JP5432015B2 - Conductor soldering method and apparatus - Google Patents

Conductor soldering method and apparatus Download PDF

Info

Publication number
JP5432015B2
JP5432015B2 JP2010063026A JP2010063026A JP5432015B2 JP 5432015 B2 JP5432015 B2 JP 5432015B2 JP 2010063026 A JP2010063026 A JP 2010063026A JP 2010063026 A JP2010063026 A JP 2010063026A JP 5432015 B2 JP5432015 B2 JP 5432015B2
Authority
JP
Japan
Prior art keywords
solder
soldering
chip
substrate
lead wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010063026A
Other languages
Japanese (ja)
Other versions
JP2011198950A (en
Inventor
誠 権田
Original Assignee
黒田テクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒田テクノ株式会社 filed Critical 黒田テクノ株式会社
Priority to JP2010063026A priority Critical patent/JP5432015B2/en
Publication of JP2011198950A publication Critical patent/JP2011198950A/en
Application granted granted Critical
Publication of JP5432015B2 publication Critical patent/JP5432015B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

この発明は、導線半田付方法及び装置に関する。 The present invention relates to a lead wire soldering method and apparatus.

半田付の対象となる部材は種々あるが、そのなかでも、合金結合をしない又は合金結合し難い部材であるガラス、セラミック、透明電極として用いられる酸化インジウムスズ(ITO)、難半田付金属等の半田付が困難な材料によって構成される基板に半田付を行う場合には、半田を単に溶融させるのみでは表面に溶着させることは困難である。   There are various types of members to be soldered. Among them, glass, ceramic, indium tin oxide (ITO) used as a transparent electrode, metal that is difficult to alloy, and metals that are difficult to be alloyed are used. When soldering a substrate made of a material that is difficult to solder, it is difficult to weld the substrate to the surface simply by melting the solder.

特に、近年、注目が集まっている太陽光発電の際に用いるソーラーパネルでは、ガラス基板側のITOや、ガラスパネル等への導線の半田付が必要になり、上述のような特性を有する基板に半田付けを行う必要性は高まっている。   In particular, solar panels used for photovoltaic power generation, which have been attracting attention in recent years, require soldering of conductive wires to ITO on the glass substrate side, glass panel, etc. The need for soldering is increasing.

これに対して、振動子によって超音波加振されるとともに加熱手段によって加熱されるチップによって、繰出し部から繰出された導線を基板側に押圧するとともに半田を溶融させ、導線の基板への半田付作業を行う方法が従来公知である。 On the other hand, the ultrasonic wave is vibrated by the vibrator and the chip heated by the heating means presses the lead wire fed out from the feeding portion to the substrate side, melts the solder, and solders the lead wire to the substrate. Methods for performing the work are conventionally known.

このように超音波振動を利用して半田付を行う方法では、半田の供給をどのような手段によって行うかが問題となるが、この問題に対して、振動子によって超音波加振されるとともに加熱手段によって加熱されるチップに向かって線状半田を繰出し、該チップによって線状半田を基板側に押付けて溶融させ、導線が半田付けされる前の基板に、配線方向に沿って半田バンプ(半田)を列状に複数形成する特許文献1に示す方法が公知になっている。 Thus, in the method of soldering using ultrasonic vibration, there is a problem in what means to supply the solder. To this problem, ultrasonic vibration is applied by a vibrator. The linear solder is fed out toward the chip heated by the heating means, the linear solder is pressed against the substrate side by the chip and melted, and the solder bump ( A method disclosed in Patent Document 1 in which a plurality of solders are formed in a row is known.

特開2001−135842号公報JP 2001-135842 A

上述した方法によれば、超音波振動され且つ加熱されるチップによって、配線方向に沿って列状に配置された複数の半田バンプに導線を順次押付けることにより、配線方向への導線の半田付を効率的に行うことが可能になる一方で、導線が断続的に基板側に半田付けされるため、強度が不足し、導線の基板からの剥離、該剥離に伴う配線の不具合等が生じる場合がある。 According to the above-described method , the lead wires are soldered in the wiring direction by sequentially pressing the lead wires to the plurality of solder bumps arranged in a line along the wiring direction by the ultrasonically vibrated and heated chip. When the conductor is intermittently soldered to the board side, the strength is insufficient, and the conductor is peeled off from the board, resulting in wiring defects associated with the peeling. There is.

本発明は、ガラス、セラミック、ITO、難半田付金属等の半田付が困難な部材によって構成される基板に予め半田を形成し、超音波振動させ且つ加熱されるチップにより導線を基板側に押圧することにより半田付を行うにあたって、導線を高い強度で基板に半田付可能な導線半田付方法及び装置を提供することを課題としている。 In the present invention, solder is formed in advance on a substrate composed of a member that is difficult to solder, such as glass, ceramic, ITO, or a difficult-to-solder metal. Accordingly, an object of the present invention is to provide a conductor soldering method and apparatus capable of soldering a conductor to a substrate with high strength when soldering.

上記課題を解決するため本発明は、第1に、導線18を基板1に半田付けする導線半田付方法であって、振動子31によって超音波加振されるとともに加熱手段26によって加熱されるチップ24側に向って線状半田27を繰出し、該チップを基板1に近接又は当接させた状態で、配線方向に沿って移動させ、上記線状半田27を溶融させて前記基板1表面に付着させることにより、該基板1上に配線方向に連続的に膜状且つ帯状の半田層19形成し、表面に半田がコーティングされた導線18を繰出し部53から繰出し、振動子48により超音波加振され且つ加熱手段44により加熱されるチップ43によって、上記繰出された導線18を、前記予め形成された半田層19上に押付け、該チップ43を配線方向に沿って移動させることにより、導線18の周囲の半田及び該半田層19を溶融させながら該半田層19に沿って基板1上に導線18を半田付けすることを特徴とするIn order to solve the above-mentioned problems, the present invention firstly relates to a method for soldering a lead wire 18 to the substrate 1, wherein the chip is ultrasonically excited by the vibrator 31 and heated by the heating means 26. feeding the linear solder 27 I toward or 24 side, the chip in a state of being close to or abuts on the substrate 1, is moved along the wiring direction, the substrate 1 by melting the linear solder 27 by adhering to the wiring direction on the substrate 1 to form a continuous film-like and strip-shaped solder layer 19, the conductors 18 of the solder on the surface is coated from the feeding section 53 feeding, the vibrator 48 super By the chip 43 which is sonically excited and heated by the heating means 44, the drawn-out lead 18 is pressed onto the previously formed solder layer 19, and the chip 43 is moved along the wiring direction. More, characterized by soldering the conductors 18 on the substrate 1 along the solder layer 19 while melting the solder and solder layer 19 surrounding the conductors 18.

第2に、前記チップ24に対して、配線下流側及び配線上流側からそれぞれ各別に線状半田27を繰出すことを特徴としている。 Secondly, the linear solder 27 is fed out from the downstream side of the wiring and the upstream side of the wiring to the chip 24, respectively .

第3に、上記導線18が扁平なリボン線であることを特徴としている。 Third, the conductive wire 18 is a flat ribbon wire .

第4に、前記線状半田27及び基板1をチップ24側からとは別に補助的に加熱するとともに、導線18をチップ43側からとは別に補助的に加熱することを特徴としている。 Fourth, the linear solder 27 and the substrate 1 are supplementarily heated separately from the chip 24 side, and the conductor 18 is supplementarily heated separately from the chip 43 side .

