JP5420892B2 - Charged particle beam lithography system - Google Patents

Charged particle beam lithography system Download PDF

Info

Publication number
JP5420892B2
JP5420892B2 JP2008335420A JP2008335420A JP5420892B2 JP 5420892 B2 JP5420892 B2 JP 5420892B2 JP 2008335420 A JP2008335420 A JP 2008335420A JP 2008335420 A JP2008335420 A JP 2008335420A JP 5420892 B2 JP5420892 B2 JP 5420892B2
Authority
JP
Japan
Prior art keywords
chamber
temperature
robot
sample
end effector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008335420A
Other languages
Japanese (ja)
Other versions
JP2010157630A (en
Inventor
誠 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2008335420A priority Critical patent/JP5420892B2/en
Publication of JP2010157630A publication Critical patent/JP2010157630A/en
Application granted granted Critical
Publication of JP5420892B2 publication Critical patent/JP5420892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マスク等の試料に荷電粒子ビームを照射して所定のパターンを描画する荷電粒子ビーム描画装置に関する。   The present invention relates to a charged particle beam drawing apparatus that draws a predetermined pattern by irradiating a sample such as a mask with a charged particle beam.

この種の荷電粒子ビーム描画は、試料を載置するステージを内蔵する描画室と、ステージに載置した試料に荷電粒子ビームを照射するビーム照射手段と、描画室に隣接する位置に配置されたロボット室と、ロボット室に収納された搬送ロボットとを備える。搬送ロボットは、ロボットアームと、ロボットアームの先端に取り付けたエンドエフェクタとを有し、試料をエンドエフェクタに載置した状態でステージに搬送する。また、ロボット室の周囲には、試料に対し位置決め等の所定の処理を施す処理室が配置されており、搬送ロボットにより処理室に試料を搬入し、処理室での処理後に、搬送ロボットにより試料を処理室から搬出してステージに搬送するようにしている。   This kind of charged particle beam drawing is arranged at a position adjacent to the drawing chamber, a drawing chamber containing a stage on which the sample is placed, a beam irradiation means for irradiating the sample placed on the stage with a charged particle beam, and the like. A robot room and a transfer robot housed in the robot room are provided. The transfer robot has a robot arm and an end effector attached to the tip of the robot arm, and transfers the sample to the stage in a state of being placed on the end effector. In addition, a processing chamber for performing predetermined processing such as positioning on the sample is disposed around the robot chamber. The sample is loaded into the processing chamber by the transfer robot, and after the processing in the processing chamber, the sample is transferred by the transfer robot. Is transferred from the processing chamber to the stage.

ここで、試料の温度は描画精度に大きく影響するため、試料の温度が所定温度になった状態で描画を開始する必要がある。描画室の温度は所定温度に維持されており、試料をステージに搬送して載置した後、或る程度時間(ソーキング時間)が経つと試料の温度が描画室の温度に等しい所定温度になる。然し、試料をステージに搬送してからソーキング時間の経過を待って描画を開始したのでは、スループットが低下する。   Here, since the temperature of the sample greatly affects the drawing accuracy, it is necessary to start drawing with the temperature of the sample at a predetermined temperature. The temperature of the drawing chamber is maintained at a predetermined temperature, and after a certain time (soaking time) has passed after the sample is transported and placed on the stage, the temperature of the sample becomes a predetermined temperature equal to the temperature of the drawing chamber. . However, if drawing is started after the sample has been transported to the stage and the soaking time has elapsed, the throughput decreases.

そこで、従来、ロボット室及び処理室の温度を所定温度に維持する恒温手段を設け、処理室での処理中に試料の温度を所定温度にして、試料をステージに搬送した後、直ちに描画を開始するようにしたものが知られている(例えば、特許文献1参照)。これによれば、ソーキング時間がロスタイムにならず、スループットが向上する。   Therefore, conventionally, a constant temperature means for maintaining the temperature of the robot chamber and the processing chamber at a predetermined temperature is provided, and the temperature of the sample is set to a predetermined temperature during processing in the processing chamber, and drawing is started immediately after the sample is transferred to the stage. What is made is known (for example, refer to Patent Document 1). According to this, the soaking time does not become a loss time, and the throughput is improved.

