JP5423766B2 - Ground fault detection device - Google Patents

Ground fault detection device Download PDF

Info

Publication number
JP5423766B2
JP5423766B2 JP2011235271A JP2011235271A JP5423766B2 JP 5423766 B2 JP5423766 B2 JP 5423766B2 JP 2011235271 A JP2011235271 A JP 2011235271A JP 2011235271 A JP2011235271 A JP 2011235271A JP 5423766 B2 JP5423766 B2 JP 5423766B2
Authority
JP
Japan
Prior art keywords
ground fault
vehicle
power supply
voltage power
supply system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011235271A
Other languages
Japanese (ja)
Other versions
JP2013092466A (en
Inventor
工 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011235271A priority Critical patent/JP5423766B2/en
Priority to US13/612,951 priority patent/US9103892B2/en
Publication of JP2013092466A publication Critical patent/JP2013092466A/en
Application granted granted Critical
Publication of JP5423766B2 publication Critical patent/JP5423766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、地絡を検出するための地絡検出装置に関する。   The present invention relates to a ground fault detection device for detecting a ground fault.

従来より、安全性の高い交流信号による漏電検出方式を用いて、漏電アドミタンスから抵抗成分を導出し、車両ボディの容量成分を補正し、漏電判定を行う漏電検出装置が、特許文献1で提案されている。この構成では、漏電アドミタンスの実数部を算出し、抵抗成分と漏電判定の基準となる所定のしきい値を比較することにより地絡を検出する。   Conventionally, Patent Document 1 proposes a leakage detection device that uses a highly safe AC signal leakage detection method to derive a resistance component from a leakage admittance, correct the capacitance component of the vehicle body, and perform a leakage determination. ing. In this configuration, the real part of the leakage admittance is calculated, and the ground fault is detected by comparing the resistance component and a predetermined threshold value that is a criterion for leakage detection.

また、漏電検出回路がリレーを介してインバータ等の複数の接続先に接続され、漏電箇所を判定する漏電検出装置が特許文献2で提案されている。この構成では、地絡検出回路を電気的に切り分けることにより、どのラインに漏電が発生しているのかを検出する。   Further, Patent Literature 2 proposes a leakage detection device in which a leakage detection circuit is connected to a plurality of connection destinations such as an inverter via a relay and determines a leakage point. In this configuration, the ground fault detection circuit is electrically separated to detect which line has a leakage.

特許第4017770号公報Japanese Patent No. 4017770 特許第4122858号公報Japanese Patent No. 4122858

しかしながら、特許文献1のように、アドミタンス成分を検出するためには、位相差を検出する等の回路が必要であると共に、この回路が複雑になるという問題がある。   However, as in Patent Document 1, in order to detect an admittance component, there is a problem that a circuit for detecting a phase difference is required and the circuit becomes complicated.

また、通常、高電圧系とインバータ等の高電圧機器とがリレーで接続されるが、リレーのオン/オフでコモンモードコンデンサ容量が大きく変化する。コモンモードコンデンサ容量とは、浮遊容量や機器に付属する容量である。そのため、リレーのオン/オフで地絡検出値が変化してしまうという問題がある。そして、コモンモードコンデンサ容量が大きいとリレーのオン/オフに応じた変化値も大きくなり、特許文献2のように地絡箇所の切り分けが正確にできないという問題がある。   In general, a high voltage system and a high voltage device such as an inverter are connected by a relay, but the common mode capacitor capacity varies greatly depending on the ON / OFF state of the relay. The common mode capacitor capacity is a stray capacity or a capacity attached to the device. Therefore, there exists a problem that a ground fault detection value will change by ON / OFF of a relay. And if a common mode capacitor capacity is large, the change value according to ON / OFF of a relay will also become large, and there exists a problem that a ground fault location cannot be correctly identified like patent document 2. FIG.

本発明は上記点に鑑み、回路構成が複雑にならずに、コモンモードコンデンサ容量に応じて高精度に地絡を検出することができる地絡検出装置を提供することを目的とする。   An object of the present invention is to provide a ground fault detection device capable of detecting a ground fault with high accuracy in accordance with a common mode capacitor capacity without complicating a circuit configuration.

上記目的を達成するため、請求項1に記載の発明では、絶縁された状態で車両に搭載される高電圧電源系(10)の地絡判定を閾値に基づいて行う地絡検出装置であって、車両の状態によって地絡判定の閾値を切り替えると共に、切り替えた地絡判定の閾値に基づいて地絡判定を行う判定手段(43)を備えていることを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a ground fault detection device for performing ground fault determination of a high voltage power supply system (10) mounted on a vehicle in an insulated state based on a threshold value. Further, the present invention is characterized by comprising a determination means (43) for switching the ground fault determination threshold according to the state of the vehicle and performing the ground fault determination based on the switched ground fault determination threshold.