第5に、半田形成装置8及び半田付機構9を備えた導線半田付装置であって、前記半田形成装置8は、振動子31によって超音波加振されるとともに加熱手段26によって加熱されるチップ24と、線状半田27がチップ24側に向って繰出される繰出し部37と、前記チップ24及び繰出し部37を基板1の上方側に支持する支持部21とを含み、該半田形成装置8は、前記チップ24が基板1に近接又は当接した状態で配線方向に沿って変位するように駆動機構によって支持部21を移動駆動させ、上記線状半田27を溶融させて前記基板1表面に付着させることにより、該基板1上に配線方向に連続的に膜状且つ帯状の半田層19を形成し、前記半田付機構9は、表面が半田コーティングされた導線18が巻付けられたリール52と、振動子48によって超音波加振されるとともに加熱手段44によって加熱されるチップ43と、リール52からの導線18が繰出される繰出し部53と、該リール52、チップ43及び繰出し部53を基板1の上方側に支持する支持部22とを含み、該支持部22を線状半田27が繰出される側の支持部21の配線方向上流側に配置し、該半田付機構9は、前記繰出し部53から繰出される導線18を、チップ43によって、前記予め形成された半田層19に押付け、導線18が繰出される側の支持部22を、駆動機構によって、配線方向に沿って移動駆動させ、該導線18の周囲の半田及び上記半田層19を溶融させることにより、前記基板1上に該半田層19に沿って該導線18を半田付けすることを特徴としている。 Fifth, a lead wire soldering device including a solder forming device 8 and a soldering mechanism 9, wherein the solder forming device 8 is ultrasonically excited by the vibrator 31 and heated by the heating means 26. 24, a feeding portion 37 through which the linear solder 27 is fed toward the chip 24 side, and a support portion 21 for supporting the chip 24 and the feeding portion 37 on the upper side of the substrate 1, and the solder forming apparatus 8 Moves the support portion 21 by a drive mechanism so that the chip 24 is displaced along the wiring direction in a state where the chip 24 is close to or in contact with the substrate 1, and melts the linear solder 27 on the surface of the substrate 1. By adhering, a film-like and strip-like solder layer 19 is continuously formed on the substrate 1 in the wiring direction, and the soldering mechanism 9 has a reel 52 around which a conductive wire 18 whose surface is coated with solder is wound. When, The chip 43 that is ultrasonically vibrated by the moving element 48 and heated by the heating means 44, the feeding portion 53 from which the conducting wire 18 from the reel 52 is fed, and the reel 52, the chip 43, and the feeding portion 53 are connected to the substrate 1. A support portion 22 that is supported on the upper side of the wire, and the support portion 22 is disposed on the upstream side in the wiring direction of the support portion 21 on the side where the linear solder 27 is fed, and the soldering mechanism 9 includes the feeding portion. The lead wire 18 fed from 53 is pressed against the previously formed solder layer 19 by the chip 43, and the support portion 22 on the side from which the lead wire 18 is fed is moved and driven along the wiring direction by the drive mechanism, The conductor 18 is soldered along the solder layer 19 on the substrate 1 by melting the solder around the conductor 18 and the solder layer 19 .

第6に、前記半田形成装置8の繰出し部37を、チップ24の配線上流側及び配線下流側にそれぞれ設けたことを特徴としている。 Sixth, the feeding portion 37 of the solder forming apparatus 8 is provided on the wiring upstream side and the wiring downstream side of the chip 24, respectively .

第7に、導線18が扁平なリボン線であることを特徴としている。 Seventh, the conductive wire 18 is a flat ribbon wire .

第8に、半田形成装置8の前記加熱手段26は、電磁誘導によって起電力を生じさせることによりチップ24を発熱させる電磁誘導手段と、チップ24側に接触するように設けられたヒータとの何れかであり、半田付機構9の前記加熱手段44は、電磁誘導によって起電力を生じさせることによりチップ43を発熱させる電磁誘導手段と、チップ43側に接触するように設けられたヒータとの何れかであることを特徴としている。 Eighth, the heating means 26 of the solder forming apparatus 8 is either an electromagnetic induction means for generating heat by generating electromotive force by electromagnetic induction, or a heater provided so as to be in contact with the chip 24 side. The heating means 44 of the soldering mechanism 9 is either an electromagnetic induction means for generating heat by generating electromotive force by electromagnetic induction, or a heater provided so as to be in contact with the chip 43 side. It is characterized by being.

第9に、線状半田27及び基板1を補助的に加熱する補助加熱手段29を、上記加熱手段26とは別に前記半田形成装置8に設け、導線18及び基板1を補助的に加熱する補助加熱手段47を、上記加熱手段44とは別に前記半田付機構9に設けたことを特徴としている。 Ninth, auxiliary heating means 29 for auxiliary heating of the linear solder 27 and the substrate 1 is provided in the solder forming apparatus 8 separately from the heating means 26, and auxiliary for heating the conductor 18 and the substrate 1 auxiliary. A heating means 47 is provided in the soldering mechanism 9 separately from the heating means 44 .

第10に、半田付機構9の前記補助加熱手段47は、導線18を通電させて抵抗熱により加熱する通電手段と、熱風吹付け装置との何れかであることを特徴としている。 10thly, the said auxiliary | assistant heating means 47 of the soldering mechanism 9 is either the electricity supply means which energizes the conducting wire 18 and heats it with resistance heat, and a hot air spraying apparatus, It is characterized by the above-mentioned.

第11に、線状半田27が繰出される側の支持部21と、導線18が繰出される側の支持部22とを一体的に形成してなる支持体7を設け、該支持体7を配線方向に沿って移動駆動させる単一の駆動機構を備えたことを特徴としている。 Eleventh, there is provided a support 7 formed integrally with a support portion 21 on the side where the linear solder 27 is drawn out and a support portion 22 on the side where the conductive wire 18 is drawn out. A single drive mechanism for moving and driving along the wiring direction is provided .

第12に、線状半田27が繰出される側の支持部21と、導線18が繰出される側の支持部22とを別体形成し、該2つの支持部21,22にそれぞれ各別に前記駆動機構を設けたことを特徴としている。 12thly, the support part 21 by which the linear solder 27 is extended | stretched and the support part 22 by the side of the conducting wire 18 are formed separately, and each of the two support parts 21 and 22 has the above-mentioned separately. A drive mechanism is provided .

本発明の構成によれば、配線方向に沿って連続的に形成された帯状の半田層によって、導線が連続的に基板に半田付けされるため、導線を高い強度で基板に半田付けすることができる。特に、突起状の半田バンプのように部分的に導線を基板に接着させるものとは異なり、帯状の半田層が導線を基板に接着させる接着層として機能するため、導線をより確実に基板に半田付可能になるめ、導線の基板からの剥離、該剥離に伴う配線の不具合等もより確実に防止できるとともに、導線表面にコーティングされた半田によって、基板上の半田層の接触層としての機能がより高まり、より高い強度で、より確実に、導線を基板上に半田付けすることができる。 According to the configuration of the present invention, the conductive wire is continuously soldered to the substrate by the strip-shaped solder layer continuously formed along the wiring direction, so that the conductive wire can be soldered to the substrate with high strength. it can. In particular, unlike the case where the conductor is partially adhered to the substrate, such as a protruding solder bump, the strip-shaped solder layer functions as an adhesive layer that adheres the conductor to the substrate, so that the conductor is more reliably soldered to the substrate. As a result, it is possible to more reliably prevent problems such as peeling of the conductive wire from the substrate and wiring caused by the separation, and the solder coated on the surface of the conductive wire can function as a contact layer of the solder layer on the substrate. The conductor can be soldered onto the substrate more reliably with higher strength and higher strength.

本発明を適用した導線半田装置の要部側面図である。It is a principal part side view of the lead wire soldering apparatus to which this invention is applied. (A)はソーラーパネル及び導線半田付装置の構成を示す要部平面図であり、(B)はソーラーパネルの構成を示す側断面図である。(A) is a principal part top view which shows the structure of a solar panel and conducting wire soldering apparatus, (B) is a sectional side view which shows the structure of a solar panel. 半田形成機構の要部構成を示す側面図である。It is a side view which shows the principal part structure of a solder formation mechanism. 加熱装置の構成を示す側面図である。It is a side view which shows the structure of a heating apparatus. 半田付機構の要部構成を示す側面図である。It is a side view which shows the principal part structure of a soldering mechanism. 本発明の別実施形態を示す導線半田装置の要部側面図である。It is a principal part side view of the lead wire soldering apparatus which shows another embodiment of this invention.

図1は、本発明を適用した導線半田装置の要部側面図であり、図2(A)はソーラーパネル及び導線半田付装置の構成を示す要部平面図であり、(B)はソーラーパネルの構成を示す側断面図である。図示する導線半田付装置は、ソーラーパネル(基板,太陽電池)1への配線を行うためのものであって、ソーラーパネル1を上面側に載置した状態で移動駆動される可動フレーム2と、ソーラーパネル1の配線方向(図1の矢印で示す方向)に形成されて可動フレーム2上方に配置される支持フレーム3と、可動フレーム2及び支持フレーム3を支持する本体フレーム4と、支持フレーム3に取付固定された配線方向の支持レール6にスライド自在に支持される可動テーブル(支持体)7と、該可動テーブル7を配線方向に往復スライド移動駆動させる駆動機構(図示しない)と、可動テーブル7側に配置される半田形成機構(半田形成装置)8及び半田付機構9と、を備えている。   FIG. 1 is a side view of a main part of a lead wire soldering apparatus to which the present invention is applied, FIG. 2A is a main part plan view showing the configuration of a solar panel and a lead wire soldering apparatus, and FIG. It is a sectional side view which shows the structure of this. The lead wire soldering apparatus shown in the figure is for wiring to a solar panel (substrate, solar cell) 1 and is a movable frame 2 that is driven to move in a state where the solar panel 1 is placed on the upper surface side; A support frame 3 formed in the wiring direction of the solar panel 1 (direction indicated by an arrow in FIG. 1) and disposed above the movable frame 2, a main body frame 4 that supports the movable frame 2 and the support frame 3, and the support frame 3 A movable table (support) 7 that is slidably supported by a support rail 6 in the wiring direction that is fixedly attached to the wire, a drive mechanism (not shown) that drives the movable table 7 to reciprocate in the wiring direction, and a movable table. 7 is provided with a solder forming mechanism (solder forming apparatus) 8 and a soldering mechanism 9 disposed on the side 7.

