜厚差による塗膜光沢のバラツキ(艶ムラ)が生じ易くなる。また刷毛塗装とローラー塗装が重なる部位やタッチアップ部位などにおいて、仕上がり性の違いが目立ちやすくなる。本発明においては乾燥膜厚が20〜70μmの範囲内となるように塗装することにより、上記の艶ムラやタッチアップ部位等の仕上がり性の差異が生じ難く、下地隠蔽性、遮熱性及び断熱性に優れ、同時に仕上がり性にも優れた艶消し遮熱塗膜を形成することができる。上記乾燥膜厚が20μm未満の場合、艶消し効果にはあまり影響はないものの、下地隠蔽性、遮熱性が不足することがある。上記乾燥膜厚が70μmよりも厚い場合は、安価なガラスバルーンやシラスバルーンなどを適用した、同等の断熱性を有する従来技術による塗膜に比べて、高コストになることがある。   In general, in roller coating, the film thickness of the obtained coating film tends to vary, and coating film gloss variation (gloss unevenness) due to film thickness difference tends to occur. In addition, the difference in finish is easily noticeable in areas where brush painting and roller coating overlap or in touch-up areas. In the present invention, by coating so that the dry film thickness is in the range of 20 to 70 μm, differences in finish such as gloss unevenness and touch-up site are unlikely to occur. It is possible to form a matte heat-shielding coating film that is excellent at the same time and excellent in finish. When the dry film thickness is less than 20 μm, the matting effect is not significantly affected, but the base concealing property and the heat shielding property may be insufficient. When the dry film thickness is thicker than 70 μm, the cost may be higher than that of a conventional coating film having an equivalent heat insulating property using an inexpensive glass balloon or shirasu balloon.

なお、上記乾燥膜厚の範囲の艶消し遮熱塗膜を得るために、本発明の遮熱塗料組成物を1回塗りの塗装で仕上げてもよいし、2回塗り以上の塗装で仕上げてもよい。   In addition, in order to obtain a matte thermal barrier coating film in the above-mentioned dry film thickness range, the thermal barrier coating composition of the present invention may be finished by one-time coating or finished by two or more coatings. Also good.

また、チタン白を含むプライマー塗料組成物を塗装してプライマー塗膜を形成し、該プライマー塗膜上に本発明の艶消し遮熱塗料組成物を塗装して複層塗膜を形成してもよい。上記プライマー塗膜の白色度(L値)が80〜98の範囲内であれば、本発明の艶消し遮熱塗料組成物により形成された上塗り塗膜の乾燥膜厚が5〜20μm未満の範囲内の場合においても、遮熱性に優れ、同時に仕上がり性に優れた艶消し複層塗膜を得ることができる。また、上記複層塗膜に断熱性が必要な場合は、公知の多孔質粒子、例えば、安価なガラスバルーン、シラスバルーン、中空ガラスビーズ等を含む断熱塗料組成物を上記プライマー塗料組成物として塗装し、本発明の艶消し遮熱塗料組成物を上塗りとして塗装することにより、仕上がり性、遮熱性、断熱性に優れた艶消し複層塗膜をコスト面で安価に施工することが可能となる。   Alternatively, a primer coating composition containing titanium white may be applied to form a primer coating, and the matte thermal barrier coating composition of the present invention may be applied onto the primer coating to form a multilayer coating. Good. If the whiteness (L value) of the primer coating film is in the range of 80 to 98, the dry film thickness of the top coating film formed from the matte thermal barrier coating composition of the present invention is in the range of less than 5 to 20 μm. Even in this case, it is possible to obtain a matte multilayer coating film having excellent heat shielding properties and at the same time excellent finish. In addition, when the multilayer coating film requires heat insulation, a heat insulating coating composition containing known porous particles, for example, inexpensive glass balloons, shirasu balloons, hollow glass beads, etc. is applied as the primer coating composition. In addition, by applying the matte thermal barrier coating composition of the present invention as a top coat, it is possible to apply a matte multilayer coating film excellent in finish, thermal barrier and thermal insulation at low cost. .

次に、実施例を挙げて、本発明をより具体的に説明する。ここで「部」及び「%」はそれぞれ「質量部」及び「質量%」を意味する。   Next, an Example is given and this invention is demonstrated more concretely. Here, “parts” and “%” mean “parts by mass” and “% by mass”, respectively.

