JP5436198B2 - Fine particle forming apparatus and method thereof - Google Patents
Fine particle forming apparatus and method thereof Download PDFInfo
- Publication number
- JP5436198B2 JP5436198B2 JP2009295508A JP2009295508A JP5436198B2 JP 5436198 B2 JP5436198 B2 JP 5436198B2 JP 2009295508 A JP2009295508 A JP 2009295508A JP 2009295508 A JP2009295508 A JP 2009295508A JP 5436198 B2 JP5436198 B2 JP 5436198B2
- Authority
- JP
- Japan
- Prior art keywords
- container
- stirring
- vapor deposition
- stamp head
- fine particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010419 fine particle Substances 0.000 title claims description 34
- 238000000034 method Methods 0.000 title claims description 26
- 238000003756 stirring Methods 0.000 claims description 95
- 239000000843 powder Substances 0.000 claims description 45
- 238000007740 vapor deposition Methods 0.000 claims description 35
- 230000008021 deposition Effects 0.000 claims description 26
- 239000000463 material Substances 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 14
- 239000002245 particle Substances 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 4
- 238000010298 pulverizing process Methods 0.000 claims description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 38
- 239000010931 gold Substances 0.000 description 24
- 229910052737 gold Inorganic materials 0.000 description 24
- 238000000151 deposition Methods 0.000 description 21
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 18
- 239000002105 nanoparticle Substances 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 241000283014 Dama Species 0.000 description 10
- JNSGIVNNHKGGRU-JYRVWZFOSA-N diethoxyphosphinothioyl (2z)-2-(2-amino-1,3-thiazol-4-yl)-2-methoxyiminoacetate Chemical compound CCOP(=S)(OCC)OC(=O)C(=N/OC)\C1=CSC(N)=N1 JNSGIVNNHKGGRU-JYRVWZFOSA-N 0.000 description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 7
- -1 etc. Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000012212 insulator Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 239000011941 photocatalyst Substances 0.000 description 3
- 229910052703 rhodium Inorganic materials 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000013019 agitation Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- SDGKUVSVPIIUCF-UHFFFAOYSA-N 2,6-dimethylpiperidine Chemical compound CC1CCCC(C)N1 SDGKUVSVPIIUCF-UHFFFAOYSA-N 0.000 description 1
- 240000008620 Fagopyrum esculentum Species 0.000 description 1
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 1
- 235000019013 Viburnum opulus Nutrition 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/223—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
- B01J37/0232—Coating by pulverisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/34—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
- B01J37/349—Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/50—Substrate holders
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Toxicology (AREA)
- Catalysts (AREA)
- Physical Vapour Deposition (AREA)
Description
本発明は、ナノ微粒子を担持体に付着する微粒子形成装置およびその方法に関するものである。 The present invention relates to a fine particle forming apparatus and a method for attaching nano fine particles to a carrier.
近年、排ガス用触媒は高度化しており、白金系をベースとしてロジウム,パラジウム等の2元系,3元系の合金のナノサイズにしてアルミナ粉等の担持体に付着させている。
これらの触媒金属の担持は現在主に湿式プロセスで行われており、この方法ではナノ粒子の触媒を長期間使用すると加熱により凝集し易く、性能が劣下するという問題がある。
湿式プロセスではその劣下分を考慮して、初期に多めに触媒を担持しており、貴金属が高騰しかつ、資源としても少なく、今後車が増える点より大きな問題となっている。
この点、最近開発された同軸型真空アーク蒸着源を用いてナノ粒子を真空中で付着させるドライ担持は密着性に優れているので経年変化しにくい。この方法では白金、ロジウム、パラジウムなどの単体金属あるいはこれらの合金のターゲットを用い、真空アーク(下記特許文献1,2)により、これらの金属材料をプラズマ化して原子状でアルミナ等の粉の担持体に吹きつけ、アルミ等の粉に白金,ロジウム,パラジウム等、あるいはそれらの合金のナノ粒子を担持するものである。
また、光触媒においても光触媒用チタニア粉末等に助触媒で金や白金等を0.3%〜1%程度のナノ粒子を担持するたけで、光触媒効果の向上が認められ、ナノ粒子を各種担持体の粉に真空中で担持する製法は今後従来の湿式プロセスから特定の分野においてはとって変わるものになる可能性がある。
In recent years, catalysts for exhaust gas have become more advanced, and are made to be nanosize of binary and ternary alloys such as rhodium and palladium based on platinum and are attached to a carrier such as alumina powder.
The loading of these catalytic metals is currently carried out mainly by a wet process, and this method has a problem that when a nanoparticle catalyst is used for a long period of time, it tends to aggregate due to heating, resulting in poor performance.
In the wet process, considering the inferiority, a large amount of catalyst is supported in the initial stage, the precious metals are soaring and the resources are scarce, and this is a bigger problem than the number of cars in the future.
In this regard, dry support, in which nanoparticles are deposited in a vacuum using a recently developed coaxial vacuum arc deposition source, is excellent in adhesion, and thus hardly changes over time. In this method, a single metal such as platinum, rhodium or palladium or a target of an alloy thereof is used, and these metal materials are converted into plasma by a vacuum arc (Patent Documents 1 and 2 below) to support atomic powder such as alumina. It is sprayed onto the body and carries nanoparticles of platinum, rhodium, palladium, etc., or alloys thereof on powder such as aluminum.
Also in the photocatalyst, improvement of the photocatalytic effect is recognized only by supporting 0.3% to 1% of nanoparticles such as gold or platinum as a cocatalyst on titania powder for photocatalyst, and various kinds of nanoparticles are supported on the photocatalyst. The production method of supporting the powder in a vacuum in the future may be changed from a conventional wet process in a specific field.
従来の微粒子形成装置は、真空中の円筒容器に収納されたアルミナ粉などの担持体を攪拌しながら真空アークプラズマ発生装置を用いて発生させた触媒金属のプラズマを上から照射し、アルミナ粉表面に触媒金属を担持させる。 A conventional fine particle forming apparatus irradiates a catalyst metal plasma generated from above using a vacuum arc plasma generator while stirring a carrier such as alumina powder stored in a cylindrical container in a vacuum. The catalyst metal is supported on the catalyst.
しかしながら、従来の微粒子形成装置は、真空中で従来の攪拌方法で連続で攪拌容器を回転させると、図11に示すチタニア粉に金を担持させた例に示すように、チタニアの粉が凝集したダマ(塊)が形成され、容器の回転と共に雪だるま状に大きくなり、金ナノ粒子がダマ表面にのみ付着して触媒金属を担持したチタニア粉末の性能を劣化させてしまう。
これはチタニア粉表面に付着した金ナノ粒子が接着剤の役割をするためで、真空中のナノ粒子同士は弱い機械的圧力でも容易に凝着することによる。一度小さなダマが形成されると、回転している容器の動きに伴い転がるダマは雪だるま式にチタニアの粉をまぶすようにして大きなダマへと成長してしまう。このようなダマでは金粒子がダマ表面のみに付着し内部のチタニア粉にはほとんど付着しない。
However, in the conventional fine particle forming apparatus, when the stirring vessel is continuously rotated in the vacuum by the conventional stirring method, the titania powder is aggregated as shown in the example in which gold is supported on the titania powder shown in FIG. As the container rotates, it grows in the shape of a snowman, and the gold nanoparticles adhere only to the surface of the dama and degrade the performance of the titania powder carrying the catalyst metal.
