JP2007147391A - Insulation resistance measurement system - Google Patents

Insulation resistance measurement system Download PDF

Info

Publication number
JP2007147391A
JP2007147391A JP2005340792A JP2005340792A JP2007147391A JP 2007147391 A JP2007147391 A JP 2007147391A JP 2005340792 A JP2005340792 A JP 2005340792A JP 2005340792 A JP2005340792 A JP 2005340792A JP 2007147391 A JP2007147391 A JP 2007147391A
Authority
JP
Japan
Prior art keywords
insulation resistance
fuel cell
sensor
electric motor
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005340792A
Other languages
Japanese (ja)
Inventor
Toru Fuse
徹 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005340792A priority Critical patent/JP2007147391A/en
Publication of JP2007147391A publication Critical patent/JP2007147391A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulation resistance measuring system capable of reducing the measurement errors of an insulation resistance sensor 5, even if the floating capacitance of a high-voltage part changes according to the state of connection among an electric motor 1, and to provide a fuel cell 2, to and a secondary cell 3. <P>SOLUTION: An insulation resistance measuring system is provided with a high-voltage part comprising at least an electric motor 1; a fuel cell 2 for supplying electric power for the electric motor; a secondary cell 3 for charging and discharging electric power between the electric motor and the fuel cell; and a high-voltage path 4 for electrically connecting between the electric motor, the fuel cell, and the secondary cell; an insulation resistance sensor 5 for measuring the insulation resistance between the high-voltage part and the ground potential; and a cut-off part for cutting off the electric motor, the fuel cell, and the secondary cell from the high-voltage path. A sensor correction part 14 corrects the sensor value that is measured by the insulation resistance sensor, according to the state of connection between the electric motor, the fuel cell, and the secondary cell. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、測定対象が備える浮遊容量を考慮した絶縁抵抗測定システムに関する。   The present invention relates to an insulation resistance measurement system that takes into account the stray capacitance of a measurement object.

電気自動車のように駆動源として高電圧の2次電池を備えた高電圧システムにおいては、2次電池による感電を防止するために車両ボディ(接地電位)と2次電池(高電圧部)とが電気的に絶縁された構造となっているのが一般的である。   In a high voltage system including a high voltage secondary battery as a drive source like an electric vehicle, a vehicle body (ground potential) and a secondary battery (high voltage section) are provided to prevent electric shock from the secondary battery. Generally, the structure is electrically insulated.

ところが、例えば2次電池の材質変質或いは付着物等が原因で、その絶縁特性が劣化して車両ボディと2次電池とが電気的に接続されてしまうという問題があった。   However, there has been a problem that, for example, due to material deterioration or deposits of the secondary battery, the insulation characteristics deteriorate and the vehicle body and the secondary battery are electrically connected.

そこで従来から、車両ボディと2次電池との間の絶縁抵抗を時系列的に測定して絶縁抵抗の劣化を検出する絶縁抵抗劣化検出方法が提案されている(例えば、特許文献1など参照)。特許文献1では、2次電池等の強電機器に浮遊容量が存在する場合、あらかじめ高電圧システムの浮遊容量を検査しておき、浮遊容量から算出した一定の補正値に基づいて絶縁抵抗のセンサ値(測定値)を補正している。
特開2002−323526
Therefore, conventionally, an insulation resistance deterioration detection method has been proposed in which the insulation resistance between the vehicle body and the secondary battery is measured in time series to detect the deterioration of the insulation resistance (see, for example, Patent Document 1). . In Patent Document 1, when a stray capacitance is present in a high voltage device such as a secondary battery, the stray capacitance of the high voltage system is inspected in advance, and the sensor value of the insulation resistance is calculated based on a certain correction value calculated from the stray capacitance. (Measurement value) is corrected.
JP 2002-323526 A

特許文献1では、高電圧システムの浮遊容量は変化しないことが前提とされているが、浮遊容量が変化するシステムでは、絶縁抵抗値に誤差が発生してしまう。   In Patent Document 1, it is assumed that the stray capacitance of the high voltage system does not change. However, in a system in which the stray capacitance changes, an error occurs in the insulation resistance value.

特に、燃料電池自動車は、燃料電池、電動モータ、及び燃料電池を駆動するための補機装置等、高電圧部に装着された複数のユニットを備えるため、浮遊容量が電気自動車に比べて大きい。これら浮遊容量の変動が、コンデンサカップリング型の絶縁抵抗センサの誤差要因となり、絶縁抵抗値の検出精度が低下してしまう。   In particular, since a fuel cell vehicle includes a plurality of units mounted on a high voltage unit such as a fuel cell, an electric motor, and an auxiliary device for driving the fuel cell, the floating capacity is larger than that of an electric vehicle. These fluctuations in the stray capacitance become an error factor of the capacitor coupling type insulation resistance sensor, and the detection accuracy of the insulation resistance value is lowered.

本発明は、コンデンサカップリング方式の絶縁抵抗センサを用いて絶縁抵抗を測定する絶縁抵抗測定システムにおいて、計測対象の浮遊容量が変化しても絶縁抵抗センサの測定誤差を小さく抑えることを目的とする。   It is an object of the present invention to suppress a measurement error of an insulation resistance sensor to be small even in a case where a stray capacitance to be measured changes in an insulation resistance measurement system that measures insulation resistance using a capacitor coupling type insulation resistance sensor. .

本発明は、電動モータと、この電動モータへ電力を供給する燃料電池と、電動モータ及び燃料電池との間で電力の充放電を行う2次電池と、電動モータ、燃料電池、及び2次電池の間を電気的に接続する高電圧経路とを少なくとも有する高電圧部と、高電圧部と接地電位間の絶縁抵抗を測定する絶縁抵抗センサと、電動モータ、燃料電池、及び2次電池を高電圧経路から遮断する遮断部とを備える絶縁抵抗測定システムであって、センサ補正部が、電動モータ、燃料電池、及び2次電池の接続状態に応じて絶縁抵抗センサが測定するセンサ値を補正することを特徴とする。   The present invention relates to an electric motor, a fuel cell that supplies electric power to the electric motor, a secondary battery that charges and discharges electric power between the electric motor and the fuel cell, an electric motor, a fuel cell, and a secondary battery. A high-voltage unit having at least a high-voltage path that is electrically connected to each other, an insulation resistance sensor that measures an insulation resistance between the high-voltage unit and the ground potential, an electric motor, a fuel cell, and a secondary battery. An insulation resistance measurement system including a cutoff unit that cuts off from a voltage path, wherein the sensor correction unit corrects a sensor value measured by the insulation resistance sensor according to a connection state of the electric motor, the fuel cell, and the secondary battery. It is characterized by that.

本発明によれば、電動モータ、燃料電池、及び2次電池の接続状態に応じて高電圧部の浮遊容量が変化しても絶縁抵抗センサの測定誤差を小さく抑える絶縁抵抗測定システムを提供することができる。   According to the present invention, there is provided an insulation resistance measurement system that suppresses measurement errors of an insulation resistance sensor even when the stray capacitance of a high voltage portion changes according to the connection state of an electric motor, a fuel cell, and a secondary battery. Can do.

以下図面を参照して、本発明の実施の形態を説明する。図面の記載において同一あるいは類似の部分には同一あるいは類似な符号を付している。   Embodiments of the present invention will be described below with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals.

