JP5432456B2 - Adamantane copolymer resin, resin composition and use thereof - Google Patents

Adamantane copolymer resin, resin composition and use thereof Download PDF

Info

Publication number
JP5432456B2
JP5432456B2 JP2008012226A JP2008012226A JP5432456B2 JP 5432456 B2 JP5432456 B2 JP 5432456B2 JP 2008012226 A JP2008012226 A JP 2008012226A JP 2008012226 A JP2008012226 A JP 2008012226A JP 5432456 B2 JP5432456 B2 JP 5432456B2
Authority
JP
Japan
Prior art keywords
monomer
group
resin composition
optical
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008012226A
Other languages
Japanese (ja)
Other versions
JP2009173724A (en
Inventor
克樹 伊藤
義崇 上野山
秀樹 山根
直弥 河野
英俊 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008012226A priority Critical patent/JP5432456B2/en
Publication of JP2009173724A publication Critical patent/JP2009173724A/en
Application granted granted Critical
Publication of JP5432456B2 publication Critical patent/JP5432456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は、アダマンタン系共重合樹脂、樹脂組成物及びその用途に関する。詳しくは、透明性及び耐光性などの光学特性、長期耐熱性などの耐久性、誘電率などの電気特性に優れた硬化物を与えるアダマンタン系共重合樹脂、樹脂組成物及びその硬化物からなる電子光学用シール剤や部材などに関するものである。   The present invention relates to an adamantane copolymer resin, a resin composition, and use thereof. Specifically, an adamantane copolymer resin, a resin composition, and an electron comprising the cured product, which give a cured product excellent in optical properties such as transparency and light resistance, durability such as long-term heat resistance, and electrical properties such as dielectric constant The present invention relates to an optical sealant and a member.

発光ダイオード(LED)チップを発光素子として備えた半導体装置が広く利用されており、そのような半導体装置には、発光素子の保護などの機能を兼ねた樹脂が封止剤として用いられている。近年では、白色LEDや紫外LEDなどの開発が進んでいることに伴い、封止剤の光学特性、耐久性及び電気特性などの向上が求められている。
LEDチップなどの発光素子を封止する際に用いられる封止剤としては、加工性のし易さや透明であることなどの理由でエポキシ樹脂が利用される場合が多い。代表的なエポキシ樹脂であるビスフェノールA型エポキシ樹脂を用いる場合、耐熱性を有するものの芳香族成分を含有するため、光を吸収し黄色劣化するといった問題があった。それらを解決するために芳香環を水素化した水添ビスフェノールA型エポキシ樹脂を用いるLED封止剤が提案されている(例えば、特許文献1参照)。しかし、この水添ビスフェノールA型エポキシ樹脂は光に対する劣化はないものの、発光の際に生じる発熱に耐えうるだけの耐熱性がない。
A semiconductor device provided with a light emitting diode (LED) chip as a light emitting element is widely used. In such a semiconductor device, a resin having a function such as protection of the light emitting element is used as a sealing agent. In recent years, with the development of white LEDs, ultraviolet LEDs, and the like, improvements in optical properties, durability, electrical properties, and the like of sealants have been demanded.
As a sealant used for sealing a light emitting element such as an LED chip, an epoxy resin is often used for reasons such as ease of workability and transparency. When a bisphenol A type epoxy resin, which is a typical epoxy resin, is used, since it has an aromatic component although it has heat resistance, there is a problem that it absorbs light and deteriorates yellow. In order to solve these problems, an LED sealing agent using a hydrogenated bisphenol A type epoxy resin in which an aromatic ring is hydrogenated has been proposed (for example, see Patent Document 1). However, this hydrogenated bisphenol A type epoxy resin does not deteriorate against light, but does not have heat resistance enough to withstand the heat generated during light emission.

一方、アダマンタンは、シクロヘキサン環が4個、カゴ形に縮合した構造を有し、対称性が高く、安定な化合物であり、その誘導体は、特異な機能を示すことから、医薬品原料や高機能性工業材料の原料などとして有用であることが知られている。アダマンタン誘導体を含む樹脂は、例えば光学特性や耐熱性などを有することから、光ディスク基板、光ファイバーあるいはレンズなどに用いることが提案されている(例えば、特許文献2、3参照)。また、アダマンタンエステル類の酸感応性、ドライエッチング耐性、紫外線透過性などを利用して、フォトレジスト用樹脂原料として、使用することが提案されている(例えば、特許文献4参照)。しかし、これら樹脂では、光学用電子部材及びレジスト材料としての効果が充分でなく、耐熱性、透明性及び耐光性などの向上が求められている。
さらに、アダマンタンジオール類から誘導されるエポキシ化合物を発光ダイオード用封止剤に用いる提案がされている(例えば、特許文献5参照)。しかしながら、産業上必ずしも簡便な製造法を提供しているとは言い難い。
On the other hand, adamantane has a structure in which four cyclohexane rings are condensed into a cage shape, is a highly symmetric and stable compound, and its derivative exhibits a unique function. It is known to be useful as a raw material for industrial materials. A resin containing an adamantane derivative has, for example, optical properties and heat resistance, and therefore has been proposed to be used for an optical disk substrate, an optical fiber, a lens, or the like (see, for example, Patent Documents 2 and 3). In addition, it has been proposed to use it as a resin material for a photoresist by utilizing the acid sensitivity, dry etching resistance, ultraviolet transmittance, etc. of adamantane esters (see, for example, Patent Document 4). However, these resins are not sufficiently effective as an optical electronic member and a resist material, and are required to be improved in heat resistance, transparency and light resistance.
Furthermore, proposals have been made to use epoxy compounds derived from adamantanediols as sealants for light emitting diodes (see, for example, Patent Document 5). However, it cannot be said that an industrially simple manufacturing method is necessarily provided.

特開2003−082062号公報Japanese Patent Laid-Open No. 2003-082062 特開平6−305044号公報JP-A-6-305044 特開平9−302077号公報Japanese Patent Laid-Open No. 9-302077 特開平4−39665号公報Japanese Patent Laid-Open No. 4-39665 特開2005−146253号公報JP 2005-146253 A

本発明は、透明性及び耐光性などの光学特性、長期耐熱性などの耐久性、誘電率などの電気特性に優れた硬化物を与えるアダマンタン系共重合樹脂、それを含む樹脂組成物及びその用途を提供することを課題とするものである。   The present invention relates to an adamantane copolymer resin that gives a cured product excellent in optical characteristics such as transparency and light resistance, durability such as long-term heat resistance, and electrical characteristics such as dielectric constant, a resin composition containing the same, and use thereof It is a problem to provide.

本発明者らは鋭意検討した結果、カチオン重合性官能基を有する(メタ)アクリル系モノマー由来の構成単位、及びアダマンタン構造を有する(メタ)アクリル系モノマー由来の構成単位を、特定の割合で含むアダマンタン系共重合樹脂を用いることにより上記課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors include a structural unit derived from a (meth) acrylic monomer having a cationic polymerizable functional group and a structural unit derived from a (meth) acrylic monomer having an adamantane structure at a specific ratio. It has been found that the above problems can be solved by using an adamantane copolymer resin, and the present invention has been completed.

すなわち、本発明は、
1.下記一般式(I)で表わされるカチオン重合性官能基を有する(メタ)アクリル系モノマー(A)由来の構成単位、及び下記一般式(II)又は(III)で表わされるアダマンタン構造を有する(メタ)アクリル系モノマー(B)由来の構成単位を含む共重合体で、[モノマー(A)由来の構成単位]/[モノマー(B)由来の構成単位]のモル比が0.1〜20、重量平均分子量が1,000〜6,000であるアダマンタン系共重合樹脂、並びに酸無水物系硬化剤を含む樹脂組成物
That is, the present invention
1. A structural unit derived from a (meth) acrylic monomer (A) having a cationic polymerizable functional group represented by the following general formula (I), and an adamantane structure represented by the following general formula (II) or (III) (meta ) A copolymer containing a structural unit derived from an acrylic monomer (B), wherein the molar ratio of [structural unit derived from monomer (A)] / [structural unit derived from monomer (B)] is 0.1 to 20 weight. An adamantane copolymer resin having an average molecular weight of 1,000 to 6,000, and a resin composition containing an acid anhydride curing agent ,

Figure 0005432456
Figure 0005432456

[式中、R1は、水素原子又はメチル基を示し、Xは、下記式(I−1)〜(I−5)のいずれか1種の基を示し、mは1〜5の整数である。 [Wherein, R 1 represents a hydrogen atom or a methyl group, X represents any one of the following formulas (I-1) to (I-5), and m represents an integer of 1 to 5. is there.

Figure 0005432456
(式中、R2は、水素原子又は炭素数1〜4のアルキル基を示す。)]
Figure 0005432456
(Wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)]

Figure 0005432456
Figure 0005432456

[式中、R1は、前記と同じであり、R3は、メチル基、水酸基、トリフルオロメチル基又は2つのR3が一緒になって形成された=Oを示し、R4は、メチル基、水酸基又は2つのR4が一緒になって形成された=Oを示す。nは0〜6の整数、pは0〜9の整数、tは6〜15の整数であり、かつp+t=15である。複数のR3及びR4は、それぞれ互いに同一でも異なっていてもよい。
Yは、式Cq2qr2r(qは0〜4の整数、rは0又は1である。)で表わされる基を示し、Zは、単結合、下記式(III−1)又は(III−2)で表わされる結合を示す。
[Wherein R 1 is the same as defined above, R 3 represents a methyl group, a hydroxyl group, a trifluoromethyl group, or two R 3 formed together to represent ═O, and R 4 represents methyl A group, a hydroxyl group, or two R 4 groups formed together represents ═O. n is an integer of 0 to 6, p is an integer of 0 to 9, t is an integer of 6 to 15, and p + t = 15. The plurality of R 3 and R 4 may be the same as or different from each other.
Y represents a group represented by the formula C q F 2q C r H 2r (q is an integer of 0 to 4, r is 0 or 1), Z is a single bond, the following formula (III-1) Or the bond represented by (III-2) is shown.