This is because the gold nanoparticles attached to the surface of the titania powder act as an adhesive, and the nanoparticles in the vacuum easily adhere to each other even with a weak mechanical pressure. Once a small dama is formed, the dama that rolls with the movement of the rotating container grows into a big dama by sprinkling titania powder like a snowball. In such a dama, gold particles adhere only to the dama surface and hardly adhere to the titania powder inside.
本発明はかかる事情に鑑みてなされたものであり、その目的は、被蒸着体の表面に塊(ダマ)を形成させずに、蒸着材を付着することができる微粒子形成装置およびその方法を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fine particle forming apparatus and a method for attaching a vapor deposition material without forming a lump on the surface of the vapor deposition target. It is to be.
上述した従来技術の問題を解決し、上述した目的を達成するために本発明の微粒子形成装置は、蒸着材を飛翔する蒸着源と、前記蒸着源と対向して配置され、被蒸着体である粉体状担体を収容する容器と、前記容器内で前記粉体状担体を攪拌する攪拌手段と、前記攪拌手段による攪拌過程で生じた前記粉体状担体の塊を粉砕するために、スタンプヘッドを前記容器の底面に衝突させる第1の動作と、前記スタンプヘッドを前記底面に接触させた状態で保持する第2の動作と、前記スタンプヘッドを前記底面から離す第3の動作とを順に繰り返す粉砕手段とを有し、前記容器の上部開放部の円状の縁部は、前記容器の中心軸が延びる方向に傾斜するスロープとなり、所定箇所で段差を有し、前記粉砕手段は、前記底面に向けて付勢されながら前記縁部に当接するアーム部を有し、当該アーム部が前記段差で前記底面に向けて落下したときに前記スタンプヘッドを前記底面に接触させ、前記アーム部が前記スロープに沿って所定の位置に達したときに前記スタンプヘッドを前記底面から離す。
In order to solve the above-mentioned problems of the prior art and achieve the above-described object, the fine particle forming apparatus of the present invention is a vapor deposition source that flies a vapor deposition material, and is opposed to the vapor deposition source, and is a deposition target. A container for containing a powder carrier, a stirring means for stirring the powder carrier in the container, and a stamp head for crushing the lump of the powder carrier generated in the stirring process by the stirring means A first operation for causing the stamp head to collide with the bottom surface of the container, a second operation for holding the stamp head in contact with the bottom surface, and a third operation for separating the stamp head from the bottom surface are sequentially repeated. A circular edge portion of the upper open portion of the container becomes a slope inclined in a direction in which the central axis of the container extends, and has a step at a predetermined position, and the pulverizing means has the bottom surface While being urged towards An arm portion that contacts an edge portion, and when the arm portion falls toward the bottom surface at the step, the stamp head is brought into contact with the bottom surface, and the arm portion is in a predetermined position along the slope. When reached, the stamp head is moved away from the bottom surface.
本発明の微粒子形成方法は、蒸着源と対向して配置された容器内の被蒸着体である粉体状担体を攪拌させながら、前記蒸着源から飛翔した蒸着材を前記被蒸着体に担持させる微粒子形成方法であって、前記容器内で前記粉体状担体を攪拌する過程で、粉砕手段で前記容器内の底面を叩いて、前記攪拌によって生じた前記粉体状担体の塊を粉砕し、前記粉体状担体に蒸着される前記蒸着材の量が増えるに従って前記容器の回転速度を速くする。
In the fine particle formation method of the present invention, the vapor deposition material flying from the vapor deposition source is supported on the vapor deposition target while stirring the powdery carrier that is the vapor deposition target in a container disposed opposite to the vapor deposition source. In the fine particle forming method, in the process of stirring the powder carrier in the container, the bottom of the container is beaten with a pulverizing means, and the lump of the powder carrier generated by the stirring is crushed, The rotational speed of the container is increased as the amount of the vapor deposition material deposited on the powder carrier increases.
本発明によれば、被蒸着体の表面にダマを形成させずに、蒸着材を付着することができる微粒子形成装置およびその方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the fine particle formation apparatus which can adhere a vapor deposition material, without forming a dama on the surface of a to-be-deposited body, and its method can be provided.
以下、本発明の実施形態に係わる微粒子形成装置について、図面を参照しながら説明する。
図1は、同軸型真空アーク蒸着源5を用いた微粒子形成装置1の模式図である。
図1に示す微粒子形成装置1は、例えば、真空中の円筒容器である攪拌容器73に収納された担持体であるアルミナ粉(被蒸着体7)を攪拌しながら真空アークプラズマ発生装置3を用いて発生させた触媒金属である原子状イオン化したプラズマを上から照射し、ナノ粒子をアルミナ粉表面に形成して触媒金属を担持させる。
図1に示す真空チャンバ2は、円筒状をしている。
真空チャンバ2内には、攪拌装置3および同軸型真空アーク蒸着源5が収納されている。
Hereinafter, a fine particle forming apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a fine particle forming apparatus 1 using a coaxial vacuum arc vapor deposition source 5.
The fine particle forming apparatus 1 shown in FIG. 1 uses, for example, a vacuum arc plasma generator 3 while stirring alumina powder (deposited body 7) that is a carrier housed in a stirring container 73 that is a cylindrical container in a vacuum. Then, the ionized plasma, which is the catalytic metal generated in this way, is irradiated from above, and nanoparticles are formed on the surface of the alumina powder to carry the catalytic metal.
A vacuum chamber 2 shown in FIG. 1 has a cylindrical shape.
In the vacuum chamber 2, a stirrer 3 and a coaxial vacuum arc deposition source 5 are accommodated.
[攪拌装置3]
攪拌装置3は、被蒸着体7を入れるための攪拌容器73と、被蒸着体7を攪拌するための固定羽根であるスクレーパ75a,75bと、攪拌過程で生じる被蒸着体7のダマ(塊)を潰すスタンプ85とを有する。
被蒸着体7は、例えば、粒径0.1μm以上〜1mm以下の粉体であるチタニアの粉である。
[Agitator 3]
The stirrer 3 includes a stirring vessel 73 for containing the deposition target 7, scrapers 75 a and 75 b that are fixed blades for stirring the deposition target 7, and lumps (lumps) of the deposition target 7 generated during the stirring process. And a stamp 85 for crushing.
The vapor-deposited body 7 is, for example, titania powder that is a powder having a particle size of 0.1 μm to 1 mm.