多孔質粒子(A)の製造例
(製造例1) 多孔質粒子(A1)の製造
表1の段階1〜4に記した各配合(表中の数値は質量部を意味する)を下記のように調整した。
段階1 チタン白 0.60部を、不飽和基及び酸基を有するポリエステル樹脂(注1) 10.60部と、スチレン 10.90部といっしょに混合し、容器内でディスパーを用いて分散した。次いで内容物を攪拌しながら及びジエチレントリアミン 0.21部を添加し、内容物の温度を約30℃に制御しながら、2時間攪拌を続けて混合物1を得た。
段階2 10質量%ポリビニルアルコール水溶液 13.30部と、2.5質量%ヒドロキシエチルセルロース水溶液 10.50部と、水 53.40部と、ジエチレントリアミン0.06部とを攪拌しながら混合し、混合物2を得た。
Production Example of Porous Particle (A) (Production Example 1) Production of Porous Particle (A1)
Each formulation described in stages 1 to 4 of Table 1 (the numerical values in the table mean parts by mass) were adjusted as follows.
Stage 1. 0.60 part of titanium white was mixed with 10.60 parts of polyester resin having an unsaturated group and an acid group (Note 1) and 10.90 parts of styrene, and dispersed in a container using a disper. . Then, while stirring the contents and 0.21 part of diethylenetriamine was added and the temperature of the contents was controlled at about 30 ° C., stirring was continued for 2 hours to obtain a mixture 1.
Step 2 13.30 parts of a 10% by weight aqueous polyvinyl alcohol solution, 10.50 parts of a 2.5% by weight aqueous hydroxyethyl cellulose solution, 53.40 parts of water, and 0.06 part of diethylenetriamine were mixed with stirring to obtain a mixture 2 Got.

上記混合物2に、上記混合物1を攪拌しながら添加し、所望の粒子径が得られるまで激しく攪拌し、混合物3を得た。
段階3 混合物3を攪拌しながら、硫酸第一鉄 0.01部を添加し、次いでクメンヒドロペルオキシド 0.12部を添加した。内容物の温度を約50℃に保ちながら攪拌を行い、混合物4を得た。
段階4 スラオフ72N(日本エンバイロケミカルズ社製の防腐剤) 0.35部を混合物4に加えて多孔質粒子(A1)の水分散体を得た。
The mixture 1 was added to the mixture 2 with stirring, and the mixture was vigorously stirred until a desired particle size was obtained, whereby a mixture 3 was obtained.
Stage 3 While stirring Mixture 3, 0.01 part ferrous sulfate was added followed by 0.12 part cumene hydroperoxide. Stirring was performed while maintaining the temperature of the contents at about 50 ° C. to obtain a mixture 4.
Stage 4 Slough-off 72N (a preservative manufactured by Nippon Environmental Chemicals Co., Ltd.) 0.35 part was added to the mixture 4 to obtain an aqueous dispersion of porous particles (A1).