Figure 0005432456
Figure 0005432456

(式中、sは1〜4の整数である。)]
2.前記[モノマー(A)由来の構成単位]/[モノマー(B)由来の構成単位]のモル比が0.5〜15である、上記1に記載の樹脂組成物
.上記又はに記載の樹脂組成物を用いてなる光半導体用封止剤又は光半導体用シール剤、
.上記又はに記載の樹脂組成物を用いてなる光学用電子部材、
.上記又はに記載の樹脂組成物を用いてなる光学用接着剤又は光学用シール剤、及び
.上記又はに記載の樹脂組成物を用いてなるレジスト材料、
を提供するものである。
(Wherein s is an integer of 1 to 4)]
2. 2. The resin composition according to 1 above, wherein a molar ratio of [the structural unit derived from the monomer (A)] / [the structural unit derived from the monomer (B)] is 0.5 to 15.
3 . An encapsulant for optical semiconductors or a sealant for optical semiconductors comprising the resin composition according to 1 or 2 above,
4 . An optical electronic member comprising the resin composition according to 1 or 2 above,
5 . An optical adhesive or optical sealant comprising the resin composition according to 1 or 2 above, and
6 . A resist material comprising the resin composition according to 1 or 2 above,
Is to provide.

本発明のアダマンタン系共重合樹脂は、アダマンタン構造を含有しているため、光半導体用封止剤、光学用電子部材、光学用接着剤、及びレジスト材料として好適な、透明性及び耐光性などの光学特性、長期耐熱性などの耐久性、誘電率などの電気特性に優れた硬化物を与えることができる。   Since the adamantane copolymer resin of the present invention contains an adamantane structure, it is suitable as a sealing material for optical semiconductors, an optical electronic member, an optical adhesive, and a resist material, such as transparency and light resistance. A cured product having excellent optical characteristics, durability such as long-term heat resistance, and electrical characteristics such as dielectric constant can be provided.

本発明のアダマンタン系共重合樹脂は、カチオン重合性官能基を有した(メタ)アクリル系モノマー(A)とアダマンタン構造を有する(メタ)アクリル系モノマー(B)との共重合体である。   The adamantane copolymer resin of the present invention is a copolymer of a (meth) acrylic monomer (A) having a cationic polymerizable functional group and a (meth) acrylic monomer (B) having an adamantane structure.

[(メタ)アクリル系モノマー(A)]
本発明において用いられる(メタ)アクリル系モノマー(A)は、下記一般式(I)で表わされるカチオン重合性官能基を有する化合物である。本発明のアダマンタン系共重合樹脂は、モノマー(A)由来の構成単位を含むことにより、成形性及び透明性に優れた硬化物を与えることができる。
[(Meth) acrylic monomer (A)]
The (meth) acrylic monomer (A) used in the present invention is a compound having a cationically polymerizable functional group represented by the following general formula (I). The adamantane copolymer resin of the present invention can provide a cured product excellent in moldability and transparency by including a structural unit derived from the monomer (A).

Figure 0005432456
Figure 0005432456

式中、R1は、水素原子又はメチル基を示し、Xは、下記式(I−1)〜(I−5)のいずれか1種の基を示し、mは1〜5の整数である。 In the formula, R 1 represents a hydrogen atom or a methyl group, X represents any one group of the following formulas (I-1) to (I-5), and m is an integer of 1 to 5. .

Figure 0005432456
Figure 0005432456

式中、R2は、水素原子又は炭素数1〜4のアルキル基を示す。該アルキル基は、直鎖状、分岐状、環状のいずれであってもよい。具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。 In the formula, R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. The alkyl group may be linear, branched or cyclic. Specific examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group and the like.

一般式(I)で表わされるモノマー(A)は、ラジカル重合性を示す(メタ)アクリル基により、アダマンタン構造を有する(メタ)アクリレート系モノマー(B)とのラジカル重合反応が可能となっており、これによって一つの分子中にエポキシ基、オキセタン基又はビニルエーテル基などのカチオン重合性である官能基とアダマンタン構造とを有する共重合体を与えることができる。なお、共重合体中のカチオン重合性官能基により、耐熱性及び耐光性などに優れた硬化物を与えることができる。   The monomer (A) represented by the general formula (I) is capable of radical polymerization reaction with a (meth) acrylate monomer (B) having an adamantane structure by a (meth) acryl group exhibiting radical polymerizability. Thus, a copolymer having a cationic polymerizable functional group such as an epoxy group, an oxetane group or a vinyl ether group and an adamantane structure in one molecule can be provided. In addition, the cation polymeric functional group in a copolymer can give the hardened | cured material excellent in heat resistance, light resistance, etc.

エポキシ基(I−1)及びオキセタン基(I−2)を含有するモノマー(A)としては、例えば、グリシジル(メタ)アクリレート、β−メチルグリシジル(メタ)アクリレート、(3−メチルオキセタン−3−イル)メチル−2−(メタ)アクリレート、(3−エチルオキセタン−3−イル)メチル−2−(メタ)アクリレートなどが挙げられる。
ビニルエーテル基(I−3)を含有するモノマー(A)としては、例えば、ビニル−2−メチル(メタ)アクリレート、2−(ビニルオキシ)エチル−2−メチル(メタ)アクリレートなどが挙げられる。
2−オキソ−1,3−ジオキソラン基(I−4)を含有するモノマー(A)としては、例えば、(2−オキソ−1,3−ジオキソラニル)メチル(メタ)アクリレート、(2−オキソ−1,3−ジオキソラニル)エチル(メタ)アクリレートなどが挙げられる。
Examples of the monomer (A) containing an epoxy group (I-1) and an oxetane group (I-2) include glycidyl (meth) acrylate, β-methylglycidyl (meth) acrylate, and (3-methyloxetane-3- Yl) methyl-2- (meth) acrylate, (3-ethyloxetane-3-yl) methyl-2- (meth) acrylate, and the like.
Examples of the monomer (A) containing a vinyl ether group (I-3) include vinyl-2-methyl (meth) acrylate and 2- (vinyloxy) ethyl-2-methyl (meth) acrylate.
Examples of the monomer (A) containing a 2-oxo-1,3-dioxolane group (I-4) include (2-oxo-1,3-dioxolanyl) methyl (meth) acrylate, (2-oxo-1 , 3-dioxolanyl) ethyl (meth) acrylate and the like.

3,4−エポキシシクロヘキシル基(I−5)を含有するモノマー(A)としては、例えば、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート、3,4−エポキシシクロヘキシルエチル(メタ)アクリレートなどが挙げられる。
これらの中では、反応性の観点からグリシジル(メタ)アクリレート、3−エチルオキセタン−3−イル)メチル−2−(メタ)アクリレートが好ましい。
また、上記一般式(I)で表わされるモノマー(A)は、同一又は異なるものを組み合わせて使用してもよい。
Examples of the monomer (A) containing a 3,4-epoxycyclohexyl group (I-5) include 3,4-epoxycyclohexylmethyl (meth) acrylate and 3,4-epoxycyclohexylethyl (meth) acrylate. It is done.
Among these, glycidyl (meth) acrylate and 3-ethyloxetane-3-yl) methyl-2- (meth) acrylate are preferable from the viewpoint of reactivity.
Moreover, you may use the monomer (A) represented by the said general formula (I) combining the same or different things.

[(メタ)アクリレート系モノマー(B)]
本発明において用いられる(メタ)アクリレート系モノマー(B)は、下記一般式(II)又は(III)で表わされるアダマンタン構造を有する化合物である。本発明のアダマンタン系共重合樹脂は、モノマー(B)由来の構成単位を含むことにより、光学特性及び耐熱性に優れた硬化物を与えることができる。
[(Meth) acrylate monomer (B)]
The (meth) acrylate monomer (B) used in the present invention is a compound having an adamantane structure represented by the following general formula (II) or (III). The adamantane-based copolymer resin of the present invention can provide a cured product excellent in optical properties and heat resistance by including a structural unit derived from the monomer (B).

Figure 0005432456
Figure 0005432456

式中、R1は、前記と同じであり、R3は、メチル基、水酸基、トリフルオロメチル基又は2つのR3が一緒になって形成された=Oを示す。R3が複数ある場合、互いに同一でも異なっていてもよい。
4は、メチル基、水酸基又は2つのR4が一緒になって形成された=Oを示す。R4が複数ある場合、互いに同一でも異なっていてもよい。
nは0〜6の整数であり、pは0〜9の整数であり、tは6〜15の整数である。ただし、式(III)の場合、p+t=15である。
Yは、式Cq2qr2r(qは0〜4の整数、rは0又は1である。)で表わされる基を示す。
Zは、単結合、下記式(III−1)又は(III−2)で表わされる結合を示す。
In the formula, R 1 is the same as described above, and R 3 represents ═O formed by a methyl group, a hydroxyl group, a trifluoromethyl group, or two R 3 together. When there are a plurality of R 3 s , they may be the same or different.
R 4 represents a methyl group, a hydroxyl group, or ═O formed by combining two R 4 together. When there are a plurality of R 4 s , they may be the same or different.
n is an integer of 0-6, p is an integer of 0-9, and t is an integer of 6-15. However, in the case of formula (III), p + t = 15.
Y represents a group represented by the formula C q F 2q C r H 2r (q is an integer of 0 to 4, r is 0 or 1).
Z represents a single bond or a bond represented by the following formula (III-1) or (III-2).

Figure 0005432456
式中、sは1〜4の整数である。
Figure 0005432456
In the formula, s is an integer of 1 to 4.

一般式(II)で表わされるモノマー(B)としては、例えば、1−アダマンチル(メタ)アクリレート、1−アダマンチルメチル(メタ)アクリレート、1−アダマンチルエチル(メタ)アクリレート、1−アダマンチルプロピル(メタ)アクリレート、1−アダマンチルブチル(メタ)アクリレート、1−アダマンチルペンチル(メタ)アクリレート、1−アダマンチルヘキシル(メタ)アクリレート、3−ヒドロキシ−アダマンチル−1−(メタ)アクリレートなどが挙げられる。これらの中では、1−アダマンチル(メタ)アクリレート、1−アダマンチルメチル(メタ)アクリレート、1−アダマンチルエチル(メタ)アクリレートが好ましい。   Examples of the monomer (B) represented by the general formula (II) include 1-adamantyl (meth) acrylate, 1-adamantylmethyl (meth) acrylate, 1-adamantylethyl (meth) acrylate, and 1-adamantylpropyl (meth). Examples include acrylate, 1-adamantylbutyl (meth) acrylate, 1-adamantylpentyl (meth) acrylate, 1-adamantylhexyl (meth) acrylate, and 3-hydroxy-adamantyl-1- (meth) acrylate. Among these, 1-adamantyl (meth) acrylate, 1-adamantylmethyl (meth) acrylate, and 1-adamantylethyl (meth) acrylate are preferable.