攪拌容器73の下面の中心には、攪拌容器73をその中心軸80を中心に回転させる回転機構72が接続されている。
回転機構72は、固定テーブル71の下方に配置されている。
攪拌容器73の材質は、例えばステンレスであり、内壁(内側側面及び底面73a)はバフ研磨されている。攪拌容器73の上部開口部の径は例えば60〜300mmである。当該上部開口部は楕円形状でもよい。
攪拌容器73の内壁は、アルミナかテフロン(登録商標)でコーティングされている。コーティング方法はCVD,スパッタ,アーク方式いずれでも良い。テフロン(登録商標)であれば容器自体をテフロン(登録商標)で製作してもよい。
A rotation mechanism 72 that rotates the stirring vessel 73 about its central axis 80 is connected to the center of the lower surface of the stirring vessel 73.
The rotation mechanism 72 is disposed below the fixed table 71.
The material of the stirring vessel 73 is, for example, stainless steel, and the inner wall (inner side surface and bottom surface 73a) is buffed. The diameter of the upper opening of the stirring vessel 73 is, for example, 60 to 300 mm. The upper opening may be oval.
The inner wall of the stirring vessel 73 is coated with alumina or Teflon (registered trademark). The coating method may be any of CVD, sputtering, and arc methods. If it is Teflon (registered trademark), the container itself may be made of Teflon (registered trademark).
図2は、微粒子形成装置1のスクレーパ75a,75bの機能を説明するための図である。図2(A)は攪拌容器73の上部開放部側から見た平面方向におけるスクレーパ75a,75bの配置を説明するための図、図2(B)はスクレーパ75aの側面方向から見た配置を説明するための図である。
図2(A)に示すように、攪拌容器73の周囲には、スクレーパ75a,75bが固定されている。
スクレーパ75a,75bは、例えばステンレスで製作されている。また、スクレーパ75a,75bは、直径1mm〜5mm程度の棒材で形成され、外側をテフロン(登録商標)チューブで被覆されている。
FIG. 2 is a diagram for explaining the functions of the scrapers 75a and 75b of the fine particle forming apparatus 1. FIG. 2A is a diagram for explaining the arrangement of the scrapers 75a and 75b in the planar direction as viewed from the upper open side of the stirring vessel 73, and FIG. 2B is an illustration of the arrangement as viewed from the side of the scraper 75a. It is a figure for doing.
As shown in FIG. 2A, scrapers 75 a and 75 b are fixed around the stirring vessel 73.
The scrapers 75a and 75b are made of stainless steel, for example. The scrapers 75a and 75b are formed of a rod having a diameter of about 1 mm to 5 mm, and the outside is covered with a Teflon (registered trademark) tube.
スクレーパ75aは、攪拌容器73の上部開放部から攪拌容器73内に延び、攪拌容器73の底面73aの内周面付近に当接し、当該当接した箇所から底面73aに接触しながら内側に延びている。
また、スクレーパ75bは、攪拌容器73の上部開放部から攪拌容器73内に延び、底面73aの中心軸付近に当接し、当該した箇所から底面73aに接触しながら内周面に向けて延びている。
また、スクレーパ75bの先端と、スクレーパ75aとの間には、隙間76が形成されている。
The scraper 75a extends from the upper open portion of the stirring vessel 73 into the stirring vessel 73, contacts the vicinity of the inner peripheral surface of the bottom surface 73a of the stirring vessel 73, and extends inward while contacting the bottom surface 73a from the contacted portion. Yes.
The scraper 75b extends from the upper open portion of the stirring vessel 73 into the stirring vessel 73, contacts the vicinity of the central axis of the bottom surface 73a, and extends toward the inner peripheral surface while contacting the bottom surface 73a. .
Further, a gap 76 is formed between the tip of the scraper 75b and the scraper 75a.
攪拌容器73内の被蒸着体7は、スクレーパ75bに衝突して隙間76に向けて(攪拌容器73の内周面に向けて)移動し、隙間76を介してスクレーパ75aに衝突して中心軸80に向けて移動する。被蒸着体7の一部は、スクレーパ75a,75bに衝突して、上向きに指向されて、それらを乗り越えて移動する。
このように、スクレーパ75a,75bを構成することで、攪拌容器73内の被蒸着体7を中心軸80から内周面に向けて、内周面から中心軸80に向けて、並びに深さ方向に移動でき、効率的に攪拌することができる。
これにより、チタニア粉末上に金を蒸着した場合には、図3のTEM観察に示されるように、チタニア表面上での金のナノ粒子の数nm〜10nmの金のナノ粒子がチタニア表面上に担持される。
The vapor-deposited body 7 in the stirring vessel 73 collides with the scraper 75b, moves toward the gap 76 (toward the inner peripheral surface of the stirring vessel 73), and collides with the scraper 75a through the gap 76 to enter the central axis. Move towards 80. A part of the deposition object 7 collides with the scrapers 75a and 75b, is directed upward, and moves over them.
In this way, by forming the scrapers 75a and 75b, the vapor-deposited body 7 in the stirring vessel 73 is directed from the central axis 80 toward the inner peripheral surface, from the inner peripheral surface toward the central axis 80, and in the depth direction. And can be efficiently stirred.
As a result, when gold is vapor-deposited on the titania powder, as shown in the TEM observation of FIG. 3, gold nanoparticles on the titania surface are several nanometers to 10 nm in size on the titania surface. Supported.
また、スクレーパ75a,75bを駆動するのではなく、スクレーパ75a,75bを固定して攪拌容器73を回転させるため、駆動機構を簡単にすることができる。 Further, since the scrapers 75a and 75b are fixed and the stirring vessel 73 is rotated without driving the scrapers 75a and 75b, the driving mechanism can be simplified.
図4は、微粒子形成装置1のスクレーパ75a,75bおよびスタンプ85を説明するための図である。
図4に示すように、攪拌容器73の周囲には、スクレーパ75a,75bの他にスタンプ85が配置されている。
スタンプ85は、スクレーパ75a,75bによる攪拌過程で生じた被蒸着体(粉体状担体)7のダマを粉砕するために、攪拌容器73内の底面73aを叩くスタンプヘッド87と、スタンプヘッドを支持するアーム部89とを有する。
FIG. 4 is a view for explaining the scrapers 75a and 75b and the stamp 85 of the fine particle forming apparatus 1. FIG.
As shown in FIG. 4, a stamp 85 is disposed around the stirring vessel 73 in addition to the scrapers 75a and 75b.
The stamp 85 supports the stamp head 87 which strikes the bottom surface 73a in the stirring vessel 73 and the stamp head in order to pulverize the lumps of the deposition target (powder carrier) 7 generated in the stirring process by the scrapers 75a and 75b. Arm portion 89 for
スタンプ85は、攪拌容器73が中心軸80を中心に回転する過程で、スタンプヘッド87を攪拌容器73の底面73aに衝突させる第1の動作と、スタンプヘッド87を上記底面73aに接触した状態で保持する第2の動作と、スタンプヘッド87を上記底面73aから徐々に離す第3の動作とを繰り返す。 The stamp 85 has a first operation in which the stamp head 87 collides with the bottom surface 73a of the stirring container 73 in a process in which the stirring container 73 rotates about the central axis 80, and the stamp head 87 is in contact with the bottom surface 73a. The second operation for holding and the third operation for gradually separating the stamp head 87 from the bottom surface 73a are repeated.