[構成]
図1を参照して、本発明の実施の形態に係わる絶縁抵抗測定システムを説明する。ここでは、絶縁抵抗測定システムが、燃料ガスと酸化剤ガスとの化学反応により発電を行う燃料電池システムに対して適用された場合について説明する。更に、当該燃料電池システムが車両に搭載され、車両の駆動源として用いられている燃料電池自動車の例について説明する。
[Constitution]
With reference to FIG. 1, an insulation resistance measurement system according to an embodiment of the present invention will be described. Here, a case will be described in which the insulation resistance measurement system is applied to a fuel cell system that generates power by a chemical reaction between a fuel gas and an oxidant gas. Further, an example of a fuel cell vehicle in which the fuel cell system is mounted on a vehicle and used as a vehicle drive source will be described.

絶縁抵抗測定システムは、高電圧が印加される高電圧部と、高電圧部と接地電位間の絶縁抵抗を測定する絶縁抵抗センサ5と、絶縁抵抗センサ5が測定した絶縁抵抗のセンサ値から高電圧部の絶縁抵抗値を求めるコントローラ6とを備える。   The insulation resistance measurement system includes a high voltage portion to which a high voltage is applied, an insulation resistance sensor 5 that measures the insulation resistance between the high voltage portion and the ground potential, and a high value from the sensor value of the insulation resistance measured by the insulation resistance sensor 5. And a controller 6 for obtaining an insulation resistance value of the voltage section.

高電圧部は、電動モータ1と、電動モータ1へ電力を供給する燃料電池2と、電動モータ1及び燃料電池2との間で電力の充放電を行う2次電池3と、電動モータ1、燃料電池2、及び2次電池3の間を電気的に接続する高電圧経路4と、燃料電池2と高電圧経路4との接続を遮断する燃料電池側リレー8と、2次電池3と高電圧経路4との間に接続されたコンバータ12と、2次電池3とコンバータ12との間に接続された2次電池側リレー19と、燃料電池2に空気を供給するコンプレッサ20と、高電圧経路4とコンプレッサ20との間に接続されたコンプレッサ側リレー21と、高電圧経路4に接続された低電圧補機22及び低電圧バッテリ23と、高電圧経路4と低電圧補機22及び低電圧バッテリ23の間に接続されたDCDCコンバータ24と、高電圧経路4とDCDCコンバータ24との間に接続された低電圧側リレー25と、高電圧経路4に接続されたエアコン26と、高電圧経路とエアコン26との間に接続されたエアコン側リレー27とを備える。   The high voltage unit includes an electric motor 1, a fuel cell 2 that supplies electric power to the electric motor 1, a secondary battery 3 that charges and discharges electric power between the electric motor 1 and the fuel cell 2, an electric motor 1, A high voltage path 4 that electrically connects the fuel cell 2 and the secondary battery 3, a fuel cell side relay 8 that disconnects the connection between the fuel cell 2 and the high voltage path 4, Converter 12 connected between voltage path 4, secondary battery side relay 19 connected between secondary battery 3 and converter 12, compressor 20 for supplying air to fuel cell 2, high voltage The compressor side relay 21 connected between the path 4 and the compressor 20, the low voltage auxiliary machine 22 and the low voltage battery 23 connected to the high voltage path 4, the high voltage path 4, the low voltage auxiliary machine 22, and the low voltage DCDC connected between voltage batteries 23 Inverter 24, low-voltage side relay 25 connected between high voltage path 4 and DCDC converter 24, air conditioner 26 connected to high voltage path 4, and connected between high voltage path and air conditioner 26. The air conditioner side relay 27 is provided.

電動モータ1は、車両を駆動するための駆動モータとして用いられている。また、絶縁抵抗センサ5は、高電圧経路4に接地されている。   The electric motor 1 is used as a drive motor for driving a vehicle. The insulation resistance sensor 5 is grounded to the high voltage path 4.

燃料電池2には、発電において生じる熱を冷却する冷却液が循環する循環路28と、冷却液を冷却するラジエータ30と、冷却液を循環させる循環ポンプ29とが接続されている。ここでは燃料電池2が発電において生成する純水を冷却液として使用する場合について説明する。循環路28には、当該純水の導電率を検知する導電率センサ10が接続されている。検知した導電率はコントローラ6へ送信される。   Connected to the fuel cell 2 are a circulation path 28 through which a coolant that cools the heat generated in power generation circulates, a radiator 30 that cools the coolant, and a circulation pump 29 that circulates the coolant. Here, the case where the pure water which the fuel cell 2 produces | generates in electric power generation is used as a cooling liquid is demonstrated. A conductivity sensor 10 that detects the conductivity of the pure water is connected to the circulation path 28. The detected conductivity is transmitted to the controller 6.

コントローラ6は、絶縁抵抗センサ5が測定した絶縁抵抗のセンサ値を補正して絶縁抵抗の測定誤差を軽減するセンサ補正部14と、燃料電池2の発電電流から純水の量を求める純水量算出部15とを備える。   The controller 6 corrects the sensor value of the insulation resistance measured by the insulation resistance sensor 5 to reduce the measurement error of the insulation resistance, and calculates the pure water amount from which the amount of pure water is obtained from the generated current of the fuel cell 2. Part 15.

センサ補正部14は、電動モータ1、燃料電池2、及び2次電池3(以後、「ユニット」という)の接続状態に応じて、絶縁抵抗センサ5が測定するセンサ値を補正する。つまり、燃料電池側リレー8、2次電池側リレー19、コンプレッサ側リレー21、低電圧側リレー25、及びエアコン側リレー27を含む遮断部の開閉状態に応じてセンサ値を補正する。これにより、燃料電池自動車の起動停止含む動作中において、遮断部によって高電圧経路に接続されている各ユニットが分離した場合の浮遊容量の変化に応じて絶縁抵抗のセンサ値を補正できるので、絶縁抵抗の検出精度を向上できる。   The sensor correction unit 14 corrects the sensor value measured by the insulation resistance sensor 5 according to the connection state of the electric motor 1, the fuel cell 2, and the secondary battery 3 (hereinafter referred to as “unit”). That is, the sensor value is corrected according to the open / close state of the shut-off unit including the fuel cell side relay 8, the secondary battery side relay 19, the compressor side relay 21, the low voltage side relay 25, and the air conditioner side relay 27. As a result, the sensor value of the insulation resistance can be corrected according to the change in the stray capacitance when each unit connected to the high voltage path is separated by the shut-off unit during the operation including starting and stopping of the fuel cell vehicle. Resistance detection accuracy can be improved.

センサ補正部14は、導電率センサ10が求める冷却液の導電率の値に基づいて絶縁抵抗センサ5が測定するセンサ値を補正する。燃料電池2で生成されて、冷却や加湿のために循環させている純水の導電率が低下した場合は浮遊容量も変化する。よって、純水の導電率に応じてセンサ値を補正することで、絶縁抵抗の検出精度を向上できる。   The sensor correction unit 14 corrects the sensor value measured by the insulation resistance sensor 5 based on the conductivity value of the coolant that the conductivity sensor 10 calculates. When the conductivity of pure water generated by the fuel cell 2 and circulated for cooling or humidification is lowered, the stray capacitance also changes. Therefore, the detection accuracy of the insulation resistance can be improved by correcting the sensor value according to the conductivity of pure water.