一般式(III)で表わされるモノマー(B)としては、1−ペルフルオロアダマンチル(メタ)アクリレート、1−ペルフルオロアダマンチルメチル(メタ)アクリレート、1−ペルフルオロアダマンチルエチル(メタ)アクリレート、1−ペルフルオロアダマンチルプロピル(メタ)アクリレート、1−ペルフルオロアダマンチルブチル(メタ)アクリレート、1−ペルフルオロアダマンチルペンチル(メタ)アクリレート、1−ペルフルオロアダマンチルヘキシル(メタ)アクリレート、1−ペルフルオロトリフルオロメチル(メタ)アクリレート、2−[(ペルフルオロアダマンチル)オキシ]カルボニルメチルメタクリレート、2−[(ペルフルオロアダマンチル)オキシ]カルボニルエチルメタクリレート、2−(1−ペルフルオロアダマンチルオキシ)エチルアクリレートなどが挙げられる。これらの中では、1−ペルフルオロアダマンチル(メタ)アクリレート、1−ペルフルオロアダマンチルメチル(メタ)アクリレート、1−ペルフルオロアダマンチルメチル(メタ)アクリレート、2−[(ペルフルオロアダマンチル)オキシ]カルボニルメチルメタクリレート、2−(1−ペルフルオロアダマンチルオキシ)エチルアクリレートが好ましい。
また、上記一般式(II)又は(III)で表わされるモノマー(B)は、同一又は異なるものを組み合わせて使用してもよい。
As the monomer (B) represented by the general formula (III), 1-perfluoroadamantyl (meth) acrylate, 1-perfluoroadamantylmethyl (meth) acrylate, 1-perfluoroadamantylethyl (meth) acrylate, 1-perfluoroadamantylpropyl ( (Meth) acrylate, 1-perfluoroadamantylbutyl (meth) acrylate, 1-perfluoroadamantylpentyl (meth) acrylate, 1-perfluoroadamantylhexyl (meth) acrylate, 1-perfluorotrifluoromethyl (meth) acrylate, 2-[(perfluoro Adamantyl) oxy] carbonylmethyl methacrylate, 2-[(perfluoroadamantyl) oxy] carbonylethyl methacrylate, 2- (1-perfluoroadamantyloxy) Such as ethyl acrylate, and the like. Among these, 1-perfluoroadamantyl (meth) acrylate, 1-perfluoroadamantylmethyl (meth) acrylate, 1-perfluoroadamantylmethyl (meth) acrylate, 2-[(perfluoroadamantyl) oxy] carbonylmethyl methacrylate, 2- ( 1-perfluoroadamantyloxy) ethyl acrylate is preferred.
The monomers (B) represented by the general formula (II) or (III) may be used in combination of the same or different ones.

[樹脂の製造]
(重合開始剤)
モノマー(A)とモノマー(B)との共重合反応は、ラジカル重合によって行われる。ラジカル重合開始剤としては、アゾ系開始剤、過酸化物開始剤などを使用することができる。
アゾ系開始剤としては、例えば、2,2'−アゾビスイソブチロニトリル、2,2'−アゾビス−メチルブチロニトリル、2,2'−アゾビス−2,4−ジメチルバレロニトリル、1,1'−アゾビス−シクロヘキサンカルボニトリル、ジメチル−2,2'−アゾビスイソブチレート、4,4'−アゾビス−4−シアノ吉草酸、2,2'−アゾビス−(2−アミジノプロペン)2塩酸塩、2−tert−ブチルアゾ−2−シアノプロパン、2,2'−アゾビス−(2−メチル−プロピオンアミド)2水和物、2,2'−アゾビス[2−(2−イミダゾリン−2−イル)プロペン]、2,2'−アゾビス(2,2,4−トリメチルペンタン)などが挙げられる。
[Production of resin]
(Polymerization initiator)
The copolymerization reaction of the monomer (A) and the monomer (B) is performed by radical polymerization. As the radical polymerization initiator, an azo initiator, a peroxide initiator, or the like can be used.
Examples of the azo initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis-methylbutyronitrile, 2,2′-azobis-2,4-dimethylvaleronitrile, 1'-azobis-cyclohexanecarbonitrile, dimethyl-2,2'-azobisisobutyrate, 4,4'-azobis-4-cyanovaleric acid, 2,2'-azobis- (2-amidinopropene) dihydrochloride Salt, 2-tert-butylazo-2-cyanopropane, 2,2′-azobis- (2-methyl-propionamide) dihydrate, 2,2′-azobis [2- (2-imidazolin-2-yl ) Propene], 2,2′-azobis (2,2,4-trimethylpentane) and the like.

過酸化物開始剤としては、例えば、過酸化ベンゾイル、メチルエチルケトンパーオキサイド、メチルイソブチルケトンパーオキサイド、アセチルアセトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイドなどのケトンパーオキサイド類;1,1,3,3−テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t−ブチルハイドロパーオキサイドなどのハイドロパーオキサイド類;ジイソブチリルパーオキサイド、ビス−3,5,5−トリメチルヘキサノールパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、m−トルイルベンゾイルパーオキサイドなどのジアシルパーオキサイド類;ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、1,3−ビス(t−ブチルペルオキシイソプロピル)ヘキサン、t−ブチルクミルパーオキサイド、ジ−t−ブチルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキセンなどのジアルキルパーオキサイド類;1,1−ジ(t−ブチルペルオキシ−3,5,5−トリメチル)シクロヘキサン、1,1−ジ−t−ブチルペルオキシシクロヘキサン、2,2−ジ(t−ブチルペルオキシ)ブタンなどのパーオキシケタール類;(4−t−ブチルシクロヘキシル)パーオキシジカルボネートなどが挙げられる。   Examples of the peroxide initiator include ketone peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, acetylacetone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1, 1, 3, 3 -Hydroperoxides such as tetramethylbutyl hydroperoxide, cumene hydroperoxide, t-butyl hydroperoxide; diisobutyryl peroxide, bis-3,5,5-trimethylhexanol peroxide, lauroyl peroxide, benzoyl peroxide Diacyl peroxides such as oxide and m-toluylbenzoyl peroxide; dicumyl peroxide, 2,5-dimethyl-2,5-di (t Butylperoxy) hexane, 1,3-bis (t-butylperoxyisopropyl) hexane, t-butylcumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) ) Dialkyl peroxides such as hexene; 1,1-di (t-butylperoxy-3,5,5-trimethyl) cyclohexane, 1,1-di-t-butylperoxycyclohexane, 2,2-di (t- Peroxyketals such as (butylperoxy) butane; (4-t-butylcyclohexyl) peroxydicarbonate and the like.

ラジカル重合開始剤の使用量は、モノマー(A)、モノマー(B)及びラジカル重合開始剤の合計100質量部に対して、通常、0.01〜50質量部であり、好ましくは0.01〜30質量部である。上記範囲とすることにより、反応時間及び収率などが良好なものとなり、また目的とする重量平均分子量が得られ、さらに光学特性などの物性を発現できる。   The usage-amount of a radical polymerization initiator is 0.01-50 mass parts normally with respect to a total of 100 mass parts of a monomer (A), a monomer (B), and a radical polymerization initiator, Preferably 0.01- 30 parts by mass. By setting it as the said range, reaction time, a yield, etc. become favorable, the target weight average molecular weight is obtained, and also physical properties, such as an optical characteristic, can be expressed.

(溶媒)
モノマー(A)とモノマー(B)との共重合反応は、無溶媒でもよいが、必要に応じて溶媒を使用することができる。溶媒は、モノマー(A)及び(B)の合計濃度が、通常、0.5質量%以上、好ましくは5質量%以上となる量を使用する。このとき、モノマーが懸濁状態でもよいが、溶解していることが好ましい。
(solvent)
The copolymerization reaction of the monomer (A) and the monomer (B) may be solventless, but a solvent can be used as necessary. The solvent is used in such an amount that the total concentration of the monomers (A) and (B) is usually 0.5% by mass or more, preferably 5% by mass or more. At this time, the monomer may be in a suspended state but is preferably dissolved.

溶媒としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノールなどのアルキルアルコール類;メチルセロソルブ、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテルなどのグリコールエーテル類;ベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素類;エクソンアロマティックナフサNo.2(米国エクソン社製)などの芳香族炭化水素を含有する混合炭化水素類;n−ペンタン、n−ヘキサンなどの脂肪族炭化水素類;アイソパーC、アイソパーE、エクソールDSP100/140、エクソールD30(いずれも米国エクソン社製)、IPソルベント1016(出光興産社製)などの脂肪族炭化水素を含有する混合炭化水素類;シクロペンタン、シクロヘキサン、メチルシクロヘキサンなどの脂環族炭化水素類;テトラヒドロフラン、ジオキサン、ジイソプロピルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類;酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸イソプロピル、酢酸−n−アミル、酢酸イソアミル、酢酸ヘキシル、プロピオン酸エチルなどのエステル類などが挙げられる。これら溶媒は、単独又は組み合わせて使用することができる。   Examples of the solvent include alkyl alcohols such as methanol, ethanol, n-propanol, and isopropanol; glycol ethers such as methyl cellosolve, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether; benzene , Toluene, xylene, ethylbenzene and other aromatic hydrocarbons; Exon Aromatic Naphtha No. 2 (manufactured by Exxon, Inc.) and other hydrocarbons containing aromatic hydrocarbons; aliphatic hydrocarbons such as n-pentane and n-hexane; Isopar C, Isopar E, Exol DSP 100/140, Exol D30 ( Mixed hydrocarbons containing aliphatic hydrocarbons such as Exxon, USA) and IP Solvent 1016 (made by Idemitsu Kosan Co., Ltd.); alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane; tetrahydrofuran, dioxane , Ethers such as diisopropyl ether; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; methyl acetate, ethyl acetate, acetic acid-n-propyl, isopropyl acetate, acetic acid-n-amyl, isoamyl acetate, hexyl acetate, ethyl propionate Esters such as And the like. These solvents can be used alone or in combination.