上記ソーラーパネル1は、ITO等の透明な膜状の電極である一対の電極層11,12と、該一対の電極層11,12の間に位置する半導体層13等とを、基盤14の一方側の面に積層することにより構成されている。このソーラーパネル1全体は上記積層方向が厚み方向となる方形板状に成形され、このソーラーパネル1の表裏面は透明なガラス板等の保護パネル16,17によってそれぞれカバーされており、電極層11及び保護パネル16を透過させ半導体層13に至る光のエネルギーが、半導体層13の発電作用によって、電力に変換され、この電力が一対の電極層11,12から取出される。   The solar panel 1 includes a pair of electrode layers 11 and 12 that are transparent film electrodes such as ITO, and a semiconductor layer 13 or the like positioned between the pair of electrode layers 11 and 12 on one side of a base 14. It is configured by laminating on the side surface. The entire solar panel 1 is formed in a rectangular plate shape in which the stacking direction is the thickness direction, and the front and back surfaces of the solar panel 1 are covered with protective panels 16 and 17 such as transparent glass plates, respectively. The energy of light that passes through the protective panel 16 and reaches the semiconductor layer 13 is converted into electric power by the power generation action of the semiconductor layer 13, and this electric power is taken out from the pair of electrode layers 11 and 12.

なお、図示する例では、ソーラーパネル1の基盤14側の面(裏面)と反対側の面(表面)から光を照射するように構成されているため、基盤14から遠い側の電極層である表面電極層11は透明電極とする必要があるが、基盤14から近い側の電極層である裏面電極層12は非透明電極であってもよい。また、基盤14に透光性を有する部材を用いることにより、ソーラーパネル1の裏面側から光を照射させてもよい。   In the example shown in the figure, the electrode layer is far from the base 14 because it is configured to irradiate light from the surface (back surface) opposite to the surface (back surface) of the solar panel 1 on the base 14 side. The front electrode layer 11 needs to be a transparent electrode, but the back electrode layer 12 that is an electrode layer closer to the base 14 may be a non-transparent electrode. Moreover, you may make it irradiate light from the back surface side of the solar panel 1 by using the member which has translucency for the board | substrate 14. FIG.

このソーラーパネル1の一方側の面(図示する例では、表面)から電力を取出すため、該面の一対の長辺側端部をそれぞれ帯状の半田付領域P1,P2とし、この表面電極層11の一対の各半田付領域P1,P2に、リボン線18を半田付けすることにより、ソーラーパネル1の配線作業を行う。   In order to extract electric power from one surface (in the illustrated example, the surface) of the solar panel 1, the pair of long-side end portions of the surface are used as the strip-shaped soldering regions P <b> 1 and P <b> 2, respectively. The solar panel 1 is wired by soldering the ribbon wire 18 to each of the pair of soldering regions P1 and P2.

このリボン線18は、扁平な導線であって、その周囲(表面)が半田コーティングされており、一方側の半田付領域である表面接続側半田付領域P1に半田付けされたリボン線18は、そのまま表面電極層11に電気的に接続されるが、他方側の半田付領域である裏面接続側半田付領域P2に半田付けされたリボン線18を、裏面電極層12と電気的に接続するとともに上記表面接続側半田付領域P1から電気的に切断するため、ソーラーパネル1に加工を施す。   The ribbon wire 18 is a flat conductive wire, the periphery (surface) of which is coated with solder, and the ribbon wire 18 soldered to the surface connection side soldering region P1, which is a soldering region on one side, While being electrically connected to the front electrode layer 11 as it is, the ribbon wire 18 soldered to the back surface side soldering region P2 which is the soldering region on the other side is electrically connected to the back surface electrode layer 12. In order to electrically disconnect from the surface connection side soldering region P1, the solar panel 1 is processed.

この加工を具体的に説明すると、裏面接続側半田付領域P2には、その全長方向に沿って、ソーラーパネル1の一対の短辺側端の一方から他方に至る取出溝1aが凹設されるとともに、取出溝1aに平行であって方形状のソーラーパネル1表面の一対の短辺側端の一方から他方に至るように凹設された一対の切断溝1b,1bの間に該裏面接続側半田付領域P2が配置されている。   Explaining this processing specifically, in the back surface connection side soldering region P2, an extraction groove 1a extending from one of the pair of short side ends of the solar panel 1 to the other is recessed along the entire length direction. In addition, the back surface connection side is between a pair of cut grooves 1b, 1b that are parallel to the take-out groove 1a and recessed from one of the pair of short-side ends of the surface of the rectangular solar panel 1 to the other. A soldering area P2 is arranged.

この取出溝1a及び一対の切断溝1b,1bは、それぞれ表面電極層11から裏面電極層12に至る深さを有しているため、ソーラーパネル1表面における切断溝1b,1bよりも表面接続側半田付領域P1寄り箇所と、一対の切断溝1b,1bの間とは、電気的に切断され、それぞれ表面電極取出領域11aと、裏面電極取出領域11bとになる。   Since the extraction groove 1a and the pair of cutting grooves 1b and 1b each have a depth from the surface electrode layer 11 to the back electrode layer 12, the surface connection side is more than the cutting grooves 1b and 1b on the surface of the solar panel 1. The portion near the soldering region P1 and the pair of cutting grooves 1b and 1b are electrically cut into a front electrode extraction region 11a and a back electrode extraction region 11b, respectively.

この表面接続側半田付領域P1側の表面電極取出領域11aは、裏面接続側半田付領域P2側の裏面電極取出領域11bに比べて、面積が非常に広くなっている。ちなみに、該裏面接続側半田付領域P2に全長方向に沿ってリボン線18を半田付けすると、取出溝1aが半田によって充填されて裏面電極層12と該リボン線18とが電気的に接続される。   The surface electrode extraction region 11a on the surface connection side soldering region P1 side has a very large area compared to the back surface electrode extraction region 11b on the back surface connection side soldering region P2 side. Incidentally, when the ribbon wire 18 is soldered along the full length direction to the back surface connection side soldering region P2, the take-out groove 1a is filled with the solder, and the back electrode layer 12 and the ribbon wire 18 are electrically connected. .

すなわち、方形状のソーラーパネル1の長手方向がリボン線18の配線方向になり、該配線方向と可動テーブル7のスライド方向が一致するように、ソーラーパネル1が、可動フレーム2上に載置されるとともに、可動テーブル7の真下側にソーラーパネル1の半田付領域P1,P2が位置するように、該可動フレーム2が該配線方向に対して交差方向(さらに具体的には直交方向)に移動駆動される。   That is, the solar panel 1 is placed on the movable frame 2 so that the longitudinal direction of the rectangular solar panel 1 is the wiring direction of the ribbon wire 18 and the wiring direction coincides with the sliding direction of the movable table 7. At the same time, the movable frame 2 moves in the crossing direction (more specifically, the orthogonal direction) with respect to the wiring direction so that the soldering regions P1 and P2 of the solar panel 1 are located directly below the movable table 7. Driven.

そして、可動テーブル7を、配線方向下流側(図1における右側,配線下流側)に移動駆動させ、半田形成機構8によって、半田付領域P1,P2に、配線方向に延びる薄膜状且つ帯状の半田層19を連続的に形成し、半田付機構9によって、半田層19に沿ってリボン線18をソーラーパネル1表面に半田付けする。   Then, the movable table 7 is moved and driven downstream in the wiring direction (the right side in FIG. 1, the downstream side of the wiring), and the solder forming mechanism 8 causes the solder-like regions P1 and P2 to be a thin film and strip-shaped solder extending in the wiring direction. The layer 19 is continuously formed, and the ribbon wire 18 is soldered to the surface of the solar panel 1 along the solder layer 19 by the soldering mechanism 9.

このため、可動テーブル7の配線下流側半部が、ソーラーパネル1の上方側で半田形成機構8を支持する形成側支持部(支持部)21になり、可動テーブル7の配線上流側半部が、ソーラーパネル1の上方側で半田付機構9を支持する半田付側支持部(支持部)22になる。すなわち、形成側支持部21と半田付側支持部22とを一体成形することにより、半田形成機構8及び半田付機構9を配線方向に沿って一体的に移動させる可動テーブル7を構成し、該可動テーブル7を単一の駆動機構にスライド駆動させることにより、部品点数の増加が抑制している。   For this reason, the wiring downstream half of the movable table 7 becomes a forming side support portion (supporting portion) 21 that supports the solder forming mechanism 8 above the solar panel 1, and the wiring upstream half of the movable table 7 is The soldering side support portion (supporting portion) 22 that supports the soldering mechanism 9 is provided above the solar panel 1. That is, by forming the forming side support portion 21 and the soldering side support portion 22 integrally, the movable table 7 is configured to integrally move the solder forming mechanism 8 and the soldering mechanism 9 along the wiring direction. By sliding the movable table 7 to a single drive mechanism, an increase in the number of parts is suppressed.