これによると、車両の状態すなわち高電圧電源系(10)に接続されるコモンモードコンデンサ容量に応じた地絡判定の閾値を用いて地絡判定を行っているので、車両の状態が変化したとしても車両の状態に応じた地絡の判定を行うことができる。したがって、回路構成が複雑にならずに、高精度に地絡を検出することができる。   According to this, since the ground fault determination is performed using the ground fault determination threshold value according to the state of the vehicle, that is, the common mode capacitor capacity connected to the high voltage power supply system (10), the state of the vehicle has changed. Can also determine the ground fault according to the state of the vehicle. Therefore, it is possible to detect the ground fault with high accuracy without complicating the circuit configuration.

請求項2に記載の発明では、車両の状態は、高電圧電源系(10)と車両機器(30)とを接続するシステムメインリレー(20)がオンのときとシステムメインリレー(20)がオフのときであることを特徴とする。このように、システムメインリレー(20)がオンのときとオフのときとの2パターンで簡易に地絡判定を高精度化することができる。   In the invention according to claim 2, the state of the vehicle is determined when the system main relay (20) connecting the high voltage power supply system (10) and the vehicle equipment (30) is on and when the system main relay (20) is off. It is the time of. In this way, the ground fault determination can be easily made highly accurate with two patterns of when the system main relay (20) is on and when it is off.

請求項3に記載の発明では、車両の状態は、高電圧電源系(10)に接続される車両機器(30)としてのインバータの種類によることを特徴とする。これによると、車両の状態すなわちコモンモードコンデンサ容量はインバータに付随しており、インバータの種類や数によってコモンモードコンデンサ容量が異なるため、インバータに応じて地絡判定の閾値を切り替えることができる。また、高電圧電源系(10)がシステムメインリレー(20)を介して車両機器(30)に接続されている構成では、システムメインリレー(20)がオンのときの車両仕様差も吸収することができる。   The invention according to claim 3 is characterized in that the state of the vehicle depends on the type of inverter as the vehicle device (30) connected to the high voltage power supply system (10). According to this, since the state of the vehicle, that is, the common mode capacitor capacity is attached to the inverter, and the common mode capacitor capacity varies depending on the type and number of inverters, the threshold for ground fault determination can be switched according to the inverter. Further, in the configuration in which the high voltage power supply system (10) is connected to the vehicle equipment (30) via the system main relay (20), the difference in vehicle specifications when the system main relay (20) is on is also absorbed. Can do.

また、請求項に記載の発明では、高電圧電源系(10)に接続された車両機器(30)が複数存在し、複数の車両機器(30)と判定手段(43)とはそれぞれ通信可能に接続されている。また、複数の車両機器(30)は、車両の状態として自己のコモンモードコンデンサ容量をそれぞれ送信するようになっている。そして、判定手段(43)は、複数の車両機器(30)から受信したコモンモードコンデンサ容量に基づいて、地絡判定の閾値を切り替えることを特徴とする。 In the first aspect of the present invention, there are a plurality of vehicle devices (30) connected to the high voltage power supply system (10), and the plurality of vehicle devices (30) and the determination means (43) can communicate with each other. It is connected to the. The plurality of vehicle devices (30) transmit their own common mode capacitor capacities as vehicle states. And a determination means (43) switches the threshold value of a ground fault determination based on the common mode capacitor | condenser capacity | capacitance received from several vehicle equipment (30).

これによると、判定手段(43)は、各車両機器(30)の車両の状態すなわちコモンモードコンデンサ容量を把握することができるので、各車両機器(30)に応じた地絡判定の閾値に切り替えることができ。したがって、高精度で地絡判定を行うことができる。   According to this, since the determination means (43) can grasp the vehicle state of each vehicle device (30), that is, the common mode capacitor capacity, it switches to the ground fault determination threshold corresponding to each vehicle device (30). It is possible. Therefore, the ground fault determination can be performed with high accuracy.

請求項に記載の発明では、判定手段(43)は、高電圧電源系(10)に擬似的な地絡を発生させることにより高電圧電源系(10)に擬似絶縁抵抗低下を発生させ、当該擬似絶縁抵抗低下のレベルに応じて正常または異常を判定することを特徴とする。 In the invention according to claim 4 , the determination means (43) causes the high voltage power supply system (10) to generate a pseudo ground fault by generating a pseudo ground fault in the high voltage power supply system (10), Normality or abnormality is determined according to the level of the pseudo insulation resistance reduction.

これにより、正常であればユーザがシステムに触れても問題ない安全領域であり、異常であればユーザがシステムに触れると感電する危険領域であることを判定することができる。また、上述のように、車両の状態に応じて地絡判定の閾値が切り替えられているので、安全領域における地絡判定精度を向上させることができる。   Thereby, if it is normal, it can be determined that it is a safe area where there is no problem even if the user touches the system. In addition, as described above, since the ground fault determination threshold is switched according to the state of the vehicle, the ground fault determination accuracy in the safety region can be improved.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態に係る地絡検出装置を含んだ全体システム図である。1 is an overall system diagram including a ground fault detection device according to a first embodiment of the present invention. 地絡検出装置の作動を説明するための図である。It is a figure for demonstrating the action | operation of a ground fault detection apparatus. 本発明の第3実施形態に係る地絡検出装置を含んだシステム図である。It is a system diagram containing the ground fault detection apparatus which concerns on 3rd Embodiment of this invention.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。本実施形態に係る地絡検出装置は、高電圧バッテリ等の地絡を検出するための装置であり、例えばハイブリッド車等の電気自動車の高電圧電源系の地絡を検出する際に適用される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. The ground fault detection device according to the present embodiment is a device for detecting a ground fault such as a high voltage battery, and is applied when detecting a ground fault of a high voltage power supply system of an electric vehicle such as a hybrid vehicle, for example. .