(反応条件)
反応温度としては、通常、0〜200℃であり、好ましくは20〜150℃である。温度が低すぎる場合、反応速度が低下し、温度が高すぎる場合、着色が激しくなる。
反応圧力としては、通常、絶対圧力で0.01〜10MPaであり、好ましくは常圧〜1MPaである。圧力が高すぎる場合、安全上、問題があり特別な装置が必要となり好ましくない。
反応時間としては、重合開始剤の種類や量、反応温度などに左右され、一概に決めることはできないが、通常、1分〜24時間であり、好ましくは1〜10時間である。
反応の際には、必要に応じ、連鎖移動剤を用いることができる。連鎖移動剤とは、分子量を制御するために用いられるものであり、例えば、ドデシルメルカプタン、ラウリルメルカプタン、チオグリコール酸エステル、メルカプトエタノール、α−メチルスチレンダイマーなどが挙げられる。
(Reaction conditions)
As reaction temperature, it is 0-200 degreeC normally, Preferably it is 20-150 degreeC. When the temperature is too low, the reaction rate decreases, and when the temperature is too high, coloring becomes intense.
The reaction pressure is usually 0.01 to 10 MPa in absolute pressure, preferably normal pressure to 1 MPa. If the pressure is too high, there is a safety problem and a special device is required, which is not preferable.
The reaction time depends on the type and amount of the polymerization initiator, the reaction temperature, and the like, and cannot be generally determined, but is usually 1 minute to 24 hours, preferably 1 to 10 hours.
In the reaction, a chain transfer agent can be used as necessary. The chain transfer agent is used for controlling the molecular weight, and examples thereof include dodecyl mercaptan, lauryl mercaptan, thioglycolic acid ester, mercaptoethanol, and α-methylstyrene dimer.

上記重合反応により製造されたモノマー(A)とモノマー(B)との共重合体である本発明のアダマンタン系共重合樹脂は、モノマー(B)由来の構成単位に対するモノマー(A)由来の構成単位のモル比[モノマー(A)由来の構成単位]/[モノマー(B)由来の構成単位]が0.1〜20であり、好ましくは0.5〜15であり、より好ましくは0.5〜8である。0.1未満であると、硬化剤との相溶性が悪化し、20を超えると硬度や耐熱性が不充分となる傾向がある。   The adamantane copolymer resin of the present invention, which is a copolymer of the monomer (A) and the monomer (B) produced by the polymerization reaction, is a structural unit derived from the monomer (A) relative to the structural unit derived from the monomer (B). The molar ratio [constituent unit derived from monomer (A)] / [constituent unit derived from monomer (B)] is 0.1 to 20, preferably 0.5 to 15, more preferably 0.5 to 8. If it is less than 0.1, the compatibility with the curing agent deteriorates, and if it exceeds 20, the hardness and heat resistance tend to be insufficient.

モノマー(A)とモノマー(B)とからなるアダマンタン系共重合樹脂の重量平均分子量は1,000〜6,000であり好ましくは1,000〜4,000である。1,000未満であると、硬度や耐熱性が不充分となる傾向があり、6,000を超えると硬化剤との相溶性が悪化する。なお、重量平均分子量はゲルパーミエーションクロマトグラフィ(GPC)法で測定したポリスチレン換算の値である。 Monomer (A) and monomer (B) and weight average molecular weight of adamantane-based copolymer resin consisting of is 1,000 to 6,000, preferably 1,000 to 4,000. If it is less than 1,000, hardness and heat resistance tend to be insufficient, and if it exceeds 6,000 , compatibility with the curing agent deteriorates. The weight average molecular weight is a value in terms of polystyrene measured by gel permeation chromatography (GPC).

[樹脂組成物]
上記重合反応により製造されたアダマンタン系共重合樹脂のみを硬化させて硬化物としてもよいが、機械強度や溶解性、作業性などの最適化のために、上記アダマンタン系共重合樹脂と公知のエポキシ樹脂などとを混合した樹脂組成物も使用して硬化物とすることができる。
[Resin composition]
Only the adamantane copolymer resin produced by the polymerization reaction may be cured to obtain a cured product. However, in order to optimize mechanical strength, solubility, workability, etc., the adamantane copolymer resin and a known epoxy are used. A cured composition can also be obtained by using a resin composition in which a resin or the like is mixed.

混合使用できる公知のエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂(具体的には、ビスフェノールAジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールGジグリシジルエーテル、テトラメチルビスフェノールAジグリシジルエーテル、ビスフェノールヘキサフルオロアセトンジグリシジルエーテル、ビスフェノールCジグリシジルエーテルなど);フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキシルカルボキシレートなどの脂環式エポキシ樹脂;トリグリシジルイソシアヌレート、ヒダントインエポキシ樹脂などの含窒素複素環エポキシ樹脂;水添ビスフェノールA型エポキシ樹脂;脂肪族系エポキシ樹脂;低吸水率硬化体タイプの主流であるビフェニル型エポキシ樹脂;ジシクロ環型エポキシ樹脂;ナフタレン型エポキシ樹脂;トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテルなどの多官能エポキシ樹脂;ビスフェノールAF型エポキシ樹脂などの含フッ素エポキシ樹脂などが挙げられる。これらは単独又は組み合わせて使用してもよい。   Known epoxy resins that can be used as a mixture include, for example, bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin (specifically, bisphenol A diglycidyl ether, bisphenol AD diester). Glycidyl ether, bisphenol S diglycidyl ether, bisphenol F diglycidyl ether, bisphenol G diglycidyl ether, tetramethylbisphenol A diglycidyl ether, bisphenol hexafluoroacetone diglycidyl ether, bisphenol C diglycidyl ether, etc.); phenol novolac type epoxy resin , Novolac epoxy resins such as cresol novolac epoxy resin; 3,4-epoxycyclohexyl Cycloaliphatic epoxy resins such as methyl-3,4-epoxycyclohexylcarboxylate; nitrogen-containing heterocyclic epoxy resins such as triglycidyl isocyanurate and hydantoin epoxy resins; hydrogenated bisphenol A type epoxy resins; aliphatic epoxy resins; low Biphenyl type epoxy resin, which is the mainstream of water-absorbing cured product type; dicyclo ring type epoxy resin; naphthalene type epoxy resin; polyfunctional epoxy resin such as trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether; bisphenol Examples thereof include fluorine-containing epoxy resins such as AF type epoxy resins. These may be used alone or in combination.

[硬化物]
本発明のアダマンタン系共重合樹脂を含む樹脂組成物は、カチオン重合開始剤、あるいは酸無水物系、フェノール系及びアミン系などの硬化剤を使用することにより硬化させることができる。
カチオン重合開始剤としては、例えば、p−メトキシベンゼンジアゾニウムヘキサフルオロホスフェートなどの芳香族ジアゾニウム塩、トリフェニルスルホニウムヘキサフルオロホスフェートなどの芳香族スルホニウム塩、ジフェニルヨードニウムヘキサフルオロホスフェートなどの芳香族ヨードニウム塩、芳香族ヨードシル塩、芳香族スルホキソニウム塩、メタロセン化合物などが挙げられる。
カチオン重合開始剤の使用量は、樹脂組成物に対して、通常、0.01〜5質量%が好ましく、より好ましくは0.1〜3質量%である。上記範囲とすることにより、良好な重合及び光学特性などの物性を発現できる。
[Cured product]
The resin composition containing the adamantane-based copolymer resin of the present invention can be cured by using a cationic polymerization initiator or a curing agent such as an acid anhydride, phenol, or amine.
Examples of the cationic polymerization initiator include aromatic diazonium salts such as p-methoxybenzenediazonium hexafluorophosphate, aromatic sulfonium salts such as triphenylsulfonium hexafluorophosphate, aromatic iodonium salts such as diphenyliodonium hexafluorophosphate, aromatic Group iodosyl salt, aromatic sulfoxonium salt, metallocene compound and the like.
As for the usage-amount of a cationic polymerization initiator, 0.01-5 mass% is preferable normally with respect to a resin composition, More preferably, it is 0.1-3 mass%. By setting it as the above range, physical properties such as good polymerization and optical properties can be expressed.

酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸などが挙げられる。また、酸無水物を用いる場合、その硬化を促進する目的で硬化促進剤を配合してもよい。この硬化促進剤の例としては、3級アミン類、イミダゾール類、有機ホスフィン化合物類又はこれらの塩、オクチル酸亜鉛、オクチル酸スズなどの金属石鹸類が挙げられる。   Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Examples include acid, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, and the like. Moreover, when using an acid anhydride, you may mix | blend a hardening accelerator in order to accelerate | stimulate the hardening. Examples of the curing accelerator include tertiary soaps, imidazoles, organic phosphine compounds or salts thereof, and metal soaps such as zinc octylate and tin octylate.

フェノール系硬化剤としては、例えば、フェノール/ノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールAノボラック樹脂、トリアジン変性フェノールノボラック樹脂などが挙げられる。
アミン系硬化剤としては、例えば、m−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルホン、m−キシリレンジアミンなどの芳香族ジアミン、ジシアンジアミドなどが挙げられる。
これらの硬化剤は、単独又は組み合わせて使用してもよい。
硬化剤の使用量は、樹脂組成物に対して、通常、0.01〜5質量%が好ましく、より好ましくは0.1〜3質量%である。
Examples of the phenolic curing agent include phenol / novolak resin, cresol novolac resin, bisphenol A novolac resin, triazine-modified phenol novolac resin, and the like.
Examples of the amine curing agent include m-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, m-xylylenediamine and other aromatic diamines, and dicyandiamide.
These curing agents may be used alone or in combination.
As for the usage-amount of a hardening | curing agent, 0.01-5 mass% is preferable normally with respect to a resin composition, More preferably, it is 0.1-3 mass%.

