JP2013061215A - Earth detector - Google Patents

Earth detector Download PDF

Info

Publication number
JP2013061215A
JP2013061215A JP2011199280A JP2011199280A JP2013061215A JP 2013061215 A JP2013061215 A JP 2013061215A JP 2011199280 A JP2011199280 A JP 2011199280A JP 2011199280 A JP2011199280 A JP 2011199280A JP 2013061215 A JP2013061215 A JP 2013061215A
Authority
JP
Japan
Prior art keywords
detection signal
ground fault
pseudo
insulation resistance
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011199280A
Other languages
Japanese (ja)
Other versions
JP5569492B2 (en
Inventor
Takumi Shimizu
工 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011199280A priority Critical patent/JP5569492B2/en
Publication of JP2013061215A publication Critical patent/JP2013061215A/en
Application granted granted Critical
Publication of JP5569492B2 publication Critical patent/JP5569492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earth detector capable of enhancing fault determination accuracy in a fault diagnosis as a first purpose and to correct a determination error due to aged deterioration and temperature characteristics in the fault diagnosis as a second purpose.SOLUTION: A pseudo insulation resistance deterioration in a high-voltage power supply system 40 is caused by a pseudo insulation resistance deterioration section 10 by electrically connecting the high-voltage power supply system 40 and a vehicle body 60 to each other via resistors R1 and R2 for a fault diagnosis. At the time of occurrence of the pseudo insulation resistance deterioration, a response when a predetermined signal is output from a signal outputting section 31 to a wiring route 12 connecting the high-voltage power supply system 40 and the resistors R1 and R2 to one another is acquired by a signal inputting section 32 as a detection signal. Then, a controller 30 determines whether or not the detection signal is included within a normal range set according to resistance values of the resistors R1 and R2 and, in a case where the detection signal is determined not to be included within the normal range, determines abnormality of the high voltage power supply system 40.

Description

本発明は、地絡を検出するための地絡検出装置に関し、特に故障診断機能を備えた地絡検出装置に関する。   The present invention relates to a ground fault detection device for detecting a ground fault, and more particularly to a ground fault detection device having a fault diagnosis function.

従来より、システム自体が正常に作動しているか否かを自己診断できる地絡検知システムが、例えば特許文献1で提案されている。具体的に、特許文献1では、抵抗を介してバッテリと車体とを接続することで地絡を模擬的に実施するための地絡試行回路と、バッテリに接続されたバッテリ母線に所定の矩形波を印加したときの応答電圧と基準電圧とを比較することにより地絡を検出する地絡検知器と、を備えた構成が提案されている。   Conventionally, for example, Patent Document 1 proposes a ground fault detection system that can self-diagnose whether or not the system itself is operating normally. Specifically, in Patent Document 1, a ground fault trial circuit for simulating a ground fault by connecting a battery and a vehicle body via a resistor, and a predetermined rectangular wave on a battery bus connected to the battery There has been proposed a configuration including a ground fault detector that detects a ground fault by comparing a response voltage when a voltage is applied and a reference voltage.

特開平10−221395号公報JP-A-10-221395

しかしながら、上記従来の技術では、基準電圧との比較により地絡を検出しているので、地絡検出が出来るかどうかの故障検知は可能であるが、経年劣化や温度特性の変化に伴う誤差による精度のズレの検出を行うことができず、その補正を行うこともできないという問題がある。また、1点の基準電圧での擬似地絡であり、この地絡判定値(基準電圧)の周辺の検出しかできないという問題がある。   However, in the above conventional technique, since a ground fault is detected by comparison with a reference voltage, it is possible to detect a failure as to whether or not a ground fault can be detected, but due to errors due to aged deterioration or changes in temperature characteristics. There is a problem in that it is impossible to detect a deviation in accuracy and to correct it. Moreover, it is a pseudo ground fault at one reference voltage, and there is a problem that only the periphery of this ground fault judgment value (reference voltage) can be detected.

本発明は上記点に鑑み、故障診断において故障の判定精度を向上させることができる地絡検出装置を提供することを第1の目的とする。また、故障診断において、経年劣化や温度特性による判定誤差を補正することを第2の目的とする。   In view of the above points, it is a first object of the present invention to provide a ground fault detection device capable of improving the accuracy of failure determination in failure diagnosis. A second object of the present invention is to correct determination errors due to aging and temperature characteristics in failure diagnosis.

上記目的を達成するため、請求項1に記載の発明では、絶縁された状態で車両に搭載される高電圧電源系(40)の地絡検出を行う地絡検出装置であって、故障診断用の抵抗(R1〜R3)を介して前記高電圧電源系(40)と前記車両の車体(60)とを電気的に接続することにより前記高電圧電源系(40)に擬似絶縁抵抗低下を発生させる擬似絶縁抵抗低下手段(10)を備えている。   In order to achieve the above object, according to the first aspect of the present invention, there is provided a ground fault detection device for detecting a ground fault of a high voltage power supply system (40) mounted on a vehicle in an insulated state, for fault diagnosis. The high voltage power supply system (40) and the vehicle body (60) of the vehicle are electrically connected via the resistors (R1 to R3) to cause a decrease in pseudo insulation resistance in the high voltage power supply system (40). Pseudo-insulation resistance lowering means (10) is provided.

また、擬似絶縁抵抗低下の発生時に高電圧電源系(40)と抵抗(R1〜R3)とを結ぶ配線経路(12)に所定の信号を入力したときの応答を検出信号として取得すると共に、この検出信号が抵抗(R1〜R3)の抵抗値に応じて設定された正常範囲に含まれるかを判定し、検出信号が正常範囲に含まれない場合は異常であると判定する判定手段(30)を備えていることを特徴とする。   In addition, a response when a predetermined signal is input to the wiring path (12) connecting the high voltage power supply system (40) and the resistors (R1 to R3) at the time of occurrence of the pseudo insulation resistance reduction is acquired as a detection signal. A determination means (30) for determining whether the detection signal is included in a normal range set according to the resistance values of the resistors (R1 to R3) and determining that the detection signal is abnormal if the detection signal is not included in the normal range It is characterized by having.