図1は、本実施形態に係る地絡検出装置を含んだ全体システム図である。この図に示されるように、全体システムは、高電圧電源系10と、SMR20と、車両機器30と、地絡検出装置40と、を備えて構成されている。   FIG. 1 is an overall system diagram including a ground fault detection apparatus according to the present embodiment. As shown in this figure, the entire system includes a high voltage power supply system 10, an SMR 20, a vehicle device 30, and a ground fault detection device 40.

高電圧電源系10は、充電可能なリチウムイオン二次電池が複数直列接続されて構成された電池群である。高電圧電源系10は例えば300V前後の高電圧を発生させる電源である。図1では、高電圧電源系10を抵抗11(RL1)とコンデンサ12(CL1)との並列回路の等価回路として表現している。コンデンサ12の容量CL1はCL1≒0である。   The high-voltage power supply system 10 is a battery group configured by connecting a plurality of rechargeable lithium ion secondary batteries in series. The high voltage power supply system 10 is a power supply that generates a high voltage of about 300V, for example. In FIG. 1, the high voltage power supply system 10 is represented as an equivalent circuit of a parallel circuit of a resistor 11 (RL1) and a capacitor 12 (CL1). The capacitance CL1 of the capacitor 12 is CL1≈0.

SMR20は、高電圧電源系10と車両機器30とを接続すると共に、高電圧電源系10から車両機器30への電力供給を制御するシステムメインリレーである。また、車両機器30は、高電圧電源系10の電圧を用いて動作するインバータやDCDCコンバータ等の負荷である。   The SMR 20 is a system main relay that connects the high-voltage power supply system 10 and the vehicle equipment 30 and controls power supply from the high-voltage power supply system 10 to the vehicle equipment 30. The vehicle device 30 is a load such as an inverter or a DCDC converter that operates using the voltage of the high-voltage power supply system 10.

図1ではSMR20に接続された全ての車両機器30を抵抗31(RL2)とコンデンサ32(CL2)との並列回路の等価回路として表現している。コンデンサ32の容量CL2はノイズ対策用として例えばCL2≒0.1〜0.2μFの容量がある。この容量CL2がコモンモードコンデンサ容量に相当する。このように、車両機器30にはコモンモードコンデンサ容量が存在するため、SMR20がオンしたときとオフしたときとでは、システムのコモンモードコンデンサ容量が変化する。   In FIG. 1, all the vehicle devices 30 connected to the SMR 20 are expressed as an equivalent circuit of a parallel circuit of a resistor 31 (RL2) and a capacitor 32 (CL2). The capacitance CL2 of the capacitor 32 has a capacitance of CL2≈0.1 to 0.2 μF, for example, as a noise countermeasure. This capacity CL2 corresponds to a common mode capacitor capacity. Thus, since the common mode capacitor capacity exists in the vehicle device 30, the common mode capacitor capacity of the system changes between when the SMR 20 is turned on and when the SMR 20 is turned off.

地絡検出装置40は、コンデンサ41と、抵抗42と、制御部43と、を備えて構成されている。   The ground fault detection device 40 includes a capacitor 41, a resistor 42, and a control unit 43.

コンデンサ41は、絶縁された状態で車両に搭載される高電圧電源系10と地絡検出装置40とを絶縁する役割を果たす。コンデンサ41の一方の電極が高電圧電源系10に接続され、他方の電極が抵抗42に接続されている。   The capacitor 41 serves to insulate the high-voltage power supply system 10 mounted on the vehicle and the ground fault detection device 40 in an insulated state. One electrode of the capacitor 41 is connected to the high voltage power supply system 10, and the other electrode is connected to the resistor 42.

制御部43は、高電圧電源系10の地絡の検出を行うものである。制御部43は、信号出力部44および信号入力部45の他に図示しないA/D変換器およびマイクロコンピュータ(以下、マイコンという)を備えている。   The control unit 43 detects a ground fault of the high voltage power supply system 10. The control unit 43 includes an A / D converter and a microcomputer (hereinafter referred to as a microcomputer) (not shown) in addition to the signal output unit 44 and the signal input unit 45.

信号出力部44は、矩形波の電圧信号を生成および出力する回路部である。矩形波は抵抗42を介してコンデンサ41が接続された配線経路46に出力される。なお、この配線経路46は、高電圧電源系10と抵抗42とを結ぶ配線であり、より具体的にはコンデンサ41の他方の電極と抵抗42とを結ぶ配線である。   The signal output unit 44 is a circuit unit that generates and outputs a rectangular wave voltage signal. The rectangular wave is output via the resistor 42 to the wiring path 46 to which the capacitor 41 is connected. The wiring path 46 is a wiring that connects the high voltage power supply system 10 and the resistor 42, and more specifically, a wiring that connects the other electrode of the capacitor 41 and the resistor 42.