センサ補正部14は、純水量算出部15が算出した純水の量に基づいてセンサ値を補正する。これにより、燃料電池2から生成される純水の量に基づいてセンサ値を補正することができる。よって、燃料電池2で生成される純水量が変化した場合でも、絶縁抵抗の検出誤差を低減できる。   The sensor correction unit 14 corrects the sensor value based on the amount of pure water calculated by the pure water amount calculation unit 15. Accordingly, the sensor value can be corrected based on the amount of pure water generated from the fuel cell 2. Therefore, even when the amount of pure water produced by the fuel cell 2 changes, the insulation resistance detection error can be reduced.

このように、浮遊容量成分が変化する要因(高電圧ユニットの接続状態、純水の導電率、及び純水の生成量)をあらかじめ調べて変化する特性をコントローラ6に記憶しておき、センサ補正部14は、燃料電池自動車の各装置の動作に応じて絶縁抵抗センサ5のセンサ値を補正する。   As described above, the factors that change the stray capacitance component (the connection state of the high-voltage unit, the conductivity of pure water, and the amount of pure water generated) are examined in advance, and the characteristics that change are stored in the controller 6 for sensor correction. The unit 14 corrects the sensor value of the insulation resistance sensor 5 according to the operation of each device of the fuel cell vehicle.

なお、コンプレッサ20、DCDCコンバータ24、低電圧補機22、低電圧バッテリ23、及びエアコン26は、高電圧補器類13に属する。   The compressor 20, the DCDC converter 24, the low voltage auxiliary machine 22, the low voltage battery 23, and the air conditioner 26 belong to the high voltage auxiliary equipment 13.

図2を参照して、図1の絶縁抵抗センサ5の構成例を説明する。絶縁抵抗センサ5は、正弦波もしくは矩形波などの交流信号を発信する電圧発生器301と、抵抗を介して交流信号を受信して交流信号の波形の振幅を検知する波形検出器302とを備える。高電圧部305は、コンデンサ及び抵抗を介して電圧発生器301に接続されている。また、高電圧部305は、浮遊容量304及び絶縁抵抗303を介して、接地電位としての車体306に接続されている。   With reference to FIG. 2, the structural example of the insulation resistance sensor 5 of FIG. 1 is demonstrated. The insulation resistance sensor 5 includes a voltage generator 301 that transmits an AC signal such as a sine wave or a rectangular wave, and a waveform detector 302 that receives the AC signal via a resistor and detects the amplitude of the waveform of the AC signal. . The high voltage unit 305 is connected to the voltage generator 301 via a capacitor and a resistor. The high voltage unit 305 is connected to the vehicle body 306 serving as a ground potential via the stray capacitance 304 and the insulation resistance 303.

波形検出器302が検知した波形の振幅は、絶縁抵抗センサ5が測定する絶縁抵抗のセンサ値Amに相当する。この振幅は、高電圧部305側に付する絶縁抵抗303と相関がある。振幅が大きいほど絶縁抵抗303が大きくなる特性を有する。この特性をあらかじめ調べておくことで高電圧部305の絶縁抵抗Rを導くことができる。一方、高電圧部305に浮遊容量304が付してある場合、絶縁抵抗303が同一値であっても、波形検出器302の振幅は低下して、センサ値は小さく出力される。これが浮遊容量による誤差である。なお、絶縁抵抗センサ5のような交流を用いた方式ではなく、直流を用いて計測する装置の場合には、浮遊容量304による測定誤差は発生しない。   The amplitude of the waveform detected by the waveform detector 302 corresponds to the sensor value Am of the insulation resistance measured by the insulation resistance sensor 5. This amplitude has a correlation with the insulation resistance 303 attached to the high voltage unit 305 side. As the amplitude increases, the insulation resistance 303 increases. By examining this characteristic in advance, the insulation resistance R of the high voltage portion 305 can be derived. On the other hand, when the stray capacitance 304 is added to the high voltage unit 305, even if the insulation resistance 303 has the same value, the amplitude of the waveform detector 302 is reduced and the sensor value is output small. This is an error due to stray capacitance. In the case of a device that uses direct current instead of the method using alternating current as in the insulation resistance sensor 5, no measurement error due to the stray capacitance 304 occurs.

[動作]
図3を参照して、図1の絶縁抵抗測定システムによる絶縁抵抗の測定方法を説明する。
[Operation]
With reference to FIG. 3, the measuring method of the insulation resistance by the insulation resistance measuring system of FIG. 1 is demonstrated.

(イ)S01段階において、次に示す高電圧部に属する各ユニットの個別の浮遊容量をあらかじめ検査する。検査手段として、浮遊容量計、LCRメータを用いる。そして、検査した各ユニットの個別の浮遊容量をメモリに記憶する。   (A) In step S01, the individual stray capacitance of each unit belonging to the following high voltage section is inspected in advance. As the inspection means, a stray capacitance meter and an LCR meter are used. Then, the individual stray capacitance of each inspected unit is stored in the memory.

基本状態 C0
燃料電池 C1
電動モータ C2
2次電池 C3
コンプレッサ C4
DCDCコンバータ C5
エアコン C6
なお、基本状態C0は、燃料電池システムに絶縁抵抗センサ5が装着された状態を示し、切り離しすることができない最小単位部位が接続されている状態である。浮遊容量の計測に関しては、燃料電池システムを停止した状態で実施してよいが、可能であれば各装置が通電して動作している状態が望ましい。
Basic state C0
Fuel cell C1
Electric motor C2
Secondary battery C3
Compressor C4
DCDC converter C5
Air conditioner C6
The basic state C0 indicates a state in which the insulation resistance sensor 5 is attached to the fuel cell system, and is a state in which a minimum unit part that cannot be separated is connected. The measurement of the stray capacitance may be performed with the fuel cell system stopped. However, it is desirable that each device is operated by being energized if possible.

(ロ)次にS02段階に進み、次に示すように、各ユニットの接続状態を確認する。各ユニットが、高電圧経路4に接続されているならば、ON=1、各ユニットが高電圧経路4から遮断されているならば、OFF=0とする。算出した各ユニットの接続状態をメモリに記憶する。   (B) Next, the process proceeds to step S02, and the connection state of each unit is confirmed as shown below. If each unit is connected to the high voltage path 4, ON = 1, and if each unit is disconnected from the high voltage path 4, OFF = 0. The calculated connection status of each unit is stored in the memory.

燃料電池 D1=1又は0
電動モータ D2=1又は0
2次電池 D3=1又は0
コンプレッサ D4=1又は0
DCDCコンバータ D5=1又は0
エアコン D6=1又は0
(ハ)S03段階に進み、燃料電池システム全体の合成浮遊容量を算出する。各ユニットの接続状態を示すパラメータDn(nは1〜6)及び各ユニットの個別の浮遊容量Cn(nは0〜6)を用いて、(1)式により合成浮遊容量(補正前)CAを求める。
Fuel cell D1 = 1 or 0
Electric motor D2 = 1 or 0
Secondary battery D3 = 1 or 0
Compressor D4 = 1 or 0
DCDC converter D5 = 1 or 0
Air conditioner D6 = 1 or 0
(C) Proceeding to step S03, the combined stray capacity of the entire fuel cell system is calculated. Using the parameter Dn (n is 1 to 6) indicating the connection state of each unit and the individual stray capacitance Cn (n is 0 to 6) of each unit, the combined stray capacitance (before correction) CA is calculated by the equation (1). Ask.


CA=C0+D1×C1+・・・・+D6×C6 ・・・(1)

(ニ)S04段階に進み、燃料電池2の出力電流に応じた補正値を算出する。あらかじめ出力電流に応じた補正値をメモリに記憶させておく。補正値を求める方法を以下に記す。

CA = C0 + D1 × C1 +... + D6 × C6 (1)

(D) Proceeding to step S04, a correction value corresponding to the output current of the fuel cell 2 is calculated. A correction value corresponding to the output current is stored in advance in the memory. A method for obtaining the correction value is described below.

まず、出力電流に応じた補正値を適合するにあたり、燃料電池自動車が完成品として組み込まれた状態で実施する。なぜなら、浮遊容量の検査において、異なる構成で実施した場合の誤差が生じるのを防止するためである。この適合方法では、燃料電池自動車において実際に絶縁抵抗を地絡させて試験を行う。その試験の前に以下に示すものを用意しておく。   First, in adapting the correction value according to the output current, the fuel cell vehicle is implemented as a finished product. This is to prevent the occurrence of errors in the case where the stray capacitance inspection is performed with different configurations. In this adaptation method, the test is performed by actually grounding the insulation resistance in the fuel cell vehicle. Prepare the following before the test.

図2に示した、絶縁抵抗センサ5と、燃料電池自動車の地絡状態を簡単に表現する絶縁抵抗303と、浮遊容量304を用いて、回路シミュレータによる波形演算を行う。この波形演算は、一般的な回路計算ソフトウエアで計算が可能で、これらを入手することは容易に可能である。このソフトウエアに絶縁抵抗センサ5の内部構成などを表現させる。絶縁抵抗303と浮遊容量304の値を変更させたときの、波形検出器302が検出する波形の振幅値を計算する。振幅値(センサ値)と絶縁抵抗303及び浮遊容量304との関係を図5に示す。   Waveform calculation is performed by a circuit simulator using the insulation resistance sensor 5, the insulation resistance 303 that simply represents the ground fault state of the fuel cell vehicle, and the stray capacitance 304 shown in FIG. 2. This waveform calculation can be calculated by general circuit calculation software, and it is easy to obtain them. This software allows the internal configuration of the insulation resistance sensor 5 to be expressed. The amplitude value of the waveform detected by the waveform detector 302 when the values of the insulation resistance 303 and the stray capacitance 304 are changed is calculated. The relationship between the amplitude value (sensor value), the insulation resistance 303 and the stray capacitance 304 is shown in FIG.

図5に示す結果例は、横軸に絶縁抵抗Rを変化させたときの振幅値=センサ値を記録させたものであり、浮遊容量Cを複数の条件におけるセンサ特性を示すものである。できるだけ計算ポイントは多い方が好ましく、浮遊容量Cの条件も細かい間隔で設定して求めておくことで、このシミュレーション結果を用いて作成する補正値テーブルの精度を高めることができる。   In the result example shown in FIG. 5, the amplitude value when the insulation resistance R is changed on the horizontal axis = sensor value is recorded, and the stray capacitance C shows sensor characteristics under a plurality of conditions. It is preferable that there are as many calculation points as possible, and the accuracy of the correction value table created using this simulation result can be improved by setting and obtaining the conditions of the stray capacitance C at fine intervals.

(ホ)図3のメインフローの説明に戻り、S05段階に進み、燃料電池2が接続されているかどうか(D1=1)を確認する。接続されている場合(S05段階にてYES)、S06に進み、遮断されている場合(S05段階においてNO)処理は終了する。   (E) Returning to the description of the main flow in FIG. 3, the process proceeds to step S05 to check whether the fuel cell 2 is connected (D1 = 1). If connected (YES in step S05), the process proceeds to step S06. If disconnected (NO in step S05), the process ends.

(ヘ)S06段階において、燃料電池2で冷却および加湿に利用される純水の導電率に応じた補正を行う。S06段階で使用する補正テーブルの作成方法について説明する。先ず、純水の導電率が非常に低い状態で、図6に示すように可変抵抗41を高電圧経路4に接続して絶縁抵抗センサ5の計測可能な抵抗値まで低下させる。この状態で車両の絶縁抵抗をメガオームテスタなどで計測しておく。この絶縁抵抗値を絶縁抵抗Aとする。このときのセンサ値と、直流方式の抵抗メータで計測した車両全体の絶縁抵抗の関係を記録しておく。   (F) In step S06, correction according to the conductivity of pure water used for cooling and humidification in the fuel cell 2 is performed. A method for creating a correction table used in step S06 will be described. First, in a state where the conductivity of pure water is very low, the variable resistor 41 is connected to the high voltage path 4 as shown in FIG. In this state, the insulation resistance of the vehicle is measured with a mega ohm tester or the like. This insulation resistance value is defined as insulation resistance A. The relationship between the sensor value at this time and the insulation resistance of the entire vehicle measured with a DC resistance meter is recorded.

次に純水の導電率が不純物などで高くなった場合を想定して導電率が最大の条件で計測を行う。ここで注意するのは、上記メガオームテスタで計測した絶縁抵抗Aと同値になるよう可変抵抗41を調節する。可変抵抗41を調節しメガオームテスタで計測した絶縁抵抗が絶縁抵抗Aと同値であることを確認したら、その時のセンサ値を記録する。   Next, assuming that the conductivity of pure water is increased due to impurities or the like, the measurement is performed under the condition of maximum conductivity. It should be noted that the variable resistor 41 is adjusted so as to have the same value as the insulation resistance A measured by the mega ohm tester. When the variable resistance 41 is adjusted and the insulation resistance measured by the mega ohm tester is confirmed to be the same value as the insulation resistance A, the sensor value at that time is recorded.

図7を用いて上記の関係を説明する。純水の導電率が低い場合、プロット点61となる。可変抵抗41はそのままで、導電率が高い状態に移ると、車両の絶縁抵抗も低下してプロット点62の結果が得られる。そのままではプロット点61及びプロット点62を比較できないので、可変抵抗41を調節し絶縁抵抗が絶縁抵抗Aとなるプロット点63まで移動させる。   The above relationship will be described with reference to FIG. When the conductivity of pure water is low, the plot point 61 is obtained. If the variable resistance 41 is left as it is and the state of conductivity is high, the insulation resistance of the vehicle also decreases and the result of the plot point 62 is obtained. Since the plot points 61 and 62 cannot be compared as they are, the variable resistor 41 is adjusted and moved to the plot point 63 where the insulation resistance becomes the insulation resistance A.

プロット点61及びプロット点63の比較から、絶縁抵抗Aが同一であって純水の導電率が違う場合のセンサ値の違いを知ることができる。S04段階の出力電流に応じた補正テーブル作成と同様、導電率が低い状態の静電容量値を、導電率が高い場合の静電容量から差し引いた差分を補正量とする。同様の方法で比較する絶縁抵抗の条件を増やすことで、補正テーブルの設定点を増やすことができる。以上の手順にて、図4(a)に示すような純水の導電率に応じた補正テーブルを作成することができる。この補正テーブルを用いてS06段階における浮遊容量の補正量Cwsを算出する。   From the comparison of the plot points 61 and 63, it is possible to know the difference in sensor value when the insulation resistance A is the same and the conductivity of pure water is different. Similar to the creation of the correction table according to the output current at step S04, the difference obtained by subtracting the capacitance value in the state of low conductivity from the capacitance in the case of high conductivity is used as the correction amount. By increasing the insulation resistance conditions to be compared in the same way, the set point of the correction table can be increased. With the above procedure, a correction table corresponding to the conductivity of pure water as shown in FIG. 4A can be created. Using this correction table, the correction amount Cws of the stray capacitance in step S06 is calculated.

(ト)次にS07段階に進み、燃料電池が発電する際に生成される純水の量に応じた補正値を算出する。まず、当該補正値を適合するにあたり、燃料電池自動車が完成品として組み込まれた状態で実施する。なぜなら、浮遊容量の検査において、異なる構成で実施した場合の誤差が生じるのを防止するためである。なお、純水量に基づいて補正するにあたり純水生成量を推定する。本実施形態では、純水生成量と水素使用量が比例する関係であることを利用し、さらに水素使用量が発電電流と比例する関係であることを利用する。よって、発電電流から純水生成量を推定して補正量を算出する。   (G) Next, in step S07, a correction value is calculated according to the amount of pure water generated when the fuel cell generates power. First, in order to adapt the correction value, the fuel cell vehicle is implemented as a finished product. This is to prevent the occurrence of errors in the case where the stray capacitance inspection is performed with different configurations. In addition, in correcting based on the amount of pure water, the amount of pure water generated is estimated. In the present embodiment, the fact that the amount of pure water generated and the amount of hydrogen used are proportional is utilized, and the fact that the amount of hydrogen used is proportional to the generated current is utilized. Therefore, the correction amount is calculated by estimating the pure water generation amount from the generated current.

純水生成量に応じた補正テーブルの作成方法について説明する。これは燃料電池自動車において実際に絶縁抵抗を地絡させて試験を行う。試験する燃料電池自動車の状態を図6に示す。なお、図6は試験条件の例であり、燃料電池自動車で燃料電池2が発電可能な通常状態での構成とすればよい。燃料電池自動車の高電圧部を可変抵抗41を挟んで地絡させる。計測したい絶縁抵抗の範囲で、かつ絶縁抵抗センサ5の計測レンジ内の抵抗値に可変抵抗41を合わせる。この状態で燃料電池自動車の絶縁抵抗を直流方式の抵抗センサで計測しておく。次に可変抵抗41を取り付けた状態で車両を起動させ、燃料電池2をアイドル状態に保つときのセンサ値を記録する。さらに燃料電池2の出力を増加させていき、センサ値と出力電流を記録する。   A method for creating a correction table according to the amount of pure water generated will be described. This test is performed by actually grounding the insulation resistance in a fuel cell vehicle. The state of the fuel cell vehicle to be tested is shown in FIG. FIG. 6 shows an example of test conditions, and a configuration in a normal state in which the fuel cell 2 can generate power in a fuel cell vehicle may be used. The high voltage part of the fuel cell vehicle is grounded with the variable resistor 41 interposed therebetween. The variable resistance 41 is matched with the resistance value within the measurement range of the insulation resistance sensor 5 within the range of the insulation resistance to be measured. In this state, the insulation resistance of the fuel cell vehicle is measured with a DC-type resistance sensor. Next, the vehicle is started with the variable resistor 41 attached, and the sensor value when the fuel cell 2 is kept in the idle state is recorded. Further, the output of the fuel cell 2 is increased, and the sensor value and the output current are recorded.

当該記録が終了した後、同一の絶縁抵抗状態で、燃料電池2のアイドル状態と出力状態との浮遊容量の差を算出する。可変抵抗41によって絶縁抵抗に地絡させた条件として、例えば絶縁抵抗Bの条件を選択した場合を図8に示す。図8を用いてアイドル状態及び出力状態におけるの浮遊容量Cを求める。絶縁抵抗Bの点線71上に、計測結果のプロット点72及びプロット点73を求める。プロット点72及びプロット点73がそれぞれどの浮遊容量Cのラインに乗っているかを確認することにより、浮遊容量の値を求める。プロット点72はC=CT2であり、プロット点73はC=CT4である。   After the recording is completed, the difference in stray capacitance between the idle state and the output state of the fuel cell 2 is calculated in the same insulation resistance state. FIG. 8 shows a case where, for example, the condition of the insulation resistance B is selected as the condition for grounding the insulation resistance by the variable resistance 41. The stray capacitance C in the idle state and the output state is obtained using FIG. On the dotted line 71 of the insulation resistance B, a plot point 72 and a plot point 73 of the measurement result are obtained. The value of the stray capacitance is obtained by confirming which stray capacitance C line each plot point 72 and plot point 73 is on. The plot point 72 is C = CT2, and the plot point 73 is C = CT4.

計測した条件ごとに上記計算を行い、出力電流ごとの浮遊容量を求める。その後、出力電流ごとの浮遊容量からアイドル状態の浮遊容量を差し引くことにより、S07段階で使用する純水の生成量に応じた補正テーブルを作成する。当該補正テーブルでは、アイドル状態に対する差分が計算される。以上の手順にて、図4(b)に示すような純水の生成量(燃料電池電流)に応じた補正テーブルを作成することができる。この補正テーブルを用いてS07段階における補正量Cwtを算出する。   The above calculation is performed for each measured condition to obtain the stray capacitance for each output current. Thereafter, a correction table corresponding to the amount of pure water used in step S07 is created by subtracting the idle stray capacitance from the stray capacitance for each output current. In the correction table, the difference with respect to the idle state is calculated. With the above procedure, a correction table corresponding to the amount of pure water produced (fuel cell current) as shown in FIG. 4B can be created. Using this correction table, the correction amount Cwt in step S07 is calculated.

(チ)S08段階に進み、S06段階及びS07段階で算出された補正値(Cws、Cwt)を、S03段階で計算した合成容量CAに加算して補正後の合成容量CA1を求める。   (H) Proceeding to step S08, the correction values (Cws, Cwt) calculated in steps S06 and S07 are added to the combined capacitance CA calculated in step S03 to obtain a corrected combined capacitance CA1.

(リ)S09段階に進み、合成容量CA1及びセンサ値Amから、図5のテーブルに基づいて、絶縁抵抗を算出する。   (I) Proceeding to step S09, the insulation resistance is calculated from the combined capacitance CA1 and the sensor value Am based on the table of FIG.

図4(c)に示す絶縁抵抗算出テーブルの作成方法について次に説明する。いくつか方法があるが、前記の回路シミュレータによって計算された、センサ値=振幅値と絶縁抵抗および静電容量の値をそのままテーブルとして利用することができる。この場合、実際の燃料電池自動車の高電圧部の影響による誤差は含まれないが、この誤差が無視してよいレベルであれば利用できる。誤差がどの程度あるかについては、燃料電池自動車の起動状態において、実際に直流の抵抗メータで計測された絶縁抵抗値と、絶縁抵抗センサ5の出力から求められる絶縁抵抗値との差を比較して判断する。   Next, a method for creating the insulation resistance calculation table shown in FIG. There are several methods, but the sensor value = amplitude value and the values of the insulation resistance and capacitance calculated by the circuit simulator can be used as a table as they are. In this case, an error due to the influence of the high voltage portion of an actual fuel cell vehicle is not included, but it can be used if this error is at a negligible level. As for the degree of error, the difference between the insulation resistance value actually measured by the DC resistance meter and the insulation resistance value obtained from the output of the insulation resistance sensor 5 in the start-up state of the fuel cell vehicle is compared. Judgment.

さらに精度を高める必要がある場合には、次の方法が有効である。あらかじめ、燃料電池自動車の起動状態で車両の絶縁抵抗を直流の絶縁抵抗メータで計測しておく。加えて、浮遊容量についても事前に計測しておく。なおどちらも、起動状態での計測が困難な場合には、起動していない状態での計測でも良い。ただし、接続部位はできるだけ起動状態に近いほど良い。次に、図6に示すように可変抵抗41を接続し、可変抵抗41を0kΩから計測レンジの最大まで変化させ、そのときの絶縁抵抗センサ5のセンサ値を記録しておく。記録が終了したら、センサ値に対応する可変抵抗41の値を、事前に計測した燃料電池自動車が起動状態の絶縁抵抗値と合成抵抗を算出し、その合成抵抗とセンサ値の関係をテーブル化する。これが基本テーブルである。この基本テーブルは図4(c)に示すC=CE1に相当する。次に、浮遊容量が増加した場合のテーブル(C=CE2)、テーブル(C=CE3)を求める。   The following method is effective when the accuracy needs to be further increased. In advance, the insulation resistance of the vehicle is measured with a DC insulation resistance meter while the fuel cell vehicle is in operation. In addition, stray capacitance is also measured in advance. In either case, when measurement in the activated state is difficult, measurement in the unactivated state may be used. However, it is better that the connected part is as close to the activated state as possible. Next, as shown in FIG. 6, the variable resistor 41 is connected, the variable resistor 41 is changed from 0 kΩ to the maximum of the measurement range, and the sensor value of the insulation resistance sensor 5 at that time is recorded. When the recording is completed, the insulation resistance value and the combined resistance of the fuel cell vehicle in which the fuel cell vehicle measured in advance is calculated based on the value of the variable resistance 41 corresponding to the sensor value, and the relationship between the combined resistance and the sensor value is tabulated. . This is the basic table. This basic table corresponds to C = CE1 shown in FIG. Next, a table (C = CE2) and a table (C = CE3) when the stray capacitance increases are obtained.

次に、図9に示す回路シミュレーションの結果を用意し、起動状態で計測した浮遊容量CE1に対応するテーブル線を選ぶ。シミュレーション結果の浮遊容量CE1の結果と、実測でもとめた基本テーブル(C=CE1)の結果は、計算と実測の違いにより、差異がある。   Next, the result of the circuit simulation shown in FIG. 9 is prepared, and a table line corresponding to the stray capacitance CE1 measured in the activated state is selected. There is a difference between the result of the stray capacitance CE1 of the simulation result and the result of the basic table (C = CE1) obtained by the actual measurement due to the difference between the calculation and the actual measurement.

この誤差を最小にするため、シミュレーションにおいて求められた浮遊容量の影響分を基本テーブル(C=CE1)に上乗せする。ベース値を実測方式、差分は計算値として使うことで、浮遊容量の影響を表現することができる。   In order to minimize this error, the influence of the stray capacitance obtained in the simulation is added to the basic table (C = CE1). The effect of stray capacitance can be expressed by using the base value as the actual measurement method and the difference as the calculated value.

実際の作成方法を、図9を参照して説明する。   The actual creation method will be described with reference to FIG.

(1)先ず、基本テーブルの浮遊容量CE1(=CT1)相当の浮遊容量をシミュレーション結果から選択する。   (1) First, the stray capacitance corresponding to the stray capacitance CE1 (= CT1) in the basic table is selected from the simulation result.

(2)そして、同一のセンサ値で、基本テーブル(CT1)のプロット点803と、浮遊容量CT4上のプロット点804との差分(RD−RC)を求める。   (2) The difference (RD-RC) between the plot point 803 of the basic table (CT1) and the plot point 804 on the stray capacitance CT4 is obtained with the same sensor value.

(3)浮遊容量CT1に対する浮遊容量CT4の差分(RD−RC)を、実測でもとめた浮遊容量CE1の特定テーブル(点線802)に上乗せする。   (3) The difference (RD-RC) of the stray capacitance CT4 with respect to the stray capacitance CT1 is added to the specific table (dotted line 802) of the stray capacitance CE1 obtained by actual measurement.

以上の手順を繰り返し実行することにより、CT2〜CTnをテーブル化することができる。このようにして作成された図4(c)のテーブルに基づいて、絶縁抵抗のセンサ値と合成浮遊容量から、絶縁抵抗を算出する。   By repeating the above procedure, CT2 to CTn can be tabulated. Based on the table of FIG. 4C created in this way, the insulation resistance is calculated from the sensor value of the insulation resistance and the combined stray capacitance.

[効果]
以上説明したように、本発明の実施の形態によれば、以下に示す作用効果が得られる。
[effect]
As described above, according to the embodiment of the present invention, the following effects can be obtained.

センサ補正部14が、高電圧部を構成する各ユニット、つまり、電動モータ1、燃料電池2、及び2次電池3の接続状態(リレーの開閉状態)に応じて、絶縁抵抗センサ5が測定するセンサ値を補正する。これにより、燃料電池自動車の起動停止含む動作中において、リレーによって高電圧経路4に接続されている各ユニットが分離した場合に生じる浮遊容量の変化に応じて絶縁抵抗のセンサ値を補正できるので、絶縁抵抗の検出精度が向上する。   The sensor correction unit 14 measures the insulation resistance sensor 5 according to the connection state (relay open / close state) of each unit constituting the high voltage unit, that is, the electric motor 1, the fuel cell 2, and the secondary battery 3. Correct the sensor value. As a result, the sensor value of the insulation resistance can be corrected according to the change in the stray capacitance that occurs when each unit connected to the high voltage path 4 is separated by the relay during the operation including the start and stop of the fuel cell vehicle. Insulation resistance detection accuracy is improved.

導電率センサ10が燃料電池2を冷却する冷却液の導電率を測定し、センサ補正部14が、導電率センサ10が求める導電率の値に基づいて絶縁抵抗センサ5が測定するセンサ値を補正する。これにより、燃料電池2を冷却する冷却液の導電率が低下した場合は浮遊容量も変化するので、冷却液の導電率に応じてセンサ値を補正することで、絶縁抵抗の検出精度を向上できる。   The conductivity sensor 10 measures the conductivity of the coolant that cools the fuel cell 2, and the sensor correction unit 14 corrects the sensor value measured by the insulation resistance sensor 5 based on the conductivity value obtained by the conductivity sensor 10. To do. As a result, when the conductivity of the coolant for cooling the fuel cell 2 decreases, the stray capacitance also changes. Therefore, the detection accuracy of the insulation resistance can be improved by correcting the sensor value according to the conductivity of the coolant. .

純水量算出部15が、燃料電池2の発電電流から燃料電池2が発電において生成する純水の量を求め、センサ補正部14が、この純水の量に基づいて絶縁抵抗センサ5が測定するセンサ値を補正する。これにより、燃料電池2から生成される純水の量に基づいてセンサ値を補正するので、燃料電池2で生成される純水量が変化した場合でも、絶縁抵抗の検出誤差を低減できる。   The pure water amount calculation unit 15 obtains the amount of pure water generated by the fuel cell 2 during power generation from the generated current of the fuel cell 2, and the sensor correction unit 14 measures the insulation resistance sensor 5 based on the amount of pure water. Correct the sensor value. Thereby, since the sensor value is corrected based on the amount of pure water generated from the fuel cell 2, even when the amount of pure water generated by the fuel cell 2 changes, the detection error of the insulation resistance can be reduced.

上記のように、本発明は、1つの実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。即ち、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。したがって、本発明はこの開示から妥当な特許請求の範囲に係る発明特定事項によってのみ限定されるものである。   As described above, the present invention has been described according to one embodiment. However, it should not be understood that the description and the drawings, which form a part of this disclosure, limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. That is, it should be understood that the present invention includes various embodiments not described herein. Therefore, the present invention is limited only by the invention specifying matters according to the scope of claims reasonable from this disclosure.

本発明の実施の形態に係わる絶縁抵抗測定システムを含む燃料電池システム全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole fuel cell system containing the insulation resistance measuring system concerning embodiment of this invention. 図1の絶縁抵抗センサの構成例を示すブロック図である。It is a block diagram which shows the structural example of the insulation resistance sensor of FIG. 図1の絶縁抵抗測定システムによる絶縁抵抗の測定方法を示すフローチャートである。It is a flowchart which shows the measuring method of the insulation resistance by the insulation resistance measurement system of FIG. 図4(a)は純水の導電率に応じた補正テーブルの例を示し、図4(b)は燃料電池の出力電流に応じた補正テーブルの例を示し、図4(c)は絶縁抵抗センサのセンサ値と絶縁抵抗値の関係を示すグラフである。4A shows an example of a correction table according to the conductivity of pure water, FIG. 4B shows an example of a correction table according to the output current of the fuel cell, and FIG. 4C shows an insulation resistance. It is a graph which shows the relationship between the sensor value of a sensor, and an insulation resistance value. 図3における絶縁抵抗Rと浮遊容量Cの値を変更させたときの、波形検出器が検出する波形の振幅値(センサ値)の結果例を示すグラフである。It is a graph which shows the example of a result of the amplitude value (sensor value) of the waveform which a waveform detector detects when the value of the insulation resistance R and the stray capacitance C in FIG. 3 is changed. 図1の燃料電池システムにおいて高電圧経路に可変抵抗を接続した状態を示すブロック図である。FIG. 2 is a block diagram showing a state in which a variable resistor is connected to a high voltage path in the fuel cell system of FIG. 1. 燃料電池で冷却および加湿に利用される純水の導電率に応じた補正を行う際に使用するテーブルの作成方法を示すグラフである。It is a graph which shows the preparation method of the table used when performing the correction | amendment according to the electrical conductivity according to the pure water utilized for cooling and humidification with a fuel cell. 燃料電池が発電の際に生成する純水の量に応じた補正を行う際に使用する補正テーブルの作成方法を示すグラフである。It is a graph which shows the preparation method of the correction table used when correcting according to the quantity of the pure water which a fuel cell produces | generates at the time of electric power generation. 絶縁抵抗値とセンサ値の関係をテーブル化する手順を説明するためのグラフである。It is a graph for demonstrating the procedure which tabulates the relationship between an insulation resistance value and a sensor value.

符号の説明Explanation of symbols

1…電動モータ
2…燃料電池
3…2次電池
4…高電圧経路
5…絶縁抵抗センサ
6…コントローラ
8…燃料電池側リレー
10…導電率センサ
12…コンバータ
13…高電圧補器類
14…センサ補正部
15…純水量算出部
19…2次電池側リレー
20…コンプレッサ
21…コンプレッサ側リレー
22…低電圧補機
23…低電圧バッテリ
24…DCDCコンバータ
25…低電圧側リレー
26…エアコン
27…エアコン側リレー
28…循環路
29…循環ポンプ
30…ラジエータ
41…可変抵抗
301…電圧発生器
302…波形検出器
303…絶縁抵抗
304…浮遊容量
305…高電圧部
306…車体
DESCRIPTION OF SYMBOLS 1 ... Electric motor 2 ... Fuel cell 3 ... Secondary battery 4 ... High voltage path 5 ... Insulation resistance sensor 6 ... Controller 8 ... Fuel cell side relay 10 ... Conductivity sensor 12 ... Converter 13 ... High voltage auxiliary devices 14 ... Sensor Correction unit 15 ... Pure water amount calculation unit 19 ... Secondary battery side relay 20 ... Compressor 21 ... Compressor side relay 22 ... Low voltage auxiliary machine 23 ... Low voltage battery 24 ... DCDC converter 25 ... Low voltage side relay 26 ... Air conditioner 27 ... Air conditioner Side relay 28 ... circulation path 29 ... circulation pump 30 ... radiator 41 ... variable resistor 301 ... voltage generator 302 ... waveform detector 303 ... insulation resistance 304 ... floating capacitance 305 ... high voltage section 306 ... vehicle body

Claims (3)

電動モータと、前記電動モータへ電力を供給する燃料電池と、前記電動モータ及び燃料電池との間で電力の充放電を行う2次電池と、前記電動モータ、燃料電池、及び2次電池の間を電気的に接続する高電圧経路とを少なくとも有する高電圧部と、
前記高電圧部と接地電位間の絶縁抵抗を測定する絶縁抵抗センサと、
前記電動モータ、燃料電池、及び2次電池を前記高電圧経路から遮断する遮断部と、
前記電動モータ、燃料電池、及び2次電池の接続状態に応じて、前記絶縁抵抗センサが測定するセンサ値を補正するセンサ補正部
とを備えることを特徴とする絶縁抵抗測定システム。
An electric motor, a fuel cell that supplies electric power to the electric motor, a secondary battery that charges and discharges electric power between the electric motor and the fuel cell, and the electric motor, the fuel cell, and the secondary battery A high voltage section having at least a high voltage path for electrically connecting
An insulation resistance sensor for measuring an insulation resistance between the high voltage portion and a ground potential;
A blocking unit that blocks the electric motor, the fuel cell, and the secondary battery from the high-voltage path;
An insulation resistance measurement system comprising: a sensor correction unit that corrects a sensor value measured by the insulation resistance sensor according to a connection state of the electric motor, the fuel cell, and the secondary battery.
前記燃料電池を冷却する冷却液の導電率を測定する導電率センサを更に備え、
前記センサ補正部は、前記導電率センサが求める導電率の値に基づいて前記絶縁抵抗センサが測定するセンサ値を補正することを特徴とする請求項1記載の絶縁抵抗測定システム。
A conductivity sensor for measuring a conductivity of a coolant for cooling the fuel cell;
2. The insulation resistance measurement system according to claim 1, wherein the sensor correction unit corrects a sensor value measured by the insulation resistance sensor based on a conductivity value obtained by the conductivity sensor.
前記燃料電池の発電電流から前記燃料電池が発電において生成する純水の量を求める純水量算出部を更に備え、
前記センサ補正部は、前記純水の量に基づいて前記絶縁抵抗センサが測定するセンサ値を補正することを特徴とする請求項1又は2記載の絶縁抵抗測定システム。
A pure water amount calculation unit for obtaining the amount of pure water generated by the fuel cell in power generation from the power generation current of the fuel cell;
The insulation resistance measurement system according to claim 1, wherein the sensor correction unit corrects a sensor value measured by the insulation resistance sensor based on an amount of the pure water.
JP2005340792A 2005-11-25 2005-11-25 Insulation resistance measurement system Pending JP2007147391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005340792A JP2007147391A (en) 2005-11-25 2005-11-25 Insulation resistance measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005340792A JP2007147391A (en) 2005-11-25 2005-11-25 Insulation resistance measurement system

Publications (1)

Publication Number Publication Date
JP2007147391A true JP2007147391A (en) 2007-06-14

Family

ID=38208969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005340792A Pending JP2007147391A (en) 2005-11-25 2005-11-25 Insulation resistance measurement system

Country Status (1)