上記水分散体の固形分は24質量%、上記水分散体の揮発成分を除去(注2)した後に得られた乾燥多孔質粒子(A1)の見掛け密度(注3)は、0.86g/cm、粒子径は5.6μmであった。
(注1)不飽和基及び酸基を有するポリエステル樹脂の製造
撹拌機、温度計、精留塔および水分離器を装備した反応容器に、無水マレイン酸 35部、無水フタル酸 20部、1,3−プロパンジオール 45部をエステル化触媒のジブチル錫オキサイド(0.02部)の存在下で230℃に加熱し、1時間保った後、キシレンを加え、同温度で約2時間キシレンを還流させながら水を留去して不飽和基及び酸基を有するポリエステル樹脂を得た。このポリエステル樹脂の数平均分子量は約2000であり、酸価は18mgKOH/gであった。このポリエステル樹脂を製造例1〜7において使用した。なお、本明細書において重量平均分子量又は数平均分子量は、ゲルパーミエーションクロマトグラフ(東ソー株式会社製、「HLC8120GPC」)で測定した重量平均分子量をポリスチレンの重量平均分子量を基準にして換算した値である。カラムは、「TSKgel G−4000H×L」、「TSKgel G−3000H×L」、「TSKgel G−2500H×L」、「TSKgel G−2000H×L」(いずれも東ソー株式会社社製、商品名)の4本を用い、移動相;テトラヒドロフラン、測定温度;40℃、流速;1ml/分、検出器;RIの条件で行ったものである。
(注2)揮発成分の除去方法
乾燥多孔質粒子(A1)は、スプレードライヤー「ADL311S」(ヤマト科学製)を用いて、次の条件下にて乾燥して得た。供給速度:14ml/min,噴霧圧:0.15MPa,風量:0.3m/min,入口温度:150℃、出口温度60℃
(注3)見掛け密度の測定方法
上記(注2)の条件にて得られた乾燥多孔質粒子の見掛け密度を日本粉体工業技術協会規格 SAP 02−82(1982年)に準じて測定した。即ち、250mlのメスシリンダーに流動パラフィンを約150ml入れ、液面を測定する(x ml)。上記多孔質粒子を約20g秤量したもの(z g)をゆっくり加え、メスシリンダーを軽く振とうして粒子試料全体を流動パラフィンで濡らしてから経時(流動パラフィンで粒子試料全体を濡らした時間を0分として、例えば、1分後、5分後、15分後、・・・60分後)におけるパラフィンの液面を測定する。測定時間と液面との関係を図にプロットして、時間0分における液面を外挿法により求め(y ml)、そのときの計算上の密度[z/(y−x)](g/ml)を見掛け密度とする。
(製造例2)〜(製造例7)
製造例1と同様にして、表1に記した段階1〜4の配合に従って多孔質粒子(A2)〜(A7)を製造した。得られた粒子の水分散体の固形分、見掛け密度および粒子径を表1に記した。
The solid content of the aqueous dispersion was 24% by mass, and the apparent density (Note 3) of the dry porous particles (A1) obtained after removing the volatile components of the aqueous dispersion (Note 2) was 0.86 g / cm 3 , and the particle diameter was 5.6 μm.
(Note 1) Production of polyester resin having unsaturated groups and acid groups In a reaction vessel equipped with a stirrer, thermometer, rectifying column and water separator, 35 parts of maleic anhydride, 20 of phthalic anhydride 45 parts of 1,3-propanediol were heated to 230 ° C. in the presence of the esterification catalyst dibutyltin oxide (0.02 parts) and maintained for 1 hour, then xylene was added and the temperature was about 2 hours. While refluxing xylene, water was distilled off to obtain a polyester resin having an unsaturated group and an acid group. The number average molecular weight of this polyester resin was about 2000, and the acid value was 18 mgKOH / g. This polyester resin was used in Production Examples 1-7. In the present specification, the weight average molecular weight or number average molecular weight is a value obtained by converting the weight average molecular weight measured with a gel permeation chromatograph (“HLC8120GPC” manufactured by Tosoh Corporation) based on the weight average molecular weight of polystyrene. is there. The columns are “TSKgel G-4000H × L”, “TSKgel G-3000H × L”, “TSKgel G-2500H × L”, “TSKgel G-2000H × L” (both manufactured by Tosoh Corporation, trade name). These were carried out under the conditions of mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., flow rate: 1 ml / min, detector: RI.
(Note 2) Removal method of volatile components
The dried porous particles (A1) were obtained by drying under the following conditions using a spray dryer “ADL311S” (manufactured by Yamato Kagaku). Supply speed: 14 ml / min, spray pressure: 0.15 MPa, air volume: 0.3 m 3 / min, inlet temperature: 150 ° C., outlet temperature 60 ° C.
(Note 3) Apparent density measurement method
The apparent density of the dried porous particles obtained under the above conditions (Note 2) was measured according to Japan Powder Industry Technical Association Standard SAP 02-82 (1982). That is, about 150 ml of liquid paraffin is put into a 250 ml graduated cylinder, and the liquid level is measured (x ml). About 20 g of the porous particles weighed (z g) were slowly added, and the whole particle sample was wetted with liquid paraffin by gently shaking the graduated cylinder. As a minute, for example, the liquid level of paraffin at 1 minute, 5 minutes, 15 minutes,... After 60 minutes) is measured. The relationship between the measurement time and the liquid level is plotted in the figure, and the liquid level at time 0 minutes is obtained by extrapolation (y ml), and the calculated density [z / (y−x)] (g / Ml) Apparent density.
(Production Example 2) to (Production Example 7)
In the same manner as in Production Example 1, porous particles (A2) to (A7) were produced according to the formulation of Steps 1 to 4 described in Table 1. Table 1 shows the solid content, the apparent density, and the particle diameter of the obtained aqueous dispersion of particles.