信号入力部45は、配線経路46からの応答を検出信号として取得する回路部である。具体的には、信号入力部45は抵抗42とコンデンサ41との間の接続点の電圧を検出信号として入力する。信号入力部45は、取得した検出信号をA/D変換器に出力する。   The signal input unit 45 is a circuit unit that acquires a response from the wiring path 46 as a detection signal. Specifically, the signal input unit 45 inputs a voltage at a connection point between the resistor 42 and the capacitor 41 as a detection signal. The signal input unit 45 outputs the acquired detection signal to the A / D converter.

A/D変換器は信号入力部45で検出された検出信号をデジタル信号に変換してマイコンに入力する。マイコンは、A/D変換器から入力した検出信号と地絡判定の閾値とを比較することにより地絡を検出する制御回路である。   The A / D converter converts the detection signal detected by the signal input unit 45 into a digital signal and inputs it to the microcomputer. The microcomputer is a control circuit that detects a ground fault by comparing a detection signal input from the A / D converter with a ground fault determination threshold value.

また、マイコンは、車両の状態によって地絡判定の閾値を切り替えると共に、切り替えた地絡判定の閾値に基づいて地絡を検出する。ここで、「車両の状態」とは、コモンモードコンデンサ容量のことを指すが、本実施形態では特に、高電圧電源系10と車両機器30とを接続するSMR20がオンのときの状態とSMR20がオフのときの状態である。   Further, the microcomputer switches the ground fault determination threshold according to the state of the vehicle and detects a ground fault based on the switched ground fault determination threshold. Here, the “vehicle state” refers to the common mode capacitor capacity. In the present embodiment, the SMR 20 that connects the high-voltage power supply system 10 and the vehicle device 30 and the SMR 20 are particularly turned on. This is the state when it is off.

上述のように、SMR20のオン/オフの状態でシステムのコモンモードコンデンサ容量が変化する。このため、マイコンは、SMR20がオンのときにはSMR20がオンのときのシステムのコモンモードコンデンサ容量に応じた地絡判定の閾値を用いて地絡検出を行う。一方、マイコンは、SMR20がオフのときには、SMR20がオフのときのシステムのコモンモードコンデンサ容量に応じた地絡判定の閾値を用いて地絡検出を行う。このように、マイコンはSMR20のオン/オフに応じて地絡判定の閾値を切り替え、切り替えた地絡判定の閾値を用いて地絡を検出する。各閾値は予めマイコンに記憶されている。   As described above, the common mode capacitor capacity of the system changes in the on / off state of the SMR 20. Therefore, when the SMR 20 is on, the microcomputer performs ground fault detection using a ground fault determination threshold value according to the common mode capacitor capacity of the system when the SMR 20 is on. On the other hand, when the SMR 20 is off, the microcomputer performs ground fault detection using a threshold for ground fault determination according to the common mode capacitor capacity of the system when the SMR 20 is off. In this way, the microcomputer switches the ground fault determination threshold according to the on / off state of the SMR 20, and detects the ground fault using the switched ground fault determination threshold. Each threshold value is stored in advance in the microcomputer.

以上が地絡検出装置40を含んだシステムの構成である。次に、地絡検出装置40の地絡検出について、図2を参照して説明する。図2の左欄は地絡判定の閾値が一つに固定された従来の地絡検出装置40において取り扱われる信号の波形を示したものである。また、図2の右欄は図1に示される地絡検出装置40の信号出力部44および信号入力部45で取り扱われる信号の波形を示したものである。   The above is the configuration of the system including the ground fault detection device 40. Next, ground fault detection of the ground fault detection device 40 will be described with reference to FIG. The left column of FIG. 2 shows the waveform of a signal handled in the conventional ground fault detection apparatus 40 in which the ground fault determination threshold value is fixed to one. The right column of FIG. 2 shows the waveforms of signals handled by the signal output unit 44 and the signal input unit 45 of the ground fault detection device 40 shown in FIG.

図2(a)および図2(b)の左欄の従来のように、1つの閾値で地絡検出を行う場合には、コモンモードコンデンサ容量の変化を加味したマージン分が閾値に含まれているため、地絡が検出されたときにはその地絡がどれくらいのレベルであるのかがわからなかった。   When performing ground fault detection with a single threshold value as in the prior art in the left column of FIGS. 2 (a) and 2 (b), the threshold value includes a margin that takes into account the change in common mode capacitor capacitance. Therefore, when a ground fault was detected, it was not possible to know what level the ground fault was.