図5に示すように、攪拌容器73の上部開口部の円状の縁部90は、斜めに切り欠けられており、中心軸80が延びる方向に滑らかに傾斜するスロープを形成している。
攪拌容器73の上部開口部の縁部90は、傾斜していない第1の縁部90aと、底面73aから離れる向きに滑らかに傾斜する第2の縁部90bと、段差90cとを有する。
段差90bは、例えば3〜20mmである。
As shown in FIG. 5, the circular edge 90 of the upper opening of the stirring vessel 73 is notched obliquely and forms a slope that smoothly slopes in the direction in which the central axis 80 extends.
The edge 90 of the upper opening of the stirring container 73 has a first edge 90a that is not inclined, a second edge 90b that is smoothly inclined in a direction away from the bottom surface 73a, and a step 90c.
The step 90b is 3 to 20 mm, for example.
アーム部89は、攪拌容器73内に配置される側の一端にスタンプヘッド87を固定し、その他端は図4および図6に示すように、スタンプヘッド保持部93に固定されている。アーム部89の直径は、例えば1mm〜5mm程度である。 The arm portion 89 has a stamp head 87 fixed to one end on the side disposed in the stirring vessel 73, and the other end is fixed to a stamp head holding portion 93 as shown in FIGS. 4 and 6. The diameter of the arm part 89 is, for example, about 1 mm to 5 mm.
アーム部89の長手方向の中央付近は、攪拌容器73の上部開口部の縁部90に当接している。アーム部89は、バネ95によって攪拌容器73の底面73aに向けて付勢されている。
これにより、アーム部89は、攪拌容器73が中心軸80を中心に回転する過程で、その中央部付近を縁部90に常に接触させている。
アーム部89は、上述した縁部90の段差90cで底面73aに向けて落下してスタンプヘッド87を底面73aに衝突させ、第1の縁部90aでスタンプヘッド87を底面73aに接触させた状態を所定期間保持する。その後、第2の縁部90bでスタンプヘッド87cと底面73aとを非接触状態にする。この動作は、攪拌容器73が中心軸80を中心に1回転する間に行われ、当該回転中、上述した第1、2、3の動作が繰り返し行われる。
The vicinity of the center of the arm portion 89 in the longitudinal direction is in contact with the edge 90 of the upper opening of the stirring vessel 73. The arm portion 89 is urged toward the bottom surface 73 a of the stirring vessel 73 by a spring 95.
Thereby, the arm part 89 always makes the vicinity of the center part contact the edge part 90 in the process in which the stirring vessel 73 rotates around the central axis 80.
The arm portion 89 is dropped toward the bottom surface 73a at the step 90c of the edge portion 90 described above to cause the stamp head 87 to collide with the bottom surface 73a, and the stamp head 87 is brought into contact with the bottom surface 73a at the first edge portion 90a. Is held for a predetermined period. Thereafter, the stamp head 87c and the bottom surface 73a are brought into a non-contact state at the second edge 90b. This operation is performed while the stirring vessel 73 makes one rotation around the central axis 80, and the first, second, and third operations described above are repeated during the rotation.
図7は、上述した中心軸80の回転中におけるスタンプヘッド87と攪拌容器73の底面73aとの距離の時間変化を説明するための図である。
図7に示すように、スタンプヘッド87と攪拌容器73の底面73aとは周期的に接触する。
すなわち、アーム部89が縁部90のスロープを登るにつれ、スタンプヘッド87は底面73a(床面)から徐々に上方に浮き上がる。
なお、攪拌容器73の被蒸着体7の深さ、並びにスタンプヘッド87の上下運動の移動量は、スタンプヘッド87が被蒸着体7の表面から出ないように設定される。
なお、攪拌容器73の回転数は、例えば、20〜100rpmである。
FIG. 7 is a diagram for explaining the change over time of the distance between the stamp head 87 and the bottom surface 73a of the stirring vessel 73 during the rotation of the central shaft 80 described above.
As shown in FIG. 7, the stamp head 87 and the bottom surface 73 a of the stirring container 73 periodically contact.
That is, as the arm portion 89 climbs the slope of the edge portion 90, the stamp head 87 gradually rises upward from the bottom surface 73a (floor surface).
The depth of the deposition target 7 in the stirring vessel 73 and the amount of movement of the stamp head 87 in the vertical movement are set so that the stamp head 87 does not come out of the surface of the deposition target 7.
In addition, the rotation speed of the stirring container 73 is 20-100 rpm, for example.
スタンプヘッド87の先端87aは、例えば、図8に示すように、攪拌容器73の底面73aから離れる向きに傾いている。これにより、攪拌容器73の回転に応じて被蒸着体7をスタンプヘッド87aに衝突させ、スタンプヘッド87と底面73aとの間に効率的に引き込むことができる。そのため、被蒸着体7のダマを完全に粉砕できる確率を高めることができる。
また、攪拌装置3では、スクレーパ75a,75bおよびスタンプ85のアーム部89の直径を非常に細くし、且つ、スタンプヘッド87が被蒸着体7の表面から出ないように設定されるため、同軸型真空アーク蒸着源5からのナノ粒子(蒸着体)が、スクレーパ75a,75bおよびスタンプヘッド87に衝突する量を少なくできる。
The tip 87a of the stamp head 87 is inclined in a direction away from the bottom surface 73a of the stirring vessel 73, for example, as shown in FIG. Thereby, the vapor-deposited body 7 can collide with the stamp head 87a according to the rotation of the stirring vessel 73, and can be efficiently drawn between the stamp head 87 and the bottom surface 73a. For this reason, it is possible to increase the probability of completely crushing the lumps of the deposition object 7.
Further, in the stirring device 3, the scrapers 75 a and 75 b and the arm portion 89 of the stamp 85 are set to have very small diameters and the stamp head 87 is set so as not to come out from the surface of the deposition target 7. The amount of nanoparticles (vapor deposition body) from the vacuum arc deposition source 5 colliding with the scrapers 75a and 75b and the stamp head 87 can be reduced.
