JP5418678B2 - 内燃機関の噴射量学習装置 - Google Patents

内燃機関の噴射量学習装置 Download PDF

Info

Publication number
JP5418678B2
JP5418678B2 JP2012523482A JP2012523482A JP5418678B2 JP 5418678 B2 JP5418678 B2 JP 5418678B2 JP 2012523482 A JP2012523482 A JP 2012523482A JP 2012523482 A JP2012523482 A JP 2012523482A JP 5418678 B2 JP5418678 B2 JP 5418678B2
Authority
JP
Japan
Prior art keywords
injection
learning
switching
learning value
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012523482A
Other languages
English (en)
Other versions
JPWO2012004884A1 (ja
Inventor
茂樹 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of JPWO2012004884A1 publication Critical patent/JPWO2012004884A1/ja
Application granted granted Critical
Publication of JP5418678B2 publication Critical patent/JP5418678B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

この発明は、内燃機関の噴射量学習装置に係り、特に、1燃焼サイクル内において、複数回に分割して燃料を噴射する内燃機関の噴射量学習装置に関する。
従来、例えば特許文献1に開示されるように、1燃焼サイクル内において、複数回に分割して燃料を噴射する燃料噴射装置を備えた内燃機関が知られている。また、本公報には、内燃機関の排気中の予測空燃比を算出し、予測空燃比と検出空燃比との差から、要求噴射量と実際の噴射量とのずれ量を算出することが開示されている。さらに、本公報には、上記ずれ量を分割噴射回数で除算して、噴射1回当たりのずれ量に相当する学習値を算出することが開示されている。
日本特開2007−278168号公報 日本特開2009−97456号公報
図11は、燃料噴射弁やエアフローメータの出力特性を表す図である。図11に示すように、実値(実線60)には、設計値(破線62)に対して、噴射量や吸入空気量に比例する比例誤差と、オフセットの違いによる定量誤差とがある。また、少量側においては、実値にばらつきが生じ易い。これらのずれは、アクチュエータやセンサの個体差や経年劣化などによって異なる。
分割噴射を実施する場合には、噴射1回当たりの噴射期間が短くなり、少量側を多用することとなる(図11)。また、1燃焼サイクル当たりの分割噴射回数が増えるほど、定量誤差が重なり、実噴射量は定量誤差の影響を強く受けることとなる。そのため、上記特許文献1では、噴射1回当たりの定量誤差に相当する学習値を算出することとしている。
ところで、噴射量にずれが生じる要因としては、上述したとおり、定量誤差のほかに比例誤差もある。そのため、運転領域(例えば、機関負荷の所定範囲)ごとに学習値を持たせることが望ましい。しかしながら、運転領域の違いによる誤差と、分割噴射回数の違いによる誤差とを別々に学習すれば、学習値が増えるため、学習量が増大してしまう。学習量が増大すれば、学習速度の低下が懸念される。一方、これらの誤差の両方を考慮しなければ、分割噴射回数の違いによって定量誤差の寄与度が変動するため、学習精度の低下が懸念される。
この発明は、上述のような課題を解決するためになされたもので、分割噴射がなされる場合であっても、学習速度と学習精度とを両立した学習をすることのできる内燃機関の噴射量学習装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の噴射量学習装置であって、
燃料噴射弁による1燃焼サイクル内での分割噴射回数を、内燃機関の運転領域に応じて切り替える噴射回数切り替え手段と、
前記運転領域ごとに個別に設けられた噴射補正量に相関する学習値を、前記運転領域に応じて切り替える学習値切り替え手段と、
前記内燃機関の排気中の検出空燃比を目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記学習値を更新する学習値更新手段と、を備え、