これに対し、図2の右欄に示されるように、地絡判定の閾値は2つ設定され、各閾値の値はSMR20がオンのときとオフのときとでそれぞれ異なる。具体的には、SMR20がオフのときの地絡判定閾値1がオンのときの地絡判定閾値2よりも大きい。したがって、SMR20のオン/オフの状態すなわちコモンモードコンデンサ容量の差によって閾値に幅を持たせることができる。   On the other hand, as shown in the right column of FIG. 2, two threshold values for ground fault determination are set, and each threshold value is different when the SMR 20 is on and when it is off. Specifically, the ground fault determination threshold value 1 when the SMR 20 is off is larger than the ground fault determination threshold value 2 when the SMR 20 is on. Therefore, the threshold value can be widened depending on the ON / OFF state of the SMR 20, that is, the difference in the common mode capacitor capacity.

そして、図2(a)の右欄に示されるように、非地絡時であってSMR20がオフのときには検出信号の振幅は地絡判定閾値1よりも高いので、地絡は検出されない。しかし、図2(b)の右欄に示されるように、地絡発生時にはSMR20のオフの状態に対応した地絡判定閾値1(>地絡判定閾値2)によって矩形波の振幅の減少を早く検出することができる。   Then, as shown in the right column of FIG. 2A, when the ground fault is not occurring and the SMR 20 is OFF, the amplitude of the detection signal is higher than the ground fault determination threshold value 1, and thus no ground fault is detected. However, as shown in the right column of FIG. 2B, when the ground fault occurs, the decrease in the amplitude of the rectangular wave is accelerated by the ground fault determination threshold value 1 (> ground fault determination threshold value 2) corresponding to the off state of the SMR 20. Can be detected.

また、図2(c)および図2(d)の右欄に示された従来の場合、上述のように閾値がコモンモードコンデンサ容量を加味したマージン分だけ高く設定されているので、地絡が検出されないとしても閾値の余裕がない状態での判定であるし、地絡が検出された場合は予め高く設定された閾値よって早く地絡が検出されてしまい、正確な地絡検出ができなかった。   Further, in the conventional case shown in the right column of FIGS. 2C and 2D, the threshold is set higher by a margin including the common mode capacitor capacity as described above. Even if it is not detected, it is a determination in a state where there is no threshold margin, and when a ground fault is detected, the ground fault is detected early due to a preset threshold value, and accurate ground fault detection cannot be performed. .

これに対し、図2(c)の左欄に示されるように、非地絡時であってSMR20がオンのときには検出信号の振幅は地絡判定閾値2よりも高いので、地絡は検出されない。しかし、図2(d)の左欄に示されるように、地絡発生時にはSMR20のオンの状態に対応した地絡判定閾値2によって矩形波の振幅の減少を余裕を持って検出することができる。   On the other hand, as shown in the left column of FIG. 2C, since the amplitude of the detection signal is higher than the ground fault determination threshold 2 when the SMR 20 is on when the non-ground fault occurs, no ground fault is detected. . However, as shown in the left column of FIG. 2D, when a ground fault occurs, the decrease in the amplitude of the rectangular wave can be detected with a margin by the ground fault determination threshold 2 corresponding to the ON state of the SMR 20. .

以上説明したように、本実施形態では、車両の状態すなわちSMR20のオン/オフに応じたコモンモードコンデンサ容量に応じて地絡判定の閾値を切り替えることが特徴となっている。   As described above, the present embodiment is characterized in that the ground fault determination threshold value is switched according to the state of the vehicle, that is, the common mode capacitor capacity according to the on / off state of the SMR 20.

このように、コモンモードコンデンサ容量に対応した地絡判定の閾値を用いて地絡判定を行っているので、SMR20の状態が変化したとしてもそのオン/オフの状態に応じた地絡の判定を行うことができる。したがって、回路構成が複雑にならずに、高精度に地絡を検出することができる。   Thus, since the ground fault determination is performed using the ground fault determination threshold value corresponding to the common mode capacitor capacity, even if the state of the SMR 20 changes, the determination of the ground fault according to the on / off state is performed. It can be carried out. Therefore, it is possible to detect the ground fault with high accuracy without complicating the circuit configuration.

また、SMR20がオンのときとオフのときとの2パターンの閾値を予めマイコンに記憶させておくだけで良いので、簡易に地絡判定を高精度化することができる。   In addition, since it is only necessary to previously store two patterns of threshold values when the SMR 20 is on and when the SMR 20 is off, the ground fault determination can be easily made highly accurate.

なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、マイコンを含んだ制御部43が特許請求の範囲の「判定手段」に対応する。   Regarding the correspondence between the description of the present embodiment and the description of the scope of claims, the control unit 43 including a microcomputer corresponds to the “determination means” of the scope of claims.

(第2実施形態)
本実施形態では、第1実施形態と異なる部分について説明する。上記第1実施形態では、SMR20に接続された負荷をまとめて「車両機器30」としたが、実際には車両に様々なインバータが搭載される。そこで、本実施形態では、車両の状態は、当該車両に搭載されるインバータの種類による。
(Second Embodiment)
In the present embodiment, parts different from the first embodiment will be described. In the first embodiment, the loads connected to the SMR 20 are collectively referred to as the “vehicle device 30”, but various inverters are actually mounted on the vehicle. Therefore, in the present embodiment, the state of the vehicle depends on the type of inverter mounted on the vehicle.