これによると、異常を判定するための判定値が1値ではなく、正常であると言える幅を持った範囲に設定されているので、検出信号が正常範囲である設計公差範囲外であれば故障であると判定することができる。したがって、故障の判定精度を向上させることができる。   According to this, since the determination value for determining abnormality is not a single value, but is set in a range that can be said to be normal, failure occurs if the detection signal is outside the design tolerance range that is the normal range. It can be determined that Therefore, the failure determination accuracy can be improved.

請求項2に記載の発明では、判定手段(30)は、検出信号が正常範囲に含まれる場合は、検出信号が示す値を真値として補正することを特徴とする。   The invention according to claim 2 is characterized in that the determination means (30) corrects a value indicated by the detection signal as a true value when the detection signal is included in a normal range.

これにより、温度特性や劣化特性による誤差に対して正常範囲を補正することができる。このような補正により、故障の判定精度を向上させることができる。   Thereby, the normal range can be corrected for errors due to temperature characteristics and deterioration characteristics. Such correction can improve the accuracy of failure determination.

請求項3に記載の発明では、擬似絶縁抵抗低下手段(10)は、抵抗(R1〜R3)の抵抗値を変化させることにより、擬似絶縁抵抗低下を複数のパターンで実施することを特徴とする。   The invention according to claim 3 is characterized in that the pseudo insulation resistance lowering means (10) performs the pseudo insulation resistance reduction in a plurality of patterns by changing the resistance values of the resistors (R1 to R3). .

これによると、抵抗(R1〜R3)の抵抗値に応じたレベルの検出信号によって故障が診断されるので、故障判定精度を向上させることができる。また、複数の検出信号が得られることからこれらを結ぶ線での故障判定が可能となるので、故障判定の信頼性を向上させることができる。   According to this, since the failure is diagnosed by the detection signal at a level corresponding to the resistance value of the resistors (R1 to R3), the failure determination accuracy can be improved. In addition, since a plurality of detection signals are obtained, it is possible to determine a failure on a line connecting them, so that the reliability of the failure determination can be improved.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態に係る地絡検出装置を含んだ全体システム図である。1 is an overall system diagram including a ground fault detection device according to a first embodiment of the present invention. 信号出力部および信号入力部で取り扱う信号の波形を示した図である。It is the figure which showed the waveform of the signal handled by a signal output part and a signal input part. 故障診断の内容を表したフローチャートである。It is a flowchart showing the contents of failure diagnosis. 2個の抵抗の合成抵抗値(擬似地絡抵抗R)と検出信号との相関関係を示した図である。It is the figure which showed the correlation of the synthetic resistance value (pseudo ground fault resistance R) of two resistances, and a detection signal. 本発明の第2実施形態に係る地絡検出装置を含んだ全体システム図である。It is a whole system figure containing the ground fault detection apparatus which concerns on 2nd Embodiment of this invention. 3個の抵抗の合成抵抗値(擬似地絡抵抗R)と検出信号との相関関係を示した図である。It is the figure which showed the correlation of the synthetic resistance value (pseudo ground fault resistance R) of three resistances, and a detection signal.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。本実施形態に係る地絡検出装置は、高電圧バッテリ等の地絡を検出するための装置であり、例えばハイブリッド車等の電気自動車の高電圧電源系の地絡を検出する際に適用される。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. The ground fault detection device according to the present embodiment is a device for detecting a ground fault such as a high voltage battery, and is applied when detecting a ground fault of a high voltage power supply system of an electric vehicle such as a hybrid vehicle, for example. .

図1は、本実施形態に係る地絡検出装置を含んだ全体システム図である。この図に示されるように、地絡検出装置は、擬似絶縁抵抗低下部10と、抵抗20と、制御部30と、を備えて構成されている。   FIG. 1 is an overall system diagram including a ground fault detection apparatus according to the present embodiment. As shown in this figure, the ground fault detection apparatus includes a pseudo insulation resistance lowering unit 10, a resistor 20, and a control unit 30.

擬似絶縁抵抗低下部10は、絶縁された状態で車両に搭載される高電圧電源系40(図1のHV battery)に対して、端子50を介して接続されている。高電圧電源系40は、充電可能なリチウムイオン二次電池が複数直列接続されて構成された電池群である。高電圧電源系40は例えば300V前後の高電圧を発生させ、負荷を動作させるために使用される。   The pseudo insulation resistance lowering unit 10 is connected via a terminal 50 to a high voltage power supply system 40 (HV battery in FIG. 1) mounted on the vehicle in an insulated state. The high-voltage power supply system 40 is a battery group configured by connecting a plurality of rechargeable lithium ion secondary batteries in series. The high voltage power supply system 40 is used for generating a high voltage of, for example, about 300 V and operating a load.

擬似絶縁抵抗低下部10は、端子50に接続されたコンデンサ11と、2個の抵抗R1および抵抗R2と、2個のスイッチSW1およびスイッチSW2と、を備えている。   The pseudo insulation resistance lowering unit 10 includes a capacitor 11 connected to the terminal 50, two resistors R1 and R2, and two switches SW1 and SW2.

コンデンサ11は、高電圧電源系40と地絡検出装置とを絶縁する役割を果たす。コンデンサ11の一方の電極が端子50に接続され、他方の電極が抵抗20に接続されている。   The capacitor 11 serves to insulate the high voltage power supply system 40 from the ground fault detection device. One electrode of the capacitor 11 is connected to the terminal 50, and the other electrode is connected to the resistor 20.