ところで、搬送ロボットのエンドエフェクタの温度は、ロボットの駆動源からロボットアームを介して伝わる熱によりロボット室の温度(所定温度)より若干高くなる。そして、処理室からステージに試料を搬送する際に、エンドエフェクタからの熱伝導で試料の温度が所定温度よりも若干高くなってしまう。LSI等の微細なパターンを描画するときには、試料が所定温度から若干温度上昇しても、描画精度に悪影響が及ぶが、従来はエンドエフェクタからの伝熱による試料の温度上昇を考慮していない。
特開2007−178682号公報
By the way, the temperature of the end effector of the transfer robot becomes slightly higher than the temperature (predetermined temperature) of the robot chamber due to the heat transmitted from the driving source of the robot through the robot arm. When the sample is transferred from the processing chamber to the stage, the temperature of the sample becomes slightly higher than the predetermined temperature due to heat conduction from the end effector. When drawing a fine pattern such as LSI, even if the temperature of the sample rises slightly from a predetermined temperature, the drawing accuracy is adversely affected. However, conventionally, the temperature rise of the sample due to heat transfer from the end effector is not considered.
JP 2007-178682 A

本発明は、以上の点に鑑み、エンドエフェクタの温度を所定温度に維持し、エンドエフェクタからの伝熱による試料の温度上昇を防止できるようにした荷電粒子ビーム描画装置を提供することをその課題としている。   In view of the above, it is an object of the present invention to provide a charged particle beam drawing apparatus capable of maintaining a temperature of an end effector at a predetermined temperature and preventing a temperature rise of a sample due to heat transfer from the end effector. It is said.

上記課題を解決するために、本発明は、試料を載置するステージを内蔵する描画室と、前記ステージに載置した試料に荷電粒子ビームを照射するビーム照射手段と、前記描画室に隣接する位置に配置されたロボット室と、前記ロボット室に収納された搬送ロボットであって、ロボットアームと、ロボットアームの先端に取り付けたエンドエフェクタとを有し、試料を前記エンドエフェクタに載置した状態で前記ステージに搬送するものと、前記ロボット室の温度を所定温度に維持する恒温手段とを備えるものにおいて、前記ロボット室に、前記搬送ロボットの駆動源から前記ロボットアームを介して前記エンドエフェクタに伝わる熱を奪って、前記エンドエフェクタの温度を前記所定温度に維持するエンドエフェクタ専用の温度調節手段が配置されることを特徴とする。   In order to solve the above-described problems, the present invention provides a drawing chamber containing a stage on which a sample is placed, beam irradiation means for irradiating a sample placed on the stage with a charged particle beam, and adjacent to the drawing chamber. A robot chamber disposed at a position, a transfer robot housed in the robot chamber, having a robot arm and an end effector attached to the tip of the robot arm, and a sample placed on the end effector And a constant temperature means for maintaining the temperature of the robot chamber at a predetermined temperature in the robot chamber, from the drive source of the transfer robot to the end effector via the robot arm. A temperature adjusting means dedicated to the end effector is disposed to take away the transmitted heat and maintain the temperature of the end effector at the predetermined temperature. Is the fact characterized.

本発明において、前記搬送ロボットにより前記ロボット室の周囲に配置した処理室に試料を搬入し、前記処理室で試料に対する所定の処理が施された後に、前記搬送ロボットにより試料を前記処理室から搬出して前記ステージに搬送する場合は、前記処理室で試料に対する処理を行っている間、前記エンドエフェクタを前記温度調節手段の配置部に移動させて待機させることが望ましい。   In the present invention, a sample is loaded into a processing chamber disposed around the robot chamber by the transfer robot, and after a predetermined process is performed on the sample in the processing chamber, the sample is unloaded from the processing chamber by the transfer robot. Then, when transporting to the stage, it is desirable to move the end effector to the arrangement portion of the temperature adjusting means and wait while processing the sample in the processing chamber.

また、本発明において、前記恒温手段が、前記ロボット室の室壁と熱交換する流体を流すジャケット部で構成される場合、前記温度調節手段は、前記ロボット室の前記室壁に設けた、前記エンドエフェクタを挿入自在な扁平のポケット部で構成されることが望ましい。   Further, in the present invention, when the constant temperature means is constituted by a jacket portion for flowing a fluid that exchanges heat with the chamber wall of the robot chamber, the temperature adjusting means is provided on the chamber wall of the robot chamber, It is desirable that the end effector is composed of a flat pocket portion into which the end effector can be inserted.

また、温度調節手段が前記ポケット部で構成される場合は、前記ポケット部の周壁部と熱交換する流体を流す第2のジャケット部を備えることが望ましく、更に、前記エンドエフェクタの温度を検出する温度センサを備え、前記温度センサの検出温度に応じて前記第2のジャケット部に流す流体の流量と温度との少なくとも一方を可変することが望ましい。   In the case where the temperature adjusting means is constituted by the pocket portion, it is preferable to include a second jacket portion for flowing a fluid that exchanges heat with the peripheral wall portion of the pocket portion, and further, the temperature of the end effector is detected. It is desirable that a temperature sensor is provided, and at least one of a flow rate and a temperature of the fluid flowing through the second jacket portion is varied in accordance with a temperature detected by the temperature sensor.