微粒子形成装置1では、後述するようにパルスをトリガとして周期的に放電を行う。この放電(蒸着)の周期が短くなるに従ってダマが生じる量が多くなるため、攪拌容器73の回転速度を高めるように制御を行う。また、構造的理由から、スタンプ85の底面73aへの衝突周期は、攪拌容器73の回転速度に比例する。なお、攪拌容器73の回転開始してから所定時間経過後の攪拌容器73の回転速度を、当該所定時間内での回転速度に比べて早くしてもよい。
すなわち、被蒸着体に蒸着される蒸着材の量が増えるに従って攪拌容器73の回転速度を速くしてもよい。
[同軸型真空アーク蒸着源5]
同軸型真空アーク蒸着源5は、カソード電極に取付けられた金で成る円柱状の蒸着材料11と、アルミナで成るハット状の絶縁碍子14(以下、ハット型碍子と呼ぶ)と、トリガ電極13とを有する。
カソード電極に取付けられた蒸着材料11と、ハット型碍子14と、トリガ電極13は同心円状に密着させて取り付けられている。
In the fine particle forming apparatus 1, discharge is periodically performed with a pulse as a trigger, as will be described later. As the discharge (evaporation) cycle becomes shorter, the amount of lumps is increased. For structural reasons, the collision period of the stamp 85 with the bottom surface 73 a is proportional to the rotational speed of the stirring vessel 73. Note that the rotation speed of the stirring container 73 after the elapse of a predetermined time from the start of rotation of the stirring container 73 may be faster than the rotation speed within the predetermined time.
That is, the rotation speed of the stirring vessel 73 may be increased as the amount of the vapor deposition material deposited on the vapor deposition target increases.
[Coaxial vacuum arc deposition source 5]
The coaxial vacuum arc evaporation source 5 includes a cylindrical evaporation material 11 made of gold attached to a cathode electrode, a hat-like insulator 14 made of alumina (hereinafter referred to as a hat-type insulator), a trigger electrode 13, Have
The vapor deposition material 11, the hat-type insulator 14, and the trigger electrode 13 attached to the cathode electrode are attached in close contact with each other concentrically.
アノード電極23は、ステンレスで成り、円筒状をしている。また、このアノード電極23は、カソード電極に取付けられた蒸着材料11と同心円状に取付けられている。
なお、同軸型真空アーク蒸着源5は、図示しない支柱と図示しない真空フランジを介して、真空チャンバ2の壁面に取付けられている。
The anode electrode 23 is made of stainless steel and has a cylindrical shape. The anode electrode 23 is concentrically attached to the vapor deposition material 11 attached to the cathode electrode.
The coaxial vacuum arc deposition source 5 is attached to the wall surface of the vacuum chamber 2 via a support column (not shown) and a vacuum flange (not shown).
また、図1中に簡易的な配線図で電源装置6を示す。
電源装置6は、トリガ電源31、アーク電源32、コンデンサユニット33を有する。
トリガ電源31は、パルストランスからなり、入力200VのμS単位のパルス電圧を約17倍に変圧して、3.4kV、数μS単位のプラス極性のトリガパルスを出力する。
Moreover, the power supply device 6 is shown by a simple wiring diagram in FIG.
The power supply device 6 includes a trigger power supply 31, an arc power supply 32, and a capacitor unit 33.
The trigger power source 31 is composed of a pulse transformer, and transforms a pulse voltage in units of μS with an input of 200 V to about 17 times, and outputs a trigger pulse with a positive polarity in units of 3.4 kV and several μS.
アーク電源32は、100V数Aの容量の直流電源であり、コンデンサユニット33に充電している。充電時間は約1秒必要とするので放電周期は1Hzとなる。
コンデンサユニット33は、720〜1800μF、耐圧100Vである。コンデンサユニット33は、アーク電源32により、100Vで充電される。
The arc power supply 32 is a DC power supply with a capacity of 100 V and several A, and charges the capacitor unit 33. Since the charging time requires about 1 second, the discharge cycle is 1 Hz.
The capacitor unit 33 has a voltage of 720 to 1800 μF and a withstand voltage of 100V. The capacitor unit 33 is charged at 100 V by the arc power source 32.
トリガ電源31のプラス出力端子は、トリガ電極13に接続され、マイナス端子はアーク電源32のマイナス出力端子と同じ電位に接続され、さらにカソード電極に接続されている。コンデンサユニット33の両端子は、アーク電源32のプラスおよびマイナス端子間に接続されている。 The positive output terminal of the trigger power supply 31 is connected to the trigger electrode 13, the negative terminal is connected to the same potential as the negative output terminal of the arc power supply 32, and further connected to the cathode electrode. Both terminals of the capacitor unit 33 are connected between the positive and negative terminals of the arc power supply 32.
真空排気系9は、ターボ分子ポンプ51、仕切りバルブ52、ロータリポンプ53、調整バルブ54を有する。
ターボ分子ポンプ51からロータリポンプ53までは、金属製の配管で接続されており、真空チャンバ2内の真空排気を行っている。真空排気を行うことで、真空チャンバ2内は、10−4Pa以下に保たれている。
The vacuum exhaust system 9 includes a turbo molecular pump 51, a partition valve 52, a rotary pump 53, and an adjustment valve 54.
The turbo molecular pump 51 to the rotary pump 53 are connected by a metal pipe, and the vacuum chamber 2 is evacuated. By performing evacuation, the inside of the vacuum chamber 2 is kept at 10 −4 Pa or less.
以下、図1に示す微粒子形成装置1の動作例を説明する。
[同軸型真空アーク蒸着源5の動作例]
アーク電源32により、100Vで電荷を充電しておく。ここで、コンデンサユニット33は、720〜1800μFとする。
トリガ電極13にトリガ電源31からの3.4kVのトリガパルスを印加し、カソード電極に取付けられた蒸着材料11とトリガ電極13の間に、ハット型碍子14を介して印加することで、ハット型碍子14表面で沿面放電が発生し、蒸着材料11とアノード電極23との間でコンデンサユニット33に蓄電された電荷が放電され、カソード電極に多量の電流が流入し、金で成るカソード電極に取付けられた蒸着材料11が液相から気相、さらに金のプラズマが形成される。
Hereinafter, an operation example of the fine particle forming apparatus 1 shown in FIG. 1 will be described.
[Operation example of coaxial vacuum arc deposition source 5]
The electric charge is charged at 100 V by the arc power source 32. Here, the capacitor unit 33 is set to 720 to 1800 μF.
By applying a trigger pulse of 3.4 kV from the trigger power supply 31 to the trigger electrode 13 and applying it between the vapor deposition material 11 attached to the cathode electrode and the trigger electrode 13 via the hat-type insulator 14, a hat-type Creeping discharge occurs on the insulator 14 surface, the electric charge stored in the capacitor unit 33 is discharged between the vapor deposition material 11 and the anode electrode 23, a large amount of current flows into the cathode electrode, and it is attached to the cathode electrode made of gold. The deposited material 11 is formed from a liquid phase to a gas phase and further gold plasma.
この時、カソード電極に多量の電流(2000A〜5000A)が、200μS〜500μSの間に流れるので、カソード電極に取付けられた蒸着材料11に磁場が形成される。プラズマ中の電子が、カソード電極に取付けられた蒸着材料11の形成した磁場によるローレンツ力を受けて、同軸型真空アーク蒸着源5の前方へ飛行するようになる。 At this time, since a large amount of current (2000 A to 5000 A) flows in the cathode electrode between 200 μS and 500 μS, a magnetic field is formed in the vapor deposition material 11 attached to the cathode electrode. Electrons in the plasma fly under the coaxial vacuum arc deposition source 5 under the Lorentz force generated by the magnetic field formed by the deposition material 11 attached to the cathode electrode.