抵抗R1とスイッチSW1とが直列接続され、抵抗R1がコンデンサ11の他方の電極に接続されている。同様に、抵抗R2とスイッチSW2とが直列接続され、抵抗R2がコンデンサ11の他方の電極に接続されている。各スイッチSW1、SW2は車体60に接続されている。   The resistor R1 and the switch SW1 are connected in series, and the resistor R1 is connected to the other electrode of the capacitor 11. Similarly, the resistor R2 and the switch SW2 are connected in series, and the resistor R2 is connected to the other electrode of the capacitor 11. Each switch SW1, SW2 is connected to the vehicle body 60.

すなわち、擬似絶縁抵抗低下部10は、各スイッチSW1、SW2のいずれかがONすることにより、各抵抗R1、R2を介して高電圧電源系40と車体60とを電気的に接続して高電圧電源系40に擬似絶縁抵抗低下を発生させる構成となっている。各スイッチSW1、SW2のON/OFFは制御部30によって制御される。   That is, the pseudo insulation resistance lowering unit 10 electrically connects the high voltage power supply system 40 and the vehicle body 60 via the resistors R1 and R2 when either of the switches SW1 and SW2 is turned on. The power supply system 40 is configured to generate a pseudo insulation resistance drop. ON / OFF of each switch SW1, SW2 is controlled by the control unit 30.

制御部30は、高電圧電源系40の地絡の判定を行うものである。制御部30は、信号出力部31および信号入力部32の他に図示しないA/D変換器およびマイクロコンピュータ(以下、マイコンという)を備えている。   The control unit 30 determines a ground fault of the high voltage power supply system 40. In addition to the signal output unit 31 and the signal input unit 32, the control unit 30 includes an A / D converter and a microcomputer (hereinafter referred to as a microcomputer) not shown.

信号出力部31は、矩形波の電圧信号を生成および出力する回路部である。矩形波は抵抗20を介して抵抗R1および抵抗R2が接続された配線経路12に出力される。なお、この配線経路12は、高電圧電源系40と抵抗R1、R2とを結ぶ配線であり、より具体的にはコンデンサ11の他方の電極と抵抗20とを結ぶ配線である。   The signal output unit 31 is a circuit unit that generates and outputs a rectangular wave voltage signal. The rectangular wave is output via the resistor 20 to the wiring path 12 to which the resistors R1 and R2 are connected. The wiring path 12 is a wiring that connects the high-voltage power supply system 40 and the resistors R1 and R2, and more specifically is a wiring that connects the other electrode of the capacitor 11 and the resistor 20.

図2は、信号出力部31および信号入力部32で取り扱う信号の波形を示したものである。図2(a)に示されるように、信号出力部31は矩形波を出力する。   FIG. 2 shows the waveforms of signals handled by the signal output unit 31 and the signal input unit 32. As shown in FIG. 2A, the signal output unit 31 outputs a rectangular wave.

信号入力部32は、配線経路12からの応答を検出信号として取得する回路部である。具体的には、信号入力部32は抵抗20とコンデンサ11との間の接続点の電圧を検出信号として入力する。信号入力部32は、取得した検出信号をA/D変換器に出力する。   The signal input unit 32 is a circuit unit that acquires a response from the wiring path 12 as a detection signal. Specifically, the signal input unit 32 inputs a voltage at a connection point between the resistor 20 and the capacitor 11 as a detection signal. The signal input unit 32 outputs the acquired detection signal to the A / D converter.

図2(b)〜図2(d)は信号入力部32が入力する信号を示している。図2(b)に示されるように、擬似絶縁抵抗低下部10の各スイッチSW1、SW2がOFFの場合には信号出力部31から出力された矩形波が信号入力部32に入力される。   2B to 2D show signals input by the signal input unit 32. FIG. As shown in FIG. 2B, when the switches SW <b> 1 and SW <b> 2 of the pseudo insulation resistance lowering unit 10 are OFF, the rectangular wave output from the signal output unit 31 is input to the signal input unit 32.

A/D変換器は信号入力部32で検出された検出信号をデジタル信号に変換してマイコンに入力する。マイコンは、A/D変換器から入力した検出信号に基づいて地絡の有無を判定する制御回路である。   The A / D converter converts the detection signal detected by the signal input unit 32 into a digital signal and inputs it to the microcomputer. The microcomputer is a control circuit that determines the presence or absence of a ground fault based on the detection signal input from the A / D converter.

また、マイコンは、A/D変換器から入力した検出信号に基づいて地絡検出の異常を判定する自己診断機能も備えている。図2(c)に示されるように、検出信号として取得された矩形波が正常範囲(設計公差範囲)に含まれる場合、マイコンは装置が機能正常であると判定する。なお、マイコンは、図示しないCPU、ROM、EEPROM、RAM等を備え、ROM等に記憶されたプログラムに従って地絡検出や自己診断を行うように設定されている。   The microcomputer also has a self-diagnosis function for determining an abnormality in ground fault detection based on a detection signal input from the A / D converter. As shown in FIG. 2C, when the rectangular wave acquired as the detection signal is included in the normal range (design tolerance range), the microcomputer determines that the device is functioning normally. The microcomputer includes a CPU, ROM, EEPROM, RAM, and the like (not shown), and is set to perform ground fault detection and self-diagnosis according to a program stored in the ROM.

本発明では、検出信号が正常範囲に含まれる場合、マイコンは検出信号が示す電圧値を真値として正常範囲を補正する機能も備えている。本来であれば検出信号は常に出荷時の値を示すことが理想であるが、温度特性や劣化特性によって誤差が生じたとしても正常には変わりはないので、現在の検出信号が示す値を真値として正常範囲を補正(更新)する。   In the present invention, when the detection signal is included in the normal range, the microcomputer also has a function of correcting the normal range using the voltage value indicated by the detection signal as a true value. Ideally, the detection signal should always show the value at the time of shipment, but even if an error occurs due to temperature characteristics or deterioration characteristics, it does not change normally, so the value indicated by the current detection signal is true. The normal range is corrected (updated) as a value.