本発明によれば、エンドエフェクタに駆動源からの熱が伝わっても、温度調節手段によりエンドエフェクタの温度を所定温度に維持することができ、ステージに試料を搬送する際に、エンドエフェクタからの伝熱で試料の温度が所定温度から上昇することを防止できる。   According to the present invention, even when heat from the drive source is transmitted to the end effector, the temperature of the end effector can be maintained at a predetermined temperature by the temperature adjusting means, and when the sample is transported to the stage, It is possible to prevent the temperature of the sample from rising from a predetermined temperature due to heat transfer.

図1、図2は本発明の荷電粒子ビーム描画装置の一例である電子ビーム描画装置を示している。電子ビーム描画装置は、マスク等の試料Wに電子ビームを照射して所定のパターンを描画するものであり、真空の描画室1と、描画室1の天井部に立設したビーム照射手段たる電子鏡筒2と、描画室1に隣接する位置に配置された真空のロボット室3と、ロボット室3に収納した搬送ロボット4と、ロボット室3に描画室1と反対側で隣接する位置に配置されたロードロック室5とを備えている。また、ロボット室3と描画室1及びロードロック室5との間には夫々ゲートバルブ6,7が介設されている。更に、ロボット室3の描画室1及びロードロック室5に隣接しない周囲2個所には、試料Wを位置決めする処理を行う処理室たるアライメント室8と、試料Wの静電気を除電する処理を行う処理室たる除電室9とが配置されている。尚、描画室1、電子鏡筒2、ロードロック室5、アライメント室8、除電室9の構成は従来公知であり、その詳細な説明は省略する。   1 and 2 show an electron beam lithography apparatus which is an example of a charged particle beam lithography apparatus according to the present invention. The electron beam drawing apparatus draws a predetermined pattern by irradiating a sample W such as a mask with an electron beam, and the electron as beam irradiation means standing on the vacuum drawing chamber 1 and the ceiling of the drawing chamber 1. The lens barrel 2, a vacuum robot chamber 3 disposed at a position adjacent to the drawing chamber 1, a transfer robot 4 accommodated in the robot chamber 3, and a position adjacent to the robot chamber 3 on the opposite side of the drawing chamber 1 The load lock chamber 5 is provided. Gate valves 6 and 7 are interposed between the robot chamber 3 and the drawing chamber 1 and the load lock chamber 5, respectively. Further, in two surrounding areas not adjacent to the drawing chamber 1 and the load lock chamber 5 of the robot chamber 3, an alignment chamber 8 which is a processing chamber for performing processing for positioning the sample W, and processing for performing processing for removing static electricity from the sample W are performed. A static elimination chamber 9 as a chamber is arranged. Note that the configuration of the drawing chamber 1, the electron column 2, the load lock chamber 5, the alignment chamber 8, and the static elimination chamber 9 is conventionally known, and detailed description thereof is omitted.

試料Wは、図外のロボットによりロードロック室5に投入される。そして、ロードロック室5を真空にした後、ゲートバルブ7を開き、搬送ロボット4により試料Wをロードロック室5からアライメント室8に搬送する。アライメント室8で試料Wの位置決めを行うと、搬送ロボット4により試料Wをアライメント室8から除電室9に搬送して、試料Wの除電を行う。次に、搬送ロボット4により試料Wを除電室9から搬出し、ゲートバルブ6を開いて、描画室1に収納したステージ1aに試料Wを搬送する。   The sample W is put into the load lock chamber 5 by a robot (not shown). Then, after the load lock chamber 5 is evacuated, the gate valve 7 is opened and the sample W is transferred from the load lock chamber 5 to the alignment chamber 8 by the transfer robot 4. When the sample W is positioned in the alignment chamber 8, the sample W is transferred from the alignment chamber 8 to the charge removal chamber 9 by the transfer robot 4 and the sample W is discharged. Next, the transport robot 4 carries the sample W out of the charge removal chamber 9, opens the gate valve 6, and transports the sample W to the stage 1 a stored in the drawing chamber 1.