プラズマ中の蒸着材料である金イオンは、分極することでクーロン力により、同軸型真空アーク蒸着源5の前方へ飛行する電子に引き付けられるようにして同軸型真空アーク蒸着源5の前方へ飛行するようになる。 Gold ions, which are vapor deposition materials in the plasma, are polarized and attracted to electrons flying in front of the coaxial vacuum arc deposition source 5 by Coulomb force and fly forward of the coaxial vacuum arc deposition source 5. It becomes like this.
一方、プラズマ中の蒸着材料である金のイオンは、分極することでクーロン力により、同軸型真空アーク蒸着源5の前方へ飛行する。その結果、金のイオンは、カーボンの粉7aを核にして成長し、ナノメートル単位の金粒子が形成される。 On the other hand, gold ions, which are vapor deposition materials in the plasma, are polarized and fly forward of the coaxial vacuum arc vapor deposition source 5 by Coulomb force. As a result, gold ions grow using the carbon powder 7a as a nucleus, and gold particles in nanometer units are formed.
このように金イオンを照射しながら、チタニアの粉をスクレーパ75a,75b上に攪拌容器73を回転させてチタニア粉を攪拌する。これを継続して、チタニア粉に均一に金のナノ粒子を形成する。 The titania powder is stirred by rotating the stirring container 73 on the scrapers 75a and 75b while irradiating gold ions in this way. This is continued to form gold nanoparticles uniformly in the titania powder.
さらに詳しくは、攪拌容器73の中のカーボンの粉7に向かって金イオンを照射する。ここで、攪拌容器73は回転機構72により回転しており、スクレーパ75a,75bによって、攪拌容器73内のカーボン等の被蒸着体7は攪拌される。
被蒸着体7は、スクレーパ75a,75bに衝突することにより、攪拌容器73の上に現れて金イオンに曝される。これを次々と継続することによって、攪拌容器73内の全ての被蒸着体7の粒子に均一に金の微粒子を形成するというものである。
More specifically, gold ions are irradiated toward the carbon powder 7 in the stirring vessel 73. Here, the stirring container 73 is rotated by the rotating mechanism 72, and the vapor deposition body 7 such as carbon in the stirring container 73 is stirred by the scrapers 75a and 75b.
The vapor-deposited body 7 appears on the stirring vessel 73 and is exposed to gold ions by colliding with the scrapers 75a and 75b. By continuing this one after another, gold fine particles are uniformly formed on all the particles of the vapor-deposited body 7 in the stirring vessel 73.
[攪拌および塊潰し動作]
図1に示す微粒子形成装置1は、例えば、真空中の円筒容器である攪拌容器73に収納された担持体であるアルミナ粉(被蒸着体7)を攪拌しながら真空アークプラズマ発生装置3を用いて発生させた触媒金属であるナノ粒子(蒸着体)のプラズマを上から照射し、アルミナ粉表面に触媒金属を担持させる。
この過程では、図4に示すスタンプ85のアーム部89は、中心軸80を中心とした攪拌容器73の回転に連動して、攪拌容器73の上部開口部の縁部90の斜めに切り欠けたスロープ(図5に示す第2の縁部90b)を登る。そして、スタンプヘッド87は、攪拌容器73の底面73aから徐々に上方に浮き上がる。
このとき、スタンプヘッド87は、アーム部89がバネ97で攪拌容器73の底面73a(下方)に引っ張られながら持ち上げられる。
[Stirring and crushing operation]
The fine particle forming apparatus 1 shown in FIG. 1 uses, for example, a vacuum arc plasma generator 3 while stirring alumina powder (deposited body 7) that is a carrier housed in a stirring container 73 that is a cylindrical container in a vacuum. The catalyst metal generated on the surface of the alumina powder is irradiated from above with plasma of nanoparticles (deposited body) which is the catalyst metal generated.
In this process, the arm portion 89 of the stamp 85 shown in FIG. 4 is cut off obliquely at the edge 90 of the upper opening of the stirring vessel 73 in conjunction with the rotation of the stirring vessel 73 around the central axis 80. Climb the slope (second edge 90b shown in FIG. 5). The stamp head 87 gradually floats upward from the bottom surface 73a of the stirring vessel 73.
At this time, the stamp head 87 is lifted while the arm portion 89 is pulled by the spring 97 to the bottom surface 73 a (downward) of the stirring vessel 73.
そして、最終上段まで上がったときに、図5に示す段差90cで低い段差に急激に落とされて、バネ97で下方に引っ張られていたスタンプヘッド87は攪拌容器73の底面73aにたたきつけて、その下部にあった被蒸着体7の塊を粉砕する When the final upper stage is reached, the stamp head 87, which is suddenly dropped to a lower level by the level difference 90c shown in FIG. Crush the lump of the deposition object 7 at the bottom.
そして、段差の底面73aにあってもスタンプヘッド87にはバネ97の弾性力が働いているので、攪拌容器73の回転にともないスタンプヘッド87は底面73aに接触しながら動く。すなわち、アーム部89と図5に示す第1の縁部90aとが接触している間は、スタンプヘッド87は底面73aに接触しながら移動する。
この時のスタンプヘッド87と底面73aとの間に進入した細かい粒はスタンプヘッド87と底面73aとの間を通過するため、そば粉のすり鉢のようにすれてさらに粉に砕かれる。
そして再度、スタンプヘッド87か下段から徐々に縁部90bのスロープを登って、最上段の段差90cの位置に到達した時点で一気に下段に落とされることで、バネ97の張力が解放されて、ダマを潰して、その後すりつぶす。これを繰り返す。
Since the elastic force of the spring 97 acts on the stamp head 87 even on the bottom surface 73a of the step, the stamp head 87 moves while contacting the bottom surface 73a as the stirring vessel 73 rotates. That is, while the arm portion 89 and the first edge portion 90a shown in FIG. 5 are in contact, the stamp head 87 moves while being in contact with the bottom surface 73a.
At this time, since the fine particles that have entered between the stamp head 87 and the bottom surface 73a pass between the stamp head 87 and the bottom surface 73a, they are crushed like a buckwheat mortar and further broken into powder.
Then, the slope of the edge 90b is gradually climbed from the stamp head 87 or the lower stage again, and when it reaches the position of the uppermost step 90c, it is dropped to the lower stage at once, so that the tension of the spring 97 is released and Crush and then crush. Repeat this.