Country Link
JP (1) JP2007147391A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118151A (en) * 2008-11-11 2010-05-27 Hitachi Ltd Fuel cell system, and control method thereof
JP2010239820A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Electric vehicle equipped with ground fault detecting system
JP2010239821A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Electric vehicle equipped with ground fault detecting system
KR101114316B1 (en) 2009-03-23 2012-02-14 에스케이이노베이션 주식회사 Insulation resistance measurement circuit using operational amplifier
JP2012105540A (en) * 2011-12-26 2012-05-31 Honda Motor Co Ltd Electric vehicle equipped with ground fault detecting system
JP2013092466A (en) * 2011-10-26 2013-05-16 Denso Corp Ground fault detector
EA023944B1 (en) * 2013-02-28 2016-07-29 ОАО "Научно-исследовательский институт технологии, контроля и диагностики железнодорожного транспорта" (ОАО "НИИТКД") Insulation resistance and absorption control device
JP2016195510A (en) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 Insulation resistance deterioration detection device
JP2018174028A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Fuel cell system, control method of fuel cell system and vehicle equipped with fuel cell system
US10247768B2 (en) 2016-06-13 2019-04-02 Hyundai Motor Company System and method for measuring insulation resistance of fuel cell vehicle
JP2020161382A (en) * 2019-03-27 2020-10-01 トヨタ自動車株式会社 Fuel cell system
JP2021047107A (en) * 2019-09-19 2021-03-25 株式会社デンソー Electric leakage detection circuit
US20220003823A1 (en) * 2019-01-03 2022-01-06 Lg Energy Solution, Ltd. Insulation Resistance Measurement Apparatus and Method Thereof
JP2022183937A (en) * 2021-05-31 2022-12-13 矢崎総業株式会社 Ground fault detection device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135872A (en) * 1986-11-28 1988-06-08 Toyo Commun Equip Co Ltd Stray capacitance compensation for insulation resistance of electric circuit
JP2002323526A (en) * 2001-04-25 2002-11-08 Japan Storage Battery Co Ltd Insulation resistance deterioration detecting method and apparatus
JP2002352840A (en) * 2001-05-23 2002-12-06 Nissan Motor Co Ltd Fuel cell power generating device
JP2004170137A (en) * 2002-11-18 2004-06-17 Yazaki Corp Insulation detecting device for non-grounded power source
JP2004265712A (en) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd Fuel cell system
JP2005129459A (en) * 2003-10-27 2005-05-19 Nissan Motor Co Ltd Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135872A (en) * 1986-11-28 1988-06-08 Toyo Commun Equip Co Ltd Stray capacitance compensation for insulation resistance of electric circuit
JP2002323526A (en) * 2001-04-25 2002-11-08 Japan Storage Battery Co Ltd Insulation resistance deterioration detecting method and apparatus
JP2002352840A (en) * 2001-05-23 2002-12-06 Nissan Motor Co Ltd Fuel cell power generating device
JP2004170137A (en) * 2002-11-18 2004-06-17 Yazaki Corp Insulation detecting device for non-grounded power source
JP2004265712A (en) * 2003-02-28 2004-09-24 Nissan Motor Co Ltd Fuel cell system
JP2005129459A (en) * 2003-10-27 2005-05-19 Nissan Motor Co Ltd Fuel cell system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118151A (en) * 2008-11-11 2010-05-27 Hitachi Ltd Fuel cell system, and control method thereof
KR101114316B1 (en) 2009-03-23 2012-02-14 에스케이이노베이션 주식회사 Insulation resistance measurement circuit using operational amplifier
JP2010239820A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Electric vehicle equipped with ground fault detecting system
JP2010239821A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Electric vehicle equipped with ground fault detecting system
US8164344B2 (en) 2009-03-31 2012-04-24 Honda Motor Co., Ltd. Electric vehicle with ground fault detecting system
US8264234B2 (en) 2009-03-31 2012-09-11 Honda Motor Co., Ltd. Electric vehicle with ground fault detecting system
JP2013092466A (en) * 2011-10-26 2013-05-16 Denso Corp Ground fault detector
US9103892B2 (en) 2011-10-26 2015-08-11 Denso Corporation Ground fault detector
JP2012105540A (en) * 2011-12-26 2012-05-31 Honda Motor Co Ltd Electric vehicle equipped with ground fault detecting system
EA023944B1 (en) * 2013-02-28 2016-07-29 ОАО "Научно-исследовательский институт технологии, контроля и диагностики железнодорожного транспорта" (ОАО "НИИТКД") Insulation resistance and absorption control device
JP2016195510A (en) * 2015-04-01 2016-11-17 トヨタ自動車株式会社 Insulation resistance deterioration detection device
US10247768B2 (en) 2016-06-13 2019-04-02 Hyundai Motor Company System and method for measuring insulation resistance of fuel cell vehicle
JP2018174028A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Fuel cell system, control method of fuel cell system and vehicle equipped with fuel cell system
US20220003823A1 (en) * 2019-01-03 2022-01-06 Lg Energy Solution, Ltd. Insulation Resistance Measurement Apparatus and Method Thereof
US11906591B2 (en) * 2019-01-03 2024-02-20 Lg Energy Solution, Ltd. Insulation resistance measurement apparatus and method thereof
JP2020161382A (en) * 2019-03-27 2020-10-01 トヨタ自動車株式会社 Fuel cell system
JP7159941B2 (en) 2019-03-27 2022-10-25 トヨタ自動車株式会社 fuel cell system
JP2021047107A (en) * 2019-09-19 2021-03-25 株式会社デンソー Electric leakage detection circuit
JP7294022B2 (en) 2019-09-19 2023-06-20 株式会社デンソー Earth leakage detection circuit
JP2022183937A (en) * 2021-05-31 2022-12-13 矢崎総業株式会社 Ground fault detection device
JP7391482B2 (en) 2021-05-31 2023-12-05 矢崎総業株式会社 Ground fault detection device

Similar Documents

Publication Publication Date Title
JP2007147391A (en) Insulation resistance measurement system
JP5117537B2 (en) Battery management system and driving method thereof
Tallam et al. A survey of methods for detection of stator-related faults in induction machines
JP4864383B2 (en) Deterioration state estimation device for power storage device
WO2014167920A1 (en) Battery state determination device
WO2021038544A2 (en) Control method and system of a fuel cell electric vehicle stack
EP2583111A1 (en) Electrical isolation detection with enhanced dynamic range
JP2019516107A (en) Vehicles including diagnostic systems for electrical fuses
KR20180047179A (en) Method for proctect overcharg, overdischargge and efficiency increasing of battery pack
KR101735739B1 (en) Apparatus and method for diagnosis of leakage current
JP7047658B2 (en) Fuel cell system
CN104051759A (en) Estimating coolant conductivity in a multi-voltage fuel cell system
JP2014134467A (en) Secondary battery state diagnostic method
CA2909842C (en) Fuel cell system and control method of fuel cell system
JP2014044149A (en) Method for estimating deterioration of lithium ion battery
JP2010086901A (en) Deterioration diagnosing device and degradation diagnosing method of lithium secondary battery
JP2009117229A (en) Fuel cell system
US20210362624A1 (en) High-voltage system for a fuel-cell vehicle for determining an insulation fault
US9383398B2 (en) Motor power simulating apparatus for fuel cell power module evaluation
US20120221266A1 (en) Test system and method of testing battery pack
CN110297183B (en) Method and device for diagnosing turn-to-turn short circuit fault of rotor of synchronous phase modulator and storage medium
JP2007080708A (en) Deterioration diagnostic method of battery power source
US20190041468A1 (en) Systems and methods for battery micro-short estimation
JP6827355B2 (en) Battery control device
CN104620468B (en) Method for determining the carrying capacity in Vehicular battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301