Figure 0006207071
Figure 0006207071

樹脂(B)の製造例
(製造例8) アクリル樹脂(B1)の製造例
還流冷却器、撹拌器、温度計、滴下ロートを装備した反応容器に脱イオン水28.5部、「Newcol 707SF」(日本乳化剤社製、商品名、アニオン性乳化剤、固形分30%)0.12部を加え、80℃に保った。下記組成をエマルション化してなるプレエマルションを4時間にわたって滴下した。
脱イオン水 36.1部
スチレン 15部
メチルメタクリレート 46部
n−ブチルアクリレート 18.5部
2−エチルヘキシルアクリレート 18.5部
2−ヒドロキシエチルアクリレート 1.0部
アクリル酸 1.0部
30%Newcol707SF 6.6部
過硫酸アンモニウム 0.2部
滴下終了後、さらに2.5時間80℃に保持した。その後脱イオン水を加えながら40℃以下に温度を下げ、アンモニア水でpH7〜8に調整し、固形分濃度50%のアクリル樹脂(B1)のエマルションを得た。
Production Example of Resin (B) (Production Example 8) Production Example of Acrylic Resin (B1) 28.5 parts of deionized water in a reaction vessel equipped with a reflux condenser, a stirrer, a thermometer, and a dropping funnel, “Newcol 707SF” (Nippon Emulsifier Co., Ltd., trade name, anionic emulsifier, solid content 30%) 0.12 part was added and kept at 80 ° C. A pre-emulsion formed by emulsifying the following composition was added dropwise over 4 hours.
36.1 parts deionized water
15 parts of styrene
46 parts of methyl methacrylate
n-Butyl acrylate 18.5 parts
2-Ethylhexyl acrylate 18.5 parts
1.0 part of 2-hydroxyethyl acrylate
Acrylic acid 1.0 part
6.6 parts of 30% Newcol 707SF
0.2 parts of ammonium persulfate
After completion of the dropping, the temperature was further maintained at 80 ° C. for 2.5 hours. Thereafter, the temperature was lowered to 40 ° C. or lower while adding deionized water, and the pH was adjusted to 7 to 8 with aqueous ammonia to obtain an emulsion of an acrylic resin (B1) having a solid content concentration of 50%.

水性の艶消し遮熱塗料組成物の製造
(実施例1)
攪拌混合容器に、水 14.5部、市販の赤錆色ペースト「NS BROWN C522」(山陽色素社製、赤色酸化鉄50重量%含有) 18.4部、アクリル樹脂(B1)のエマルション 200部(固形分100部)、2,2,4−トリメチル−1,3−ペンタンジオールモノイソブチレート 10.5部、消泡剤「SNデフォーマーA63」(サンノプコ社製) 0.8部、粘度調整剤「プライマルSCT275」(ダウコーニング社製) 0.5部、製造例2で得た固形分24質量%の多孔質粒子(A2)の水分散体 20.8部(固形分5部)を添加し、ディスパーにより攪拌して、水性の艶消し遮熱塗料組成物(P1)を得た。
(実施例2〜8及び比較例1〜3)
実施例1の多孔質粒子(A2)を、表2に示した多孔質粒子の種類及び量(表中の数値は固形分質量を意味する)に変更する以外は、実施例1と同様にして、水性塗料組成物(P2)〜(P11)を得た。比較例3は、艶調整のための粒子を含まない場合である。
Production of aqueous matte thermal barrier coating composition (Example 1)
In a stirring and mixing container, 14.5 parts of water, a commercially available red rust paste “NS BROWN C522” (manufactured by Sanyo Pigment Co., Ltd., containing 50% by weight of red iron oxide), 18.4 parts, an emulsion of acrylic resin (B1) 200 parts ( 100 parts of solid content), 10.5 parts of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate, defoaming agent “SN Deformer A63” (manufactured by San Nopco) 0.8 part, viscosity modifier 0.5 parts of “Primal SCT275” (manufactured by Dow Corning), 20.8 parts (5 parts solids) of an aqueous dispersion of porous particles (A2) having a solid content of 24% by mass obtained in Production Example 2 were added. The mixture was stirred with a disper to obtain an aqueous matte thermal barrier coating composition (P1).
(Examples 2-8 and Comparative Examples 1-3)
Except for changing the porous particles (A2) of Example 1 to the types and amounts of the porous particles shown in Table 2 (the numerical values in the table mean the solid content mass), the same procedure as in Example 1 was performed. Water-based coating compositions (P2) to (P11) were obtained. Comparative Example 3 is a case where particles for gloss adjustment are not included.