次に、図1,3及び4に基づき、半田形成機構8の構成について説明する。
図3は、半田形成機構の要部構成を示す側面図であり、図4は加熱装置の構成を示す側面図である。半田形成装置8は、上下方向に延びる鏝23と、鏝23下端部のチップ(鏝先)24を加熱する加熱装置(加熱手段)26と、鏝先24に向かって糸半田(線状半田)27を繰出す繰出し装置28と、繰出された糸半田27等を補助的に加熱する補助加熱装置(補助加熱手段)29と、鏝23、加熱装置26、繰出し装置28及び補助加熱装置29が取付支持される上述の形成側支持部21とを備えている。
Next, the configuration of the solder forming mechanism 8 will be described with reference to FIGS.
FIG. 3 is a side view showing the main part configuration of the solder forming mechanism, and FIG. 4 is a side view showing the configuration of the heating device. The solder forming apparatus 8 includes an eave 23 extending in the vertical direction, a heating device (heating means) 26 for heating the chip (tip) 24 at the lower end of the eave 23, and thread solder (linear solder) toward the end 24. 27, a feeding device 28 for feeding out 27, an auxiliary heating device (auxiliary heating means) 29 for assisting heating of the fed yarn solder 27 and the like, and a rod 23, a heating device 26, a feeding device 28 and an auxiliary heating device 29 are attached. The above-mentioned formation side support part 21 supported is provided.

上記鏝23は、先端部の上記チップ24と、基端部の振動子31と、振動子31とチップ24とを接続するように中途部に配された円柱状のホーン32とを備え、これらの部材は、それぞれ同一軸心上に配された上下方向の円柱状に形成されている。これに加えて、該鏝23は、鏝側ブラケット33を介して形成側支持部21に上下往復移動可能に支持されており、該上下動によって、チップ24を半田付領域P1,P2に対して当接、近接及び離間させることが可能になる。ちなみに、半田形成の際には、チップ24が、ソーラーパネル1の表面に対して、近接又は当接状態になる。   The flange 23 includes the tip 24 at the distal end, the vibrator 31 at the proximal end, and a columnar horn 32 disposed in the middle so as to connect the vibrator 31 and the chip 24. These members are formed in a columnar shape in the vertical direction arranged on the same axis. In addition to this, the flange 23 is supported by the formation-side support portion 21 via the flange side bracket 33 so as to be able to reciprocate up and down, and the vertical movement causes the chip 24 to move relative to the soldering regions P1 and P2. It is possible to make contact, proximity and separation. Incidentally, when solder is formed, the chip 24 is in proximity to or in contact with the surface of the solar panel 1.

振動子31は中途部のピエゾ等の電歪素子31aを有し、超音波発振器(図示しない)で発生された高周波電力によって超音波振動する。ホーン32は、振動子31からの超音波振動をチップ24側に伝えるように構成されており、その上側半部が先端側に向かって径が小さくなるテーパ状に形成された増幅部32aになる一方で、その下側半部が増幅部32aの最小径よりも若干小さい径を有する伝播部32bとなり、振動子31からの超音波振動は増幅部32aを伝播する際に振幅が増幅され、この振幅が増幅された超音波振動が伝播部32bを介してチップ24に伝えられ、チップ24を超音波加振する。この超音波振動するチップ24は、耐摩耗性が良好で、熱伝導率も高いモリブデンやモリブデン合金等によって構成されている。 The vibrator 31 includes an electrostrictive element 31a such as a piezo in the middle, and vibrates ultrasonically by high-frequency power generated by an ultrasonic oscillator (not shown). The horn 32 is configured to transmit the ultrasonic vibration from the vibrator 31 to the chip 24 side, and the upper half of the horn 32 becomes an amplifying part 32a formed in a tapered shape whose diameter decreases toward the tip side. On the other hand, the lower half thereof becomes a propagation part 32b having a diameter slightly smaller than the minimum diameter of the amplification part 32a, and the amplitude of the ultrasonic vibration from the transducer 31 is amplified when propagating through the amplification part 32a. The ultrasonic vibration with the amplified amplitude is transmitted to the chip 24 via the propagation part 32b, and the chip 24 is ultrasonically excited. The ultrasonically vibrating tip 24 is made of molybdenum, molybdenum alloy, or the like that has good wear resistance and high thermal conductivity.

上記加熱装置26は、上下方向の円筒状をなすコイルによって構成され、該コイル26の内周側にチップ24を挿通させた状態で、コイル26の導線の両端に交流電圧を印加すると、電磁誘導によって、導体である鏝23(特に、チップ24側)に起電力が生じ、この起電力による過電流によってジュール熱が発生し、鏝23(特に、チップ24)が加熱される。すなわち、該コイル26は、磁束を変化させる電磁誘導手段となる。ちなみに、このコイル26は、鏝23と非接触状態で、鏝側ブラケット33側に取付支持されている。   The heating device 26 is constituted by a coil having a cylindrical shape in the vertical direction. When an AC voltage is applied to both ends of the conducting wire of the coil 26 with the chip 24 inserted through the inner peripheral side of the coil 26, electromagnetic induction is performed. As a result, an electromotive force is generated in the conductor 23 (especially the chip 24 side), Joule heat is generated by an overcurrent due to the electromotive force, and the flange 23 (particularly the chip 24) is heated. That is, the coil 26 serves as electromagnetic induction means for changing the magnetic flux. Incidentally, the coil 26 is attached and supported on the side of the heel side bracket 33 in a non-contact state with the heel 23.

なお、チップ24の外周に接触状態で巻き付けられる抵抗線によりなるヒータ又はチップ24内に接触状態で設けられるヒータによって上記加熱装置26を構成してもよい。   Note that the heating device 26 may be configured by a heater formed of a resistance wire wound in contact with the outer periphery of the chip 24 or a heater provided in contact with the chip 24.

上記補助加熱装置29は、加熱装置26とは別体で設けられた熱風を吹付けるブロワー(熱風吹付け装置)であって、該ブロワー29は、ソーラーパネル1表面にけるチップ24が近接又は当接している箇所に、熱風を吹付け、糸半田27及びソーラーパネル1の半田付領域P1,P2を加熱するように構成されている。なお、ソーラーパネル1表面に直に接触してソーラーパネル1表面を加熱するヒータ等によって補助加熱装置29を構成してもよい。   The auxiliary heating device 29 is a blower (hot air spraying device) that blows hot air provided separately from the heating device 26, and the blower 29 is arranged so that the chip 24 on the surface of the solar panel 1 is close to or hit by the blower 29. Hot air is blown onto the contacted area to heat the yarn solder 27 and the soldered areas P1, P2 of the solar panel 1. In addition, you may comprise the auxiliary heating apparatus 29 with the heater etc. which contact the solar panel 1 surface directly, and heat the solar panel 1 surface.

上記繰出し装置28は、糸半田27が巻き付けられたリール34と、リール34からの糸半田27を弾力的に挟持して送出す一対の送りローラ36,36と、ソーラーパネル1表面のチップ24との近接又は当接箇所に糸半田27を繰出す繰出しノズル(繰出し部)37と、リール34からの糸半田27を上記一対の送りローラ36,36の間にガイドする筒状部材やローラ等からなるガイド部38と、送りローラ36,36によって送出された糸半田27を繰出しノズル37に導入する導入管39と、繰出しノズル37を位置調整可能に支持する支持体41と、を備えている。   The feeding device 28 includes a reel 34 around which the thread solder 27 is wound, a pair of feed rollers 36 and 36 that elastically sandwich and feed the thread solder 27 from the reel 34, and a chip 24 on the surface of the solar panel 1. From a feeding member (feeding portion) 37 for feeding the thread solder 27 to the proximity or abutting position thereof, and a cylindrical member, a roller or the like for guiding the thread solder 27 from the reel 34 between the pair of feed rollers 36, 36. A guide section 38, an introduction pipe 39 for introducing the thread solder 27 fed by the feed rollers 36, 36 into the feed nozzle 37, and a support 41 for supporting the feed nozzle 37 so that the position of the feed nozzle 37 can be adjusted.

一対の送りローラ36が回転駆動されると、リール34からの糸半田27が、導入管39から繰出しノズル37の基端側に導入され、該導入された糸半田27が導入管39の先端側から所定量繰出される。この所定量繰出された糸半田27がチップ24によって溶融され、ソーラーパネル1表面に付着される。   When the pair of feed rollers 36 are driven to rotate, the thread solder 27 from the reel 34 is introduced from the introduction pipe 39 to the proximal end side of the feeding nozzle 37, and the introduced thread solder 27 is introduced to the distal end side of the introduction pipe 39. Is fed out a predetermined amount. This predetermined amount of threaded solder 27 is melted by the chip 24 and attached to the surface of the solar panel 1.

この繰出し装置28は一対設けられ、2つの繰出しノズル37,37の一方はソーラーパネル1に近接又は接触した際のチップ24の配線方向下流側に配置され、他方は該チップ24の配線方向上流側に配置されており、両繰出しノズル37,37は共に先端側がチップ24側に向けられている。すなわち、チップ24の配線上流側と、下流側とから各別に糸半田27が繰出される。   A pair of the feeding devices 28 is provided, and one of the two feeding nozzles 37, 37 is arranged on the downstream side in the wiring direction of the chip 24 when approaching or contacting the solar panel 1, and the other is on the upstream side in the wiring direction of the chip 24. Both the feeding nozzles 37, 37 are both directed toward the tip 24 side. That is, the thread solder 27 is fed separately from the wiring upstream side and the downstream side of the chip 24.

該構成の半田形成機構8による半田形成方法について説明すると、加熱装置26によって加熱され且つ振動子31によって超音波加振された状態のチップ24を、半田付領域P1,P2に近接又は当接させたるとともに、繰出しノズル37から該チップ24先端側に順次糸半田27が繰出される状態で、駆動機構によって可動テーブル7を配線方向下流側に移動駆動させると、チップ24が、糸半田27を半田付領域P1、P2上で溶融させながら、半田付領域P1、P2方向に沿って配線方向下流側に移動し、該半田付領域P1,P2に配線方向の延びる薄膜状且つ帯状の半田層19が連続的に形成される。   The solder forming method by the solder forming mechanism 8 having the above configuration will be described. The chip 24 heated by the heating device 26 and ultrasonically vibrated by the vibrator 31 is brought close to or in contact with the soldering regions P1 and P2. At the same time, when the thread solder 27 is sequentially fed from the feeding nozzle 37 to the tip end side of the chip 24, when the movable table 7 is driven to move downstream in the wiring direction by the driving mechanism, the chip 24 solders the thread solder 27. While being melted on the soldering regions P1 and P2, a thin film and strip-like solder layer 19 extending in the wiring direction is moved along the soldering regions P1 and P2 along the soldering regions P1 and P2. It is formed continuously.

そして、可動テーブル7を始端から終端まで移動駆動させると、該半田付領域P1,P2の全長方向全体に亘り半田層19が連続的に形成される。また、必要に応じて、補助加熱装置29による補助加熱も行う。ちなみに、この半田層19形成によって、上述の取出溝1aには、半田が充填され、半田層19と、裏面電極層12とは通電された状態になる。   Then, when the movable table 7 is driven to move from the start end to the end, the solder layer 19 is continuously formed over the entire length direction of the soldering regions P1 and P2. Further, auxiliary heating by the auxiliary heating device 29 is also performed as necessary. Incidentally, the formation of the solder layer 19 fills the take-out groove 1a with solder, and the solder layer 19 and the back electrode layer 12 are energized.

次に、図1,4及び5に基づき、半田付機構9の構成について説明する。
図5は、半田付機構の要部構成を示す側面図である。半田付機構9は、上下方向に延びる鏝42と、鏝42下端部のチップ(鏝先)43を加熱する加熱装置(加熱手段)44と、リボン線18を繰出す繰出し装置46と、繰出されたリボン線18を補助的に加熱する補助加熱装置(補助加熱手段)47と、鏝42、加熱装置44、繰出し装置46及び補助加熱装置47が取付支持される上述の半田付側支持部22とを備えている。
Next, the configuration of the soldering mechanism 9 will be described with reference to FIGS.
FIG. 5 is a side view showing the main configuration of the soldering mechanism. The soldering mechanism 9 is fed out with a flange 42 extending in the vertical direction, a heating device (heating means) 44 for heating a chip (tip) 43 at the lower end of the flange 42, and a feeding device 46 for feeding out the ribbon wire 18. An auxiliary heating device (auxiliary heating means) 47 for auxiliary heating of the ribbon wire 18, and the above-mentioned soldering side support portion 22 to which the flange 42, the heating device 44, the feeding device 46 and the auxiliary heating device 47 are attached and supported. It has.

上記鏝42は、上述の鏝23と略同一に構成され、上記チップ43と、電歪素子48aを有する振動子48と、増幅部49a及び伝播部49bをホーン49とを有し、鏝側ブラケット51によって全体が上下往復移動可能なように支持されており、該上下動によって、チップ43を半田付領域P1,P2に対して当接、近接及びは離間させることが可能になる。ちなみに、半田付の際、チップ43は、リード線18を半田層19上面に押付けるように、ソーラーパネル1表面に近接又は当接した状態になる。   The collar 42 is configured substantially the same as the collar 23 described above, and includes the tip 43, a vibrator 48 having an electrostrictive element 48a, an amplifying part 49a and a propagation part 49b, and a horn 49. The whole is supported by 51 so that it can be reciprocated up and down, and by this vertical movement, the chip 43 can be brought into contact with, close to, and separated from the soldering regions P1 and P2. Incidentally, at the time of soldering, the chip 43 is in a state of being close to or in contact with the surface of the solar panel 1 so as to press the lead wire 18 against the upper surface of the solder layer 19.

上記加熱装置44は、電磁誘導手段となるコイルからなり、上述の加熱装置26と略同一に構成されている。ちなみに、チップ43の外周に接触状態で巻き付けられる抵抗線によりなるヒータ又はチップ43内に接触状態で設けられるヒータによって上記加熱装置44を構成してもよい。   The heating device 44 is composed of a coil serving as electromagnetic induction means, and is configured substantially the same as the heating device 26 described above. Incidentally, the heating device 44 may be constituted by a heater formed of a resistance wire wound around the outer periphery of the chip 43 or a heater provided in a contact state in the chip 43.

上記補助加熱装置47は、加熱装置44とは別体で設けられた熱風を吹付けるブロワー(熱風吹付け装置)であって、該ブロワー47は、ソーラーパネル1表面におけるチップ43が近接又は当接している箇所に、熱風を吹付け、リボン線18及びソーラーパネル1の半田付領域P1,P2を加熱するように構成されている。   The auxiliary heating device 47 is a blower (hot air spraying device) that blows hot air provided separately from the heating device 44, and the blower 47 is close to or abuts on the chip 43 on the surface of the solar panel 1. The hot air is blown to the locations where the ribbon wire 18 and the soldered areas P1, P2 of the solar panel 1 are heated.

上記繰出し装置46は、リボン線18が巻き付けられたリール52と、該リール52からのリボン線18が繰出されるノズル状の繰出し部53と、リール52から繰出し部53に向うリボン線18が掛け回される複数のローラ54,56,57,58,59,61と、を備えている。   The feeding device 46 includes a reel 52 around which the ribbon wire 18 is wound, a nozzle-like feeding portion 53 from which the ribbon wire 18 from the reel 52 is fed, and a ribbon wire 18 from the reel 52 toward the feeding portion 53. And a plurality of rollers 54, 56, 57, 58, 59, 61 to be rotated.

繰出し部53は、繰出されるリボン線18の保持・保持解除を行う保持体62を有し、配線方向上流側に先端側が向けられている。複数のローラ54,56,57,58,59,61の内の1つは、上下にスライド移動可能に支持されてリボン線18へのテンションを調整するテンションローラ56であり、もう1つのローラは繰出し部53のリード線18導入側に配置されて回転駆動される送りローラ61になる。   The feeding portion 53 includes a holding body 62 that holds and releases the ribbon wire 18 that is fed out, and the tip side is directed upstream in the wiring direction. One of the plurality of rollers 54, 56, 57, 58, 59, 61 is a tension roller 56 that is supported so as to be slidable up and down and adjusts the tension on the ribbon wire 18, and the other roller is The feed roller 61 is arranged on the lead wire 18 introduction side of the feeding portion 53 and is rotationally driven.

保持体62によって繰出し部53側で保持され且つテンションローラ56によって緊張力が付与されたリボン線18は繰出し部53から導出されるが、このように繰出し部53から導出されたリード線18の先端部(導出側端部)は、ソーラーパネル1よりもリボン線18の導出側寄りに位置する本体フレーム4側の係止機構63によって係止される。   The ribbon wire 18 held by the holding body 62 on the feeding portion 53 side and applied with tension force by the tension roller 56 is led out from the feeding portion 53, and the leading end of the lead wire 18 led out from the feeding portion 53 in this way. The portion (leading end portion) is locked by a locking mechanism 63 on the main body frame 4 side that is located closer to the leading side of the ribbon wire 18 than the solar panel 1.

この係止機構63は、本体フレーム4側に取付固定された固定片64と、固定片64に上下揺動駆動可能に支持された可動片66とを備え、この固定片64と可動片66とによって、リボン線18の先端部を挟持して係止するように構成されている。そして、リボン線18の先端側が係止機構63に係止された状態で、送りローラ61を正転駆動させながら、可動テーブル7を配線方向下流側に移動させると、リボン線18は、半田付領域P1,P2に沿うようにして(配線方向に沿って)、配線方向下流側に順次繰出されていく。   The locking mechanism 63 includes a fixed piece 64 attached and fixed to the main body frame 4 side, and a movable piece 66 supported by the fixed piece 64 so as to be able to swing up and down. Thus, the leading end portion of the ribbon wire 18 is sandwiched and locked. When the movable table 7 is moved downstream in the wiring direction while the feed roller 61 is driven to rotate in the forward direction while the leading end side of the ribbon wire 18 is locked to the locking mechanism 63, the ribbon wire 18 is soldered. It is fed out sequentially along the areas P1 and P2 (along the wiring direction) downstream in the wiring direction.

この繰出し部53から繰出されて半田付領域P1,P2の真上近傍に位置するリボン線18を、平面視、係止機構63と繰出し部53の間に配置されて該繰出しリボン線18の真上に位置する上述のチップ43によって、半田付領域P1,P2の半田層19上に押圧する。   The ribbon wire 18 that is fed out from the feeding portion 53 and located in the vicinity of the soldering regions P1 and P2 is disposed between the locking mechanism 63 and the feeding portion 53 in a plan view. The chip 43 located above is pressed onto the solder layer 19 in the soldering regions P1 and P2.

該構成の半田付機構9による半田付方法について説明すると、先端部が係止機構63に係止されたリボン線18が、加熱装置44により加熱され且つ振動子48により超音波加振された状態のチップ43によって、半田付領域P1,P2の半田層19に押付けられ、送りローラ61が正転駆動された状態で、駆動機構によって可動テーブル7を配線方向下流側に移動駆動させると、該チップ43は、リボン線18周囲の半田及び半田層19を溶融させながら、半田付領域P1,P2に沿って配線方向下流側に移動し、該半田付領域P1,P2へのリボン線18の半田付作業を順次行う。   The soldering method by the soldering mechanism 9 having the above configuration will be described. The ribbon wire 18 whose tip is locked by the locking mechanism 63 is heated by the heating device 44 and is ultrasonically excited by the vibrator 48. When the movable table 7 is driven to move downstream in the wiring direction by the drive mechanism in a state where the chip 43 is pressed against the solder layer 19 in the soldering regions P1 and P2 and the feed roller 61 is driven to rotate forward, the chip 43 melts the solder and the solder layer 19 around the ribbon wire 18 and moves downstream in the wiring direction along the soldering regions P1 and P2, and solders the ribbon wire 18 to the soldering regions P1 and P2. Work sequentially.

そして、可動テーブル7を始端から終端まで移動駆動させると、リボン線18が、半田層19に沿って半田付領域P1,P2の全長方向全体に亘り連続的に半田付けされる。なお、必要に応じて、補助加熱装置47による補助加熱も行う。   When the movable table 7 is driven to move from the start end to the end, the ribbon wire 18 is continuously soldered along the solder layer 19 over the entire length of the soldering regions P1 and P2. If necessary, auxiliary heating by the auxiliary heating device 47 is also performed.

以上のように構成される導線半田付装置及び導線半田付方法によれば、半田成形機構8を支持する形成側支持部21と、形成側支持部21の配線方向上流側に配置されて半田付機構9を支持する半田付側支持部22とが一体成形された可動テーブル7を配線方向下流側に移動駆動させ、半田付領域P1,P2に半田層19を形成する半田形成作業と、半田層19を介して半田付領域P1,P2にリボン線18を半田付する半田付作業とを同時に行うことにより、導線半田付作業の全体の作業時間を短縮させることが可能になる。   According to the conductive wire soldering apparatus and the conductive wire soldering method configured as described above, the forming side support portion 21 that supports the solder forming mechanism 8 and the upstream side in the wiring direction of the formation side support portion 21 are soldered. A solder forming operation in which the movable table 7 integrally formed with the soldering side support portion 22 supporting the mechanism 9 is driven to move downstream in the wiring direction to form the solder layer 19 in the soldering regions P1 and P2, and the solder layer; By simultaneously performing the soldering operation of soldering the ribbon wire 18 to the soldering regions P1 and P2 via the wire 19, it is possible to reduce the overall work time of the lead wire soldering operation.

具体的には、半田付機構9は、半田形成機構8によって半田付領域P1,P2上に形成された半田層19に対して、形成された箇所から順次、リード線18の半田付作業を行う。すなわち、半田付領域P1,P2の異なる箇所において、半田層19を形成する半田成形作業と、リボン線18の半田付作業とが同時に実行される。   Specifically, the soldering mechanism 9 performs soldering work of the lead wires 18 sequentially from the formed positions on the solder layer 19 formed on the soldering regions P1 and P2 by the solder forming mechanism 8. . That is, the solder forming operation for forming the solder layer 19 and the soldering operation for the ribbon wire 18 are simultaneously performed at different locations in the soldering regions P1 and P2.

なお、リボン線18を通電させる通電手段によって、補助加熱手段47を構成してもよい。具体的には、繰出し装置46の何れかのローラ54,56,57,58,59,61と、係止機構63とが導体からなり、この一対の導体の間に電圧を印加する電源とによって通電手段47を構成する。この通電手段47によって、リード線18を通電状態とすれば、その抵抗熱によって、リード線18を直接に加熱することが可能になる。ちなみに、該ローラ54,56,57,58,59,61と、チップ43とを導体とし、該一対の導体の間に電圧を印加する電源によって通電手段47を構成してもよい。   In addition, you may comprise the auxiliary heating means 47 with the electricity supply means to energize the ribbon wire 18. FIG. Specifically, any of the rollers 54, 56, 57, 58, 59, 61 of the feeding device 46 and the locking mechanism 63 are made of a conductor, and a power source that applies a voltage between the pair of conductors. The energization means 47 is configured. When the lead wire 18 is energized by the energization means 47, the lead wire 18 can be directly heated by the resistance heat. Incidentally, the energizing means 47 may be constituted by a power source that applies a voltage between the pair of conductors using the rollers 54, 56, 57, 58, 59, 61 and the chip 43 as conductors.

また、半田付機構9を停止させ、まず、半田形成機構8によって、半田付領域P1,P2全体への半田層19の形成を完了させた後、続いて、半田成形機構8を停止させ、半田付機構9によって、半田付領域P1,P2全体へのリボン線18の半田付作業を行って、導線半田付作業を完了させてもよい。該構成によれば、導線半田付作業全体の時間は長くなるが、半田形成機構8及び半田付機構9のタイミング制御の内容が簡略化される。   Further, the soldering mechanism 9 is stopped. First, the solder forming mechanism 8 completes the formation of the solder layer 19 over the entire soldering regions P1 and P2, and then the solder forming mechanism 8 is stopped and the solder forming mechanism 8 is stopped. The wire soldering operation may be completed by performing the soldering operation of the ribbon wire 18 to the entire soldering regions P1 and P2 by the attaching mechanism 9. According to this configuration, the entire time of the soldering work for the lead wire becomes longer, but the contents of timing control of the solder forming mechanism 8 and the soldering mechanism 9 are simplified.

さらに、上述の例では、半田付領域P1,P2への導線半田付作業にあたり、半田層19を形成する半田形成作業と、半田層11を介してリボン線の半田付を行う半田付作業とを行う構成につき説明したが、この半田形成作業と半田付作業の内、半田形成作業を省略してもよい。この場合には、リボン線18がチップ43によって、ソーラーパネル1上の半田付領域P1,P2に直に押付けられた状態で、半田付作業が行われる。この際のその他の構成は、上述の例と略同一であるが、リボン線18が半田コーティングされているため、このような作業を行うことが可能になる。これに加えて、半田形成作業を行わない場合には、半田形成機構8を導線半田付装置から省いてもよい。   Furthermore, in the above-described example, the solder forming work for forming the solder layer 19 and the soldering work for soldering the ribbon wire via the solder layer 11 are performed in the soldering work for the lead wires to the soldering regions P1 and P2. Although the configuration to be performed has been described, the solder forming operation may be omitted from the solder forming operation and the soldering operation. In this case, the soldering operation is performed in a state where the ribbon wire 18 is pressed directly against the soldering regions P1 and P2 on the solar panel 1 by the chip 43. Other configurations at this time are substantially the same as those in the above-described example. However, since the ribbon wire 18 is solder-coated, such an operation can be performed. In addition to this, when the solder forming operation is not performed, the solder forming mechanism 8 may be omitted from the wire soldering apparatus.