また、樹脂組成物には、従来から使用されている、例えば、硬化促進剤、劣化防止剤、変性剤、脱泡剤、無機粉末、溶剤、レベリング剤、離型剤、染料、顔料などの公知添加剤を適宜配合してもよい。
硬化促進剤としては、例えば、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリエチレンジアミン、トリス(2,4,6−ジメチルアミノメチル)フェノールなどの3級アミン類;2−エチル−4−メチルイミダゾール、2−メチルイミダゾールなどのイミダゾール類;トリフェニルホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエートなどのリン化合物;4級アンモニウム塩、有機金属塩類、及びこれらの誘導体などが挙げられる。これら硬化促進剤は、単独又は組み合わせて使用してもよい。
硬化促進剤の配合は、上記樹脂組成物100質量部に対して、通常、0.01〜8.0質量部であり、好ましくは0.1〜3.0質量部である。硬化促進剤の含有率を上記範囲とすることにより、充分な硬化促進効果を得られ、また得られる硬化物に変色が見られない。
In addition, conventionally used resin compositions include, for example, curing accelerators, deterioration inhibitors, modifiers, defoamers, inorganic powders, solvents, leveling agents, release agents, dyes, pigments, and the like. You may mix | blend an additive suitably.
Examples of the curing accelerator include tertiary amines such as 1,8-diazabicyclo [5.4.0] undecene-7, triethylenediamine, and tris (2,4,6-dimethylaminomethyl) phenol; 2-ethyl Imidazoles such as -4-methylimidazole and 2-methylimidazole; phosphorus such as triphenylphosphine, tetraphenylphosphonium bromide, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o-diethylphosphorodithioate Compounds; quaternary ammonium salts, organometallic salts, and derivatives thereof. These curing accelerators may be used alone or in combination.
The amount of the curing accelerator is usually 0.01 to 8.0 parts by mass, preferably 0.1 to 3.0 parts by mass with respect to 100 parts by mass of the resin composition. By making the content rate of a hardening accelerator into the said range, sufficient hardening acceleration effect is acquired and discoloration is not seen by the hardened | cured material obtained.

劣化防止剤としては、例えば、フェノール系化合物、アミン系化合物、有機硫黄系化合物、リン系化合物などの公知の劣化防止剤が挙げられる。劣化防止剤を添加すると、硬化物の耐熱性や透明性などの特性を保持することができる。
フェノール系化合物としては、イルガノクス1010(Irganox1010、チバ・スペシャルティ・ケミカルズ社製、商標)、イルガノクス1076(Irganox1076、チバ・スペシャルティ・ケミカルズ社製、商標)、イルガノクス1330(Irganox1330、チバ・スペシャルティ・ケミカルズ社製、商標)、イルガノクス3114(Irganox3114、チバ・スペシャルティ・ケミカルズ社製、商標)、イルガノクス3125(Irganox3125、チバ・スペシャルティ・ケミカルズ社製、商標)、イルガノクス3790(Irganox3790、チバ・スペシャルティ・ケミカルズ社製、商標)、BHT、シアノクス1790(Cyanox1790、サイアナミド社、商標)及びスミライザーGA−80(SumilizerGA−80、住友化学社製、商標)などの市販品を挙げることができる。
Examples of the degradation inhibitor include known degradation inhibitors such as phenol compounds, amine compounds, organic sulfur compounds, and phosphorus compounds. When a deterioration inhibitor is added, properties such as heat resistance and transparency of the cured product can be maintained.
Examples of phenolic compounds include Irganox 1010 (Irganox 1010, trade name, manufactured by Ciba Specialty Chemicals), Irganox 1076 (Irganox 1076, trade name, manufactured by Ciba Specialty Chemicals), Irganox 1330 (Irganox 1330, manufactured by Ciba Specialty Chemicals) , Irganox 3114 (Irganox 3114, Ciba Specialty Chemicals, Trademark), Irganox 3125 (Irganox 3125, Ciba Specialty Chemicals, Trademark), Irganox 3790 (Irganox 3790, Ciba Specialty Chemicals, Trademark) ), BHT, Cyanox 1790 (Cyanox 1790, Cyanamid Co., Ltd.) GA-80 (SumilizerGA-80, manufactured by Sumitomo Chemical Co., Ltd., trademark) can be exemplified commercially available products such as.

アミン系化合物としては、イルガスタブFS042(チバ・スペシャルティ・ケミカルズ社製、商標)、GENOX EP(クロンプトン社製、商標、化合物名;ジアルキル−N−メチルアミンオキサイド)など、さらにはヒンダードアミン系である旭電化社製のADK STAB LA−52、LA−57、LA−62、LA−63、LA−67、LA−68、LA−77、LA−82、LA−87、LA−94、CSC社製のTinuvin123、144、440、662、Chimassorb2020、119、944、Hoechst社製のHostavin N30、Cytec社製のCyasorb UV−3346、UV−3526、GLC社製のUval299及びClariant社製のSanduvor PR−31などを挙げることができる。   Examples of amine compounds include irgastab FS042 (trade name, manufactured by Ciba Specialty Chemicals), GENOX EP (trade name, compound name; dialkyl-N-methylamine oxide) manufactured by Ciba Specialty Chemicals, and also Asahi Denka, which is a hindered amine system. ADK STAB LA-52, LA-57, LA-62, LA-63, LA-67, LA-68, LA-77, LA-82, LA-87, LA-94, Tinuvin123 manufactured by CSC 144, 440, 662, Chimassorb 2020, 119, 944, Hostachin N30 manufactured by Hoechst, Cyasorb UV-3346, UV-3526 manufactured by Cytec, Uval299 manufactured by GLC, and Sanduvor PR-31 manufactured by Clariant, etc. It can gel.

有機硫黄系化合物としては、DSTP(ヨシトミ)(吉富社製、商標)、DLTP(ヨシトミ)(吉富社製、商標)、DLTOIB(吉富社製、商標)、DMTP(ヨシトミ)(吉富社製、商標)、Seenox 412S(シプロ化成社製、商標)及びCyanox 1212(サイアナミド社製、商標)などの市販品を挙げることができる。
変性剤としては、例えば、グリコール類、シリコーン類及びアルコール類などの公知の変性剤が挙げられる。シランカップリング剤としては、例えば、シラン系、チタネート系などの公知のシランカップリング剤が挙げられる。脱泡剤としては、例えば、シリコーン系などの公知の脱泡剤が挙げられる。無機粉末としては、用途に応じて粒径が数nm〜10μmのものが使用でき、例えば、ガラス粉末、シリカ粉末、チタニア、酸化亜鉛及びアルミナなどの公知の無機粉末が挙げられる。溶剤としては、樹脂成分が粉末の場合や、コーティングの希釈溶剤として、トルエンやキシレンなどの芳香族系溶剤やMEK(メチルエチルケトン)、MIBK(メチルイソブチルケトン)及びシクロヘキサノンなどのケトン系溶剤などが使用可能である。
Examples of the organic sulfur compounds include DSTP (Yoshitomi, trademark), DLTP (Yoshitomi, trademark), DLTOIB (Yoshitomi, trademark), and DMTP (Yoshitomi, trademark). ), Seenox 412S (trade name, manufactured by Sipro Kasei Co., Ltd.) and Cyanox 1212 (trade name, manufactured by Cyanamid Co., Ltd.).
Examples of the modifier include known modifiers such as glycols, silicones, and alcohols. Examples of the silane coupling agent include known silane coupling agents such as silane and titanate. Examples of the defoaming agent include known defoaming agents such as silicone. As the inorganic powder, those having a particle diameter of several nanometers to 10 μm can be used depending on applications, and examples thereof include known inorganic powders such as glass powder, silica powder, titania, zinc oxide, and alumina. Solvents can be used when the resin component is powder, or as solvent for coating, aromatic solvents such as toluene and xylene, ketone solvents such as MEK (methyl ethyl ketone), MIBK (methyl isobutyl ketone) and cyclohexanone can be used. It is.

本発明のアダマンタン系共重合樹脂を含む樹脂組成物と、必要に応じて配合されるその他の樹脂、硬化剤、及び各種添加剤を混合し、成型する金型(樹脂金型)への注入、あるいはコーティングにより所望の形状にした後に、硬化させることにより硬化物とすることができる。硬化法としては、特に制限はないが、通常、加熱硬化法又は紫外線照射による硬化法が挙げられる。
加熱硬化法としては、硬化温度が、通常、50〜200℃程度、好ましくは100〜180℃である。50℃以上とすることにより硬化不良となることがなく、200℃以下とすることにより着色などを生じることが無くなる。硬化時間は、使用するエポキシ樹脂、硬化剤、促進剤や開始剤によって異なるが、通常、0.5〜6時間が好ましい。
紫外線照射による硬化法としては、紫外線を、光量が、通常、500〜5000mJ/cm2程度、好ましくは1000〜4000mJ/cm2になるように照射する。紫外線照射後に後加熱を行ってもよく、70〜200℃で0.5〜12時間行うことが好ましい。
成形方法としては射出成形、ブロー成形、プレス成形など、特に限定されるものではない。
Mixing the resin composition containing the adamantane-based copolymer resin of the present invention with other resins, curing agents, and various additives that are blended as necessary, and injecting them into a mold (resin mold) for molding, Or after making it into a desired shape by coating, it can be set as a hardened | cured material by making it harden | cure. Although there is no restriction | limiting in particular as a hardening method, Usually, the heating method or the hardening method by ultraviolet irradiation is mentioned.
As the heat curing method, the curing temperature is usually about 50 to 200 ° C, preferably 100 to 180 ° C. Setting it to 50 ° C. or higher does not cause curing failure, and setting it to 200 ° C. or lower prevents coloring and the like from occurring. The curing time varies depending on the epoxy resin, the curing agent, the accelerator and the initiator used, but usually 0.5 to 6 hours are preferable.
The curing method by ultraviolet irradiation, the ultraviolet light quantity is usually, 500~5000mJ / cm 2, preferably about irradiated so as to 1000~4000mJ / cm 2. Post-heating may be performed after the ultraviolet irradiation, and it is preferably performed at 70 to 200 ° C. for 0.5 to 12 hours.
The molding method is not particularly limited, such as injection molding, blow molding, press molding and the like.