ステージ1aは、水平の直交2方向及び鉛直方向に移動自在である。そして、ステージ1aに載置した試料Wに電子鏡筒2から電子ビームを照射しながらステージ1aを移動させ、試料Wに電子ビームを走査して所定のパターンを描画する。   The stage 1a is movable in two horizontal orthogonal directions and a vertical direction. Then, the stage 1a is moved while irradiating the sample W placed on the stage 1a with the electron beam from the electron column 2, and the sample W is scanned with the electron beam to draw a predetermined pattern.

搬送ロボット4は、鉛直軸線回りに旋回自在なロボット本体41と、ロボット本体41に昇降自在に支持される昇降ロッド42と、昇降ロッド42の上端に取り付けた屈伸自在なロボットアーム43と、ロボットアーム43の先端に取り付けた、試料Wを載置するエンドエフェクタ44とを有している。ロボット本体41には、ロボット本体41の旋回用と昇降ロッド42の昇降用とロボットアーム43の屈伸用の駆動源が内蔵されている。   The transfer robot 4 includes a robot main body 41 that can turn around a vertical axis, a lift rod 42 that is supported by the robot main body 41 so as to be movable up and down, a flexible robot arm 43 that is attached to the upper end of the lift rod 42, and a robot arm. And an end effector 44 on which the sample W is mounted. The robot body 41 incorporates drive sources for turning the robot body 41, raising and lowering the lifting rod 42, and bending and extending the robot arm 43.

また、ロボット室3の温度を所定温度(例えば、23℃)に維持する恒温手段を備えている。恒温手段は、図3に示す如く、ロボット室3のアルミ製の室壁31と熱交換する流体を流すジャケット部32で構成されている。ジャケット部32に一定温度の流体を流すことで、室壁31の温度が流体の温度と等しくなり、ロボット室3及びこれに連通するアライメント室8及び除電室9の温度が流体の温度に等しい所定温度になる。尚、描画室1の温度も同様の恒温手段によりロボット室3と同一の所定温度に維持される。   In addition, a constant temperature means for maintaining the temperature of the robot chamber 3 at a predetermined temperature (for example, 23 ° C.) is provided. As shown in FIG. 3, the thermostatic means is constituted by a jacket portion 32 through which a fluid that exchanges heat is exchanged with an aluminum chamber wall 31 of the robot chamber 3. By flowing a fluid at a constant temperature through the jacket portion 32, the temperature of the chamber wall 31 becomes equal to the temperature of the fluid, and the temperature of the robot chamber 3 and the alignment chamber 8 and static elimination chamber 9 communicating with the same are equal to the temperature of the fluid. Become temperature. The temperature of the drawing chamber 1 is also maintained at the same predetermined temperature as that of the robot chamber 3 by the same constant temperature means.

ロボット室3、アライメント室8及び除電室9を上記の如く所定温度に維持することにより、アライメント室8及び除電室9での処理中に試料Wの温度が所定温度になる。従って、除電室9での処理後に試料Wをステージ1aに搬送してから描画を開始するまでの間、試料Wの温度が所定温度になるまで待つ必要がなく、スループットが向上する。   By maintaining the robot chamber 3, the alignment chamber 8, and the charge removal chamber 9 at the predetermined temperatures as described above, the temperature of the sample W becomes the predetermined temperature during the processing in the alignment chamber 8 and the charge removal chamber 9. Therefore, it is not necessary to wait until the temperature of the sample W reaches a predetermined temperature after the sample W is transferred to the stage 1a after the processing in the static elimination chamber 9 until the drawing is started, thereby improving the throughput.

但し、搬送ロボット4の駆動源の発熱により、駆動源からの熱がロボットアーム43を介してエンドエフェクタ44に伝わり、エンドエフェクタ44の温度が上記所定温度よりも上昇する。そして、エンドエフェクタ44に試料Wを載置してステージ1aに搬送する際に、試料Wの温度がエンドエフェクタ44からの熱伝導で所定温度よりも0.04〜0.05℃程度上昇してしまう。そして、LSI等の微細なパターンを描画する場合には、この程度の温度上昇でも描画精度に悪影響が及ぶ可能性がある。   However, due to heat generated by the drive source of the transport robot 4, heat from the drive source is transmitted to the end effector 44 via the robot arm 43, and the temperature of the end effector 44 rises above the predetermined temperature. When the sample W is placed on the end effector 44 and transported to the stage 1a, the temperature of the sample W rises by about 0.04 to 0.05 ° C. from the predetermined temperature due to heat conduction from the end effector 44. End up. When a fine pattern such as an LSI is drawn, there is a possibility that the drawing accuracy is adversely affected even by such a temperature rise.