また、マイコンは検出信号が抵抗R1、R2の抵抗値に応じて予め設定された正常範囲に含まれるかを判定する。そして、検出信号が正常範囲に含まれない場合、マイコンは異常が生じていると判定する。図2(d)に示されるように、検出信号として取得された矩形波が正常範囲から外れる場合、マイコンは装置が機能異常(故障)であると判定する。   Further, the microcomputer determines whether the detection signal is included in a normal range set in advance according to the resistance values of the resistors R1 and R2. If the detection signal is not included in the normal range, the microcomputer determines that an abnormality has occurred. As shown in FIG. 2D, when the rectangular wave acquired as the detection signal is out of the normal range, the microcomputer determines that the device is malfunctioning (failure).

そして、マイコンは、擬似絶縁抵抗低下部10の各スイッチSW1、SW2を制御して抵抗R1および抵抗R2の合成抵抗値を変化させることにより、擬似絶縁抵抗低下を複数のパターンで実施する。擬似絶縁抵抗低下部10には2個のスイッチSW1、SW2が設けられているので、マイコンは3つのパターンの擬似絶縁抵抗低下を起こさせることができる。   The microcomputer controls the switches SW1 and SW2 of the pseudo insulation resistance lowering unit 10 to change the combined resistance value of the resistors R1 and R2, thereby implementing the pseudo insulation resistance reduction in a plurality of patterns. Since the two switches SW1 and SW2 are provided in the pseudo insulation resistance lowering unit 10, the microcomputer can cause three patterns of pseudo insulation resistance reduction.

このように、複数のパターンで擬似絶縁抵抗低下を起こさせる場合、パターン毎に正常範囲が設定される。したがって、マイコンは、パターン毎に図2(c)に示す正常判定や図2(d)に示す異常判定を行う。   As described above, when the pseudo insulation resistance is lowered in a plurality of patterns, a normal range is set for each pattern. Therefore, the microcomputer performs the normality determination shown in FIG. 2C and the abnormality determination shown in FIG.

以上が、本実施形態に係る地絡検出装置およびシステムの全体構成である。このような地絡検出装置では、信号入力部32で生成された矩形波を配線経路12に出力し、抵抗20とコンデンサ11との間の接続点の電圧を信号入力部32で取得し、この電圧に基づいて高電圧電源系40の地絡検出を行う。   The above is the overall configuration of the ground fault detection device and system according to the present embodiment. In such a ground fault detection device, the rectangular wave generated by the signal input unit 32 is output to the wiring path 12, and the voltage at the connection point between the resistor 20 and the capacitor 11 is acquired by the signal input unit 32. The ground fault detection of the high voltage power supply system 40 is performed based on the voltage.

次に、地絡検出装置の故障診断の作動について、図3および図4を参照して説明する。図3は、マイコンが実行する内容を表したフローチャートである。図4は、2個の抵抗R1、R2の合成抵抗値(擬似地絡抵抗R)と検出信号との相関関係を示した図である。   Next, the fault diagnosis operation of the ground fault detection device will be described with reference to FIGS. FIG. 3 is a flowchart showing the contents executed by the microcomputer. FIG. 4 is a diagram showing the correlation between the combined resistance value (pseudo ground fault resistance R) of the two resistors R1 and R2 and the detection signal.

ここで、抵抗R1の抵抗値を200kΩとし、抵抗R2の抵抗値を300kΩとする。これにより、スイッチSW1がONし、スイッチSW2がONしたときのパターンAの擬似地絡抵抗Rは120kΩとなる。また、スイッチSW1がONし、スイッチSW2がOFFしたときのパターンBの擬似地絡抵抗Rは200kΩとなる。さらに、スイッチSW1がOFFし、スイッチSW2がONしたときのパターンCの擬似地絡抵抗Rは300kΩとなる。   Here, the resistance value of the resistor R1 is 200 kΩ, and the resistance value of the resistor R2 is 300 kΩ. Thereby, the pseudo ground fault resistance R of the pattern A when the switch SW1 is turned on and the switch SW2 is turned on becomes 120 kΩ. Further, the pseudo ground fault resistance R of the pattern B when the switch SW1 is turned on and the switch SW2 is turned off is 200 kΩ. Furthermore, the pseudo ground fault resistance R of the pattern C when the switch SW1 is turned off and the switch SW2 is turned on is 300 kΩ.

図3に示すフローチャートは、例えば地絡検出装置の起動時や上位ECUの指令に従ってスタートする。   The flowchart shown in FIG. 3 starts, for example, when the ground fault detection device is activated or according to a command from the host ECU.

まず、ステップ100では、自己診断可能か否かが判定される。ハイブリッド車等では高電圧電源系40でノイズが発生するような状況での故障診断は好ましくないためである。例えば、イグニッションオン時やスタート時等が好ましい。本ステップではこのような状況にあるか否かが判定される。   First, in step 100, it is determined whether self-diagnosis is possible. This is because, in a hybrid vehicle or the like, failure diagnosis in a situation where noise is generated in the high voltage power supply system 40 is not preferable. For example, it is preferable when the ignition is on or at the start. In this step, it is determined whether or not such a situation exists.

そして、自己診断不可能であると判定されると自己診断が可能となるまでステップ100を繰り返し、自己診断可能であると判定されるとステップ110に進む。   If it is determined that self-diagnosis is not possible, step 100 is repeated until self-diagnosis is possible, and if it is determined that self-diagnosis is possible, the process proceeds to step 110.