インバータといっても、走行、発電、リア、エアコン等で用いられるものがあり、大容量のもの、中容量のもの、小容量のもの等、インバータの種類によってコモンモードコンデンサ容量(CL2)の値が異なる。すなわち、コモンモードコンデンサ容量はインバータに付随しており、インバータの種類や数によってコモンモードコンデンサ容量が異なる。   Some inverters are used in driving, power generation, rear, air conditioners, etc. The value of common mode capacitor capacity (CL2) depends on the type of inverter, such as large capacity, medium capacity, small capacity, etc. Is different. That is, the common mode capacitor capacity is associated with the inverter, and the common mode capacitor capacity varies depending on the type and number of inverters.

したがって、インバータの種類によって地絡判定の閾値を設定し、インバータに応じて地絡判定の閾値を切り替えることにより、インバータの種類に応じた高精度の地絡検出ができる。また、第1実施形態のように、高電圧電源系10がSMR20を介して車両機器30に接続されている構成では、SMR20のオン/オフだけでなくインバータの種類にもよるので、車両仕様差も吸収することができる。   Therefore, the ground fault determination threshold value is set according to the type of inverter, and the ground fault determination threshold value is switched according to the inverter, whereby high-accuracy ground fault detection according to the inverter type can be performed. Further, in the configuration in which the high voltage power supply system 10 is connected to the vehicle equipment 30 via the SMR 20 as in the first embodiment, it depends not only on / off of the SMR 20 but also on the type of inverter, so that there is a difference in vehicle specifications. Can also be absorbed.

(第3実施形態)
本実施形態では、第1実施形態と異なる部分について説明する。図3は、本実施形態に係る地絡検出装置40を含んだ通信システム図である。この図に示されるように、通信システムには複数の車両機器30が存在し、複数の車両機器30と制御部43とはそれぞれ通信可能に接続されている。
(Third embodiment)
In the present embodiment, parts different from the first embodiment will be described. FIG. 3 is a communication system diagram including the ground fault detection device 40 according to the present embodiment. As shown in this figure, there are a plurality of vehicle devices 30 in the communication system, and the plurality of vehicle devices 30 and the control unit 43 are communicably connected to each other.

複数の車両機器30は、上述のように高電圧電源系10に接続されている。車両機器30は、モータ用のインバータ(MG1、MG2)やエアコン用のインバータ(A/C)等である。   The plurality of vehicle devices 30 are connected to the high voltage power supply system 10 as described above. The vehicle equipment 30 is a motor inverter (MG1, MG2), an air conditioner inverter (A / C), or the like.

そして、各車両機器30は、車両の状態として自己のコモンモードコンデンサ容量を記憶しており、自己のコモンモードコンデンサ容量をそれぞれ送信するように設定されている。したがって、制御部43のマイコンは、各車両機器30から受信したコモンモードコンデンサ容量に対応する地絡判定の閾値に切り替えて地絡検出を行う。なお、各車両機器30からの送信タイミングや回数は適宜設定される。   Each vehicle device 30 stores its own common mode capacitor capacity as the state of the vehicle, and is set to transmit its own common mode capacitor capacity. Therefore, the microcomputer of the control unit 43 performs ground fault detection by switching to the ground fault determination threshold value corresponding to the common mode capacitor capacity received from each vehicle device 30. In addition, the transmission timing and frequency | count from each vehicle apparatus 30 are set suitably.

このため、マイコンはコモンモードコンデンサ容量に対する地絡判定の閾値が設定されたマップを予め記憶しており、このマップからコモンモードコンデンサ容量に応じた地絡判定の閾値に切り替える。このように、地絡検出装置40に通信可能に接続された各車両機器30からそれぞれコモンモードコンデンサ容量(CL2)を受信することにより、高電圧電源系10に接続された各車両機器30のコモンモードコンデンサ容量に最適な地絡判定の閾値に基づいて高精度で地絡を検出することができる。   For this reason, the microcomputer stores in advance a map in which a ground fault determination threshold for the common mode capacitor capacity is set, and switches from this map to a ground fault determination threshold corresponding to the common mode capacitor capacity. As described above, the common mode capacitor capacity (CL2) is received from each vehicle device 30 that is communicably connected to the ground fault detection device 40, whereby the common of each vehicle device 30 connected to the high voltage power supply system 10 is received. It is possible to detect a ground fault with high accuracy based on a threshold value for determining a ground fault optimum for the mode capacitor capacity.

なお、各車両機器30から受信したコモンモードコンデンサ容量をそれぞれ制御部43のマイコンに記憶させていくことにより、コモンモードコンデンサ容量に対する地絡判定の閾値を学習する構成にしても良い。   In addition, you may make it the structure which learns the threshold value of the ground fault determination with respect to a common mode capacitor capacity | capacitance by memorize | storing the common mode capacitor capacity | capacitance received from each vehicle apparatus 30 in the microcomputer of the control part 43, respectively.

(他の実施形態)
上記各実施形態で示された地絡検出装置40の構成は一例であり、上記で示した構成に限定されることなく、本発明を実現できる他の構成とすることもできる。例えば、制御部43のマイコンは、高電圧電源系10に擬似的な地絡を発生させることにより高電圧電源系10に擬似絶縁抵抗低下を発生させ、当該擬似絶縁抵抗低下のレベルに応じて正常または異常を判定しても良い。このため、地絡検出装置40に擬似絶縁抵抗低下を発生させるための回路を設けることが好ましい。正常であると判定されれば、ユーザがシステムに触れても問題ない安全領域であることがわかる。一方、異常であると判定されれば、ユーザがシステムに触れると感電する危険領域であることがわかる。この正常・異常の判定では車両の状態に応じて地絡判定の閾値を切り替えて地絡検出を行っているので、安全領域における地絡判定精度を向上させることができる。
(Other embodiments)
The configuration of the ground fault detection device 40 shown in each of the above embodiments is merely an example, and is not limited to the configuration shown above, and other configurations that can realize the present invention can be used. For example, the microcomputer of the control unit 43 causes the high voltage power supply system 10 to generate a pseudo ground fault, thereby causing the high voltage power supply system 10 to generate a pseudo insulation resistance drop, and is normal according to the level of the pseudo insulation resistance reduction. Or you may determine abnormality. For this reason, it is preferable to provide a circuit for causing the ground fault detection device 40 to reduce the pseudo insulation resistance. If it is determined to be normal, it can be seen that it is a safe area where there is no problem even if the user touches the system. On the other hand, if it is determined that there is an abnormality, it can be understood that this is a dangerous area where an electric shock is received when the user touches the system. In this normal / abnormal determination, the ground fault detection is performed by switching the ground fault determination threshold according to the state of the vehicle, so that the ground fault determination accuracy in the safety region can be improved.

10 高電圧電源系
20 SMR
30 車両機器
40 地絡検出装置
43 制御部(判定手段)
10 High voltage power supply system 20 SMR
30 Vehicle equipment 40 Ground fault detection device 43 Control unit (determination means)

Claims (4)

絶縁された状態で車両に搭載される高電圧電源系(10)の地絡判定を閾値に基づいて行う地絡検出装置であって、
前記車両の状態によって前記地絡判定の閾値を切り替えると共に、切り替えた地絡判定の閾値に基づいて地絡判定を行う判定手段(43)を備え
前記高電圧電源系(10)に接続された車両機器(30)が複数存在し、前記複数の車両機器(30)と前記判定手段(43)とはそれぞれ通信可能に接続されており、
前記複数の車両機器(30)は、前記車両の状態として自己のコモンモードコンデンサ容量をそれぞれ送信するようになっており、
前記判定手段(43)は、前記複数の車両機器(30)から受信したコモンモードコンデンサ容量に基づいて、前記地絡判定の閾値を切り替えることを特徴とする地絡検出装置。
A ground fault detection device that performs ground fault determination of a high voltage power supply system (10) mounted on a vehicle in an insulated state based on a threshold value,
A determination unit (43) that switches the ground fault determination threshold according to the state of the vehicle and performs ground fault determination based on the switched ground fault determination threshold ,
There are a plurality of vehicle devices (30) connected to the high voltage power supply system (10), and the plurality of vehicle devices (30) and the determination means (43) are connected to be able to communicate with each other,
The plurality of vehicle devices (30) each transmit their own common mode capacitor capacity as the state of the vehicle,
The determination means (43) switches a ground fault determination threshold based on a common mode capacitor capacity received from the plurality of vehicle devices (30) .
前記車両の状態は、前記高電圧電源系(10)と車両機器(30)とを接続するシステムメインリレー(20)がオンのときと前記システムメインリレー(20)がオフのときであることを特徴とする請求項1に記載の地絡検出装置。   The vehicle state is when the system main relay (20) connecting the high-voltage power supply system (10) and the vehicle equipment (30) is on and when the system main relay (20) is off. The ground fault detection apparatus according to claim 1, wherein 前記車両の状態は、前記高電圧電源系(10)に接続される車両機器(30)としてのインバータの種類によることを特徴とする請求項1または2に記載の地絡検出装置。   3. The ground fault detection device according to claim 1, wherein the state of the vehicle depends on a type of an inverter as a vehicle device (30) connected to the high voltage power supply system (10). 前記判定手段(43)は、前記高電圧電源系(10)に擬似的な地絡を発生させることにより前記高電圧電源系(10)に擬似絶縁抵抗低下を発生させ、当該擬似絶縁抵抗低下のレベルに応じて正常または異常を判定することを特徴とする請求項1ないしのいずれか1つに記載の地絡検出装置。 The determination means (43) causes the high voltage power supply system (10) to generate a pseudo ground fault by generating a pseudo ground fault in the high voltage power supply system (10). ground detector according to any one of claims 1 to 3, wherein the determining normal or abnormal according to the level.
JP2011235271A 2011-10-26 2011-10-26 Ground fault detection device Active JP5423766B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011235271A JP5423766B2 (en) 2011-10-26 2011-10-26 Ground fault detection device
US13/612,951 US9103892B2 (en) 2011-10-26 2012-09-13 Ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011235271A JP5423766B2 (en) 2011-10-26 2011-10-26 Ground fault detection device