Figure 0006207071
Figure 0006207071

(注4)シリカ粉:含水非晶質二酸化珪素粉体、平均粒子径4μm、比重2.15
溶剤型の艶消し遮熱塗料組成物の製造
(実施例9)
「SDホルス1000」(関西ペイント社製合成樹脂調合ペイントJIS K 5516 1種、日本塗料工業会色票番号07−40Pの固形分100部に対して、揮発成分を除去して粉末状にした多孔質粒子(A2)10部を混合して、ディスパーにて攪拌混合して溶剤型の艶消し遮熱塗料組成物(P12)を製造した。なお、粉末状の多孔質粒子(A2)は、前記(注2)に記した同様の方法により得たものを使用した。
(比較例4、5)
実施例9において、多孔質粒子(A2)の代わりにシリカ粉(注4) 10部を用いた以外は同様にして溶剤型の艶消し塗料組成物(P13)を製造し、比較例4とした。艶調整剤を含まない場合の塗料を(P14)として比較例5に記した。
(Note 4) Silica powder: hydrous amorphous silicon dioxide powder, average particle size 4 μm, specific gravity 2.15
Manufacture of solvent-type matte thermal barrier coating composition
Example 9
“SD Horus 1000” (one type of synthetic resin blended paint JIS K 5516 manufactured by Kansai Paint Co., Ltd., 100 parts by weight of solid color of Japan Paint Manufacturers Association color chart number 07-40P, with volatile components removed and powdered 10 parts of fine particles (A2) were mixed, and stirred and mixed with a disper to produce a solvent-type matte thermal barrier coating composition (P12), wherein the powdery porous particles (A2) What was obtained by the same method described in (Note 2) was used.
(Comparative Examples 4 and 5)
A solvent-type matte coating composition (P13) was produced in the same manner as in Example 9 except that 10 parts of silica powder (Note 4) was used instead of the porous particles (A2). . The paint in the case where the gloss adjusting agent was not included was described in Comparative Example 5 as (P14).

評価・試験
上記実施例1〜8及び比較例1、2で得た各水性塗料組成物を用いて、下記の各試験に応じた塗装板を作成し評価した。結果を表2に記す。溶剤型塗料に関する実施例9及び比較例4、5は、評価結果を表3に記す。
Evaluation test
Using each of the aqueous coating compositions obtained in Examples 1 to 8 and Comparative Examples 1 and 2, painted plates corresponding to the following tests were prepared and evaluated. The results are shown in Table 2. In Example 9 and Comparative Examples 4 and 5 relating to the solvent-type paint, the evaluation results are shown in Table 3.