図9は、攪拌容器73の上方から見た動作中の外観図である。
図10および図11は、残ったダマの状態の図である。
図9および図12は、スタンプヘッド87でダマをつぶした場合の状態の図である。
図12にカーボンの粉に金を担持した後の粉がすりつぶされている状態をしめます。
図13は、本発明の実施形態の微粒子形成装置により、チタニア粉に金を担持した攪拌前後の粉がすりつぶされた結果を説明するための図であり、図13(A)が攪拌前、図13(B)が攪拌後を示している。
FIG. 9 is an external view of the stirring container 73 as viewed from above.
FIG. 10 and FIG. 11 are views of the remaining lumps.
FIG. 9 and FIG. 12 are diagrams showing a state where the stamp head 87 is crushed.
Fig. 12 shows a state where the powder after gold is loaded on carbon powder is ground.
FIG. 13 is a view for explaining the result of grinding the powder before and after stirring with gold supported on titania powder by the fine particle forming apparatus of the embodiment of the present invention, and FIG. FIG. 13B shows the state after stirring.
以上説明したように、微粒子形成装置1は、スタンプ85を用いて攪拌容器73内の被蒸着体7のダマに圧力を加えて押しつぶすしかつ、そのつぶした粉をスタンプ85のスタンプヘッド87と攪拌容器73の底面73aとの間で攪拌容器73の回転に応じてさらに細かくすりつぶす。
これにより、真空中で各種金属、反応性物を蒸着担持する場合に粉のダマ形成の抑制と形成されたダマの加砕を行いすりつぶすことでき、触媒担持中の粉の凝集を防ぎ、均一で担自前と粒度を保持したままで粉に触媒を担持することができる。
As described above, the fine particle forming apparatus 1 uses the stamp 85 to apply pressure to the surface of the vapor-deposited body 7 in the stirring vessel 73 to crush it, and stir the crushed powder with the stamp head 87 of the stamp 85. According to the rotation of the stirring vessel 73 between the bottom surface 73a of the vessel 73, it is further finely ground.
As a result, when various metals and reactive substances are deposited and supported in a vacuum, it is possible to suppress the formation of powder lumps and to crush the formed lumps, thereby preventing the powder from agglomerating while supporting the catalyst. The catalyst can be supported on the powder while maintaining the particle size as before.
[第1の変形例]
上述した実施形態では、スタンプヘッド87の上下動作に、攪拌容器73の壁上縁にスロープと段差をつけ、スタンプ85のアーム部89をバネ97で下方に引っ張り、攪拌容器73の回転を利用して段差部で下方にたたきつける機構を用いた。
本発明は、例えば、攪拌容器73の回転と連動せずに、独立してスタンプ85を上下駆動する機構を用いてもよい。
[First Modification]
In the embodiment described above, the stamp head 87 is moved up and down by making a slope and a step on the upper edge of the wall of the stirring vessel 73, pulling the arm portion 89 of the stamp 85 downward by the spring 97, and using the rotation of the stirring vessel 73. A mechanism that knocks down at the step portion is used.
The present invention may use, for example, a mechanism that independently drives the stamp 85 up and down without interlocking with the rotation of the stirring vessel 73.
[第2の変形例]
上述した実施形態では、ダマをすりつぶすのにスタンプ85を利用していたが、代わりに、ローラーやプロペラでダマをすりつぶす機構を用いてもよい。
[Second Modification]
In the embodiment described above, the stamp 85 is used to grind lumps, but instead, a mechanism that grinds lumps with a roller or a propeller may be used.
本発明は上述した実施形態には限定されない。
すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
上述した実施形態では、主にチタニアを例示したが、粉はチタニアに限定されない、また蒸着物も金に限定されず、その他全ての粉や蒸着物にダマつぶし機構は適応可能である。
The present invention is not limited to the embodiment described above.
That is, those skilled in the art may make various modifications, combinations, subcombinations, and alternatives regarding the components of the above-described embodiments within the technical scope of the present invention or an equivalent scope thereof.
In the embodiment described above, titania is mainly exemplified. However, the powder is not limited to titania, and the deposited material is not limited to gold, and the lumping mechanism can be applied to all other powders and deposited materials.
また、上述した実施形態では、円筒状の攪拌容器73を例示したが、円錐状の攪拌容器73を用いてもよい。 In the above-described embodiment, the cylindrical stirring container 73 is illustrated, but a conical stirring container 73 may be used.
本発明は、燃料電池や車の排ガス触媒金属担持や空気清浄用触媒担持、ガスセンサ、磁性材料,誘電体材料に使用される。 INDUSTRIAL APPLICABILITY The present invention is used for fuel cell and vehicle exhaust gas metal support, air cleaning catalyst support, gas sensor, magnetic material, and dielectric material.
1…微粒子形成装置
3…攪拌装置
5…同軸型真空アーク蒸着源
7…被蒸着体
73…攪拌容器
75a,75b…スクレーパ
85…スタンプ
87…スタンプヘッド
89…アーム部
90…縁部
DESCRIPTION OF SYMBOLS 1 ... Fine particle formation apparatus 3 ... Agitation apparatus 5 ... Coaxial type vacuum arc vapor deposition source 7 ... Deposited body 73 ... Agitation container 75a, 75b ... Scraper 85 ... Stamp 87 ... Stamp head 89 ... Arm part 90 ... Edge
Claims (7)
前記蒸着源と対向して配置され、被蒸着体である粉体状担体を収容する容器と、
前記容器内で前記粉体状担体を攪拌する攪拌手段と、
前記攪拌手段による攪拌過程で生じた前記粉体状担体の塊を粉砕するために、スタンプヘッドを前記容器の底面に衝突させる第1の動作と、前記スタンプヘッドを前記底面に接触させた状態で保持する第2の動作と、前記スタンプヘッドを前記底面から離す第3の動作とを順に繰り返す粉砕手段と
を有し、
前記容器の上部開放部の円状の縁部は、前記容器の中心軸が延びる方向に傾斜するスロープとなり、所定箇所で段差を有し、
前記粉砕手段は、
前記底面に向けて付勢されながら前記縁部に当接するアーム部を有し、当該アーム部が前記段差で前記底面に向けて落下したときに前記スタンプヘッドを前記底面に接触させ、前記アーム部が前記スロープに沿って所定の位置に達したときに前記スタンプヘッドを前記底面から離す
微粒子形成装置。 A deposition source for flying the deposition material;
A container that is disposed opposite to the vapor deposition source and contains a powder carrier that is a vapor deposition target;
Stirring means for stirring the powder carrier in the container;
In order to pulverize the lump of the powdery carrier generated in the stirring process by the stirring means, the first operation of causing the stamp head to collide with the bottom surface of the container, and the stamp head in contact with the bottom surface Crushing means for sequentially repeating a second operation for holding and a third operation for separating the stamp head from the bottom surface;
The circular edge of the upper open part of the container becomes a slope inclined in the direction in which the central axis of the container extends, and has a step at a predetermined location.
The grinding means is
An arm portion that contacts the edge portion while being biased toward the bottom surface, and when the arm portion falls toward the bottom surface at the step, the stamp head is brought into contact with the bottom surface; A fine particle forming apparatus that separates the stamp head from the bottom surface when a predetermined position is reached along the slope.