前記分割噴射回数を切り替える運転領域と前記学習値とを切り替える運転領域とが、少なくとも1つ以上略一致していること、を特徴とする。
また、第2の発明は、第1の発明において、前記分割噴射回数を切り替える運転領域と前記学習値を切り替える運転領域との全てが略一致していることを特徴とする。
また、第3の発明は、第1又は第2の発明において、前記運転領域は、機関負荷に応じて定められていることを特徴とする。
また、第4の発明は、第1乃至第3の発明のいずれか1つにおいて、前記学習値は、機関負荷及び前記分割噴射回数ごとに設けられていることを特徴とする。
また、第5の発明は、第1乃至第3の発明のいずれか1つにおいて、前記学習値は、機関負荷及び燃料噴射弁に供給される燃料圧力ごとに設けられていることを特徴とする。
また、第6の発明は、第1乃至第3の発明のいずれか1つにおいて、
前記噴射回数切り替え手段によって分割噴射回数を切り替えるタイミングごとに個別に設けられた噴射補正量に相関する噴射切り替え学習値を記憶する記憶手段と、
前記運転領域に応じて前記学習値及び前記分割噴射回数を共に切り替える際に、前記学習値に前記噴射切り替え学習値を加えて、最終的な噴射補正量に相関する反映学習値を算出する反映学習値算出手段と、を更に備えることを特徴とする。
また、第7の発明は、第6の発明において、
前記内燃機関の排気中の検出空燃比が、前記分割噴射回数を切り替えた直後に変動した空燃比であるか否かを判定する判定手段と、
前記検出空燃比が前記分割噴射回数を切り替えた直後に変動した空燃比である場合に、前記検出空燃比を前記目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記噴射切り替え学習値を更新する噴射切り替え学習値更新手段と、を更に備えることを特徴とする。
第1の発明によれば、分割噴射回数を切り替える運転領域と学習値とを切り替える運転領域とが、少なくとも1つ以上略一致するように設定されている。これにより、運転領域の変動に応じて、分割噴射回数と学習値とを合わせて切り替えることができる。そのため、学習値を増やすことなく、運転領域の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習することができる。このため、本発明によれば、分割噴射がなされる場合であっても、学習速度と学習精度とを両立した学習を実現することができる。
第2の発明によれば、分割噴射回数を切り替える運転領域と学習値を切り替える運転領域との全てが略一致するように設定されている。このため、本発明によれば、全ての運転領域において、学習速度と学習精度とを両立した学習を実現することができる。その結果、好適な燃費やエミッションを実現することが可能となる。
第3の発明によれば、運転領域は機関負荷に応じて定められる。このため、本発明によれば、機関負荷の変動に応じて、分割噴射回数と学習値とを合わせて切り替えることができる。
第4の発明によれば、学習値は、機関負荷及び分割噴射回数ごとに設けられる。このため、本発明によれば、同範囲の機関負荷において分割噴射回数が変更される場合であっても、分割噴射回数に応じた個別の学習値が更新される。そのため、学習値を精度高く維持することができる。
第5の発明によれば、学習値は、機関負荷及び燃料噴射弁に供給される燃料圧力ごとに設けられる。このため、本発明によれば、同範囲の機関負荷において燃料圧力や分割噴射回数が変更される場合であっても、燃料圧力や分割噴射回数に応じた個別の学習値が更新される。そのため、学習値を精度高く維持することができる。
第6の発明によれば、運転領域に応じて学習値及び分割噴射回数を共に切り替える際に、学習値に噴射切り替え学習値を加えて、最終的な噴射補正量に相関する反映学習値を算出する。このため、本発明によれば、少ない学習値の数で最終的な噴射補正量を算出することが可能となる。また、学習値の数が少ないため、学習速度を高めることができる。
第7の発明によれば、分割噴射回数を切り替えた直後に検出空燃比が変動した場合に、検出空燃比と目標空燃比との比較値に基づいて噴射切り替え学習値が更新される。このため、本発明によれば、定量誤差の影響を強く受ける噴射切り替え学習値を、精度高く学習することができる。
本発明の実施の形態1のシステム構成を説明するための概略構成図である。 本発明の実施の形態1において、ECU50に設定される学習領域を示す図である。 本発明の実施の形態1において、学習値を切り替える運転領域と分割噴射回数を切り替える運転領域との関係を示す図である。 本発明の参考例において、ECU50に設定される学習領域を示す図である。 本発明の参考例において、分割噴射回数を決定するためのマップである。 本発明の参考例において、ECU50に設定される学習領域を示す図である。 本発明の実施の形態4において、ECU50に設定される学習領域を示す図である。 本発明の実施の形態4において、負荷方向学習値と噴射切り替え学習値とから反映学習値を算出する方法について説明するための図である。 本発明の実施の形態4において、負荷方向学習値と噴射切り替え学習値の学習例を示すタイミングチャートである。 本発明の実施の形態4において、ECU50が実行する学習ルーチンのフローチャートである。 燃料噴射弁やエアフローメータの出力特性を表す図である。