Figure 0006207071
Figure 0006207071

(隠蔽率試験)
塗膜の隠蔽率(%)は、JIS K 5600 4−1の方法B(隠ぺい率試験紙)に準じ、試験片(各試験用塗料組成物を乾燥膜厚が25μmになるようにドクターブレードで隠ぺい率試験紙上に塗装し、3日間室温で乾燥)の白地(YW)及び黒地(YB)上の箇所を無作為に夫々4箇所選び、その箇所の三刺激値を測定し、平均の三刺激値YW及びYBを計算することによって求められる。かかる計算によって得られるYB/YWを100分率で算出した値を隠ぺい率とする。
(光沢の測定)
上記隠蔽率試験で使用した黒地上に塗装した試験片について60°及び85°光沢をBYKトリグロスメーターにより測定した。60°光沢値よりも85°光沢値の方が高いほど、塗膜に底ツヤ感があり、表面の凹凸や膜厚変動による艶ムラを発生しやすい。
(遮熱性評価)
脱脂したブリキ塗板上に、前記塗料組成物(P1)〜(P14)を乾燥膜厚が25〜30μmとなるようにアプリケータにより塗装し、23℃、50%RHの部屋で3日間乾燥して遮熱性評価用試験板を作成した。1辺が40cmのダンボール箱上部に70mm四方の正方形の穴をあけたものを、室温約25℃の実験室に30分間静置した。上記試験板を、75mm×75mmの大きさに切断して、裏のブリキ面に熱電対のセンサーをセロハンテープで固定した塗板を、 前記穴をふさぐように静置した。40cmの距離から、HALOGEN LIGHT(LPL1500)により塗膜表面に光照射し(約800W/m)、15分後の塗板裏面温度を測定した。測定結果を表2、3に記した。
(実施例10)〜(実施例12)、(比較例6、7)
「アレスクールプライマー」(関西ペイント社製、弱溶剤2液変性エポキシ樹脂系下塗り塗料、チタン白含有)の膜厚30μmの被膜が片面に形成されたブリキ塗板上[塗膜の白色度(L値)=92、「CR−200」(商品名、コニカミノルタ社製、色差計)を用いて測定]に、艶消し遮熱塗料組成物(P2)及びシリカ粉(注4)により艶調整をした塗料組成物(P10)を中毛ローラーにて、表4に記した所定の乾燥膜厚になるように塗装し、室温で16時間後、さらに各々の塗装面の一部に同塗料を25〜30μmになるように塗装(タッチアップ)した。23℃、50%RHの部屋で4日間乾燥後、複層塗膜が形成された塗板を得た。
(Concealment rate test)
Concealment rate (%) of the coating film is in accordance with JIS K 5600 4-1, Method B (Concealment rate test paper) with a doctor blade so that each test coating composition has a dry film thickness of 25 μm. Painted on test paper with concealment rate and dried at room temperature for 3 days) Randomly select four locations on white (YW) and black (YB), measure tristimulus values at each location, and average tristimulus It is obtained by calculating the values YW and YB. A value obtained by calculating YB / YW obtained by such calculation at a 100-percentage is defined as a concealment rate.
(Gloss measurement)
The 60 ° and 85 ° gloss of the test piece coated on the black ground used in the concealment rate test was measured with a BYK trigloss meter. The higher the 85 ° gloss value is than the 60 ° gloss value, the more glossy the coating film is, and the more likely it is to cause uneven glossiness due to surface irregularities and film thickness variations.
(Heat insulation evaluation)
On the degreased tinplate, the coating compositions (P1) to (P14) were applied with an applicator so that the dry film thickness was 25 to 30 μm, and dried in a room at 23 ° C. and 50% RH for 3 days. A test plate for thermal insulation evaluation was prepared. A 70 mm square hole formed in the upper part of a cardboard box having a side of 40 cm was left in a laboratory at room temperature of about 25 ° C. for 30 minutes. The test plate was cut into a size of 75 mm × 75 mm, and a coated plate in which a thermocouple sensor was fixed to the back tin plate with a cellophane tape was allowed to stand so as to close the hole. From the distance of 40 cm, the surface of the coating film was irradiated with light by HALOGEN LIGHT (LPL1500) (about 800 W / m 2 ), and the coating plate back surface temperature after 15 minutes was measured. The measurement results are shown in Tables 2 and 3.
(Example 10) to (Example 12), (Comparative Examples 6 and 7)
“Ale School Primer” (manufactured by Kansai Paint Co., Ltd., weak solvent two-component modified epoxy resin-based primer, containing titanium white) on a tinplate with a 30 μm thick coating on one side [whiteness of coating (L value ) = 92, “CR-200” (trade name, manufactured by Konica Minolta Co., Ltd., color difference meter)] was used to adjust the gloss with a matte thermal barrier coating composition (P2) and silica powder (Note 4). The coating composition (P10) was applied with a medium hair roller so that the predetermined dry film thickness described in Table 4 was obtained. After 16 hours at room temperature, the coating composition was applied to a part of each coated surface with 25 to 25 parts. It was painted (touched up) to 30 μm. After drying in a room at 23 ° C. and 50% RH for 4 days, a coated plate on which a multilayer coating film was formed was obtained.

上記塗板について、タッチアップ塗装部の艶ムラと、前記と同様の方法にて遮熱性とを評価した。結果を表4に示す。
(艶ムラの評価)
◎:全く見た目では判別できない
○:斜めから光を当てなければ、ほとんど判らない
×:斜めから光を当てて見ると艶ムラが明らかに判る
About the said coating plate, the gloss nonuniformity of the touch-up coating part and the heat-shielding property were evaluated by the method similar to the above. The results are shown in Table 4.
(Evaluation of gloss unevenness)
◎: Cannot be discriminated at all ○ ○: If light is not applied obliquely, it is hardly understood ×: When the light is applied obliquely, gloss unevenness is clearly understood

Figure 0006207071
Figure 0006207071

仕上がり性、下地隠蔽性、遮熱性及び断熱性に優れた艶消し塗膜が形成された塗装物品が提供できる。 It is possible to provide a coated article on which a matte coating film excellent in finish, base concealing property, heat shielding property and heat insulating property is formed.