ステップ110では、擬似地絡発生が行われる。すなわち、マイコンにより上述の3つのパターンにスイッチSW1、SW2が制御される。これにより、各パターンでの検出信号がそれぞれ取得される。   In step 110, a pseudo ground fault is generated. That is, the switches SW1 and SW2 are controlled by the microcomputer in the above three patterns. Thereby, the detection signal in each pattern is acquired.

ステップ120では、ステップ110で取得された検出信号が示す電圧値が正常範囲内に含まれるか否かが判定される。「正常範囲」とは、設計上、この範囲内なら劣化を含めた部品公差内であると言える範囲である。この正常範囲のデータは、地絡検出装置の製造時に予めマイコンに記憶されている。   In step 120, it is determined whether or not the voltage value indicated by the detection signal acquired in step 110 is within the normal range. The “normal range” is a range that can be said to be within a component tolerance including deterioration within this range in terms of design. The data in the normal range is stored in advance in the microcomputer when the ground fault detection device is manufactured.

そして、少なくとも1つのパターンで検出信号が示す電圧値がそれぞれ正常範囲内に含まれない場合はステップ130に進み、地絡検出装置の異常判定がなされる。この場合は、マイコンから上位ECU等にその報告がなされる。異常判定の場合は検出信号が示す電圧値が図4に示される正常範囲内に含まれない場合となる。こうして図3に示すフローチャートが終了する。   When the voltage value indicated by the detection signal in at least one pattern is not included in the normal range, the process proceeds to step 130, and the abnormality determination of the ground fault detection device is performed. In this case, the microcomputer reports it to the host ECU or the like. In the case of abnormality determination, the voltage value indicated by the detection signal is not included in the normal range shown in FIG. Thus, the flowchart shown in FIG. 3 ends.

なお、図4において、300kΩ以上の「安全領域」ではユーザがシステムに触れても問題ない領域であり、120kΩ以下の「危険領域」ではユーザがシステムに触れると感電する領域である。また、「中間領域」は安全と危険との間のグレーゾーンであり、ユーザはシステムに触れないほうが良い領域である。   In FIG. 4, the “safe area” of 300 kΩ or more is an area where there is no problem even if the user touches the system, and the “dangerous area” of 120 kΩ or less is an area where an electric shock is received when the user touches the system. The “intermediate area” is a gray zone between safety and danger, and the user should not touch the system.

これに対し、ステップ120において全てのパターンで検出信号が示す電圧値が正常範囲内に含まれる場合はステップ140に進む。これは図4に示される場合である。図4では全てのパターンA、B、Cで検出信号が示す電圧値がそれぞれ正常範囲内に含まれている。   On the other hand, when the voltage value indicated by the detection signal in all patterns is included in the normal range in step 120, the process proceeds to step 140. This is the case shown in FIG. In FIG. 4, the voltage values indicated by the detection signals in all patterns A, B, and C are included in the normal range.

そして、ステップ140では、補正可能か否かが判定される。補正可能か否かは、各パターンの検出信号を結んだ線が正常範囲内に位置しているか否かで判定される。図4に示されるように、出荷時に3点を結んだ線は正常範囲内に位置している。このような場合は補正可能であるとして、ステップ150に進む。なお、結ぶ点は3点でなく、2点でも良い。   In step 140, it is determined whether correction is possible. Whether or not correction is possible is determined by whether or not the line connecting the detection signals of each pattern is located within the normal range. As shown in FIG. 4, the line connecting the three points at the time of shipment is located within the normal range. In such a case, it can be corrected and the process proceeds to step 150. The connecting points may be two points instead of three.

ステップ150では、補正が実施される。「補正」とは、現在の検出信号が示す電圧値を真値として補正することである。   In step 150, correction is performed. “Correction” means correcting the voltage value indicated by the current detection signal as a true value.

温度特性や経年劣化による誤差が生じると、図4のパターンAやパターンCのように検出信号が示す電圧値が出荷時の値からずれる。このようなずれが生じたとしても、本ステップにおいて真値を補正することにより、温度特性や経年劣化に伴うずれに対応することができる。こうして、図3に示すフローチャートが終了する。   When an error due to temperature characteristics or aging occurs, the voltage value indicated by the detection signal deviates from the value at the time of shipment as in pattern A and pattern C in FIG. Even if such a deviation occurs, it is possible to cope with a deviation caused by temperature characteristics or aged deterioration by correcting the true value in this step. Thus, the flowchart shown in FIG. 3 ends.

一方、ステップ140において、3点ないし2点の検出信号を結んだ線が正常範囲から外れる場合はステップ160に進む。ステップ160では、補正を実施せずに診断回路異常が上位ECU等に報告される。検出信号を結んだ線が正常範囲から外れるということは、地絡検出回路自体の特性故障もしくは、擬似絶縁抵抗低下部10の抵抗R1や抵抗R2の抵抗値にずれが生じている等の回路異常が発生していると考えられる。したがって、このような場合には真値の補正をせずに異常の報告がなされ、図3に示すフローチャートが終了する。   On the other hand, if it is determined in step 140 that the line connecting the three or two detection signals is out of the normal range, the process proceeds to step 160. In step 160, the diagnosis circuit abnormality is reported to the host ECU or the like without performing correction. The fact that the line connecting the detection signals is out of the normal range means that a circuit fault such as a characteristic failure of the ground fault detection circuit itself or a deviation in the resistance values of the resistance R1 and the resistance R2 of the pseudo insulation resistance lowering portion 10 occurs. Is considered to have occurred. Therefore, in such a case, an abnormality is reported without correcting the true value, and the flowchart shown in FIG. 3 ends.