前記スタンプ面の前記被蒸着体が侵入する側の端部は、前記底面から離れる向きに傾斜している
請求項1に記載の微粒子形成装置。 Said grinding means, a plate-like the scan Tanpuheddo, up and down movement relative to said bottom surface, to collide with the punch face of the stamp head to the bottom surface,
End on the side of the deposition target of the stamp surface to penetrate the particle formation apparatus according to claim 1 which is inclined in a direction away from said bottom surface.
前記攪拌手段は、前記容器の周囲に一端が固定され、他端が前記容器内に挿入され、前記容器の回転と連動して移動する前記粉体状担体に衝突して攪拌する
請求項1または請求項2に記載の微粒子形成装置。 The container is cylindrical or conical, is rotated around the central axis,
It said stirring means has one end fixed to the periphery of the container, the claims and the other end is inserted into the container and stirred by colliding before Kikotai like carrier which moves in conjunction with the rotation of the pre-SL container The fine particle forming apparatus according to claim 1 or 2.
前記容器の前記上部開放部から当該容器の前記底面の外周付近に当接し、当該当接した箇所から前記底面に沿って内側に延びる第1のスクレーパと、
前記上部開放部から前記容器の前記底面の前記中心軸付近に当接し、当該当接した箇所から前記底面に沿って外側に延びる第2のスクレーパと
を有する請求項3に記載の微粒子形成装置。 The stirring means includes
A first scraper that contacts the outer periphery of the bottom surface of the container from the upper open portion of the container, and extends inward along the bottom surface from the contacted position;
The contact from the upper opening in the vicinity of the central axis of said bottom surface of said container, particle formation apparatus according to claim 3 and a second scraper extending outwardly the from contact with the portion along the bottom surface.
前記攪拌手段の前記スタンプヘッドの前記底面への衝突周期は、前記蒸着源の放電周期が短くなるに従って高まる
請求項4に記載の微粒子形成装置。 The rotational speed of the container increases as the deposition cycle of the deposition source becomes shorter,
The fine particle forming apparatus according to claim 4, wherein a collision cycle of the stirring unit with the bottom surface of the stamp head increases as a discharge cycle of the vapor deposition source becomes shorter.
請求項1〜5のいずれかに記載の微粒子形成装置。 The fine particle forming apparatus according to claim 1, wherein the powdery carrier is a powder having a particle size of 0.1 μm to 1 mm.
前記容器内で前記粉体状担体を攪拌する過程で、粉砕手段で前記容器内の底面を叩いて、前記攪拌によって生じた前記粉体状担体の塊を粉砕し、
前記粉体状担体に蒸着される前記蒸着材の量が増えるに従って前記容器の回転速度を速くする
微粒子形成方法。
A fine particle forming method for supporting a vapor deposition material flying from the vapor deposition source on the vapor deposition source while stirring the powdery carrier that is the vapor deposition target in a container disposed opposite to the vapor deposition source,
In the process of stirring the powdery carrier in the container, the bottom of the container is hit with a pulverizing means to pulverize the lump of the powdery carrier generated by the stirring,
A method for forming fine particles, wherein the rotational speed of the container is increased as the amount of the vapor deposition material deposited on the powder carrier increases.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009295508A JP5436198B2 (en) | 2009-12-25 | 2009-12-25 | Fine particle forming apparatus and method thereof |
KR1020100134725A KR20110074719A (en) | 2009-12-25 | 2010-12-24 | Apparatus and method for producing fine particle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009295508A JP5436198B2 (en) | 2009-12-25 | 2009-12-25 | Fine particle forming apparatus and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011132591A JP2011132591A (en) | 2011-07-07 |
JP5436198B2 true JP5436198B2 (en) | 2014-03-05 |
Family
ID=44345637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009295508A Expired - Fee Related JP5436198B2 (en) | 2009-12-25 | 2009-12-25 | Fine particle forming apparatus and method thereof |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5436198B2 (en) |
KR (1) | KR20110074719A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5604234B2 (en) * | 2010-09-07 | 2014-10-08 | アルバック理工株式会社 | Fine particle forming apparatus and method thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4404668B2 (en) * | 2004-03-29 | 2010-01-27 | 独立行政法人科学技術振興機構 | Method for stirring fine particles and surface modification method for abrasive grains using the same |
JP4970191B2 (en) * | 2007-08-16 | 2012-07-04 | 株式会社アルバック | Fine particle formation method |
-
2009
- 2009-12-25 JP JP2009295508A patent/JP5436198B2/en not_active Expired - Fee Related
-
2010
- 2010-12-24 KR KR1020100134725A patent/KR20110074719A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
KR20110074719A (en) | 2011-07-01 |
JP2011132591A (en) | 2011-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7771788B2 (en) | Spherical ultrafine particles and process for producing the same | |
JP5039487B2 (en) | Metal vapor deposition device and powder carrier stirring method in the same | |
US20100180820A1 (en) | Apparatus for treating powder | |
JP2008308735A (en) | Method for carrying nanoparticles using coaxial type vacuum-arc vapor deposition source | |
JP4854240B2 (en) | Ultrafine particles by pressure vibration and spray granulation | |
JP5436198B2 (en) | Fine particle forming apparatus and method thereof | |
JP5604234B2 (en) | Fine particle forming apparatus and method thereof | |
JP5502617B2 (en) | Fuel cell electrode manufacturing apparatus and method | |
JP2009046741A (en) | Method for forming fine-particle film | |
JP3755020B2 (en) | Particle coating method and apparatus | |
JP4725589B2 (en) | Composite fine particle production apparatus and production method | |
Agawa et al. | Behaviors of metal nano-particles prepared by coaxial vacuum arc deposition | |
JP2014159623A (en) | Coating device and method | |
JP5923547B2 (en) | Fine particle forming apparatus and method thereof | |
JP5188053B2 (en) | Nanoparticle production method | |
JP5277470B2 (en) | Solid-liquid dispersion drying method | |
JP2008231502A (en) | Powder agitation mechanism, method for producing metallic particulate carrying powder and catalyst for fuel cell | |
JP4970191B2 (en) | Fine particle formation method | |
JP7545138B2 (en) | Carrier, Carrier Manufacturing Apparatus, and Carrier Manufacturing Method | |
JP2006167593A (en) | Spherical ultrafine particle and its manufacturing method | |
JP2007254762A (en) | Method for producing nanoparticle | |
JP2019049035A (en) | Fine particle formation device and method therefor | |
JP4466760B2 (en) | Electrocatalyst production method | |
JP5017017B2 (en) | Nanoparticle carrying device and coaxial carrying method with coaxial vacuum arc deposition source | |
Agawa et al. | Evaluation of the Pt/C Catalyst for Fuel Cells Prepared by a NanoparticleFormation Pulsed Arc Plasma Source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20121225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131025 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131210 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5436198 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |