JP5428353B2 - 車両の駆動制御装置及び車両の駆動制御方法 - Google Patents

車両の駆動制御装置及び車両の駆動制御方法 Download PDF

Info

Publication number
JP5428353B2
JP5428353B2 JP2009013485A JP2009013485A JP5428353B2 JP 5428353 B2 JP5428353 B2 JP 5428353B2 JP 2009013485 A JP2009013485 A JP 2009013485A JP 2009013485 A JP2009013485 A JP 2009013485A JP 5428353 B2 JP5428353 B2 JP 5428353B2
Authority
JP
Japan
Prior art keywords
motor
temperature
battery
inverter
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009013485A
Other languages
English (en)
Other versions
JP2010172139A (ja
Inventor
喜徳 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009013485A priority Critical patent/JP5428353B2/ja
Publication of JP2010172139A publication Critical patent/JP2010172139A/ja
Application granted granted Critical
Publication of JP5428353B2 publication Critical patent/JP5428353B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

本発明は、モータで駆動輪を駆動可能な車両の駆動制御の技術に関する。
車両の駆動制御装置としては、特許文献1に記載の装置がある。この装置では、エンジン(内燃機関)を停止する際に、第1モータが発電トルクでエンジンの停止力を発生する。その際、第1モータは、発電した電力をバッテリに供給して蓄電する。また、上記バッテリに電気的に接続した第2モータは、上記駆動輪に対し駆動及び回生可能となっている。
そして、バッテリへの入力電力がバッテリの許容値を超える場合には、消費電力が増大するように、電力授受回路の動作を制御する。
特開2007−290483号公報
上記駆動輪がスリップ状態からグリップ状態になることによる駆動輪の回転数急減や、スリップを抑制するトラクションコントロール作動時の駆動トルクの急制限により、駆動輪につながる第2モータの出力が急減する。この場合、エンジン出力を駆動出力用電力として取り出す第1モータの発電電力を第2モータが全て消費できず、余剰分がバッテリの入力になる。
このとき、低温時のバッテリは、回生電力受け入れ量が小さいため、上記余剰電力を受け取りきれず、第1モータ及び第2モータとバッテリとの間に位置するインバータや昇圧コンバータのコンデンサが受け止める場合がある。この場合、コンデンサ電圧が過剰に上昇して耐久性に影響が出る恐れがある。
本発明は、上記のような点に着目したものであり、バッテリ低温時におけるコンデンサ電圧の過剰発生を低減可能な車両の駆動制御を課題とする。
上記課題を解決するために、本発明は、駆動輪を駆動するモータを備える。モータは、インバータを介してバッテリに電気的に接続する。そのインバータとバッテリとの間に昇圧機能を有するコンバータ及び平滑コンデンサを介装する。そして、上記コンバータの昇圧電圧目標値を、バッテリの温度が所定値より低い場合、バッテリの温度が高い場合に比べて低く制限する。
本発明によれば、バッテリ温度が低くバッテリの回生電力の受け入れ量が小さいときに、昇圧電圧を低く制限する。この結果、モータ発電電力がバッテリの回生電力受け入れ量を超過しても、昇圧電圧を抑えているため、平滑コンデンサが耐電圧内で一次的に受け止めることが出来る電力が増加する。
これによって、バッテリ低温時におけるコンデンサ電圧の過剰発生を低減可能となる。
本発明に基づく実施形態に係る車両のシステム構成を説明する図である。 本発明に基づく第1実施形態に係る平滑コンデンサ保護制御の処理の一例を示す図である。 本発明に基づく第1実施形態に係る平滑コンデンサ保護処理部の構成を示す図である。 昇圧電圧目標値の制限値を求めるための係数K1のマップを示す図である。 係数K1aを求めるためのマップを示す図である。 係数K1bを求めるためのマップを示す図である。 係数K1cを求めるためのマップを示す図である。 係数bを求めるためのマップを示す図である。 本発明に基づく第2実施形態に係る平滑コンデンサ保護処理部の構成を示す図である。 係数K4を求めるためのマップを示す図である。 係数K4を求めるためのマップを示す図である。
次に、本発明の実施形態について図面を参照して説明する。
図1は、本実施形態におけるハイブリッド車両100を説明するための構成図である。
(構成)
本ハイブリッド車両100は、図1に示すように、エンジン110、動力分割機構120、第1モータMG1、MG2、減速機130、駆動軸140、及び車輪(駆動輪)150を備える。ハイブリッド車両100は、さらに、直流電圧発生部DVG、平滑コンデンサC0、第1及び第2インバータ20、30、エンジンコントローラ61、統合制御装置60、及び駆動制御装置50を備える。
また、ハイブリッド車両100は、アクセルペダルセンサ62、ブレーキペダルセンサ63、及び車速センサ64を備える。
アクセルペダルセンサ62は、運転者による加速指示としてのアクセル開度を検出し、検出信号を統合制御装置60に出力する。
ブレーキペダルセンサ63は、運転者による減速指示としてのブレーキ踏込み量を検出し、検出信号を統合制御装置60に出力する。
車速センサ64は、車輪の回転速度等のよって車速を検出し、検出信号を統合制御装置60に出力する。
統合制御装置60は、アクセル開度と車速とに基づき要求駆動力の目標値Power*を演算する。そして、統合制御装置60は、要求駆動力の目標値Power*に基づき、エンジン駆動トルク指令値、第1モータMG1のトルク指令値、第2モータMG2のトルク指令値を演算する。統合制御装置60は、エンジン駆動トルク指令値をエンジンコントローラ61に出力する。統合制御装置60は、第1モータMG1のトルク指令値、第2モータMG2のトルク指令値を、駆動制御装置50に出力する。また、統合制御装置60は、ブレーキ踏込み量に基づき要求制動力の目標値を演算する。そして、統合制御装置60は、要求制動力の目標値に基づき第2モータMG2の回生用の制御信号RGE(2)を演算して、駆動制御装置50に出力する。
エンジンコントローラ61は、エンジン駆動トルク指令値に応じてエンジンの駆動力を制御する。
エンジン110は、たとえば、ガソリンエンジンやディーゼルエンジン等の内燃機関により構成する。エンジン110には、冷却水の温度を検知する冷却水温センサ112を設ける。冷却水温センサ112は、検出信号を駆動制御装置50に出力する。
動力分割機構120は、エンジン110の発生する動力を、駆動軸140への経路と第1モータMG1への経路とに分割可能な構成となっている。動力分割機構120としては、例えば、サンギヤ、プラネタリギヤ及びリングギヤの3つの回転軸を有する遊星歯車機構を採用すれば良い。この場合には、例えば、第1モータMG1のロータを中空とし、その中心にエンジン110のクランク軸を通す。これによって、動力分割機構120に対し、エンジン110と、第1モータMG1、MG2とを機械的に接続することができる。具体的には、第1モータMG1のロータをサンギヤに接続する。エンジン110の出力軸をプラネタリギヤに接続する。さらに、動力分割機構120の出力軸125をリングギヤに接続する。出力軸125は、第2モータMG2の回転軸とも接続する。そして、その出力軸125は、減速機130を介して駆動輪150を回転駆動するための駆動軸140に接続する。なお、第2モータMG2の回転軸に対する減速機をさらに組込んでもよい。
第1モータMG1は、電動機及び発電機の機能を併せ持つ。すなわち、第1モータMG1は、エンジン110によって駆動される発電機として動作する。また、第1モータMG1は、エンジン110の始動を行なう電動機として動作する。
同様に、第2モータMG2は、電動機及び発電機への機能を併せ持つ。すなわち、第2モータMG2は、その出力を、出力軸125及び減速機130を介して、駆動軸140に伝達する。すなわち、第2モータMG2は、車両駆動力発生用の電動機を構成する。さらに、第2モータMG2は、車輪150の回転方向と反対方向の出力トルクを発生することで、回生発電を行なう。
次に、第1モータMG1、MG2を駆動制御するための構成について説明する。
直流電圧発生部DVGは、バッテリB、平滑コンデンサC1、昇降圧コンバータ15を備える。
バッテリBとしては、ニッケル水素、リチウムイオン、鉛酸バッテリ等の二次電池を適用可能である。なお、バッテリBとして、電気二重層キャパシタ等を適用することも可能である。
ここで、電圧センサ10は、バッテリBが出力するバッテリ電圧Vbを検知する。電圧センサ10は、検出したバッテリ電圧Vbを駆動制御装置50に出力する。電流センサ11は、バッテリBに入出力するバッテリ電流Ibを検知する。電流センサ11は、検出した検出したバッテリ電流Ibを駆動制御装置50に出力する。また、温度センサ12は、バッテリBのバッテリ温度Tbを検出する。温度センサ12は、検出したバッテリ温度Tbを駆動制御装置50に出力する。なお、バッテリBの温度が局所的に異なる可能性がある。このため、温度センサ12は、バッテリBの複数箇所に設けてもよい。
平滑コンデンサC1は、接地ライン5と電源ライン6との間に接続する。なお、バッテリBの正極端子と電源ライン6との間、ならびに、バッテリBの負極端子と接地ライン5との間には、リレー(図示せず)を設ける。このリレー(図示せず)は、車両運転時にオンとなり、車両運転停止時にオフとなる。
昇降圧コンバータ15(以下、単にコンバータとも記載する)は、リアクトルL1と、スイッチング制御される電力用半導体素子(以下、「スイッチング素子」と称する)Q1、Q2とを備える。リアクトルL1は、スイッチング素子Q1及びQ2の接続ノードと電源ライン6との間に接続する。また、平滑コンデンサC0は、電源ライン7と接地ライン5の間に接続する。
電力用半導体スイッチング素子Q1及びQ2は、電源ライン7と接地ライン5との間に直列に接続する。電力用半導体スイッチング素子Q1及びQ2のオンオフは、駆動制御装置50からのスイッチング制御信号S1及びS2によって制御する。
ここで、スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)、電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラトランジスタ等を用いることができる。スイッチング素子Q1、Q2に対しては、逆並列ダイオードD1、D2を配置しておく。本実施形態では、スイッチング素子としてIGBTを使用する場合を例にして説明する。他のスイッチング素子も同様である。
そして、後述の昇降圧コンバータ15によって、電源ライン7上の直流電圧を、バッテリBの出力電圧に固定することなく、可変制御することができる。これにより、第1モータMG1、MG2に印加する交流電圧の振幅を可変制御して、高効率のモータ制御が可能となる。
第1及び第2インバータ20及び30の直流電圧側は、共通の接地ライン5及び電源ライン7を介して、昇降圧コンバータ15に接続する。昇降圧コンバータ15、平滑コンデンサC0、及び第1、第2インバータ20、30は、電力授受回路を構成する。
第1インバータ20は、U相アーム22と、V相アーム24と、W相アーム26とからなる。U相アーム22と、V相アーム24と、W相アーム26は、電源ライン7と接地ライン5との間に並列に設ける。各相アームは、電源ライン7と接地ライン5との間に直列接続したスイッチング素子から構成する。たとえば、U相アーム22は、スイッチング素子Q11、Q12からなり、V相アーム24は、スイッチング素子Q13、Q14からなり、W相アーム26は、スイッチング素子Q15、Q16からなる。また、スイッチング素子Q11〜Q16に対して、逆並列ダイオードD11〜D16をそれぞれ接続しておく。スイッチング素子Q11〜Q16のオンオフは、駆動制御装置50からのスイッチング制御信号S11〜S16によって制御する。
第1モータMG1は、固定子に設けたU相コイル巻線U1、V相コイル巻線V1及びW相コイル巻線W1と、図示しない回転子とを備える。U相コイル巻線U1、V相コイル巻線V1及びW相コイル巻線W1の一端は、中性点N1で互いに接続する。U相コイル巻線U1、V相コイル巻線V1及びW相コイル巻線W1の他端は、第1インバータ20のU相アーム22、V相アーム24及びW相アーム26にそれぞれ接続する。第1インバータ20は、駆動制御装置50からのベクトル制御によるスイッチング制御信号S11〜S16に応答したスイッチング素子Q11〜Q16のオンオフ制御(スイッチング制御)によって、直流電圧発生部DVG及び第1モータMG1の間での双方向の電力変換を行なう。
具体的には、第1インバータ20は、駆動制御装置50によるスイッチング制御に従って、電源ライン7から受ける直流電圧を3相交流電圧に変換する。そして、その変換した3相交流電圧を、第1モータMG1へ出力する。これにより、第1モータMG1は、指定されたトルクを発生するように駆動される。また、第1インバータ20は、エンジン110の出力を受けて、第1モータMG1が発電した3相交流電圧を駆動制御装置50によるスイッチング制御に従って直流電圧に変換する。そして、その変換した直流電圧を電源ライン7へ出力する。
第2インバータ30は、第1インバータ20と同様に構成しておく。第2インバータ30は、スイッチング制御信号S21〜S26によってオンオフ制御されるスイッチング素子Q21〜Q26及び、逆並列ダイオードD21〜D26を備える。
第2モータMG2は、第1モータMG1と同様に構成する。すなわち、第2モータMG2は、固定子に設けたU相コイル巻線U2、V相コイル巻線V2及びW相コイル巻線W2と、図示しない回転子とを備える。第1モータMG1と同様に、U相コイル巻線U2、V相コイル巻線V2及びW相コイル巻線W2の一端は、中性点N2で互いに接続する。U相コイル巻線U2、V相コイル巻線V2及びW相コイル巻線W2の他端は、第2インバータ30のU相アーム32、V相アーム34及びW相アーム36とそれぞれ接続する。
第2インバータ30は、駆動制御装置50からのベクトル制御によるスイッチング制御信号S21〜S26に応答したスイッチング素子Q21〜Q26のオンオフ制御(スイッチング制御)によって、直流電圧発生部DVG及び第2モータMG2の間での双方向の電力変換を行なう。
具体的には、第2インバータ30は、駆動制御装置50によるスイッチング制御に従って、電源ライン7から受ける直流電圧を3相交流電圧に変換する。そして、その変換した3相交流電圧を第2モータMG2へ出力する。これにより、第2モータMG2は、指定されたトルクを発生するように駆動される。また、第2インバータ30は、車両の回生制動時、車輪150からの回転力を受けて、第2モータMG2が発電した3相交流電圧を駆動制御装置50によるスイッチング制御に従って直流電圧に変換する。そして、その変換した直流電圧を電源ライン7へ出力する。
なお、ここで言う回生制動とは、ハイブリッド車両を運転する運転者によるフットブレーキ操作があった場合のおける回生発電を伴う制動や、フットブレーキを操作しないものの、走行中にアクセルペダルをオフすることで回生発電をさせながら車両を減速(または加速の中止)させることを含む。
第1モータMG1、MG2の各々に、電流センサ27及び回転角センサ(レゾルバ)28を設ける。各電流センサ27は、第1モータMG1、MG2のモータ電流MCRT(1)、MCRT(2)を検出し、検出信号を駆動制御装置50に供給する。ここで、三相電流iu、iv、iwの瞬時値の和は零である。したがって、電流センサ27は2相分のモータ電流(たとえば、V相電流iv及びW相電流iw)を検出するように配置すれば足りる。
各回転角センサ28は、第1及び第2モータMG1、MG2の図示しない回転子のロータ回転角ロータ回転角θ(1)、θ(2)を検出する。回転角センサ28は、その検出信号を駆動制御装置50に供給する。駆動制御装置50では、回転角θに基づき第1及び第2モータMG1、MG2の回転数Nmt(回転角速度ω)を算出する。なお、「回転数」との文言は、特に説明がない限り単位時間当たり(代表的には毎分当たり)の回転数を指すものとする。
さらに、駆動制御装置50は、統合制御装置60から、モータ指令としての、第1モータMG1のトルク指令値Tqcom(1)及び回生動作を示す制御信号RGE(1)、ならびに、第2モータMG2のトルク指令値Tqcom(2)及び回生動作を示す制御信号RGE(2)を入力する。
駆動制御装置50は、所定のプログラム処理に従って、上位の統合制御装置60から入力したモータ指令に基づき第1モータMG1、MG2が動作するように、昇降圧コンバータ15及び第1及び第2インバータ20、30のスイッチング制御のためのスイッチング制御信号S1、S2(昇降圧コンバータ15)、S11〜S16(第1インバータ20)、及びS21〜S26(第2インバータ30)を生成する。このインバータ制御を行うために、駆動制御装置50は、第1インバータ20をベクトル制御する第1ベクトル制御部72及び、第2インバータ30をベクトル制御する第2ベクトル制御部73を備える。
さらに、駆動制御装置50には、バッテリBの充電率(SOC:State of Charge)や充放電制限を示す入力可能電力Pin、Pout等の情報を入力する。これにより、駆動制御装置50は、バッテリBの過充電あるいは過放電が発生しないように、第1モータMG1、MG2での消費電力及び発電電力(回生電力)を必要に応じて制限する機能を有する。
ここで、本実施形態では、単一の駆動制御装置50によってインバータ制御におけるスイッチング周波数を切換える機構について説明したが、複数の制御装置の協調動作によって同様の制御構成を実現することも可能である。
次に、第1モータMG1、MG2の駆動制御における昇降圧コンバータ15及び第1及び第2インバータ20、30の動作について説明する。
駆動制御装置50は、昇降圧コンバータ15の昇圧動作時には、第1モータMG1、MG2の動作状態に応じて直流電圧VHの電圧指令値VHrefを設定する。ここで、上記直流電圧VHは、第1及び第2インバータ20、30の直流側電圧に相当する。この直流電圧VHを、以下「システム電圧VH」とも記載する。また、また、直流電圧VHの電圧指令値VHrefを、システム電圧指令値VHrefとも記載する。
駆動制御装置50は、システム電圧指令値VHref及び電圧センサ13の検出値に基づいて、昇降圧コンバータ15の出力電圧がシステム電圧指令値VHrefと等しくなるように、スイッチング制御信号S1、S2を生成する。すなわち、システム電圧指令値VHrefを昇圧電圧目標値Vbo*として、昇降圧コンバータ15の出力電圧を制御する。
昇降圧コンバータ15は、昇圧動作時には、バッテリBから供給された直流電圧(バッテリ電圧)Vbを昇圧したシステム電圧VHを、第1及び第2インバータ20、30へ共通に供給する。より具体的には、駆動制御装置50からのスイッチング制御信号S1、S2に応答して、スイッチング素子Q1、Q2のデューティ比(オン期間比率)を設定し、昇圧比はデューティ比に応じたものとなる。
また、昇降圧コンバータ15は、降圧動作時には、平滑コンデンサC0を介して第1及び第2インバータ20、30から供給された直流電圧(システム電圧)を降圧してバッテリBを充電する。より具体的には、駆動制御装置50からのスイッチング制御信号S1、S2に応答して、スイッチング素子Q1のみがオンする期間と、スイッチング素子Q1、Q2の両方がオフする期間とが交互に設けられ、降圧比は上記オン期間のデューティ比に応じたものとなる。
平滑コンデンサC0は、昇降圧コンバータ15からの直流電圧(システム電圧)を平滑化し、その平滑化した直流電圧を第1及び第2インバータ20、30へ供給する。電圧センサ13は、平滑コンデンサC0の両端の電圧、すなわち、システム電圧VHを検出し、その検出値を駆動制御装置50へ出力する。
電源ライン7からは、補機等の他の負荷170に対しても電力が供給される。たとえば、接地ライン5及び電源ライン7と負荷170との間に、システム電圧VHを補機動作電圧Vaに電圧変換するためのDC/DCコンバータ160を設ける。これによって、電源ライン7上の電力を負荷170により消費できる。負荷170は、たとえば、温水加熱用ヒータ、調温装置(エアコン)、ブロワモータ、デフロスタ用ヒータ等を含む。これらの負荷の動作状態(オンオフ設定、運転条件設定)等により、負荷170による消費電力は変化する。
第2インバータ30は、駆動制御装置50からのスイッチング制御信号S21〜S26に応答したスイッチング素子Q21〜Q26のオンオフ動作(スイッチング動作)により、トルク指令値Tqcom(2)に従ったトルクが出力されるように、第2モータMG2を駆動する。トルク指令値Tqcom(2)は、運転状況に応じた第2モータMG2への出力(トルク×回転数)要求に従って、正値(Tqcom(2)>0)、零(Tqcom(2)=0)、または負値(Tqcom(2)<0)に適宜設定される。
特にハイブリッド車両の回生制動時には、第2モータMG2のトルク指令値は負に設定される(Tqcom(2)<0)。この場合には、第2インバータ30は、スイッチング制御信号S21〜S26に応答したスイッチング動作により、第2モータMG2が発電した交流電圧を直流電圧に変換し、その変換した直流電圧(システム電圧)を平滑コンデンサC0を介して昇降圧コンバータ15へ供給する。
また、第1インバータ20は、上記の第2インバータ30の動作と同様に、駆動制御装置50からのスイッチング制御信号S11〜S16に従ったスイッチング素子Q11〜Q16のオンオフ制御により、第1モータMG1が指令値に従って動作するように電力変換を行なう。
このように、駆動制御装置50は、トルク指令値Tqcom(1)、Tqcom(2)に従って第1及び第2モータMG1、MG2を駆動制御する。これによって、ハイブリッド車両100では、第2モータMG2での電力消費による車両駆動力の発生、第1モータMG1での発電によるバッテリBの充電電力または第2モータMG2の消費電力の発生、及び第2モータMG2での回生制動動作(発電)によるバッテリBの充電電力の発生を、車両の運転状態に応じて適宜に実行できる。
すなわち、ハイブリッド車両100では、エンジン110は、運転者によるアクセルの操作量とは直接的には無関係に、その運転及び停止を制御する。具体的には、エンジン110は、車両走行状態(負荷、車速等)やバッテリBの充電状態に応じて、間欠的に運転され得る。これにより、車両駆動力源として、エンジン110及び第2モータMG2を、それぞれ単独または協同して動作させることによって、燃料消費向上や排気ガスを大幅に抑制することが可能になる。
このように、エンジン110は、走行中においても間欠駆動が行なわれることになり、頻繁に停止制御が行なわれるようになる。ここで、ハイブリッド車両100におけるエンジン停止制御について説明する。
ハイブリッド車両100では、エンジン110の停止時には、エンジン110における燃料噴射が停止する。また、特開平10−306739号公報の処理と同様に、第1モータMG1によりエンジン110の回転方向(正回転)とは逆方向のトルクを印加するエンジン停止制御が実行する。これにより、エンジン停止時に、エンジン回転数を速やかに低下させて共振領域を素早く通過させることができるので、ねじり共振の発生を防止することができる。この際における、第1モータMG1のトルク指令値Tqcom(1)は、予め実験的に求められた所望の減速度が得られる所定値(負値)に設定する。このときのトルク指令値は、固定値として設定してもよく、そのときのエンジン回転数に応じて可変となるように設定してもよい。
このようなエンジン停止制御では、第1モータMG1による負トルクの発生により、トルク×回転数に応じた発電電力が発生する。この発電電力は、第1インバータ20が直流電力に変換して、電源ライン7に供給する。なお、以下、本実施形態では、消費電力を正値で示し、発電電力を負値で示すこととする。
次に、駆動制御装置50の処理のうち、平滑コンデンサ保護制御処理について図2を参照しつつ説明する。この処理は、所定サンプリング周期で作動する。
まずステップS10にて駆動輪150に所定以上の加速スリップをしているか否かを判定する。加速スリップしていると判定した場合にはステップS20に移行する。加速スリップしていないと判定すると、そのまま復帰する。この処理は、ABS制御などの他の処理の一部であっても良い。
加速スリップか否かは、例えば駆動輪150の車速と従動輪の車速の車速差に基づき車速差が所定以上の場合に加速スリップと判定する。
ステップS20では、平滑コンデンサ保護制御部70の処理を実施する。
次に、ステップS30では位相進み処理部71の処理を実行する。
その後復帰する。
次に、平滑コンデンサ保護制御部70の処理を図3に示す処理ブロックを参照して説明する。
平滑コンデンサ保護制御部70は、昇圧電圧目標値制限処理部70A、第1昇圧電圧目標値制限補正係数算出部70B、第2昇圧電圧目標値制限補正係数算出部70C、第3昇圧電圧目標値制限補正係数算出部70D、乗算部70E、加減算部70H及びIGBTキャリア周波数制限部70Gを備える。
昇圧電圧目標値制限処理部70Aは、昇圧電圧目標値Vbo*及びバッテリ温度Tbを入力する。そして、図4に示すようなマップを使用して、バッテリ温度Tbに応じて係数K1(<1)を算出する。すなわち、係数K1は、所定閾値以下ではバッテリ温度Tbが低いほど高くなる。例えば、バッテリ温度Tbがゼロ℃(所定閾値)以上の場合には、K1=0とし、バッテリ温度Tbがゼロ℃(所定閾値)よりも低くなるほど係数K1が大きくなる。なお、所定閾値はゼロ℃である必要はない。
そして、下記式に基づき昇圧電圧制限値ΔVdownを算出する。
ΔVdown = K1 × Vbo*
次に、第1昇圧電圧目標値制限補正係数算出部70Bについて説明する。
第1昇圧電圧目標値制限補正係数算出部70Bは、インバータIGBT温度、コンバータIGBT温度、平滑コンデンサ温度を入力する。ここで、インバータIGBT温度は、例えば、第2インバータのインバータIGBT温度とする。インバータIGBT温度として、第1及び第2インバータ20,30のうち、インバータIGBT温度の高い方を採用しても良い。他の処理においても同様である。
入力した各温度毎に、図5〜図7に示すマップを使用して、補正係数K2a、K2b、K2cを算出する。次に、その補正係数K2a、K2b、K2cのうちの最大値を係数aとする。またその補正係数K2a、K2b、K2cのうちの最小値を係数cとする。若しくは、入力した各温度の最大温度及び最小温度に基づき、図5に示すようなマップを使用して補正係数a、及びcを算出しても良い。ここで、図5〜図7に示すマップは、温度が低い場合に比べて温度が高い場合に大きな値となる。図3中、αは1未満である。
第1昇圧電圧目標値制限補正係数算出部70Bは、演算した係数aを第3昇圧電圧目標値制限補正係数算出部70Dに出力する。また、第1昇圧電圧目標値制限補正係数算出部70Bは、演算した係数cをIGBTキャリア周波数制限部70Gに出力する。
次に、第2昇圧電圧目標値制限補正係数算出部70Cについて説明する。
第2昇圧電圧目標値制限補正係数算出部70Cは、モータ温度を入力する。そして、図8に示すマップを使用して、補正係数bを算出する。図8に示すマップは、温度が低い場合に比べて温度が高い場合に大きな値となる。
第3昇圧電圧目標値制限補正係数算出部70Dでは、補正係数a及びbのセレクトハイを行い、大きい方の係数dを乗算部70Eに出力する。
乗算部70Eでは、昇圧電圧制限値ΔVdownに第3昇圧電圧目標値制限補正係数算出部70Dの出力値dを乗算して、昇圧電圧制限値ΔVdownを補正する。
ΔVdown ← d ×ΔVdown
これによって、昇圧電圧制限値ΔVdownは、インバータIGBT温度やモータ温度などが低い場合には、昇圧電圧制限値ΔVdownを小さくする。
加減算部70Hでは、昇圧電圧目標値Vbo*から補正後の昇圧電圧制限値ΔVdownを減算することで昇圧電圧目標値Vbo*を制限する。
Vbo_limit* =Vbo* −ΔVdown
また、IGBTキャリア周波数制限部70Gは、IGBTキャリア周波数目標値から係数cを減算してIGBTキャリア周波数の制限を行う。
次に位相進み処理部71の処理を説明する。
位相進み処理部71は、位相進みと消費できる損失マップ(不図示)を、第一モータMG1と第二モータMG2でそれぞれ備える。
駆動輪150の加速スリップで発生する余剰電力をスリップ量に基づき算出する。
そして、算出した余剰電力から、上記第一モータMG1、第二モータMG2のそれぞれの損失マップを参照して、第一モータMG1、第二モータMG2のそれぞれの−d軸への位相進み量を算出する。そして、算出した位相進み量を駆動制御装置50の処理のうちの第1及び第2インバータのベクトル制御部72,73に出力する。
ここで、第1及び第2インバータのベクトル制御部72,73は、それぞれ制御対象のモータMG1、MG2へのトルク指令値に対する電流指令値を通常の効率最適、トルク最大運転点となるように、キャリア可変のPWM制御、過変調制御、矩形波制御等によるベクトル制御を実施する。ただし、位相進み処理部71から上記位相進み量を取得すると、電流指令値に対し、その位相進み量分だけ−d軸側へ位相を進めるように補正する。
また、第1及び第2インバータ20,30のベクトル制御部72,73は、上記平滑コンデンサ保護制御部70によって制限後のIGBTキャリア周波数目標値を使用して制御する。
ここで、バッテリBの許容入力電力Pinは、電池状態(SOC及び/または電池温度等)に従って変化する。特に、バッテリ温度Tbが低温時には、内部抵抗の増大などにより、許容入力電力Pinは低下する。許容入力電力Pinは、別途設けたバッテリ制御用の制御装置から取得したり、バッテリ温度Tb、SOC等を引数とするマップを駆動制御装置50内に格納したりして、このマップの参照によって許容入力電力Pinを求めることが出来る。
また、エンジン停止制御による第1モータMG1の発電電力Pgは下記式で示すことが出来る。このとき、第1モータMG1の現在の回転数Nmt1及びMG1トルク指令値Tqcom(1)を使用する。
Pg=Nmt1・Tqcom(1)
ここで、エンジン停止制御時ではトルク指令値Tqcom(1)<0であるため、発電電力Pgは負値(Pg<0)である。
第1モータMG1による発電電力がバッテリBに入力する経路における消費電力である全体消費電力Pttlは、第1モータMG1での損失電力Lmg1、第2モータMG2での実行電力Pmg2及び損失電力Lmg2、第1及び第2インバータ20、30での損失電力Liv1、Liv2、昇降圧コンバータ15での損失電力Lcv、平滑コンデンサC0での蓄積電力変化ΔPc、及び負荷170での補機消費電力Paの和として求めることが出来る。
ここで、第1及び第2インバータ20、30の各スイッチング素子で発生する電力損失について説明する。
第1及び第2インバータ20、30の各スイッチング素子におけるスイッチング動作は、基本的にパルス幅変調制御(PWM制御)に従って設定する。具体的には、PWM制御では、所定のキャリア波と電圧指令波との電圧比較に基づき、第1及び第2インバータ20、30の各相アームでのスイッチング素子のオンオフを制御する。ここで、キャリア波は、所定周波数の三角波やのこぎり波とすることが一般的である。電圧指令波は、モータMGをトルク指令値Tqcomに従って作動させるために必要な各相電流を発生させるための、モータへの印加電圧(交流電圧)を示す。そして、キャリア波が電圧指令波よりも高電圧のときと、その反対のときとで、同一アームを構成するスイッチング素子のオンオフを切換える。 スイッチング素子のオン時には、コレクタ・エミッタ間電圧vce=0となる一方で、コレクタ・エミッタ間電流iceが発生する。これに対して、スイッチング素子のオフ時には、コレクタ・エミッタ間電流ice=0となる一方で、コレクタ・エミッタ間電圧vce=VHとなる。ここで、スイッチング素子のオンオフ時には、完全にオンまたはオフとなるまでの期間、すなわち、コレクタ・エミッタ間電圧vce=0またはコレクタ・エミッタ間電流ice=0に変化するまでの期間において、コレクタ・エミッタ間電圧vce及びコレクタ・エミッタ間電流iceの積に相当するスイッチング損失Ploss(Ploss=vce・ice)が発生する。このスイッチング損失Plossの発生により、スイッチング素子が発熱してその温度が上昇する。
ここで、コレクタ・エミッタ間電圧vceの振幅はシステム電圧VHに相当し、コレクタ・エミッタ間電流iceは、モータMGへの供給電流に応じた電流となる。したがって、同一トルク出力時、すなわちトルク指令値が同一の下では、システム電圧VHが高くなるほどスイッチング損失Plossが大きくなる。そして、単位時間当たりのスイッチング動作回数が多いほど、すなわち、キャリア波の周波数が高く設定されスイッチング周波数が高いほど、スイッチング動作に伴う損失電力は大きくなる。したがって、スイッチング動作に伴う損失電力は、モータのトルクあるいは出力、ならびにスイッチングする直流電圧(システム電圧VH)及び、キャリア周波数によって決まるスイッチング周波数に依存した値となる。
なお、スイッチング素子のオン期間中にも、スイッチング損失Plossと比較すると小さいものの、スイッチング素子のオン抵抗と電流iceの二乗との積に従う損失電力が発生する。このオン抵抗による損失電力は、モータMGへの供給電流を決めるトルク指令値に基づき推定可能である。
所定のマップの参照により、第1モータMG1の出力(回転数×トルク)またはトルク(トルク指令値Tqcom(1))ならびに、システム電圧VH及び第1インバータ20で用いられるキャリア周波数fiv1に基づき、第1インバータ20での損失電力Liv1を推定できる。上記マップは、第1モータMG1の回転数、トルク(トルク指令値Tqcom(1))、システム電圧VH及びキャリア周波数fiv1を引数として、損失電力Liv1の推定値を求めるように予め構成される。
同様に、所定のマップの参照により、第2モータMG2の出力(回転数×トルク)またはトルク(トルク指令値Tqcom(2))ならびに、システム電圧VH及び第2インバータ30で用いられるキャリア周波数fiv2に基づき、第2インバータ30での損失電力Liv2を推定できる。上記マップは、第2モータMG2の回転数、トルク(トルク指令値Tqcom(2))、システム電圧VH及びキャリア周波数fiv2を引数として、損失電力Liv2の推定値を求めるように予め構成される。
次に、昇降圧コンバータ15での電力消費は、主に、スイッチング素子Q1、Q2での電力損失と、リアクトルL1での電力損失との和となる。これらは、コンバータ通過電流(すなわちバッテリ電流Ib)が小さいほど、かつシステム電圧VHが低いほど損失電力が小さくなる。また、スイッチング素子Q1、Q2での損失電力は、単位時間当たりのスイッチング回数、すなわちキャリア周波数fcvの上昇に比例して大きくなる。
したがって所定のマップの参照により、システム電圧VH、バッテリ電流Ib及び昇降圧コンバータ15で用いられるキャリア周波数fcvに基づき、昇降圧コンバータ15での損失電力Lcvを推定できる。上記マップは、システム電圧VH、バッテリ電流Ib及びキャリア周波数fcvを引数として、損失電力Lcvの推定値を求めるように予め構成される。
平滑コンデンサC0では、現在のシステム電圧VHと電圧指令値VHrefとの電圧差ΔVHが、バッテリBへの入力電力に影響を及ぼす。すなわち、VHref>VHのときには、第1モータMG1による発電電力のうち、この電圧差に従った電力が平滑コンデンサC0に蓄積される。一方、VH>VHrefのときには、この電圧差に従った電力が平滑コンデンサから放出されて、バッテリBへの入力電力に上乗せされることになる。
したがって、所定のマップの参照により、システム電圧VH及び電圧指令値VHrefに基づき、平滑コンデンサC0での蓄積電力変化ΔPcを推定できる。上記マップは、システム電圧VH及び電圧指令値VHrefを引数として、蓄積電力変化ΔPcを求めるように予め構成される。ここで、蓄積電力変化ΔPcは、ΔPc=C0・ΔVH2/2で求められる(ただし、ΔVH=VHref−VH)。
さらに、所定のマップの参照により、負荷(補機)170の動作状態(オンオフ設定、運転条件設定)に基づき、補機消費電力Paを推定できる。上記マップは、補機負荷(たとえば、温水加熱用ヒータ、調温装置(エアコン)、ブロワモータ、デフロスタ用ヒータ等)の動作状態を引数として、補機消費電力Paの推定値を求めるように予め構成される。
推定した発電電力Pg及びステップS120で推定した全体消費電力Pttlの和により、バッテリBへの入力電力を推定出来る。すなわち、推定入力電力Pbは、下記式で示すことが出来る。
Pb=Pg+Pttl
(動作・作用)
低μ路や不整路を走行する際に発生する車両駆動輪150のスリップ状態からグリップによる駆動輪150の回転数急減や、スリップを抑制するトラクションコントロール作動時の駆動トルクの急制限によって、駆動輪150につながる第2モータMG2の出力が急減する。この場合、エンジン出力を駆動出力用電力として取り出す第1モータMG1の発電電力を第2モータMG2が全て消費できず、余剰分がバッテリBへの入力になる。
ここで、バッテリBの温度が低温時は当該バッテリBの回生電力受け入れ量が小さい。このため、上記スリップ状態からグリップ状態への移行や、トラクションコントロール作動時は、余剰電力をバッテリBが受け取りきれない場合がある。この場合、第1モータMG1及び第2モータMG2とバッテリBと間に挟まれるインバータや昇圧コンバータのコンデンサが受け止めるため、コンデンサ電圧が過剰に上昇し、コンデンサやスイッチング素子が耐電圧超過状態になり、運転性が損なわれてしまうおそれがある。
これに対する解決手段として、下記(a)〜(c)の方法がある。
(a)バッテリBを暖めて回生電力の受け入れ性を高める。
具体的には、
・エンジン排熱やA/C等により外部から暖める
・バッテリBとインバータ、コンバータ間、さらに第1モータMG1、第2モータMG2を含め、駆動力に影響が小さい範囲でエネルギーの出し入れを行い、バッテリBの内部抵抗の損失による発熱により、内部から暖める。
(b)バッテリ低温時は第1モータMG1の発電電力、第2モータMG2の力行電力を抑えるため第1モータMG1と第2モータMG2のトルク指令値を制限し余剰電力の絶対値を抑える。
(c)エンジントルクを制限し、第1モータMG1の発電電力を抑え、余剰電力の絶対値を抑える。
ただし、(a)〜(c)の対策では、下記のような跳ね返りがある。
すなわち、(a)では電力収支のロスと、暖機時間の遅れがある。(b)(c)では、駆動力が抑えられ、動力性能低下が大きいおそれがある。
本実施形態では、平滑コンデンサをバッファとして活用するものである。そして、上記(a)〜(c)との併用時には、上記跳ね返りを抑制することが可能になる。
すなわち、バッテリ温度Tbが低く回生電力の受け入れ量が小さいときに、駆動輪150が加速スリップすると昇圧電圧を低く制限する。これによって、スリップ状態とグリップ状態との移行の際に起きる第1モータMG1及び第2モータMG2間の電力収支ズレによってあふれる電力がバッテリBの回生電力受け入れ量を超過しても、昇圧電圧を抑えているため、平滑コンデンサが耐電圧内で一次的に受け止めることが出来る電力が増加する。
また、同期をとって各インバータ20,30の少なくとも一方の電流位相を進めることで、第1モータMG1の発電効率や第2モータMG2の効率を悪化させ、悪化分で余剰電力を吸収する。悪化分だけコンデンサが一時的に受け入れる電力が減少し、その余力分を第1モータMG1及び第2モータMG2の出力制限の緩和に使うことができる。この結果、運転性向上につながる。
ここで、上記実施形態では、図3に示すような平滑コンデンサ保護制御部70の処理を、駆動輪150が加速スリップしたと判定した場合に実施する場合を例示した。これに代えて、常時、平滑コンデンサ保護制御部70の処理を実施して加速スリップに備えても良い。
また、平滑コンデンサ保護制御部70の処理のうち、昇圧電圧目標値制限処理部70Aを常時実行し、また、第1〜第3昇圧電圧目標値制限補正係数算出部70B〜70Dを加速スリップ時に実行するようにしても良い。
また、本実施形態が対象とするハイブリッド車両は、上記構成に限定しない。昇圧機能を備えたハイブリッド車両であれば、2モータのパラレルタイプ、2モータのシリーズパラレルタイプ、2モータのシリーズハイブリッドであっても良く、またプラグインハイブリッドタイプであっても良い。
また、コンバータの昇圧機能の制御は、上記構成に限定しない。例えば、電圧F/B制御+F/F補償におる制御や、電圧F/B制御+F/F補償に電流F/B制御+F/F補償を加えた制御を例示できる。
ここで、平滑コンデンサ保護制御部70は、昇圧電圧制御手段を構成する。位相進み処理部71は、位相進め処理手段を構成する。ステップS10は、スリップ検出手段を構成する。
(本実施形態の効果)
(1)昇圧電圧制限手段は、コンバータの昇圧電圧目標値Vbo*を、バッテリBの温度が所定値より低い場合、バッテリBの温度が高い場合に比べて低く制限する。
第1モータMG1と第2モータMG2との間の電力収支ズレによる余剰分の電力がバッテリBの回生電力受け入れ量を超過しても、昇圧電圧を抑えているため、平滑コンデンサが耐電圧内で一次的に受け止めることが出来る電力が増加する。
これによって、バッテリ低温時におけるコンデンサ電圧の過剰発生を低減可能となる。
例えば、スリップ時とグリップ時との移行の際に起きる第1モータMG1及び第2モータMG2間の電力収支ズレによってあふれる電力がバッテリBの回生電力受け入れ量を超過しても、昇圧電圧を抑えているため、平滑コンデンサが耐電圧内で一次的に受け止めることが出来る電力が増加する。
(2)昇圧電圧制限手段は、上記昇圧電圧目標値Vbo*の制限量を、モータ温度、インバータ及びコンバータ温度、コンデンサ温度の少なくとも一つの温度に応じて補正し、当該温度が高い場合に比べて低い場合には上記制限量が小さくなるように補正する。
モータ温度等が低い場合には、モータ温度等などで損失を増加出来る余力がある。このため、上記昇圧電圧目標値の制限を緩和可能となる。
(3)スリップ検出手段は、上記駆動輪150のスリップを検出する。位相進め処理手段は、スリップ検出手段の検出に基づき駆動輪150がスリップしたと判定すると、第2モータMG2及び第1モータMG1のうち、少なくとも一方のモータへのトルク指令値に対する電流指令値を−d軸側へ位相を進める。
これによって、損失増による発熱によって余剰分を吸収可能となる。
すなわち、電流位相を進めることで、第1モータMG1の発電効率や第2モータMG2の効率を悪化させ、悪化分で余剰電力を吸収する。悪化分だけコンデンサが一時的に受け入れる電力が減少する。そして、その余力分を第1及び第2モータMG1、MG2の出力制限の緩和に使うことができ、運転性向上につながる。
(第2実施形態)
次に、第2実施形態について図面を参照して説明する。なお、上記各実施形態と同様な構成については同一の符号を付して説明する。
本実施形態の基本構成は、上記第1実施形態と同様である。
ただし、平滑コンデンサ保護制御部70の構成が、図に示すように異なる。
次に、本実施形態の平滑コンデンサ保護制御部70の処理を、図を参照して説明する。
平滑コンデンサ保護制御部70の処理は、昇圧電圧目標値制限処理部70A、第1昇圧電圧目標値制限補正係数算出部70B、第2昇圧電圧目標値制限補正係数算出部70C、第3昇圧電圧目標値制限補正係数算出部70D、駆動要求駆動力制限部70H、乗算部70E、IGBTキャリア周波数補正係数算出部70K、及びIGBTキャリア周波数制限部70Gを備える。
昇圧電圧目標値制限処理部70Aの処理は、上記第1実施形態と同様である。
第1昇圧電圧目標値制限補正係数算出部70Bは、基本的に上記第1実施形態と同様である。但し、本実施形態の第1昇圧電圧目標値制限補正係数算出部70Bでは、係数aだけを求める。そして、第1昇圧電圧目標値制限補正係数算出部70Bは、演算した係数aを第3昇圧電圧目標値制限補正係数算出部70Dに出力する。
次に、第2昇圧電圧目標値制限補正係数算出部70Cは、上記第1実施形態と同様である。
第3昇圧電圧目標値制限補正係数算出部70Dでは、補正係数a及びbのセレクトローを行い、小さい方である係数eを乗算部70E及びIGBTキャリア周波数補正係数算出部70Kに出力する。
駆動要求駆動力制限部70Hでは、要求駆動力の目標値Power*を入力する。また、図10に示すマップを使用して、バッテリ温度Tbに基づき係数K4を算出する。そして、入力した要求駆動力の目標値Power*に係数K4を乗算することで制限値Plimit*を算出する。係数K4は、所定温度(図10ではゼロ℃)以下では温度が低いほど小さな値となる。
乗算部70Eは、制限値Plimit*に対し、第3昇圧電圧目標値制限補正係数算出部70Dからの係数eを乗算することで、駆動要求駆動力の制限値Plimit*を補正して、Plimit_adj*とする。
そして、統合制御装置60では、要求駆動力の目標値Power*から制限値Plimit_adj*値を、要求駆動力の目標値Power*として使用する。
Power* ←Power* −Plimit_adj*
また、IGBTキャリア周波数補正係数算出部70Kは、第3昇圧電圧目標値制限補正係数算出部70Dからの係数eと、d軸電流の増加率を入力する。
入力したd軸電流の増加率から図11に示すマップを使用して制限係数K5を求める。そして、制限係数K5、および第3昇圧電圧目標値制限補正係数算出部70Dからの係数eのうちの大きい方を係数cとする。そして、係数cをIGBTキャリア周波数制限部70Gに出力する。
また、IGBTキャリア周波数制限部70Gは、IGBTキャリア周波数目標値から係数cを減算してIGBTキャリア周波数の制限を行う。
(動作、作用)
バッテリ温度が高い場合に対し低い場合には、要求駆動力の目標値Power*を制限する。これによって、昇圧電圧を抑える。
また、d軸電流の増加率が大きい場合、または、モータ温度などが高い場合、IGBTキャリア周波数を制限する。これによってインバータ発熱を相殺する。
インバータ温度から、電流位相を進めることで増加するモータやインバータ損失の許容値を算出し、許容量の大小に合わせ昇圧電圧やトルク指令値の制限を補正することで、コンデンサ容量を有効に活用しつつ、過電圧を回避できる。
ここで、上記実施形態では、図9に示すような平滑コンデンサ保護制御部70の処理を、駆動輪150が加速スリップしたと判定した場合に実施する場合を例示した。これに代えて、常時、平滑コンデンサ保護制御の処理を実施して加速スリップに備えても良い。
また、平滑コンデンサ保護制御の処理のうち、昇圧電圧目標値制限処理部70Aだけを常時実行し、その他の処理を加速スリップ時に実行するようにしても良い。
また、上記実施形態では、内燃機関を備えたハイブリッド車両の場合を例示した。これに代えて、内燃機関を有さない電気自動車や、燃料電池自動車、及び、内燃機関を有すると共に、外部電源からの充電を可能とする、所謂、プラグイン・ハイブリッド車両にも適用することができる。
(実施形態の効果)
(1)要求駆動力の目標値を、バッテリBの温度が所定値より低い場合、バッテリBの温度が高い場合に比べて低く制限すると共に、当該要求駆動力の目標値の制限を、インバータ温度及びモータ温度の少なくとも一方の温度が高い場合に比べて低い場合に小さくする。
バッテリ温度が高い場合に対し低い場合には、要求駆動力の目標値Power*を制限する。これによって、昇圧電圧を抑えて、平滑コンデンサが耐電圧内で一次的に受け止めることが出来る電力が増加する。
但し、インバータ温度及びモータ温度の少なくとも一方の温度が低い場合には、制限を小さくすることで、要求駆動力の目標値Power*の制限を緩和出来る。
(2)第1インバータ及び第2インバータの少なくとも一方のインバータのスイッチング素子のキャリア周波数をd軸電流の増加率に応じて制限する。
インバータIGBTスイッチングキャリア周波数を低く制限することで、インバータ自体の損失を低減させることが出来る。
(3)上記キャリア周波数の制限量を、モータ温度とインバータ温度の少なくとも一方の温度が高い場合に比べて低い場合に小さくする。
インバータ温度等が高い場合は、モータ制御の電流位相を進めることによる損失増インバータ耐熱の許容値が制限される。この場合は、インバータIGBTスイッチングキャリア周波数を低くし、インバータ自体の損失を低減させる。
B バッテリ
C0 平滑コンデンサ
C1 平滑コンデンサ
DVG 直流電圧発生部
MG1 第1モータ
MG2 第2モータ
Tb バッテリ温度
Vbo* 昇圧電圧目標値
15 昇降圧コンバータ
20 第1インバータ
30 第2インバータ
50 駆動制御装置
60 統合制御装置
61 エンジンコントローラ
62 アクセルペダルセンサ
63 ブレーキペダルセンサ
64 車速センサ
70 平滑コンデンサ保護制御部
70A 昇圧電圧目標値制限処理部
70B 昇圧電圧目標値制限補正係数算出部
70C 昇圧電圧目標値制限補正係数算出部
70D 昇圧電圧目標値制限補正係数算出部
70E 乗算部
70G キャリア周波数制限部
70H 加減算部
70H 駆動要求駆動力制限部
70K キャリア周波数補正係数算出部
71 位相進め処理部
72 第1ベクトル制御部
73 第3ベクトル制御部
110 エンジン
150 駆動輪

Claims (8)

  1. 駆動輪を駆動可能と共に駆動輪によって回生可能なモータと、
    バッテリと、バッテリとモータとを電気的に接続するインバータと、インバータとバッテリとの間に介装する昇圧機能を有するコンバータ及び平滑コンデンサと、
    上記コンバータの昇圧電圧目標値を、バッテリの温度が所定値より低い場合、バッテリの温度が高い場合に比べて低く制限すると共に、バッテリの温度が上記所定値より低くなるほど上記昇圧電圧目標値を低く制限する昇圧電圧制限手段と、
    を備えることを特徴とする車両の駆動制御装置。
  2. 駆動輪を駆動する内燃機関と、内燃機関の回転によって発電可能な第1モータと、上記駆動輪を駆動可能と共に駆動輪によって回生可能な第2モータと、
    バッテリと、バッテリと第1モータとを電気的に接続する第1インバータと、バッテリと第2モータとを電気的に接続する第2インバータと、第1インバータ及び第2インバータとバッテリとの間に介装する昇圧機能を有するコンバータ及び平滑コンデンサと、
    上記コンバータの昇圧電圧目標値を、バッテリの温度が所定値より低い場合、バッテリの温度が高い場合に比べて低く制限すると共に、バッテリの温度が上記所定値より低くなるほど上記昇圧電圧目標値を低く制限する昇圧電圧制限手段と、
    を備えることを特徴とする車両の駆動制御装置。
  3. 上記昇圧電圧制限手段は、上記昇圧電圧目標値の制限量を、モータ温度、インバータ及びコンバータ温度、コンデンサ温度の少なくとも一つの温度に応じて補正し、当該温度が高い場合に比べて低い場合には上記制限量が小さくなるように補正することを特徴とする請求項2に記載した車両の駆動制御装置。
  4. 上記インバータをベクトル制御によって制御し、更に、
    上記駆動輪のスリップを検出するスリップ検出手段と、
    スリップ検出手段の検出に基づき駆動輪がスリップしたと判定すると、第2モータ及び第1モータのうち、少なくとも一方のモータへのトルク指令値に対する電流指令値を−d軸側へ位相を進める位相進め処理手段と、を備えることを特徴とする請求項3に記載した車両の駆動制御装置。
  5. アクセル開度に基づき要求駆動力の目標値を求め、その要求駆動力の目標値に基づく指令値で上記内燃機関及び第2モータを駆動制御する車両の駆動制御装置において、
    上記要求駆動力の目標値を、バッテリの温度が所定値より低い場合、バッテリの温度が高い場合に比べて低く制限すると共に、
    当該要求駆動力の目標値の制限を、インバータ温度及びモータ温度の少なくとも一方の温度が高い場合に比べて低い場合に小さくすることを特徴とすることを特徴とする請求項2〜請求項4のいずれか1項に記載した車両の駆動制御装置。
  6. 第1インバータ及び第2インバータの少なくとも一方のインバータスイッチング素子のキャリア周波数を、d軸電流の増加率に応じて制限することを特徴とする請求項2〜請求項5のいずれか1項に記載した車両の駆動制御装置。
  7. 上記キャリア周波数の制限量を、モータ温度とインバータ温度の少なくとも一方の温度が高い場合に比べて低い場合に小さくすることを特徴とする請求項6に記載した車両の駆動制御装置。
  8. 駆動輪を駆動可能と共に駆動輪によって回生可能なモータを備え、上記モータをバッテリに対し、昇圧機能を有するコンバータ、平滑コンデンサ、インバータを介して電気的に接続し、上記コンバータの昇圧電圧目標値を、バッテリの温度が所定値より低い場合、バッテリの温度が高い場合に比べて低く制限すると共に、バッテリの温度が上記所定値より低くなるほど上記昇圧電圧目標値を低く制限することを特徴とする車両の駆動制御方法。
JP2009013485A 2009-01-23 2009-01-23 車両の駆動制御装置及び車両の駆動制御方法 Active JP5428353B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009013485A JP5428353B2 (ja) 2009-01-23 2009-01-23 車両の駆動制御装置及び車両の駆動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009013485A JP5428353B2 (ja) 2009-01-23 2009-01-23 車両の駆動制御装置及び車両の駆動制御方法