以上説明したように、本実施形態では、地絡検出装置の故障診断機能において、検出信号が正常範囲内に含まれていない場合は異常であると判定することが特徴となっている。このように、異常を判定するための判定値が幅を持った範囲に設定されているので、検出信号が正常範囲外であれば故障であると判定することができる。また、検出信号が正常範囲内に含まれていれば、その検出信号を真値とすることで温度特性や劣化特性による誤差に対して補正することができる。したがって、故障の判定精度を向上させることができる。   As described above, the present embodiment is characterized in that, in the fault diagnosis function of the ground fault detection device, it is determined that the detection signal is abnormal when the detection signal is not included in the normal range. Thus, since the determination value for determining abnormality is set in a range having a width, it can be determined that a failure has occurred if the detection signal is outside the normal range. Further, if the detection signal is included in the normal range, an error due to temperature characteristics or deterioration characteristics can be corrected by setting the detection signal to a true value. Therefore, the failure determination accuracy can be improved.

また、擬似絶縁抵抗低下部10の各スイッチSW1、SW2の切り替えにより、抵抗R1および抵抗R2の合成抵抗値を複数のパターンに変更できるので、複数の検出信号を結ぶ線での故障判定が可能となる。このため、故障判定の信頼性を向上させることができる。   In addition, since the combined resistance value of the resistor R1 and the resistor R2 can be changed into a plurality of patterns by switching the switches SW1 and SW2 of the pseudo insulation resistance lowering unit 10, it is possible to determine a failure on a line connecting a plurality of detection signals. Become. For this reason, the reliability of failure determination can be improved.

なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、抵抗R1および抵抗R2が特許請求の範囲の「故障診断用の抵抗」に対応し、異常を判定するマイコンを備えた制御部30が特許請求の範囲の「判定手段」に対応する。また、擬似絶縁抵抗低下部10が特許請求の範囲の「擬似絶縁抵抗低下手段」に対応する。   As for the correspondence relationship between the description of the present embodiment and the description of the claims, the resistor R1 and the resistor R2 correspond to the “resistance for fault diagnosis” of the claims and include a microcomputer for determining an abnormality. The control unit 30 corresponds to “determination means” in the claims. The pseudo insulation resistance lowering unit 10 corresponds to “pseudo insulation resistance lowering means” in the claims.

(第2実施形態)
本実施形態では、第1実施形態と異なる部分について説明する。第1実施形態では、擬似絶縁抵抗低下部10の各抵抗R1、R2は並列接続されていたが、本実施形態では直列接続されている。以下、その構成について説明する。
(Second Embodiment)
In the present embodiment, parts different from the first embodiment will be described. In the first embodiment, the resistors R1 and R2 of the pseudo insulation resistance lowering unit 10 are connected in parallel, but in the present embodiment, they are connected in series. Hereinafter, the configuration will be described.

図5は、本実施形態に係る地絡検出装置を含んだ全体システム図である。この図に示されるように、擬似絶縁抵抗低下部10は直列接続された3つの抵抗R1、抵抗R2、および抵抗R3と、抵抗R1に並列接続されたスイッチSW1と、抵抗R2に並列接続されたスイッチSW2と、抵抗R3に接続されたスイッチSW3と、を備えて構成されている。   FIG. 5 is an overall system diagram including the ground fault detection apparatus according to the present embodiment. As shown in this figure, the pseudo insulation resistance lowering unit 10 is connected in parallel to three resistors R1, R2, and R3 connected in series, a switch SW1 connected in parallel to the resistor R1, and a resistor R2. The switch SW2 and the switch SW3 connected to the resistor R3 are provided.

抵抗R1〜R3とスイッチSW3が直列接続されている。また、抵抗R1がコンデンサ11と抵抗20との間の接続点に接続され、スイッチSW3が車体60に接続されている。   Resistors R1 to R3 and a switch SW3 are connected in series. Further, the resistor R1 is connected to a connection point between the capacitor 11 and the resistor 20, and the switch SW3 is connected to the vehicle body 60.

スイッチSW3は単体で高電圧電源系40側と車体60側とを絶縁する必要があるので、高耐圧のものが用いられる。スイッチSW1およびスイッチSW2は抵抗R1〜R3によって分圧されるので、スイッチSW3ほどの耐圧は必要ない。   Since the switch SW3 needs to insulate the high voltage power supply system 40 side from the vehicle body 60 side as a single unit, a switch with a high breakdown voltage is used. Since the switch SW1 and the switch SW2 are divided by the resistors R1 to R3, the breakdown voltage is not as high as that of the switch SW3.

なお、スイッチSW1〜SW3は制御部30のマイコンによって制御される。また、擬似絶縁抵抗低下部10以外の他の構成は図1に示された構成と同じである。   The switches SW1 to SW3 are controlled by the microcomputer of the control unit 30. Further, the configuration other than the pseudo insulation resistance lowering portion 10 is the same as the configuration shown in FIG.

図6は、3個の抵抗R1〜R3の合成抵抗値(擬似地絡抵抗R)と検出信号との相関関係を示した図である。本実施形態では、各抵抗R1〜R3の抵抗値をそれぞれ100kΩとする。これにより、全てのスイッチSW1〜SW3がONしたときのパターンAの擬似地絡抵抗Rは100kΩとなる。また、スイッチSW1がOFFし、スイッチSW2およびスイッチSW3がONしたときのパターンBの擬似地絡抵抗Rは200kΩとなる。さらに、スイッチSW1およびスイッチSW2がOFFし、スイッチSW3がONしたときのパターンCの擬似地絡抵抗Rは300kΩとなる。   FIG. 6 is a diagram showing a correlation between the combined resistance value (pseudo ground fault resistance R) of the three resistors R1 to R3 and the detection signal. In the present embodiment, the resistance values of the resistors R1 to R3 are each 100 kΩ. Thereby, the pseudo ground fault resistance R of the pattern A when all the switches SW1 to SW3 are turned ON becomes 100 kΩ. Further, the pseudo ground fault resistance R of the pattern B when the switch SW1 is turned off and the switch SW2 and the switch SW3 are turned on is 200 kΩ. Furthermore, when the switch SW1 and the switch SW2 are turned off and the switch SW3 is turned on, the pseudo ground fault resistance R of the pattern C is 300 kΩ.