10 内燃機関
12 燃料噴射弁
14 デリバリーパイプ
22 エアフローメータ
24、24a、24b 過給機、コンプレッサ、タービン
30 触媒
32 空燃比センサ
34 クランク角センサ
50 ECU(Electronic Control Unit)
以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1のシステム構成を説明するための概略構成図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10は、車両等に搭載され、その動力源とされる。図1に示す内燃機関10は、直列4気筒型であるが、本発明では、気筒数および気筒配置はこれに限定されるものではない。
内燃機関10の各気筒には、燃料を筒内に直接噴射する燃料噴射弁12が取り付けられている。燃料噴射弁12には、高圧の燃料を燃料噴射弁12に供給するデリバリーパイプ14が接続されている。なお、本発明は、このような筒内噴射式の内燃機関に限らず、吸気ポート内に燃料を噴射するポート噴射式の内燃機関にも同様に適用可能である。
また、各気筒には、吸気通路16および排気通路18が接続されている。吸気通路16の入口付近には、エアクリーナ20が設けられている。エアクリーナ20の下流には、吸気通路16に吸入される新気の流量に応じた吸入空気量GAを出力するエアフローメータ22が取り付けられている。
エアフローメータ22の下流には、過給機24が設けられている。過給機24は、コンプレッサ24aとタービン24bを備えている。コンプレッサ24aとタービン24bとは、連結軸によって一体に連結されている。コンプレッサ24aは、タービン24bに入力される排気ガスの排気エネルギーによって回転駆動される。
コンプレッサ24aの下流には、コンプレッサ24aで圧縮された新気を冷却するためのインタークーラ26が設けられている。インタークーラ26の下流には、スロットルバルブ28が設けられている。スロットルバルブ28下流の吸気通路16は、分岐して各気筒に接続されている。
また、合流後の排気通路18には、過給機24のタービン24bが設けられている。また、タービン24bの下流には、排気ガスを浄化するための触媒30が配置されている。触媒には、例えば三元触媒が用いられる。触媒30の上流には、排気ガスの空燃比(AF)を検出するための空燃比センサ32が取り付けられている。
本実施形態のシステムは、ECU(Electronic Control Unit)50を更に備えている。ECU50の入力部には、上述したエアフローメータ22、空燃比センサ32の他、クランク角CAを検出するためのクランク角センサ34等の各種センサが接続されている。ECU50は、クランク角CAから機関回転数NEを計算することができる。また、ECU50の出力部には、上述した燃料噴射弁12、スロットルバルブ28の他、図示省略する点火プラグ等の各種アクチュエータが接続されている。
ECU50は、各種センサの出力に基づき、所定のプログラムに従って各種アクチュエータを作動させることにより、内燃機関10の運転状態を制御する。例えば、ECU50は、内燃機関10の機関負荷、機関回転数NE、吸入空気量GA等と、基本噴射量との関係を定めた基本噴射量マップを記憶している。ECU50は、基本噴射量マップから機関負荷等に応じた基本噴射量を取得し、この基本噴射量に基づいて最終噴射量を算出する。最終噴射量に基づいて燃料噴射弁12から燃料が噴射される。なお、ECU50は、混合気の均質性を確保するため、最終噴射量を1燃焼サイクル内で複数回に分割して噴射させることができる。
また、ECU50には、図11で述べた運転領域の違いによる誤差を解消するために用いられる、運転領域(機関負荷の範囲)ごとに個別に設けられた学習値が記憶されている。図2は、ECU50に設定される学習領域を示す図である。学習領域は、運転領域(機関負荷の範囲)に対応して定められている。それぞれの学習領域には、個別の学習値が設けられている。この学習値は、上述の基本噴射量を増減補正する噴射補正量に相関する値である。ECU50は、運転領域(機関負荷の範囲)に応じて学習値を切り替える。なお、図2には4つの学習領域が示されているが、本発明において学習領域の数はこれに限定されるものではない。
次に、上述した学習値を算出する手法について説明する。ECU50は、空燃比センサ32により検出される検出空燃比を目標空燃比に近づけるように、検出空燃比と目標空燃比との比較値を、最終噴射量に反映するフィードバック制御を実施する。具体的には、検出空燃比と目標空燃比との偏差に基づいて、上述した基本噴射量を増減補正する噴射補正量を算出する。ECU50は、この噴射補正量に相当する値を、現運転領域における学習値として記憶する。その後、ECU50は、基本噴射量に現運転領域における学習値を加えて、最終噴射量を算出し、燃料噴射弁12に噴射させる。なお、説明容易のため、以下の説明において目標空燃比は、理論空燃比(ストイキ)に設定されているものとするが、これに限定されるものではない。
ところで、最終噴射量を分割して噴射する場合には、図11で述べた分割噴射回数の違いによる誤差が生じる。特に、過給機24を備える本実施形態のシステムでは、使用する負荷の範囲が広い。負荷に応じて分割噴射回数を切り替える場合も多く、分割噴射回数の違いによる誤差の影響が大きい。そのため、分割噴射回数に応じて重畳する定量誤差を考慮しなければ、学習精度が低下することとなる。一方で、運転領域(機関負荷の範囲)の違いよる誤差と、分割噴射回数の違いによる誤差とを別々に学習することとすれば、学習値が増えて、学習速度が低下することとなる。
[実施の形態1における特徴的構成]
このような問題を解決するための本実施形態の特徴的構成について、図3を用いて説明する。図3は、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域との関係を示す図である。学習値を切り替える運転領域は、図2と同様に機関負荷の範囲に応じて定められている。さらに、本実施形態では、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。即ち、学習値と分割噴射回数とが略同じタイミングで切り替わるように設定されている。
このような特徴的構成を有する本実施形態のシステムによれば、運転領域の変動に応じて、学習値と分割噴射回数とを合わせて切り替えることができる。そのため、学習値を増やすことなく、機関負荷の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習させることができる。このため、本発明によれば、分割噴射がなされる場合であっても、学習速度と学習精度とを両立した学習を実現することができる。学習速度と学習精度との両立により、好適な空燃比制御が可能となる。その結果、燃費やエミッションの向上を図ることができる。
ところで、上述した実施の形態1のシステムにおいては、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域との全てが略一致させるように設定することとしている。しかしながら、運転領域の設定はこれに限られるものではない。学習値を切り替える運転領域と分割噴射回数を切り替える運転領域とが、少なくとも1以上略一致することとしてもよい。
また、上述した実施の形態1のシステムにおいては、排気中の空燃比を、空燃比センサ32により検出することとしている。しかしながら、空燃比の取得手法はこれに限定されるものではない。例えば、筒内圧センサを備え、筒内圧センサの出力値に基づいて空燃比を推定することとしてもよい。
また、上述した実施の形態1のシステムにおいては、過給機24を備えることとしているが、本発明は、過給機を備えない内燃機関にも適用可能である。また、本実施形態では、内燃機関10が、火花点火式の内燃機関であるものとして説明したが、本発明は、圧縮着火式の内燃機関にも適用可能である。
参考例2
参考例2のシステム構成]
次に、図4、図5を参照して本発明の参考例2について説明する。本参考例2のシステムは、図1に示す構成において、ECU50に図4、図5に示す学習領域を設定することで実現することができる。
上述した実施の形態1では、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。この学習値は、機関負荷の範囲に応じて定められており、機関負荷の範囲に応じた学習値と、その学習値における分割噴射回数とは1対1に対応している。ところで、燃費やエミッションの観点から、機関負荷の範囲が同一であっても、異なる分割噴射回数で燃料を噴射することが望まれる場合もある。
参考例2における特徴的構成]
そこで、本参考例2のシステムでは、機関負荷と分割噴射回数ごとに学習値を定めると共に、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定することとした。
図4は、本参考例2のシステムにおいて、ECU50に設定される学習領域を示す図である。学習領域は、機関負荷と分割噴射回数ごとに個別に設定されている。それぞれの学習領域には、個別の学習値が設けられている。この学習値は、上述の基本噴射量を補正する噴射補正量に相関する値である。なお、本発明において、学習領域の数は図4に示すものに限られない。
図4に示すいずれかの学習領域を選択するためには、機関負荷以外に、分割噴射回数を決定する必要がある。そこで、次に、分割噴射回数を決定する手法について説明する。図5は、分割噴射回数を決定するためのマップである。図5のマップに示すように、分割噴射回数は、機関負荷と機関回転数NEとで定めた運転領域に応じて定められている。具体的には、燃料噴射弁12には、最小噴射時間の制限があるため、高負荷で基本噴射量が大きく設定される場合であっても、機関回転数NEが高い運転領域では、分割噴射回数を増やすことができない。一方、機関回転数NEが低い運転領域では、分割噴射回数を増やすことができる。そのため、図5に示すマップでは、高負荷高回転の運転領域において分割噴射回数が制限されている。
ECU50は、図5に示すマップを記憶しており、現在の運転領域(機関負荷及び機関回転数NE)に対応する分割噴射回数を決定する。その後、ECU50は、機関負荷と分割噴射回数とに応じた学習領域を選択する(図4)。そして、ECU50は、実施の形態1と同様のフィードバック制御を実施し、当該学習領域の学習値を更新する。
上述した通り、本参考例2のシステムでは、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。そのため、機関領域の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習させることができる。また、本参考例2のシステムでは、同範囲の機関負荷において、分割噴射回数が変更される場合であっても、分割噴射回数に応じた個別の学習値が更新されるため、精度の高い学習を維持することができる。このため、本発明によれば、学習速度と学習精度とを両立した学習を実現することができる。その結果、空燃比制御性を向上させることができる。
参考例3
参考例3のシステム構成]
次に、図6を参照して本発明の参考例3について説明する。本参考例3のシステムは、図1に示す構成において、ECU50に図6に示す学習領域を設定することで実現することができる。なお、ECU50の出力部には、デリバリーパイプ14内の燃料圧力を制御するための燃料ポンプ(図示省略)が接続されているものとする。燃料圧力は、例えば高負荷高回転ほど高まるように制御される。
上述した参考例2では、機関負荷と分割噴射回数ごとに学習値を定めている。ところで、燃料噴射量は燃料噴射弁12の開弁時間と燃料圧力とによって定まる。そのため、燃料圧力のずれによっても燃料噴射量に誤差が生じる。また、上述の定量誤差は、燃料圧の変化の影響を強く受ける。そのため、運転状態に応じて燃料圧力を制御する場合には、燃料圧力の変化に起因する燃料噴射量の誤差も補正することが望ましい。
参考例3における特徴的構成]
そこで、本参考例3のシステムでは、機関負荷、分割噴射回数及び燃料噴射弁12に供給される燃料圧力ごとに学習値を定めると共に、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定することとした。
図6は、本参考例3のシステムにおいて、ECU50に設定される学習領域を示す図である。学習領域は、機関負荷と分割噴射回数と燃料圧力とに応じて設定されている。それぞれの学習領域には、個別の学習値が設けられている。この学習値は、上述の基本噴射量を補正する噴射補正量に相関する値である。なお、本発明において、学習領域の数は図6に示すものに限られない。
ECU50は、上述の図5に相当するマップを記憶しており、現在の運転領域(機関負荷及び機関回転数NE)に対応する分割噴射回数を決定する。その後、ECU50は、機関負荷と分割噴射回数と燃料圧力に応じた学習領域を選択する(図6)。そして、ECU50は、実施の形態1と同様のフィードバック制御を実施し、当該学習領域の学習値を更新する。
上述した通り、本参考例3のシステムでは、学習値を切り替える運転領域と、分割噴射回数を切り替える運転領域とが略一致するように設定されている。そのため、機関領域の違いによる誤差と分割噴射回数の違いによる誤差とを同時に学習させることができる。また、本参考例3のシステムでは、同範囲の機関負荷において、燃料圧力や分割噴射回数が変更される場合であっても、燃料圧力や分割噴射回数に応じた個別の学習値が更新されるため、精度の高い学習を維持することができる。このため、本発明によれば、学習速度と学習精度とを両立した学習を実現することができる。その結果、空燃比制御性を向上させることができる。
ところで、上述した参考例3のシステムにおいては、学習値を、機関負荷、分割噴射回数及び燃料噴射弁12に供給される燃料圧力ごとに定めることとしている。しかしながら、学習値の設定はこれに限られるものではない。機関負荷と燃料噴射弁12に供給される燃料圧力ごとに学習値を定めることとしてもよい。
実施の形態4.