そこで、ロボット室3に、エンドエフェクタ44の温度を上記所定温度に維持するエンドエフェクタ専用の温度調節手段を配置している。本実施形態において、温度調節手段は、ロボット室3の室壁31に外方に張出すようにして設けた、エンドエフェクタ44を挿入自在なポケット部33で構成されている。ポケット部33は、図3に示す如く、エンドエフェクタ44を上下両側に1〜数ミリ程度の僅かな隙間を存して受け入れる扁平形状に形成されている。   Therefore, in the robot chamber 3, temperature adjusting means dedicated to the end effector for maintaining the temperature of the end effector 44 at the predetermined temperature is arranged. In the present embodiment, the temperature adjusting means is composed of a pocket portion 33 that is provided on the chamber wall 31 of the robot chamber 3 so as to project outward and into which the end effector 44 can be inserted. As shown in FIG. 3, the pocket portion 33 is formed in a flat shape that receives the end effector 44 on both the upper and lower sides with a slight gap of about 1 to several millimeters.

このような扁平のポケット部33にエンドエフェクタ44を挿入すると、ロボット室3の室壁31と等温のポケット部33の周壁部にエンドエフェクタ44が近接対向する。そして、エンドエフェクタ44に駆動源からの熱が伝達されても、この熱は輻射によりポケット部33の周壁部に奪われ、エンドエフェクタ44の温度は上記所定温度に維持される。   When the end effector 44 is inserted into such a flat pocket portion 33, the end effector 44 comes close to and faces the chamber wall 31 of the robot chamber 3 and the peripheral wall portion of the isothermal pocket portion 33. Even when heat from the drive source is transmitted to the end effector 44, this heat is taken away by the peripheral wall portion of the pocket portion 33 by radiation, and the temperature of the end effector 44 is maintained at the predetermined temperature.

尚、エンドエフェクタ44をポケット部33の周壁部に接触させることも可能である。然し、ポケット部33にエンドエフェクタ44を上記の如く非接触で挿入すれば、接触によるダストの発生を防止でき、有利である。   The end effector 44 can be brought into contact with the peripheral wall portion of the pocket portion 33. However, if the end effector 44 is inserted into the pocket portion 33 in a non-contact manner as described above, generation of dust due to contact can be prevented, which is advantageous.

ここで、試料Wは、除電室9での除電処理後にエンドエフェクタ44に載置した状態でステージ1aに搬送される。そこで、少なくとも除電処理を行っている間、エンドエフェクタ44をポケット部33に挿入して待機させようにしている。これによれば、試料Wを除電室9からステージ1aに搬送する前に、エンドエフェクタ44の温度を上記所定温度にすることができ、ステージ1aへの搬送時に試料Wがエンドエフェクタ44からの熱伝導で温度上昇することを防止できる。   Here, the sample W is transported to the stage 1 a while being placed on the end effector 44 after the charge removal process in the charge removal chamber 9. In view of this, the end effector 44 is inserted into the pocket portion 33 and waited at least during the charge removal process. According to this, the temperature of the end effector 44 can be set to the predetermined temperature before the sample W is transferred from the static elimination chamber 9 to the stage 1a, and the sample W is heated from the end effector 44 during the transfer to the stage 1a. Temperature rise due to conduction can be prevented.

尚、アライメント室8での位置決め処理を行っている間もエンドエフェクタ44をポケット部33に挿入して待機させ、エンドエフェクタ44の温度を所定温度に維持することが望ましい。   It is desirable that the end effector 44 is inserted into the pocket portion 33 to stand by during the positioning process in the alignment chamber 8 to maintain the temperature of the end effector 44 at a predetermined temperature.

ところで、駆動源の発熱量の増大でエンドエフェクタ44への伝達熱量が大きくなると、ポケット部33の周壁部へのエンドエフェクタ44からの輻射による入熱量が周壁部からロボット室3の室壁31への熱伝導による吸熱量を上回ってしまう可能性がある。この場合には、ポケット部33の周壁部の温度が所定温度以上になってしまい、エンドエフェクタ44の温度を所定温度に維持できなくなる。   By the way, when the amount of heat generated by the drive source increases and the amount of heat transferred to the end effector 44 increases, the amount of heat input by radiation from the end effector 44 to the peripheral wall portion of the pocket portion 33 is transferred from the peripheral wall portion to the chamber wall 31 of the robot chamber 3. There is a possibility that the amount of heat absorbed due to the heat conduction will be exceeded. In this case, the temperature of the peripheral wall portion of the pocket portion 33 becomes equal to or higher than the predetermined temperature, and the temperature of the end effector 44 cannot be maintained at the predetermined temperature.