本発明のアダマンタン系共重合樹脂を含む樹脂組成物を硬化して得られた硬化物は、アダマンタン構造を有する樹脂を含むため、透明性などに優れており、光線透過率が70%以上となるものである。また、後の実施例に示すように、溶解温度が低いので加工性に優れ、ガラス転移温度が高く、優れた耐熱性及び耐光性などを有し、誘電率など電気特性にも優れた硬化物が得られる。
このように本発明のアダマンタン系共重合樹脂を含む樹脂組成物を硬化して得られた硬化物は、優れた特性を有するので、光半導体(LEDなど)用及び光学用の樹脂(封止剤、接着剤、シール剤)、フラットパネルディスプレイ(有機EL素子など)、光導波路、光通信用レンズ及び光学用フィルムなどの光学電子部材、レジスト材料などに好適に用いることができる。
The cured product obtained by curing the resin composition containing the adamantane-based copolymer resin of the present invention contains a resin having an adamantane structure, and thus is excellent in transparency and has a light transmittance of 70% or more. Is. In addition, as shown in the examples below, a cured product having a low melting temperature, excellent workability, a high glass transition temperature, excellent heat resistance and light resistance, and excellent electrical characteristics such as dielectric constant. Is obtained.
Thus, since the cured product obtained by curing the resin composition containing the adamantane-based copolymer resin of the present invention has excellent characteristics, it is used for optical semiconductors (LEDs, etc.) and optical resins (encapsulant). , Adhesives, sealants), flat panel displays (organic EL elements, etc.), optical waveguides, optical communication lenses such as optical communication lenses and optical films, resist materials, and the like.

すなわち、本発明のアダマンタン系共重合樹脂は、光半導体素子/集積回路(IC他)、個別半導体(ダイオード、トランジスタ、サーミスタなど)として、LED(LEDランプ、チップLED、受光素子、光半導体用レンズ)、センサー(温度センサー、光センサー、磁気センサー)、受動部品(高周波デバイス、抵抗器、コンデンサなど)、機構部品(コネクター、スイッチ、リレーなど)、自動車部品(回路系、制御系、センサー類、ランプシールなど)、接着剤(光学部品、光学ディスク、ピックアップレンズ)などに用いられ、表面コーティング用として光学用フィルム、フォトレジスト及びカラーレジストなどのレジスト材料などに用いられる。
したがって、本発明は、アダマンタン系共重合樹脂を用いてなる光半導体用封止剤又はシール剤、光学用電子部材、光学用接着剤又はシール剤、レジスト材料をも提供する。
That is, the adamantane-based copolymer resin of the present invention is an optical semiconductor element / integrated circuit (IC, etc.), individual semiconductor (diode, transistor, thermistor, etc.), LED (LED lamp, chip LED, light receiving element, optical semiconductor lens). ), Sensors (temperature sensors, optical sensors, magnetic sensors), passive components (high-frequency devices, resistors, capacitors, etc.), mechanical components (connectors, switches, relays, etc.), automotive components (circuit systems, control systems, sensors, Lamp seals, etc.), adhesives (optical components, optical discs, pickup lenses), etc., and for surface coating, resist films such as optical films, photoresists and color resists.
Accordingly, the present invention also provides an optical semiconductor encapsulant or sealant, an optical electronic member, an optical adhesive or sealant, and a resist material, which use an adamantane copolymer resin.

光半導体(LEDなど)用封止剤としての構成は、砲弾型あるいはサーフェスマウント(SMT)型などに素子に適用でき、金属やポリアミド上に形成されたGaNなどの半導体と良好に密着し、さらにYAGなどの蛍光色素を分散しても使用できる。さらに、砲弾型LEDの表面コート剤、SMT型LEDのレンズなどにも使用可能である。
有機EL用に適用する際の構成は、一般的なガラスや透明樹脂などの透光性基板上に、陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子に適用可能である。有機EL素子の封止材として、金属缶や金属シートあるいはSiNなどのコーティングされた樹脂フィルムをEL素子にカバーする際の接着剤、あるいは本発明のエポキシ樹脂にガスバリアー性を付与するために無機フィラーなどを分散することで、直接、EL素子を封止することも可能である。表示方式として、現在、主流のボトムエミッション型にも適用可能であるが、今後、光の取出し効率などの点で期待されるトップエミッション型に適用することで、本発明のエポキシ樹脂組成物の透明性や耐熱性の効果を活かせる。
The structure as a sealant for optical semiconductors (LEDs, etc.) can be applied to a device such as a shell type or surface mount (SMT) type, and is in good contact with a semiconductor such as GaN formed on metal or polyamide, It can also be used by dispersing a fluorescent dye such as YAG. Further, it can be used for a surface coating agent of a bullet type LED, a lens of an SMT type LED, and the like.
The organic EL device has a structure in which an anode / hole injection layer / light emitting layer / electron injection layer / cathode are sequentially provided on a transparent substrate such as general glass or transparent resin. It can be applied to an EL element. As an organic EL device sealing material, an adhesive for covering a metal can, a metal sheet, or a coated resin film such as SiN on the EL device, or an inorganic material for imparting gas barrier properties to the epoxy resin of the present invention It is also possible to directly seal the EL element by dispersing the filler or the like. As a display method, it can be applied to the mainstream bottom emission type at present. The effect of heat resistance and heat can be utilized.

光回路に使用する際の構成は、シングルモードやマルチモード用の熱光学スイッチやアレイ導波路型格子、合分波器、波長可変フィルター、あるいは光ファイバーのコア材料やクラッド材料にも適用できる。また、導波路に光を集光するマイクロレンズアレイやMEMS型光スイッチのミラーにも適用できる。また、光電変換素子の色素バインダーなどにも適用可能である。
光学用フィルムとして用いる際の構成は、液晶用のフィルム基板、有機EL用フィルム基板などのディスプレイ用として、あるいは光拡散フィルム、反射防止フィルム、蛍光色素などを分散することによる色変換フィルムなどに適用可能である。
例えば、カラーレジストについては、液晶表示向けのカラーフィルタを構成するRGB及びブラックマトリックスなどのレジストの主成分もしくは添加剤として適応可能である。
The configuration used in an optical circuit can be applied to a single-mode or multi-mode thermo-optic switch, arrayed waveguide grating, multiplexer / demultiplexer, wavelength tunable filter, or optical fiber core material or cladding material. Further, the present invention can be applied to a microlens array for condensing light in a waveguide or a mirror of a MEMS type optical switch. Moreover, it is applicable also to the pigment | dye binder etc. of a photoelectric conversion element.
When used as an optical film, the structure is applied to a film substrate for liquid crystal, a film substrate for organic EL, or a color conversion film by dispersing a light diffusion film, an antireflection film, a fluorescent pigment, etc. Is possible.
For example, a color resist can be applied as a main component or additive of a resist such as RGB and black matrix constituting a color filter for liquid crystal display.

本発明を実施例によりさらに詳しく説明するが、本発明はこれらにより何ら限定されるものではない。   The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

[アダマンタン系共重合樹脂の製造]
実施例1
還流冷却管、攪拌機、温度計、窒素導入管を備え付けた500mL丸底フラスコに、1−アダマンチルメタクリレート2.06g(モノマー(B))、グリシジルメタクリレート10.65g(モノマー(A))、アゾビスイソブチロニトリル5.04g、トルエン300mLを加えた。これを70℃のオイルバスにて2時間反応させた。その後、反応液を室温まで冷却し、有機層を濃縮し、白色粉体を得た。この白色粉体を粉体量に対して2倍量のトルエンに溶解させ、粉体量に対して4倍量のヘキサンに加え再沈処理を行った。その後、沈殿物を取り出し、乾燥させ目的物の共重合樹脂(白色粉体、収率78%)を得た。
[Production of adamantane copolymer resin]
Example 1
In a 500 mL round bottom flask equipped with a reflux condenser, a stirrer, a thermometer, and a nitrogen inlet tube, 2.06 g of 1-adamantyl methacrylate (monomer (B)), 10.65 g of glycidyl methacrylate (monomer (A)), azobisiso 5.04 g of butyronitrile and 300 mL of toluene were added. This was reacted in a 70 ° C. oil bath for 2 hours. Thereafter, the reaction solution was cooled to room temperature, and the organic layer was concentrated to obtain a white powder. This white powder was dissolved in toluene twice as much as the amount of powder, and added to hexane four times as much as the amount of powder, followed by reprecipitation treatment. Thereafter, the precipitate was taken out and dried to obtain a target copolymer resin (white powder, yield 78%).

実施例2
モノマー(B)として、1−アダマンチルメタクリレートの代わりに1−アダマンチルメチルメタクリレート2.2gを用いたこと以外は実施例1と同様に行い、目的物の共重合樹脂(白色粉体、収率73%)を得た。
実施例3
モノマー(B)として、1−アダマンチルメタクリレートの代わりに1−アダマンチルエチルメタクリレート2.36gを用いたこと以外は実施例1と同様に行い、目的物の共重合樹脂(白色粉体、収率79%)を得た。
実施例4
モノマー(B)として、1−アダマンチルメタクリレートの代わりに1−ペルフルオロアダマンチルメチルメタクリレート4.69gを用いたこと以外は実施例1と同様に行い、目的物の共重合樹脂(白色粉体、収率80%)を得た。
Example 2
The same procedure as in Example 1 was conducted except that 2.2 g of 1-adamantylmethyl methacrylate was used in place of 1-adamantyl methacrylate as the monomer (B), and the target copolymer resin (white powder, yield 73%) )
Example 3
The same procedure as in Example 1 was conducted except that 1.36 g of 1-adamantylethyl methacrylate was used in place of 1-adamantyl methacrylate as the monomer (B), and the target copolymer resin (white powder, yield 79%) )
Example 4
The same procedure as in Example 1 was carried out except that 1.69 g of 1-perfluoroadamantylmethyl methacrylate was used in place of 1-adamantyl methacrylate as the monomer (B), and the target copolymer resin (white powder, yield 80) was obtained. %).

実施例5
還流冷却管、攪拌機、温度計、窒素導入管を備え付けた500mL丸底フラスコに1−アダマンチルメチルメタクリレート3.3g(モノマー(B))、グリシジルメタクリレート9.98g(モノマー(A))、アゾビスイソブチロニトリル5.04g、トルエン300mLを加えた。これを70℃のオイルバスにて2時間反応させた。その後、反応液を室温まで冷却し、有機層を濃縮し、白色粉体を得た。この白色粉体を粉体量に対して2倍量のトルエンに溶解させ、粉体量に対して4倍量のヘキサンに加え再沈処理を行った。その後、沈殿物を取り出し、乾燥させ目的物の共重合樹脂(白色粉体、収率67%)を得た。
実施例6
還流冷却管、攪拌機、温度計、窒素導入管を備え付けた500mL丸底フラスコに1−アダマンチルメチルメタクリレート6.58g(モノマー(B))、グリシジルメタクリレート7.97g(モノマー(A))、アゾビスイソブチロニトリル5.04g、トルエン300mLを加えた。これを70℃のオイルバスにて2時間反応させた。その後、反応液を室温まで冷却し、有機層を濃縮し、白色粉体を得た。この白色粉体を粉体量に対して2倍量のトルエンに溶解させ、粉体量に対して4倍量のヘキサンに加え再沈処理を行った。その後、沈殿物を取り出し、乾燥させ目的物の共重合樹脂(白色粉体、収率72%)を得た。
Example 5
In a 500 mL round bottom flask equipped with a reflux condenser, a stirrer, a thermometer, and a nitrogen inlet tube, 3.3 g of 1-adamantylmethyl methacrylate (monomer (B)), 9.98 g of glycidyl methacrylate (monomer (A)), azobisiso 5.04 g of butyronitrile and 300 mL of toluene were added. This was reacted in a 70 ° C. oil bath for 2 hours. Thereafter, the reaction solution was cooled to room temperature, and the organic layer was concentrated to obtain a white powder. This white powder was dissolved in toluene twice as much as the amount of powder, and added to hexane four times as much as the amount of powder, followed by reprecipitation treatment. Thereafter, the precipitate was taken out and dried to obtain a target copolymer resin (white powder, yield 67%).
Example 6
In a 500 mL round bottom flask equipped with a reflux condenser, a stirrer, a thermometer, and a nitrogen inlet tube, 6.58 g of 1-adamantylmethyl methacrylate (monomer (B)), 7.97 g of glycidyl methacrylate (monomer (A)), azobisiso 5.04 g of butyronitrile and 300 mL of toluene were added. This was reacted in a 70 ° C. oil bath for 2 hours. Thereafter, the reaction solution was cooled to room temperature, and the organic layer was concentrated to obtain a white powder. This white powder was dissolved in toluene twice as much as the amount of powder, and added to hexane four times as much as the amount of powder, followed by reprecipitation treatment. Thereafter, the precipitate was taken out and dried to obtain a target copolymer resin (white powder, yield 72%).

比較例1
市販のビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、エピコート828)を下記の硬化物とするために用いる樹脂とした。
比較例2
市販の水素添加ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、エピコートYX8000)を下記の硬化物とするために用いる樹脂とした。
比較例3
還流冷却管、攪拌機、温度計、窒素導入管を備え付けた500mL丸底フラスコにグリシジルメタクリレート11.98g、アゾビスイソブチロニトリル5.04g、トルエン300mLを加えた。これを70℃のオイルバスにて2時間反応させた。その後、反応液を室温まで冷却し、有機層を濃縮し、白色粉体を得た。この白色粉体を粉体量に対して2倍量のトルエンに溶解させ、粉体量に対して4倍量のヘキサンに加え再沈処理を行った。その後、沈殿物を取り出し、乾燥させ樹脂(白色粉体、収率70%)を得た。
Comparative Example 1
A commercially available bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, Epicoat 828) was used as a resin to be used for the following cured product.
Comparative Example 2
A commercially available hydrogenated bisphenol A type epoxy resin (manufactured by Japan Epoxy Resin, Epicoat YX8000) was used as a resin to be used for the following cured product.
Comparative Example 3
To a 500 mL round bottom flask equipped with a reflux condenser, a stirrer, a thermometer, and a nitrogen inlet tube, 11.98 g of glycidyl methacrylate, 5.04 g of azobisisobutyronitrile, and 300 mL of toluene were added. This was reacted in a 70 ° C. oil bath for 2 hours. Thereafter, the reaction solution was cooled to room temperature, and the organic layer was concentrated to obtain a white powder. This white powder was dissolved in toluene twice as much as the amount of powder, and added to hexane four times as much as the amount of powder, followed by reprecipitation treatment. Thereafter, the precipitate was taken out and dried to obtain a resin (white powder, yield 70%).

上記実施例1〜6で得られた共重合樹脂のモノマー(B)由来の構成単位に対するモノマー(A)由来の構成単位のモル比[(A)/(B)]、並びに実施例1〜6及び比較例3で得られた共重合樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、平均エポキシ当量を表に示す。
なお、平均エポキシ当量は、JIS K 7236に準拠して測定した。この値が小さい程、多くのエポキシ基を含むことを意味する。また、数平均分子量(Mn)及び重量平均分子量(Mw)は、次の条件の下、GPC法により求め、ポリスチレン基準の換算値で示した。
The molar ratio [(A) / (B)] of the structural unit derived from the monomer (A) to the structural unit derived from the monomer (B) of the copolymer resin obtained in Examples 1 to 6, and Examples 1 to 6 The number average molecular weight (Mn), weight average molecular weight (Mw), and average epoxy equivalent of the copolymer resin obtained in Comparative Example 3 are shown in the table.
In addition, the average epoxy equivalent was measured based on JISK7236. A smaller value means more epoxy groups are included. Further, the number average molecular weight (Mn) and the weight average molecular weight (Mw) were determined by the GPC method under the following conditions, and were shown as converted values based on polystyrene.

GPC測定装置
測定器 :東ソー HLC−8220 GPC
カラム :東ソー G4000H&G2000H
測定条件
溶媒 :テトラヒドロフラン
測定温度 :40℃
流速 :1.0ml/分
試料濃度 :0.4質量%
GPC measuring device Measuring instrument: Tosoh HLC-8220 GPC
Column: Tosoh G4000H & G2000H
Measurement conditions Solvent: Tetrahydrofuran Measurement temperature: 40 ° C
Flow rate: 1.0 ml / min Sample concentration: 0.4% by mass

[硬化物の製造]
実施例1〜6及び比較例1〜3で得られたそれぞれの樹脂、酸無水物としてメチルヘキサヒドロ無水フタル酸(新日本理化社製、MH700)、硬化促進剤として1,8−ジアザビシクロ[5.4.0]−7−ウンデセンのオクチル酸塩(サンアプロ社製、SA102)、及び酸化防止剤として2,6−ジ−t−ブチル−4−メチルフェノール(BHT)を表で示した配合量(g)で混合し、脱泡後、110℃で2時間、その後150℃で3時間加熱し、硬化物(膜厚3mmシート)を製造した。
[Manufacture of cured products]
Respective resins obtained in Examples 1 to 6 and Comparative Examples 1 to 3, methylhexahydrophthalic anhydride (manufactured by Shin Nippon Rika Co., Ltd., MH700) as an acid anhydride, and 1,8-diazabicyclo [5 as a curing accelerator 4.0] -7-Undecene octylate (San Apro, SA102) and 2,6-di-tert-butyl-4-methylphenol (BHT) as an antioxidant in a table After mixing in (g) and defoaming, the mixture was heated at 110 ° C. for 2 hours and then at 150 ° C. for 3 hours to produce a cured product (thickness 3 mm sheet).

[物性評価]
実施例1〜6及び比較例1〜3の樹脂を用いて得られた硬化物のガラス転移温度、全光線透過率を以下のように測定し、耐光性試験、長期耐熱性試験、ゲル化測定を以下のように行った。評価結果を表に示す。
(1)ガラス転移温度(℃)
示差走査型熱量計(パーキン・エルマー社製、DSC−7)を用い、試料10mgを窒素雰囲気下50℃で5分間保持した後、10℃/分で昇温させることにより得られた熱流束曲線に観測される不連続点をガラス転移温度とした。
(2)全光線透過率(%)
上記試料を用いてJIS K 7105に準拠して測定した。測定装置は島津製作所社製分光光度計UV−3100Sを用い、測定波長は400nmで行った。
[Evaluation of the physical properties]
The glass transition temperature and the total light transmittance of the cured products obtained using the resins of Examples 1 to 6 and Comparative Examples 1 to 3 were measured as follows, light resistance test, long-term heat resistance test, gelation measurement. Was performed as follows. The evaluation results are shown in the table.
(1) Glass transition temperature (° C)
Using a differential scanning calorimeter (manufactured by Perkin Elmer, DSC-7), 10 mg of a sample was held at 50 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min. The discontinuity point observed in Fig. 1 was defined as the glass transition temperature.
(2) Total light transmittance (%)
It measured based on JISK7105 using the said sample. The measuring apparatus was a spectrophotometer UV-3100S manufactured by Shimadzu Corporation, and the measurement wavelength was 400 nm.

(3)耐光性試験
東洋精機製作所社製サンテストCPS+を用いて、試料を60℃で500時間光照射し、照射前後の400nmの光線透過率を測定し、変化が20%未満の場合を「○」、20%以上低下した場合を「×」とした。
(4)長期耐熱性試験
140℃の恒温槽に試料を100時間置き、サンシャインテスターを用い、試験前後の400nmの光線透過率を測定し、変化が20%未満の場合を「○」、20%以上低下した場合を「×」とした。
(5)ゲル化測定
JIS C 6521に準拠して、150℃でのゲル化時間の測定を行ない、比較例1のゲル化時間を1として、ゲル化時間を倍数で表した。
(3) Light resistance test Using Suntest CPS + manufactured by Toyo Seiki Seisakusho Co., Ltd., the sample was irradiated with light at 60 ° C. for 500 hours, the light transmittance at 400 nm before and after irradiation was measured, and the change was less than 20%. “O”, and “x” when 20% or more.
(4) Long-term heat resistance test Place the sample in a constant temperature bath at 140 ° C for 100 hours, and measure the light transmittance at 400 nm before and after the test using a sunshine tester. If the change is less than 20%, "○", 20% The case where it fell more than was made "x".
(5) Gelation Measurement Based on JIS C 6521, the gelation time at 150 ° C. was measured. The gelation time of Comparative Example 1 was defined as 1, and the gelation time was expressed as a multiple.

Figure 0005432456
Figure 0005432456

本発明のアダマンタン系共重合樹脂は、透明性及び耐光性などの光学特性、長期耐熱性などの耐久性、誘電率などの電気特性に優れた硬化物を与えるので、光半導体用封止剤及びシール剤、光導波路、光通信用レンズ及び光学フィルムなどの光学電子部材、光学用接着剤及びシール剤、並びにレジスト材料に好適である。   The adamantane-based copolymer resin of the present invention provides a cured product excellent in optical properties such as transparency and light resistance, durability such as long-term heat resistance, and electrical properties such as dielectric constant. Suitable for sealing materials, optical waveguides, optical electronic members such as optical communication lenses and optical films, optical adhesives and sealing agents, and resist materials.

Claims (6)

下記一般式(I)で表わされるカチオン重合性官能基を有する(メタ)アクリル系モノマー(A)由来の構成単位、及び下記一般式(II)又は(III)で表わされるアダマンタン構造を有する(メタ)アクリル系モノマー(B)由来の構成単位を含む共重合体で、[モノマー(A)由来の構成単位]/[モノマー(B)由来の構成単位]のモル比が0.1〜20、重量平均分子量が1,000〜6,000であるアダマンタン系共重合樹脂、並びに酸無水物系硬化剤を含む樹脂組成物
Figure 0005432456
[式中、R1は、水素原子又はメチル基を示し、Xは、下記式(I−1)〜(I−5)のいずれか1種の基を示し、mは1〜5の整数である。
Figure 0005432456
(式中、R2は、水素原子又は炭素数1〜4のアルキル基を示す。)]
Figure 0005432456
[式中、R1は、前記と同じであり、R3は、メチル基、水酸基、トリフルオロメチル基又は2つのR3が一緒になって形成された=Oを示し、R4は、メチル基、水酸基又は2つのR4が一緒になって形成された=Oを示す。nは0〜6の整数、pは0〜9の整数、tは6〜15の整数であり、かつp+t=15である。複数のR3及びR4は、それぞれ互いに同一でも異なっていてもよい。
Yは、式Cq2qr2r(qは0〜4の整数、rは0又は1である。)で表わされる基を示し、Zは、単結合、下記式(III−1)又は(III−2)で表わされる結合を示す。
Figure 0005432456
(式中、sは1〜4の整数である。)]
A structural unit derived from a (meth) acrylic monomer (A) having a cationic polymerizable functional group represented by the following general formula (I), and an adamantane structure represented by the following general formula (II) or (III) (meta ) A copolymer containing a structural unit derived from an acrylic monomer (B), wherein the molar ratio of [structural unit derived from monomer (A)] / [structural unit derived from monomer (B)] is 0.1 to 20 weight. A resin composition comprising an adamantane copolymer resin having an average molecular weight of 1,000 to 6,000, and an acid anhydride curing agent .
Figure 0005432456
[Wherein, R 1 represents a hydrogen atom or a methyl group, X represents any one of the following formulas (I-1) to (I-5), and m represents an integer of 1 to 5. is there.
Figure 0005432456
(Wherein R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms)]
Figure 0005432456
[Wherein R 1 is the same as defined above, R 3 represents a methyl group, a hydroxyl group, a trifluoromethyl group, or two R 3 formed together to represent ═O, and R 4 represents methyl A group, a hydroxyl group, or two R 4 groups formed together represents ═O. n is an integer of 0-6, p is an integer of 0-9, t is an integer of 6-15, and p + t = 15. The plurality of R 3 and R 4 may be the same as or different from each other.
Y represents a group represented by the formula C q F 2q C r H 2r (q is an integer of 0 to 4, r is 0 or 1), Z is a single bond, the following formula (III-1) Or the bond represented by (III-2) is shown.
Figure 0005432456
(Wherein s is an integer of 1 to 4)]
前記[モノマー(A)由来の構成単位]/[モノマー(B)由来の構成単位]のモル比が0.5〜15である、請求項1に記載の樹脂組成物2. The resin composition according to claim 1, wherein a molar ratio of the [constituent unit derived from the monomer (A)] / [constituent unit derived from the monomer (B)] is 0.5 to 15. 5. 請求項又はに記載の樹脂組成物を用いてなる光半導体用封止剤又は光半導体用シール剤。 The sealing compound for optical semiconductors or the sealing compound for optical semiconductors which uses the resin composition of Claim 1 or 2 . 請求項又はに記載の樹脂組成物を用いてなる光学用電子部材。 Optical electronic member formed by using a resin composition according to claim 1 or 2. 請求項又はに記載の樹脂組成物を用いてなる光学用接着剤又は光学用シール剤。 An optical adhesive or optical sealant comprising the resin composition according to claim 1 or 2 . 請求項又はに記載の樹脂組成物を用いてなるレジスト材料。 Resist material comprising using the resin composition according to claim 1 or 2.
JP2008012226A 2008-01-23 2008-01-23 Adamantane copolymer resin, resin composition and use thereof Active JP5432456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012226A JP5432456B2 (en) 2008-01-23 2008-01-23 Adamantane copolymer resin, resin composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012226A JP5432456B2 (en) 2008-01-23 2008-01-23 Adamantane copolymer resin, resin composition and use thereof

Publications (2)

Publication Number Publication Date
JP2009173724A JP2009173724A (en) 2009-08-06
JP5432456B2 true JP5432456B2 (en) 2014-03-05

Family

ID=41029172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012226A Active JP5432456B2 (en) 2008-01-23 2008-01-23 Adamantane copolymer resin, resin composition and use thereof

Country Status (1)

Country Link
JP (1) JP5432456B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710129B2 (en) 2009-02-09 2014-04-29 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5981686B2 (en) * 2010-02-18 2016-08-31 日立マクセル株式会社 Optical adhesive tape or sheet and method for producing the same
US20130237660A1 (en) * 2010-10-25 2013-09-12 Idemitsu Kosan Co. Ltd (meth)acrylate composition
JP2013035968A (en) * 2011-08-09 2013-02-21 Toyo Ink Sc Holdings Co Ltd Photocurable adhesive for forming polarizing plate and polarizing plate
JP6130110B2 (en) * 2012-08-15 2017-05-17 大阪有機化学工業株式会社 Epoxy copolymer
JP2014037497A (en) * 2012-08-17 2014-02-27 Idemitsu Kosan Co Ltd Epoxy copolymer
KR20140082263A (en) * 2012-12-24 2014-07-02 코오롱인더스트리 주식회사 Thermosetting Resin Composition
JP6143515B2 (en) * 2013-03-26 2017-06-07 大阪有機化学工業株式会社 Resin composition
WO2016202652A1 (en) * 2015-06-18 2016-12-22 Basf Se Copolymer made from cyclic exo-vinyl carbonate acrylates

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010752A (en) * 1996-06-27 1998-01-16 Toshiba Corp Pattern forming method
JP4544550B2 (en) * 1999-07-12 2010-09-15 三菱レイヨン株式会社 Resin resin, chemically amplified resist composition, and resist pattern forming method
JP2005146253A (en) * 2003-06-20 2005-06-09 Tokuyama Corp Curable polycyclic compound and its preparation process
KR100594396B1 (en) * 2004-10-20 2006-06-30 일동화학 주식회사 A photosensitive resin composition used as spacer structure between glass substrates of liquid crystal display panel
JP2006213851A (en) * 2005-02-04 2006-08-17 Idemitsu Kosan Co Ltd Material for heat-resistant optical part
JP5207837B2 (en) * 2007-08-02 2013-06-12 富士フイルム株式会社 Curable composition, cured film, method for producing photospacer, substrate for liquid crystal display device and liquid crystal display device
US20100203445A1 (en) * 2007-09-26 2010-08-12 Fujifilm Corporation Negative resist composition and resist pattern forming method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710129B2 (en) 2009-02-09 2014-04-29 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8785528B2 (en) 2009-02-09 2014-07-22 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof
US8802758B2 (en) 2009-02-09 2014-08-12 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and formed product thereof

Also Published As

Publication number Publication date
JP2009173724A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5432456B2 (en) Adamantane copolymer resin, resin composition and use thereof
KR101371878B1 (en) Photo- and/or thermo-curable copolymer, curable resin compositions, and cured articles
US20110112266A1 (en) Curable copolymer and curable resin composition
US7790917B2 (en) Adamantyl group-containing epoxy-modified (meth)acrylate and resin composition containing the same
TW200932720A (en) Adamantane derivative, method for producing the same, and curing composition containing adamantane derivative
EP1923416A1 (en) Adamantane derivative, epoxy resin, and optical electronic member using resin composition comprising them
KR20100065115A (en) Copolymer and photosensitive resin composition
JP2006307063A (en) Epoxy resin composition and optoelectronic member using the same
JPWO2006077862A1 (en) Epoxy resin composition and optical material using the same
KR102102672B1 (en) Thermosetting resin composition
TW201529617A (en) Thermosetting resin composition, cured film thereof, thermosetting hard coating agent and display device
JP2009079015A (en) Adamantane-containing epoxy compound, method for producing the same and epoxy composition
JP2008274159A (en) Adamantane derivative, method for producing the same, resin composition containing the same, and use of the same
JP6143515B2 (en) Resin composition
JP6130110B2 (en) Epoxy copolymer
JP5396120B2 (en) Adamantane derivatives
JP2008255188A (en) Adamantane derivative, resin composition and resin cured product using the same
JP2012083619A (en) Resist composition
JP2011105619A (en) Adamantane derivative
JP2014037497A (en) Epoxy copolymer
JP7483417B2 (en) Photosensitive resin composition and cured product thereof
JP2006016448A (en) Epoxy resin composition
CN110885401B (en) Copolymer, curable resin composition containing same, and cured product thereof
JP5672661B2 (en) Resin composition and optical member using cured product thereof
JP2009256632A (en) Decalin derivative, resin composition containing it, optical semiconductor sealant using it, optoelectronic member, resist material, and method for producing decalin derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250