このように、各抵抗R1〜R3が直列接続される構成では、3個の抵抗R1〜R3の合成抵抗値(擬似地絡抵抗R)を設定しやすいという利点がある。   Thus, in the configuration in which the resistors R1 to R3 are connected in series, there is an advantage that it is easy to set the combined resistance value (pseudo ground fault resistance R) of the three resistors R1 to R3.

以上のように、擬似絶縁抵抗低下部10の各抵抗R1〜R3を直列接続した構成においても、検出信号が正常範囲内であるか否かを判定することにより、故障の判定精度を向上させることができる。   As described above, even in the configuration in which the resistors R1 to R3 of the pseudo insulation resistance lowering unit 10 are connected in series, it is possible to improve the failure determination accuracy by determining whether or not the detection signal is within the normal range. Can do.

なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、抵抗R1〜R3が特許請求の範囲の「故障診断用の抵抗」に対応する。   Regarding the correspondence between the description of the present embodiment and the description of the claims, the resistors R1 to R3 correspond to the “resistance for failure diagnosis” in the claims.

(他の実施形態)
上記各実施形態で示された構成は一例であり、上記で示した構成に限定されることなく、本発明を実現できる他の構成とすることもできる。例えば、擬似絶縁抵抗低下部10におけるスイッチSW1〜SW3の数は2個ないし3個ではなく1個でも良い。このような場合には、図4や図6に示される危険領域の1点のみを検出する構成とすることが好ましい。
(Other embodiments)
The configurations shown in the above embodiments are examples, and the present invention is not limited to the configurations described above, and other configurations that can realize the present invention may be employed. For example, the number of switches SW1 to SW3 in the pseudo insulation resistance lowering unit 10 may be one instead of two or three. In such a case, it is preferable that only one point in the dangerous area shown in FIGS. 4 and 6 is detected.

また、擬似絶縁抵抗低下部10にコンデンサ11が備えられた構成となっているが、これは構成の一例であり、コンデンサ11は擬似絶縁抵抗低下部10に含まれていなくても良い。   Moreover, although the capacitor 11 is provided in the pseudo insulation resistance lowering portion 10, this is an example of the configuration, and the capacitor 11 may not be included in the pseudo insulation resistance lowering portion 10.

さらに、合成抵抗値(擬似地絡抵抗R)のパターンについても3つのパターンに限らない。1つのパターンを採用する構成でも良いし、4つ以上のパターンを採用する構成でも良い。   Furthermore, the pattern of the combined resistance value (pseudo ground fault resistance R) is not limited to three patterns. A configuration that employs one pattern may be employed, or a configuration that employs four or more patterns.

10 擬似絶縁抵抗低下部(擬似絶縁抵抗低下手段)
12 配線経路
30 制御部(判定手段)
40 高電圧電源系
60 車体
R1〜R3 抵抗
10 Pseudo insulation resistance reduction part (Pseudo insulation resistance reduction means)
12 Wiring path 30 Control unit (determination means)
40 High-voltage power supply system 60 Car body R1-R3 Resistance

Claims (3)

絶縁された状態で車両に搭載される高電圧電源系(40)の地絡検出を行う地絡検出装置であって、
故障診断用の抵抗(R1〜R3)を介して前記高電圧電源系(40)と前記車両の車体(60)とを電気的に接続することにより前記高電圧電源系(40)に擬似絶縁抵抗低下を発生させる擬似絶縁抵抗低下手段(10)と、
前記擬似絶縁抵抗低下の発生時に前記高電圧電源系(40)と前記抵抗(R1〜R3)とを結ぶ配線経路(12)に所定の信号を入力したときの応答を検出信号として取得すると共に、この検出信号が前記抵抗(R1〜R3)の抵抗値に応じて設定された正常範囲に含まれるかを判定し、前記検出信号が前記正常範囲に含まれない場合は異常であると判定する判定手段(30)と、を備えていることを特徴とする地絡検出装置。
A ground fault detection device for detecting a ground fault of a high voltage power supply system (40) mounted on a vehicle in an insulated state,
By electrically connecting the high voltage power supply system (40) and the vehicle body (60) of the vehicle via resistances (R1 to R3) for fault diagnosis, a pseudo insulation resistance is provided to the high voltage power supply system (40). Pseudo-insulation resistance lowering means (10) for generating a decrease;
A response when a predetermined signal is input to the wiring path (12) connecting the high-voltage power supply system (40) and the resistors (R1 to R3) when the pseudo-insulation resistance is reduced is acquired as a detection signal. It is determined whether or not the detection signal is included in a normal range set according to the resistance values of the resistors (R1 to R3), and it is determined that the detection signal is abnormal when the detection signal is not included in the normal range. A ground fault detection device comprising: means (30).
前記判定手段(30)は、前記検出信号が前記正常範囲に含まれる場合は、前記検出信号が示す値を真値として補正することを特徴とする請求項1に記載の地絡検出装置。   The ground fault detection device according to claim 1, wherein when the detection signal is included in the normal range, the determination unit (30) corrects a value indicated by the detection signal as a true value. 前記擬似絶縁抵抗低下手段(10)は、前記抵抗(R1〜R3)の抵抗値を変化させることにより、前記擬似絶縁抵抗低下を複数のパターンで実施することを特徴とする請求項1または2に記載の地絡検出装置。   3. The pseudo insulation resistance lowering means (10) implements the pseudo insulation resistance reduction in a plurality of patterns by changing a resistance value of the resistors (R1 to R3). The ground fault detection apparatus of description.
JP2011199280A 2011-09-13 2011-09-13 Ground fault detection device Active JP5569492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011199280A JP5569492B2 (en) 2011-09-13 2011-09-13 Ground fault detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011199280A JP5569492B2 (en) 2011-09-13 2011-09-13 Ground fault detection device