本発明における多孔質粒子の一例として、多孔質粒子内部壁面の電子顕微鏡写真(写真中の1目盛り=50nm)である。An example of the porous particles in the present invention is an electron micrograph of the inner wall surface of the porous particles (one scale in the photograph = 50 nm). 本発明における多孔質粒子の一例として、多孔質粒子断面の電子顕微鏡写真(写真中の1目盛り=1μm)である。As an example of the porous particle in this invention, it is an electron micrograph of the porous particle cross section (1 scale in a photograph = 1 micrometer).

Claims (6)

チタン白及び樹脂(Z)を含む平均粒子径が1〜50μmの多孔質粒子(A)と、樹脂(B)とを含む艶消し遮熱塗料組成物であって、多孔質粒子(A)の固形分質量を基準として上記チタン白が4.0〜45.0質量%の範囲内であり、樹脂(B)の質量を基準として多孔質粒子(A)を5〜30質量%含むことを特徴とする艶消し遮熱塗料組成物。 A matte thermal barrier coating composition comprising a porous particle (A) having an average particle diameter of 1 to 50 μm containing titanium white and a resin (Z) and a resin (B), wherein the porous particle (A) The titanium white content is in the range of 4.0 to 45.0 mass% based on the solid content mass, and contains 5 to 30 mass% of porous particles (A) based on the mass of the resin (B). A matte thermal barrier coating composition. 多孔質粒子(A)が平均粒子径10〜300nmの範囲内の粒子が凝集して形成されたものであり、多孔質粒子(A)の見掛け密度が0.5〜1.3g/cmの範囲内であることを特徴とする請求項1に記載の艶消し遮熱塗料組成物。 The porous particles (A) are formed by aggregation of particles having an average particle diameter of 10 to 300 nm, and the apparent density of the porous particles (A) is 0.5 to 1.3 g / cm 3 . The matte thermal barrier coating composition according to claim 1, which is within the range. 樹脂(Z)が、不飽和基及び酸基を有する樹脂(a)、アミノ基を有する化合物(b)並びにラジカル重合性不飽和モノマー(c)を反応させてなるものである請求項1又は2に記載の艶消し遮熱塗料組成物。 The resin (Z) is obtained by reacting a resin (a) having an unsaturated group and an acid group, a compound (b) having an amino group, and a radical polymerizable unsaturated monomer (c). The matte thermal barrier coating composition described in 1. 請求項1〜3の何れか一項に記載の艶消し遮熱塗料組成物を乾燥膜厚が20〜70μmの範囲内となるように塗装することを特徴とする艶消し遮熱塗膜の形成方法。 The matte thermal barrier coating composition according to any one of claims 1 to 3 is applied so that the dry film thickness is within a range of 20 to 70 µm. Method. チタン白を含むプライマー塗料組成物を塗装してプライマー塗膜を形成し、該プライマー塗膜上に請求項1〜3の何れか一項に記載の艶消し遮熱塗料組成物を塗装して成る艶消し遮熱複層塗膜の形成方法であって、上記プライマー塗膜の白色度(L値)が80〜98の範囲内であることを特徴とする艶消し遮熱塗膜の形成方法。 A primer coating composition containing titanium white is applied to form a primer coating, and the matte thermal barrier coating composition according to any one of claims 1 to 3 is applied onto the primer coating. A method for forming a matte thermal barrier coating film, wherein the primer coating has a whiteness (L value) in the range of 80 to 98. 請求項4又は5に記載の遮熱塗膜の形成方法により遮熱塗膜が形成された塗装物品。 A coated article on which a thermal barrier coating film is formed by the method for forming a thermal barrier coating film according to claim 4.
JP2013239278A 2013-11-19 2013-11-19 Matte thermal barrier coating composition and coating film forming method using the composition Active JP6207071B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013239278A JP6207071B2 (en) 2013-11-19 2013-11-19 Matte thermal barrier coating composition and coating film forming method using the composition
CN201410658874.6A CN104650685B (en) 2013-11-19 2014-11-18 Delustring hides hot coating composition and has used the coating film-forming methods of the composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013239278A JP6207071B2 (en) 2013-11-19 2013-11-19 Matte thermal barrier coating composition and coating film forming method using the composition

Publications (2)

Publication Number Publication Date
JP2015098543A JP2015098543A (en) 2015-05-28
JP6207071B2 true JP6207071B2 (en) 2017-10-04

Family

ID=53242344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013239278A Active JP6207071B2 (en) 2013-11-19 2013-11-19 Matte thermal barrier coating composition and coating film forming method using the composition

Country Status (2)

Country Link
JP (1) JP6207071B2 (en)
CN (1) CN104650685B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797548B2 (en) * 2016-04-22 2020-12-09 キヤノン株式会社 Heat shield film, heat shield paint, and optical equipment
US11163132B2 (en) 2016-04-18 2021-11-02 Canon Kabushiki Kaisha Thermal barrier film, thermal barrier paint, and optical instrument
JP6325629B2 (en) * 2016-10-26 2018-05-16 株式会社さんのう Heat insulation and heat insulating paint
JP2019104856A (en) * 2017-12-13 2019-06-27 菊水化学工業株式会社 Method of repairing old coated film
JP7071481B2 (en) * 2020-11-19 2022-05-19 キヤノン株式会社 Heat shield film, heat shield paint, and optical equipment
JP7065416B1 (en) 2021-03-11 2022-05-12 株式会社アル・テックス How to repair the paint on the missing corrosion part of the metal cabinet that houses the control panel installed outdoors

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137160A1 (en) * 2001-04-13 2004-07-15 Yushichi Ishihara Method of finishing with heat insulation coating
JP4330320B2 (en) * 2002-09-27 2009-09-16 大日本印刷株式会社 Matt layer forming composition and release sheet using the same
WO2004029116A1 (en) * 2002-09-30 2004-04-08 Barloworld Plascon S.A. (Pty) Limited Vesiculated polymer particles
CN100381518C (en) * 2003-08-25 2008-04-16 上海斯泰安涂料有限公司 Heat insulating vehicle point and its production technology
JP5503829B2 (en) * 2005-04-15 2014-05-28 株式会社大林組 Paint and paint
JP5307421B2 (en) * 2008-02-28 2013-10-02 日鉄住金鋼板株式会社 Thermal barrier coating plate
JP5438915B2 (en) * 2008-05-07 2014-03-12 菊水化学工業株式会社 Architectural finishing coating material
JP5360656B2 (en) * 2009-09-04 2013-12-04 平岡織染株式会社 Heat shielding daylighting film material and manufacturing method thereof
JP5774812B2 (en) * 2009-10-05 2015-09-09 アイカ工業株式会社 Construction method
KR100966125B1 (en) * 2010-03-02 2010-06-29 (주) 네패스 리그마 Anti-stain solar heat coating solution and anti-stain solar heat coating glass of using that
JP5470314B2 (en) * 2010-09-29 2014-04-16 日本ペイント株式会社 Water-based paint composition

Also Published As

Publication number Publication date
JP2015098543A (en) 2015-05-28
CN104650685B (en) 2018-10-19
CN104650685A (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP6207071B2 (en) Matte thermal barrier coating composition and coating film forming method using the composition
JP5148480B2 (en) Method for forming glittering multilayer coating film
JP5049963B2 (en) Aqueous base coat paint containing glitter pigment
JP5566351B2 (en) Stable aqueous composite composition
JP6047156B2 (en) Eco-friendly fusion aid
JP6026933B2 (en) Thermal barrier matte water-based coating composition and thermal barrier matte coating film forming method
EP2809691A1 (en) Block copolymer, process and composition
KR20130023164A (en) Basecoat/clearcoat coating
KR102098000B1 (en) Hydrophobically modified alkali soluble emulsion composition with polymeric beads
JP2007075791A (en) Laminated coating film formation method and coated product
CN108395797A (en) A kind of aqueous amino-stoving varnish
JP2010006930A (en) Aqueous coating composition
JP7178047B2 (en) paint composition
JP2023174904A (en) Coating agent
JP2012188547A (en) Organic-inorganic composite and method of producing the same
CA2764955C (en) Autoxidisable aqueous coating compositions
JP2001072933A (en) Brilliant coating composition, film-forming method and multi-layered coated film
EP3283569B1 (en) Aqueous dispersion and uses thereof
JP5269832B2 (en) Formation method of multilayer coating film
JP2006218340A (en) Bright coating film formation method and bright coating substance
JP5048941B2 (en) Emulsion production method and paint using the same
JP7178476B1 (en) Aqueous paint composition and building material
CN107177263A (en) Base material Mk system
WO2020197509A1 (en) Composition, film, kit, coated substrate, and related methods thereof
CN104487526A (en) Subcritically formulated coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6207071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250