Publications (2)

Publication Number Publication Date
JP2010172139A JP2010172139A (ja) 2010-08-05
JP5428353B2 true JP5428353B2 (ja) 2014-02-26

Family

ID=42703704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009013485A Active JP5428353B2 (ja) 2009-01-23 2009-01-23 車両の駆動制御装置及び車両の駆動制御方法

Country Status (1)

Country Link
JP (1) JP5428353B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360703B2 (ja) 2017-09-27 2023-10-13 国立研究開発法人農業・食品産業技術総合研究機構 採糸装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5696498B2 (ja) * 2011-01-25 2015-04-08 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
JP5923906B2 (ja) * 2011-09-21 2016-05-25 トヨタ自動車株式会社 車両および車両の制御方法
JP5928442B2 (ja) 2013-12-24 2016-06-01 トヨタ自動車株式会社 車両の電源装置
JP6800659B2 (ja) * 2016-08-25 2020-12-16 株式会社東芝 ハイブリッド車両システム
JP6696358B2 (ja) * 2016-08-29 2020-05-20 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2018047341A1 (ja) * 2016-09-12 2018-03-15 株式会社 東芝 車両
JP6825279B2 (ja) * 2016-09-14 2021-02-03 トヨタ自動車株式会社 車両用電源装置
JP2018154142A (ja) * 2017-03-15 2018-10-04 トヨタ自動車株式会社 ハイブリッド自動車
JP6589929B2 (ja) * 2017-04-14 2019-10-16 トヨタ自動車株式会社 駆動装置
JP2021044850A (ja) * 2017-12-27 2021-03-18 日本電産トーソク株式会社 モータ制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244281A (ja) * 1986-04-16 1987-10-24 Hitachi Ltd 電流形インバ−タの制御装置
JPH05115106A (ja) * 1991-10-21 1993-05-07 Nissan Motor Co Ltd 電気自動車の制御装置
JP2007082375A (ja) * 2005-09-16 2007-03-29 Toyota Motor Corp 車両用電源装置
JP4561616B2 (ja) * 2005-10-27 2010-10-13 トヨタ自動車株式会社 モータ駆動システム
JP2007166874A (ja) * 2005-12-16 2007-06-28 Toyota Motor Corp 電圧変換装置
JP4710588B2 (ja) * 2005-12-16 2011-06-29 トヨタ自動車株式会社 昇圧コンバータの制御装置
JP4325637B2 (ja) * 2006-04-24 2009-09-02 トヨタ自動車株式会社 負荷駆動装置およびそれを備えた車両
JP4692498B2 (ja) * 2007-02-28 2011-06-01 トヨタ自動車株式会社 車両およびその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7360703B2 (ja) 2017-09-27 2023-10-13 国立研究開発法人農業・食品産業技術総合研究機構 採糸装置

Also Published As

Publication number Publication date
JP2010172139A (ja) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5428353B2 (ja) 車両の駆動制御装置及び車両の駆動制御方法
JP4232789B2 (ja) 内燃機関の停止制御装置および停止制御方法
US9077269B2 (en) Control system for AC electric motor
KR101038753B1 (ko) 모터 구동 제어 시스템 및 그 제어 방법
JP4396644B2 (ja) 内燃機関の始動制御装置
JP4830462B2 (ja) 電動車両の制御装置
JP4380700B2 (ja) 電動車両
JP4788975B2 (ja) 回転電機制御システム及び車両駆動システム
US7893637B2 (en) Motor drive system
JP5321660B2 (ja) 車両の制御装置及び制御方法
WO2010013534A1 (ja) 回転電機制御システム及び当該回転電機制御システムを備えた車両駆動システム
US20110029179A1 (en) Motor Control Device and Motor System Equipped with Motor Control Device
US10850636B2 (en) Drive device, vehicle, and control method for drive device
US10308118B2 (en) Vehicle and control method therefor
JP2012110189A (ja) 電動車両の電気システムおよびその制御方法
JP2013240162A (ja) 電圧変換装置
JP5831029B2 (ja) 電動機を搭載した車両
JP2013124084A (ja) ハイブリッド車
JP5618012B2 (ja) 電圧変換装置の制御装置及び制御方法
JP2017070048A (ja) 電動機駆動制御システム
JP2017093134A (ja) 自動車
JP6036649B2 (ja) 車両制御装置
JP5765148B2 (ja) 駆動装置
CN115871481A (zh) 电动发电机控制系统及混合动力车辆
JP2012240469A (ja) 車両の制御装置

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5428353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150