そこで、図4に示す第2実施形態では、ポケット部33の周壁部と熱交換する流体を流す第2のジャケット部34を設けている。これによれば、ポケット部33の周壁部の温度が所定温度以上に上昇することを、第2のジャケット部34で吸熱して防止することができる。   Therefore, in the second embodiment shown in FIG. 4, a second jacket portion 34 is provided to flow a fluid that exchanges heat with the peripheral wall portion of the pocket portion 33. According to this, it is possible to prevent the temperature of the peripheral wall portion of the pocket portion 33 from rising above a predetermined temperature by absorbing heat with the second jacket portion 34.

更に、第2実施形態では、エンドエフェクタ44の温度を検出する温度センサ45を設けている。また、第2のジャケット部34には、ジャケット部32とは別系統で流体を流している。そして、温度センサ45の検出温度に応じて第2のジャケット部34に流す流体の流量と温度との少なくとも一方を可変するようにしている。即ち、温度センサ45で検出したエンドエフェクタ44の温度が所定温度を上回ったとき、第2のジャケット部34に流す流体の流量を増加又は流体の温度を低下させ、或いは、流体の流量を増加すると共に流体の温度を低下させて、第2のジャケット部34での吸熱量を増加させる。これによれば、エンドエフェクタ44への伝達熱量が変化しても、エンドエフェクタ44の温度を所定温度に確実に維持できる。   Furthermore, in the second embodiment, a temperature sensor 45 that detects the temperature of the end effector 44 is provided. In addition, fluid flows through the second jacket portion 34 in a separate system from the jacket portion 32. Then, according to the temperature detected by the temperature sensor 45, at least one of the flow rate and temperature of the fluid flowing through the second jacket portion 34 is made variable. That is, when the temperature of the end effector 44 detected by the temperature sensor 45 exceeds a predetermined temperature, the flow rate of the fluid flowing through the second jacket portion 34 is increased, the temperature of the fluid is decreased, or the flow rate of the fluid is increased. At the same time, the temperature of the fluid is lowered to increase the amount of heat absorbed by the second jacket portion 34. According to this, even if the amount of heat transferred to the end effector 44 changes, the temperature of the end effector 44 can be reliably maintained at a predetermined temperature.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態では、温度調節手段をロボット室3の室壁31に設けたポケット部33で構成したが、ロボット室3の内部に配置した熱交換用のブロックで温度調節手段を構成し、エンドエフェクタ44をこのブロックに近接対向させて、エンドエフェクタ44の温度を所定温度に維持させることも可能である。但し、この場合には、ロボットアーム43がブロックに干渉しないように、搬送ロボット4の動作時にブロックを下降させる必要があり、構造が複雑になる。これに対し、上記実施形態では、ポケット部33にロボットアーム43が干渉することはなく、温度調節手段用の可動機構が不要になって、構造が簡単になる利点がある。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above embodiment, the temperature adjusting means is configured by the pocket portion 33 provided in the chamber wall 31 of the robot chamber 3, but the temperature adjusting means is configured by a heat exchange block disposed inside the robot chamber 3, It is also possible to maintain the temperature of the end effector 44 at a predetermined temperature by causing the end effector 44 to face the block. However, in this case, the block needs to be lowered during the operation of the transfer robot 4 so that the robot arm 43 does not interfere with the block, and the structure becomes complicated. On the other hand, in the above embodiment, the robot arm 43 does not interfere with the pocket portion 33, and there is an advantage that the movable mechanism for the temperature adjusting means becomes unnecessary and the structure is simplified.

また、上記実施形態では、ロボット室3の室壁31やポケット部33の周壁部にジャケット部32,34を一体に形成しているが、流体を流す管をロボット室3の室壁31やポケット部33の周壁部の外面に巻き付けてジャケット部32,34を構成することも可能である。更に、上記実施形態は、電子ビームを照射する電子ビーム描画装置に本発明を適用したものであるが、イオンビーム等の他の荷電粒子ビームを照射する描画装置にも同様に本発明を適用できる。   Further, in the above embodiment, the jacket portions 32 and 34 are integrally formed on the chamber wall 31 of the robot chamber 3 and the peripheral wall portion of the pocket portion 33. It is also possible to form the jacket portions 32 and 34 by wrapping around the outer surface of the peripheral wall portion of the portion 33. Further, in the above-described embodiment, the present invention is applied to an electron beam lithography apparatus that irradiates an electron beam. However, the present invention can be similarly applied to a lithography apparatus that irradiates other charged particle beams such as an ion beam. .

本発明の実施形態の描画装置である電子ビーム描画装置を示す模式的切断側面図。1 is a schematic cut side view showing an electron beam drawing apparatus which is a drawing apparatus according to an embodiment of the present invention. 図1の電子ビーム描画装置の模式的切断平面図。FIG. 2 is a schematic plan view of the electron beam drawing apparatus in FIG. 1. 図2のIII−IIIで切断した拡大断面図。The expanded sectional view cut | disconnected by III-III of FIG. 第2実施形態の電子ビーム描画装置の図3に対応する拡大断面図The expanded sectional view corresponding to FIG. 3 of the electron beam drawing apparatus of 2nd Embodiment.

符号の説明Explanation of symbols

W…試料、1…描画室、1a…ステージ、2…電子鏡筒(ビーム照射手段)、3…ロボット室、31…室壁、32…ジャケット部(恒温手段)、33…ポケット部(温度調節手段)、34…第2のジャケット部、4…搬送ロボット、43…ロボットアーム、44…エンドエフェクタ、9…除電室(処理室)。

W ... Sample, 1 ... Drawing chamber, 1a ... Stage, 2 ... Electronic column (beam irradiation means), 3 ... Robot room, 31 ... Room wall, 32 ... Jacket part (constant temperature means), 33 ... Pocket part (temperature control) Means), 34 ... second jacket section, 4 ... transfer robot, 43 ... robot arm, 44 ... end effector, 9 ... static elimination chamber (processing chamber).

Claims (4)

試料を載置するステージを内蔵する描画室と、前記ステージに載置した試料に荷電粒子ビームを照射するビーム照射手段と、前記描画室に隣接する位置に配置されたロボット室と、前記ロボット室に収納された搬送ロボットであって、ロボットアームと、ロボットアームの先端に取り付けたエンドエフェクタとを有し、試料を前記エンドエフェクタに載置した状態で前記ステージに搬送するものと、前記ロボット室の温度を所定温度に維持する恒温手段とを備え、前記搬送ロボットにより前記ロボット室の周囲に配置した処理室に試料を搬入し、前記処理室で試料に対する所定の処理が施された後に、前記搬送ロボットにより試料を前記処理室から搬出して前記ステージに搬送するものにおいて、
前記ロボット室に、前記搬送ロボットの駆動源から前記ロボットアームを介して前記エンドエフェクタに伝わる熱を奪って、前記エンドエフェクタの温度を前記所定温度に維持する温度調節手段が配置され
前記処理室で試料に対する処理を行っている間、前記エンドエフェクタを前記温度調節手段の配置部に移動させて待機させることを特徴とする荷電粒子ビーム描画装置。
A drawing chamber containing a stage on which a sample is placed; beam irradiation means for irradiating a charged particle beam to the sample placed on the stage; a robot chamber disposed at a position adjacent to the drawing chamber; and the robot chamber A robot having a robot arm and an end effector attached to the tip of the robot arm, and transporting a sample to the stage while being placed on the end effector, and the robot chamber And a constant temperature means for maintaining the temperature at a predetermined temperature, the sample is loaded into a processing chamber disposed around the robot chamber by the transfer robot, and after the predetermined processing is performed on the sample in the processing chamber, in shall be conveyed to the stage and out of the sample from the processing chamber by the transfer robot,
Wherein the robot chamber, removes heat transmitted to the end effector from a drive source of the transport robot via the robot arm, the end effector to that temperature adjusting means maintained at the predetermined temperature the temperature of the are arranged,
Wherein while performing the processing for the sample in the processing chamber, the charged particle beam drawing apparatus according to claim Rukoto to wait for the end effector is moved to the arrangement of the temperature adjusting means.
請求項1記載の荷電粒子ビーム描画装置であって、前記恒温手段は、前記ロボット室の室壁と熱交換する流体を流すジャケット部で構成されるものにおいて
前記温度調節手段は、前記ロボット室の前記室壁に設けた、前記エンドエフェクタを挿入自在な扁平のポケット部で構成されることを特徴とする荷電粒子ビーム描画装置。
2. The charged particle beam drawing apparatus according to claim 1, wherein the thermostatic means is configured by a jacket portion that allows a fluid to exchange heat with a chamber wall of the robot chamber .
The charged particle beam drawing apparatus according to claim 1, wherein the temperature adjusting means is configured by a flat pocket portion provided on the chamber wall of the robot chamber, into which the end effector can be inserted .
前記ポケット部の周壁部と熱交換する流体を流す第2のジャケット部を備えることを特徴とする請求項2記載の荷電粒子ビーム描画装置。 The charged particle beam drawing apparatus according to claim 2, further comprising a second jacket portion that allows a fluid to exchange heat with the peripheral wall portion of the pocket portion . 前記エンドエフェクタの温度を検出する温度センサを備え、前記温度センサの検出温度に応じて前記第2のジャケット部に流す流体の流量と温度との少なくとも一方を可変することを特徴とする請求項3記載の荷電粒子ビーム描画装置。 Claim wherein a temperature sensor for detecting the temperature of the end effector, characterized by variable to Rukoto at least one of the flow rate and temperature of the fluid flowing through said second jacket portion in accordance with the detected temperature of the temperature sensor 3. The charged particle beam drawing apparatus according to 3.
JP2008335420A 2008-12-27 2008-12-27 Charged particle beam lithography system Active JP5420892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335420A JP5420892B2 (en) 2008-12-27 2008-12-27 Charged particle beam lithography system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335420A JP5420892B2 (en) 2008-12-27 2008-12-27 Charged particle beam lithography system