次に、図6に基づき、本発明の別実施形態について説明する。
図6は、本発明の別実施形態を示す導線半田装置の要部側面図である。同図に示す例では、半田成形機構8を支持する形成側支持部21と、形成側支持部21の配線方向上流側に配置されて半田付機構9を支持する半田付側支持部22とを別体形成し、それぞれ形成側可動テーブル21、半田付側可動テーブル22としている。形成側可動テーブル21と、半田付側可動テーブル22とには各別に駆動機構(図示しない)が設けられており、形成側可動テーブル21と、半田付側可動テーブル22とは、この2つの駆動機構によって、各別に、配線方向にスライド移動駆動される。
Next, another embodiment of the present invention will be described with reference to FIG.
FIG. 6 is a side view of an essential part of a lead wire soldering device showing another embodiment of the present invention. In the example shown in the figure, a forming side support portion 21 that supports the solder forming mechanism 8 and a soldering side support portion 22 that is disposed on the upstream side in the wiring direction of the forming side support portion 21 and supports the soldering mechanism 9. Separately formed, a forming side movable table 21 and a soldering side movable table 22 are formed. The forming side movable table 21 and the soldering side movable table 22 are each provided with a driving mechanism (not shown). The forming side movable table 21 and the soldering side movable table 22 are driven by these two mechanisms. The mechanism is slidably driven in the wiring direction by each mechanism.

このように導線半田付装置を構成することにより、導線半田付作業機において、半田形成作業と半田付作業とを同時に行う場合や、半田形成作業の完了後に半田付作業を行う場合や、半田形成作業を行わずに半田付作業のみを行う場合に、柔軟に対応することが可能になる。   By configuring the conductor soldering device in this way, in the conductor soldering work machine, when performing solder formation work and soldering work simultaneously, when performing soldering work after completion of solder formation work, or solder formation When only the soldering operation is performed without performing the operation, it is possible to respond flexibly.

1 ソーラーパネル(基板)
8 半田形成機構(半田付装置)
18 リボン線(導線)
19 半田層
21 形成側支持部(支持部,形成側可動テーブル)
22 半田付側支持部(支持部,半田付側可動テーブル)
24 チップ(鏝先)
26 加熱装置(加熱手段,電磁誘導手段,コイル,ヒータ)
27 糸半田(線状半田)
29 補助加熱装置(補助加熱手段,熱風吹出し装置,ブロワー,ヒータ)
31 振動子
37 繰出しノズル(繰出し部)
43 チップ(鏝先)
44 加熱装置(加熱手段,電磁誘導手段,コイル,ヒータ)
47 補助加熱手装置(補助加熱手段,熱風吹出し装置,ブロワー,通電手段)
48 振動子
52 リール
53 繰出し部
1 Solar panel (substrate)
8 Solder formation mechanism (soldering equipment)
18 Ribbon wire (conductor)
19 Solder layer 21 Formation side support part (support part, formation side movable table)
22 Solder side support part (support part, solder side movable table)
24 tips
26 Heating device (heating means, electromagnetic induction means, coil, heater)
27 Yarn solder (Linear solder)
29 Auxiliary heating device (auxiliary heating means, hot air blowing device, blower, heater)
31 vibrator 37 feeding nozzle (feeding part)
43 tips
44 Heating device (heating means, electromagnetic induction means, coil, heater)
47 Auxiliary heating hand device (auxiliary heating means, hot air blowing device, blower, energizing means)
48 vibrator 52 reel 53 feeding section

Claims (12)

導線(18)を基板(1)に半田付けする導線半田付方法であって、
振動子(31)によって超音波加振されるとともに加熱手段(26)によって加熱されるチップ(24)側に向って線状半田(27)を繰出し、
該チップを基板(1)に近接又は当接させた状態で、配線方向に沿って移動させ、上記線状半田(27)を溶融させて前記基板(1)表面に付着させることにより、該基板(1)上に配線方向に連続的に膜状且つ帯状の半田層(19)形成し、
表面に半田がコーティングされた導線(18)を繰出し部(53)から繰出し、
振動子(48)により超音波加振され且つ加熱手段(44)により加熱されるチップ(43)によって、上記繰出された導線(18)を、前記予め形成された半田層(19)上に押付け、該チップ(43)を配線方向に沿って移動させることにより、導線(18)の周囲の半田及び該半田層(19)を溶融させながら該半田層(19)に沿って基板(1)上に導線(18)を半田付けする
ことを特徴とする導線半田付方法
A lead wire soldering method for soldering a lead wire (18) to a substrate (1),
Oscillator (31) by feeding the chips (24) toward or I linear solder side (27) which is heated by the heating means (26) with is ultrasonically vibrated,
The chip in a state of being close to or abuts on the substrate (1), is moved along the wiring direction, by attaching to the substrate (1) surface by melting the linear solder (27), said substrate (1) A film-like and strip- like solder layer (19) is formed continuously in the wiring direction on the top ,
A lead wire (18) whose surface is coated with solder is fed from a feeding part (53),
The drawn lead wire (18) is pressed onto the preformed solder layer (19) by the tip (43) which is ultrasonically excited by the vibrator (48) and heated by the heating means (44). The chip (43) is moved along the wiring direction to melt the solder around the conductor (18) and the solder layer (19) along the solder layer (19) on the substrate (1). Solder the lead wire (18) to
Conductive wire soldering method characterized by the above-mentioned .
前記チップ(24)に対して、配線下流側及び配線上流側からそれぞれ各別に線状半田(27)を繰出す
請求項1に記載の導線半田付方法
With respect to the chip (24), the linear solder (27) is fed out from the downstream side of the wiring and the upstream side of the wiring, respectively.
The lead wire soldering method according to claim 1 .
上記導線(18)が扁平なリボン線である
請求項1又は2の何れかに記載の導線半田付方法
The conducting wire (18) is a flat ribbon wire
The lead wire soldering method according to claim 1 .
前記線状半田(27)及び基板(1)をチップ(24)側からとは別に補助的に加熱するとともに、導線(18)をチップ(43)側からとは別に補助的に加熱する
請求項1乃至3の何れかに記載の導線半田付方法
The linear solder (27) and the substrate (1) are supplementarily heated separately from the chip (24) side, and the conductive wire (18) is supplementarily heated separately from the chip (43) side.
The method for soldering a lead according to any one of claims 1 to 3 .
半田形成装置(8)及び半田付機構(9)を備えた導線半田付装置であって、
前記半田形成装置(8)は、振動子(31)によって超音波加振されるとともに加熱手段(26)によって加熱されるチップ(24)と、線状半田(27)がチップ(24)側に向って繰出される繰出し部(37)と、前記チップ(24)及び繰出し部(37)を基板(1)の上方側に支持する支持部(21)とを含み、
該半田形成装置(8)は、前記チップ(24)が基板(1)に近接又は当接した状態で配線方向に沿って変位するように駆動機構によって支持部(21)を移動駆動させ、上記線状半田(27)を溶融させて前記基板(1)表面に付着させることにより、該基板(1)上に配線方向に連続的に膜状且つ帯状の半田層(19)を形成し、
前記半田付機構(9)は、表面が半田コーティングされた導線(18)が巻付けられたリール(52)と、振動子(48)によって超音波加振されるとともに加熱手段(44)によって加熱されるチップ(43)と、リール(52)からの導線(18)が繰出される繰出し部(53)と、該リール(52)、チップ(43)及び繰出し部(53)を基板(1)の上方側に支持する支持部(22)とを含み、該支持部(22)を線状半田(27)が繰出される側の支持部(21)の配線方向上流側に配置し、
該半田付機構(9)は、前記繰出し部(53)から繰出される導線(18)を、チップ(43)によって、前記予め形成された半田層(19)に押付け、導線(18)が繰出される側の支持部(22)を、駆動機構によって、配線方向に沿って移動駆動させ、該導線(18)の周囲の半田及び上記半田層(19)を溶融させることにより、前記基板(1)上に該半田層(19)に沿って該導線(18)を半田付けする
ことを特徴とする導線半田付装置
A wire soldering device comprising a solder forming device (8) and a soldering mechanism (9),
In the solder forming device (8), a chip (24) that is ultrasonically excited by a vibrator (31) and heated by a heating means (26), and a linear solder (27) are placed on the chip (24) side. A feeding part (37) fed out toward the front, and a support part (21) for supporting the chip (24) and the feeding part (37) on the upper side of the substrate (1),
The solder forming apparatus (8) moves and drives the support portion (21) by a driving mechanism so that the chip (24) is displaced along the wiring direction in a state where the chip (24) is close to or in contact with the substrate (1). By melting the linear solder (27) and adhering it to the surface of the substrate (1), a film-like and strip-like solder layer (19) is continuously formed on the substrate (1) in the wiring direction,
The soldering mechanism (9) is ultrasonically vibrated by a reel (52) wound with a conductor (18) whose surface is coated with solder and a vibrator (48) and heated by a heating means (44). Chip (43) to be fed, feeding part (53) from which lead wire (18) from reel (52) is fed, and reel (52), chip (43) and feeding part (53) are connected to substrate (1). A support portion (22) supported on the upper side of the support portion (22), and the support portion (22) is disposed on the upstream side in the wiring direction of the support portion (21) on the side where the linear solder (27) is fed,
The soldering mechanism (9) presses the conducting wire (18) fed from the feeding portion (53) against the previously formed solder layer (19) by the chip (43), and the conducting wire (18) is fed out. The supporting portion (22) on the side to be driven is moved and driven along the wiring direction by a driving mechanism, and the solder (19) around the conductive wire (18) and the solder layer (19) are melted, whereby the substrate (1 And soldering the conductor (18) along the solder layer (19)
Conductor soldering apparatus characterized by the above .
前記半田形成装置(8)の繰出し部(37)を、チップ(24)の配線上流側及び配線下流側にそれぞれ設けた
請求項5に記載の導線半田付装置
The feeding portion (37) of the solder forming apparatus (8) is provided on the wiring upstream side and the wiring downstream side of the chip (24), respectively.
The lead wire soldering apparatus according to claim 5 .
導線(18)が扁平なリボン線である
請求項5又は6の何れかに記載の導線半田付装置
Conductor (18) is a flat ribbon wire
The lead wire soldering apparatus according to claim 5 .
半田形成装置(8)の前記加熱手段(26)は、電磁誘導によって起電力を生じさせることによりチップ(24)を発熱させる電磁誘導手段と、チップ(24)側に接触するように設けられたヒータとの何れかであり、
半田付機構(9)の前記加熱手段(44)は、電磁誘導によって起電力を生じさせることによりチップ(43)を発熱させる電磁誘導手段と、チップ(43)側に接触するように設けられたヒータとの何れかである
請求項5乃至7の何れかに記載の導線半田付装置
The heating means (26) of the solder forming apparatus (8) is provided so as to contact the chip (24) side with the electromagnetic induction means that generates heat by generating electromotive force by electromagnetic induction and the chip (24). One of the heaters,
The heating means (44) of the soldering mechanism (9) is provided in contact with the electromagnetic induction means for generating heat by generating electromotive force by electromagnetic induction and the chip (43) side. Any of the heaters
The lead wire soldering apparatus according to any one of claims 5 to 7 .
線状半田(27)及び基板(1)を補助的に加熱する補助加熱手段(29)を、上記加熱手段(26)とは別に前記半田形成装置(8)に設け、
導線(18)及び基板(1)を補助的に加熱する補助加熱手段(47)を、上記加熱手段(44)とは別に前記半田付機構(9)に設けた
請求項5乃至8の何れかに記載の導線半田付装置
Auxiliary heating means (29) for auxiliary heating of the linear solder (27) and the substrate (1) is provided in the solder forming apparatus (8) separately from the heating means (26),
Auxiliary heating means (47) for auxiliary heating of the conductor (18) and the substrate (1) is provided in the soldering mechanism (9) separately from the heating means (44).
The lead wire soldering apparatus according to any one of claims 5 to 8 .
半田付機構(9)の前記補助加熱手段(47)は、導線(18)を通電させて抵抗熱により加熱する通電手段と、熱風吹付け装置との何れかである
請求項9に記載の導線半田付装置
The auxiliary heating means (47) of the soldering mechanism (9) is either an energizing means for energizing the conductor (18) and heating it with resistance heat, or a hot air spraying device.
The lead wire soldering apparatus according to claim 9 .
線状半田(27)が繰出される側の支持部(21)と、導線(18)が繰出される側の支持部(22)とを一体的に形成してなる支持体(7)を設け、
該支持体(7)を配線方向に沿って移動駆動させる単一の駆動機構を備えた
請求項5乃至10の何れかに記載の導線半田付装置
A support body (7) is provided in which a support portion (21) on the side where the linear solder (27) is fed and a support portion (22) on the side where the lead wire (18) is fed are integrally formed. ,
Provided with a single drive mechanism for moving the support (7) along the wiring direction
The lead wire soldering apparatus according to any one of claims 5 to 10 .
線状半田(27)が繰出される側の支持部(21)と、導線(18)が繰出される側の支持部(22)とを別体形成し、
該2つの支持部(21),(22)にそれぞれ各別に前記駆動機構を設けた
請求項5乃至10の何れかに記載の導線半田付装置
The support part (21) on the side where the linear solder (27) is drawn out and the support part (22) on the side where the conductive wire (18) is drawn out are formed separately.
The drive mechanism is provided for each of the two support portions (21) and (22).
The lead wire soldering apparatus according to any one of claims 5 to 10 .
JP2010063026A 2010-03-18 2010-03-18 Conductor soldering method and apparatus Active JP5432015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063026A JP5432015B2 (en) 2010-03-18 2010-03-18 Conductor soldering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010063026A JP5432015B2 (en) 2010-03-18 2010-03-18 Conductor soldering method and apparatus

Publications (2)

Publication Number Publication Date
JP2011198950A JP2011198950A (en) 2011-10-06
JP5432015B2 true JP5432015B2 (en) 2014-03-05

Family

ID=44876804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063026A Active JP5432015B2 (en) 2010-03-18 2010-03-18 Conductor soldering method and apparatus

Country Status (1)

Country Link
JP (1) JP5432015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713022B1 (en) * 1999-09-24 2007-05-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 EL display device and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114192957A (en) * 2020-09-02 2022-03-18 苏州阿特斯阳光电力科技有限公司 Welding method of welding device of photovoltaic cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4459339B2 (en) * 1999-11-02 2010-04-28 株式会社カネカ Method and apparatus for attaching solar cell lead wire
JP3264372B2 (en) * 2000-08-16 2002-03-11 リコーマイクロエレクトロニクス株式会社 Soldering iron member and soldering device
JP2008207241A (en) * 2007-02-28 2008-09-11 Urban Materials Co Method for soldering metal or alloy
JP4665003B2 (en) * 2008-02-21 2011-04-06 三菱電機エンジニアリング株式会社 Ultrasonic soldering equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713022B1 (en) * 1999-09-24 2007-05-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 EL display device and electronic device

Also Published As

Publication number Publication date
JP2011198950A (en) 2011-10-06

Similar Documents

Publication Publication Date Title
CN108465933A (en) A kind of method and apparatus of laser welding foil and lug
JPWO2009044560A1 (en) Adhesive tape attaching device and tape connecting method
CN103258890A (en) Device for forming tin electrode wire on solar cell sheet
JP5576090B2 (en) Soldering method and apparatus
JP5432015B2 (en) Conductor soldering method and apparatus
JP5076163B2 (en) Ultrasonic vibration bonding method and ultrasonic vibration bonding apparatus
JP5242363B2 (en) Solar cell lead wire soldering equipment
CN104625299A (en) Tin soldering jig and laser tin soldering method
CN103842120A (en) Method for the cohesive connection of elements
KR102548627B1 (en) Bonding method of insulated coated wire, connection structure, peeling method and bonding device of insulated coated wire
JP2001102610A (en) Lead wire with solder bump, lead wire-mounting device for solar cell, and method for manufacturing solar cell
JP2012004268A (en) Conductor wire soldering apparatus and method, conductor wire supplying apparatus, and solar cell manufacturing method
JP2010253503A (en) Heater chip and joining apparatus
JP2012190950A (en) Conductive pattern member for substrate for power module
JP5207557B2 (en) Joining device
JP5489646B2 (en) Soldering method and apparatus
CN207630543U (en) A kind of thermofusion device of DC MOTOR CONTROL plate fuse machine
JP2010287612A (en) Device and method for sticking acf, and flat display device
JP5319234B2 (en) Thermocompression bonding apparatus and electronic component manufacturing method
JP2012064871A (en) Connection method and device of solar cell connection member
JP2012004182A (en) Connection method and apparatus for solar battery connecting member
JP2005199301A (en) Joining auxiliary mechanism
JP5163568B2 (en) Semiconductor device wiring joining method and heating tool
JP2012094771A (en) Soldering method and soldering device
JP5768675B2 (en) Wire bonding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350