Publications (2)

Publication Number Publication Date
JP2013061215A true JP2013061215A (en) 2013-04-04
JP5569492B2 JP5569492B2 (en) 2014-08-13

Family

ID=48186006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011199280A Active JP5569492B2 (en) 2011-09-13 2011-09-13 Ground fault detection device

Country Status (1)

Country Link
JP (1) JP5569492B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095628A (en) * 2012-11-09 2014-05-22 Toyota Motor Corp Insulation resistance reduction detection apparatus, vehicle including the same, and insulation resistance reduction detection method
CN104316812A (en) * 2013-12-19 2015-01-28 郑州宇通客车股份有限公司 Temperature acquisition fault diagnosis method in battery management system
JP2015156766A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Rail track traveling electric vehicle degradation detector and rail track travel electric vehicle
FR3028049A1 (en) * 2014-11-04 2016-05-06 Continental Automotive France METHOD FOR DIAGNOSING A MASS FAULT IN A STARTING / STARTING MEMBER OF A MOTOR VEHICLE
CN113009302A (en) * 2021-03-18 2021-06-22 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile
CN114217134A (en) * 2021-11-01 2022-03-22 通富微电子股份有限公司 Ground resistance monitor and ground resistance monitoring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108977A (en) * 1997-10-06 1999-04-23 Nissan Motor Co Ltd Tester for sensor for deterioration in insulation
JP2004354247A (en) * 2003-05-29 2004-12-16 Denso Corp Inspection system of electric leakage sensor
JP2006170714A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Ground fault detector, method of setting threshold for ground fault detector
JP2009236536A (en) * 2008-03-26 2009-10-15 Calsonic Kansei Corp Self-diagnostic device of meter
JP2010286306A (en) * 2009-06-10 2010-12-24 Yazaki Corp Insulation resistance detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11108977A (en) * 1997-10-06 1999-04-23 Nissan Motor Co Ltd Tester for sensor for deterioration in insulation
JP2004354247A (en) * 2003-05-29 2004-12-16 Denso Corp Inspection system of electric leakage sensor
JP2006170714A (en) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd Ground fault detector, method of setting threshold for ground fault detector
JP2009236536A (en) * 2008-03-26 2009-10-15 Calsonic Kansei Corp Self-diagnostic device of meter
JP2010286306A (en) * 2009-06-10 2010-12-24 Yazaki Corp Insulation resistance detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095628A (en) * 2012-11-09 2014-05-22 Toyota Motor Corp Insulation resistance reduction detection apparatus, vehicle including the same, and insulation resistance reduction detection method
CN104316812A (en) * 2013-12-19 2015-01-28 郑州宇通客车股份有限公司 Temperature acquisition fault diagnosis method in battery management system
JP2015156766A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Rail track traveling electric vehicle degradation detector and rail track travel electric vehicle
FR3028049A1 (en) * 2014-11-04 2016-05-06 Continental Automotive France METHOD FOR DIAGNOSING A MASS FAULT IN A STARTING / STARTING MEMBER OF A MOTOR VEHICLE
WO2016070973A1 (en) * 2014-11-04 2016-05-12 Continental Automotive France Method for diagnosing an earth fault of a start/stop unit of a motor vehicle
CN107076793A (en) * 2014-11-04 2017-08-18 法国大陆汽车公司 The diagnostic method of the earth fault of the starting/stopping component of motor vehicles
US10215790B2 (en) 2014-11-04 2019-02-26 Continental Automotive France Method for diagnosing an earth fault of a start/stop unit of a motor vehicle
CN113009302A (en) * 2021-03-18 2021-06-22 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile
CN113009302B (en) * 2021-03-18 2023-03-21 奇瑞新能源汽车股份有限公司 Method and device for positioning insulation fault of high-voltage system of electric automobile
CN114217134A (en) * 2021-11-01 2022-03-22 通富微电子股份有限公司 Ground resistance monitor and ground resistance monitoring system
CN114217134B (en) * 2021-11-01 2023-11-17 通富微电子股份有限公司 Ground resistance monitor and ground resistance monitoring system

Also Published As

Publication number Publication date
JP5569492B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5569492B2 (en) Ground fault detection device
US8847605B2 (en) Connection diagnostic apparatus for ground fault detector
CN106536260B (en) Battery system and method for operating the battery system
KR102155973B1 (en) Half-bridge driver fault diagnosis system and method
JP4707638B2 (en) Power supply for vehicle
US10317455B2 (en) Apparatus and method for monitoring an electrical insulation for an onboard power supply system of a vehicle
US20120098470A1 (en) Electronic control unit including discharging circuit with plurality of resistors connected in series
US9007068B2 (en) Method for detecting an electrical fault in an electrical network of a motor vehicle
US10139453B2 (en) Battery voltage monitoring device using capacitor circuit and switch failure detection circuit
US20120299599A1 (en) Electric leakage sensing apparatus
WO2015076173A1 (en) Midway fault diagnostic system and electric power steering device equipped with same
JP2011078165A (en) Voltage monitoring apparatus
US10970147B2 (en) Electronic control device and operation control method therefor
JP2013068479A (en) Leak detection device
JP5423766B2 (en) Ground fault detection device
KR20130032504A (en) Circuit for monitoring relay
KR20090012456A (en) Electrical isolation detection system and method for hybrid vehicle, electric vehicle, fuel cell vehicle
JP5573800B2 (en) Ground fault detection device
JP5708576B2 (en) Insulation drop detection device
JP5917154B2 (en) Shift position detector
JP6329648B2 (en) Failure detection device
JP5742745B2 (en) Battery status monitoring device
JP2014176227A (en) Leakage detection device
JP6341069B2 (en) Electronic control unit
JP2014149276A (en) Electrical leak detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5569492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250