Publications (2)

Publication Number Publication Date
JP2010157630A JP2010157630A (en) 2010-07-15
JP5420892B2 true JP5420892B2 (en) 2014-02-19

Family

ID=42575319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335420A Active JP5420892B2 (en) 2008-12-27 2008-12-27 Charged particle beam lithography system

Country Status (1)

Country Link
JP (1) JP5420892B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894856B2 (en) 2012-05-22 2016-03-30 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and charged particle beam drawing method
JP7336915B2 (en) * 2019-08-20 2023-09-01 株式会社ニューフレアテクノロジー vacuum equipment
JP7325260B2 (en) 2019-08-21 2023-08-14 株式会社ニューフレアテクノロジー vacuum equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786371A (en) * 1993-09-10 1995-03-31 Dainippon Screen Mfg Co Ltd Substrate transfer equipment
JP2002343847A (en) * 2001-05-18 2002-11-29 Nec Yamaguchi Ltd Wafer conveying apparatus
JP2006100706A (en) * 2004-09-30 2006-04-13 Tokyo Seimitsu Co Ltd Electron beam exposure device
JP2006108463A (en) * 2004-10-07 2006-04-20 Nikon Corp Exposure device and method
WO2007080779A1 (en) * 2006-01-12 2007-07-19 Nikon Corporation Object conveyance apparatus, exposure apparatus, object temperature regulation apparatus, object conveyance method, and method of producing microdevice
JP4617278B2 (en) * 2006-06-29 2011-01-19 日本電産サンキョー株式会社 Industrial robot

Also Published As

Publication number Publication date
JP2010157630A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
KR101874673B1 (en) Support mechanism and substrate processing apparatus
JP5106331B2 (en) Method for lowering temperature of substrate mounting table, computer-readable storage medium, and substrate processing system
JP5420892B2 (en) Charged particle beam lithography system
KR102383298B1 (en) Bonding apparatus, bonding system, bonding method and computer storage medium
JP2008270652A (en) Vertical thermal treatment device and treated substrate transfer method
JP5729148B2 (en) Opening / closing device for substrate transfer container, opening / closing device for lid and semiconductor manufacturing device
WO2016114067A1 (en) Joining device, joining system, and joining method
JP2017026128A (en) Gate device, processing system, and sealing part replacement method
JP2011174108A (en) Cooling apparatus and substrate processing apparatus having the same
JP5571291B2 (en) Heat treatment equipment
KR102164765B1 (en) Substrate processing apparatus and substrate processing system
JP6554387B2 (en) Substrate cooling method in load lock apparatus, substrate transfer method, and load lock apparatus
KR20130135110A (en) Heat processing apparatus, cooling method for heat processing plate, and computer storage medium
JP5773815B2 (en) Heat treatment equipment
TW201946182A (en) Substrate processing device capable of enhancing temperature distribution uniformity along line width direction of heater
JP2005277049A (en) System and method for heat treatment
JP2010091222A (en) Heat processing device
JP2015050341A (en) Substrate processing apparatus and maintenance method
JP3194230U (en) Heat treatment equipment
JP4334487B2 (en) Substrate heat treatment apparatus and substrate heat treatment method
JP2009016073A (en) Vacuum apparatus and its baking processing method
US20230176485A1 (en) Apparatus for treating substrate and method for treating substrate
KR102649869B1 (en) vacuum device
KR101745970B1 (en) Heat treatment apparatus
JP2006222176A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131121

R150 Certificate of patent or registration of utility model

Ref document number: 5420892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250