Publications (2)

Publication Number Publication Date
JP2013092466A JP2013092466A (en) 2013-05-16
JP5423766B2 true JP5423766B2 (en) 2014-02-19

Family

ID=48171750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011235271A Active JP5423766B2 (en) 2011-10-26 2011-10-26 Ground fault detection device

Country Status (2)

Country Link
US (1) US9103892B2 (en)
JP (1) JP5423766B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229584B2 (en) * 2014-04-23 2017-11-15 株式会社デンソー Ground fault judgment device
DE102015201899B4 (en) * 2015-02-04 2021-11-04 Bayerische Motoren Werke Aktiengesellschaft Method for protecting a high-voltage electrical system of a motor vehicle with a first and a second energy source, computer program product and motor vehicle
JP6668102B2 (en) * 2016-02-18 2020-03-18 株式会社デンソーテン Deterioration detection device and deterioration detection method
JP7033102B2 (en) * 2019-04-24 2022-03-09 株式会社デンソー Leakage judgment device
CN112297845B (en) * 2019-07-31 2022-05-13 比亚迪股份有限公司 Power supply control system and method and vehicle
CN111337853B (en) * 2020-04-23 2022-08-02 瑞尔安全(北京)技术有限公司 Tank car grounding detection system and method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221395A (en) 1997-02-07 1998-08-21 Denso Corp System for detecting ground fault of electric vehicle
JP4017770B2 (en) 1997-10-30 2007-12-05 松下電器産業株式会社 Electric vehicle leakage detection device
TW403838B (en) 1997-10-30 2000-09-01 Matsushita Electric Ind Co Ltd Electric leak detecting method and apparatus for electric motorcars
JP3678151B2 (en) * 2001-01-11 2005-08-03 日産自動車株式会社 Electric vehicle ground fault detection device
JP4122858B2 (en) 2001-11-22 2008-07-23 トヨタ自動車株式会社 Earth leakage detector
JP3956790B2 (en) * 2002-07-18 2007-08-08 日産自動車株式会社 Ground fault detection device
JP4061168B2 (en) * 2002-10-16 2008-03-12 矢崎総業株式会社 Ground fault detection device and insulation resistance measurement device
JP4082676B2 (en) * 2003-05-29 2008-04-30 株式会社デンソー Electric leakage detection device inspection system
JP4337464B2 (en) * 2003-08-07 2009-09-30 日産自動車株式会社 Ground fault detection device
JP4572777B2 (en) * 2005-08-26 2010-11-04 株式会社デンソー In-vehicle earth insulation circuit leakage detection device
JP2007147391A (en) * 2005-11-25 2007-06-14 Nissan Motor Co Ltd Insulation resistance measurement system
JP4635890B2 (en) * 2006-02-03 2011-02-23 トヨタ自動車株式会社 Power supply
JP4874034B2 (en) * 2006-08-30 2012-02-08 三洋電機株式会社 Battery pack for electric vehicles
US8618809B2 (en) * 2010-06-15 2013-12-31 Deere & Company Electrical isolation detection with enhanced dynamic range
US8698504B2 (en) * 2010-10-09 2014-04-15 Rockwell Automation Technologies, Inc. System for detection of a ground fault in a high resistance ground network

Also Published As

Publication number Publication date
US9103892B2 (en) 2015-08-11
US20130106432A1 (en) 2013-05-02
JP2013092466A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
JP5423766B2 (en) Ground fault detection device
JP6633585B2 (en) Ground fault detector
US9255957B2 (en) Earth fault detection circuit and power source device
US8860426B2 (en) Insulation state detection circuit for ungrounded power source
CN102869996B (en) Utilize isolation monitoring system and the method for variable simulated inductor
JP2010239821A (en) Electric vehicle equipped with ground fault detecting system
JP5541743B2 (en) Contactor welding detector
JP2012242330A (en) Electric leakage detection device
JP2009042080A (en) Voltage detecting device
WO2016143678A1 (en) Battery managing device, battery monitoring circuit, control system
JP6004174B2 (en) Welding judgment circuit
JP2020030117A (en) Ground fault detection device
JP2014098681A (en) Electric leakage detector
JP6428197B2 (en) Vehicle ground fault detection circuit with high voltage power supply system
JP2013061215A (en) Earth detector
JP6804320B2 (en) Ground fault detector, power supply system
JP2023023681A (en) Ground fault detector
JP2015215163A (en) Electric leakage detection circuit, battery circuit board, and battery power supply device
JP6607060B2 (en) Power storage system and voltage detection device
JP5573800B2 (en) Ground fault detection device
JP5761044B2 (en) Insulation abnormality detector
JP5239975B2 (en) Earth leakage detection system
JP6881097B2 (en) Ground fault detector
JP2015126572A (en) Abnormality detector of electric vehicle
JP2014149276A (en) Electrical leak detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250