[実施の形態4のシステム構成]
次に、図7〜図10を参照して本発明の実施の形態4について説明する。本実施形態のシステムは図1に示す構成において、ECU50に図7に示す学習領域を設定し、ECU50に後述する図10のルーチンを実施させることで実現することができる。
上述した参考例2では、機関負荷と分割噴射回数ごとに学習値を定めている。しかしながら、学習値の数が増えれば学習量が増大するため、学習速度が悪化する可能性がある。そのため、学習値の数は少なく抑えることが望ましい。
[実施の形態4における特徴的構成]
そこで、本実施形態のシステムでは、機関負荷の範囲ごとに設けられた負荷方向学習値に、分割噴射回数を切り替えるタイミングごとに設けられた噴射切り替え学習値を加えて、最終的に基本噴射量を増減補正するための反映学習値を算出することとした。
本実施形態の特徴的構成について、より具体的に説明するため、学習領域の設定と、その設定を用いた学習ルーチンとに分けて説明する。まず、学習領域の設定について図7を用いて説明する。
図7は、本実施形態のシステムにおいて、ECU50に設定される学習領域を示す図である。学習領域は、機関負荷の範囲ごとに個別に設定されている。それぞれの学習領域には、個別の学習値(以下、負荷方向学習値という。)が設けられている。負荷方向学習値は、基本噴射量を補正する噴射補正量の1つであり、機関負荷の範囲に応じて用いられる。
加えて、ECU50には、分割噴射回数を切り替えるタイミングごとに、個別に設けられた噴射切り替え学習値が記憶されている。噴射切り替え学習値は、基本噴射量を補正する噴射補正量の1つであり、分割噴射回数が切り替わる際に用いられる。この噴射切り替え学習値は、N回噴射からN+1回噴射への切り替えと、N+1回噴射からN回噴射への切り替えとにおいて、共通した値が用いられる(図7)。
また、本実施形態において、噴射切り替え学習値は、機関負荷に対する変化率ではなく、燃料噴射量に相関する絶対量とする。分割噴射回数を切り替える際の誤差要因は、定常誤差が主である。そのため、機関負荷に対する比率でなく絶対量として持つことで、学習精度の向上を図ることができる。なお、本発明において、負荷方向学習値及び噴射切り替え学習値の数は図7に示すものに限られない。
次に、本実施形態における、負荷方向学習値と噴射切り替え学習値との用い方について説明する。本実施形態では、ECU50は、負荷方向学習値と噴射切り替え学習値とからなる反映学習値を算出し、この反映学習値を基本噴射量に加えて最終噴射量を算出する。
図8は、負荷方向学習値と噴射切り替え学習値とから反映学習値を算出する方法について説明するための図である。図8に白丸で示す学習値は、1回噴射の場合の学習値である。黒丸で示す学習値は、分割噴射回数に応じた学習値である。各学習領域に示す実線は、機関負荷に応じた負荷方向学習値である。図8に示すとおり、負荷方向学習値は、負荷方向に対しては連続した傾向を有するが、分割噴射回数に対しては大きな変動を生じる。この差を補間するために、本実施形態では、分割噴射回数が切り換わるタイミングで、負荷方向学習値に噴射切り替え学習値が加えて反映学習値を算出する。なお、図8に示すとおり、学習値を切り替える各運転領域の間には、ヒステリシスが設けられている。
図7、図8に示す4回噴射までの反映学習値の具体例を示す。
1回噴射時の反映学習値=負荷方向学習値
2回噴射時の反映学習値=負荷方向学習値+噴射切り替え学習値1‐2
3回噴射時の反映学習値=負荷方向学習値+噴射切り替え学習値1‐2+噴射切り替え学習値2‐3
4回噴射時の反映学習値=負荷方向学習値+噴射切り替え学習値1‐2+噴射切り替え学習値2‐3+噴射切り替え学習値3‐4
このように、運転領域に応じた負荷方向学習値に、分割噴射回数ごとの噴射切り替え学習値を重ね合わせることにより、反映学習値を算出することができる。
次に、負荷方向学習値と噴射切り替え学習値の更新方法について図9を用いて説明する。図9は、負荷方向学習値と噴射切り替え学習値の学習例を示すタイミングチャートである。図9に示す例では、時刻t1において、分割噴射回数が1回から2回に切り換わる。これにより、分割噴射回数の違いによる誤差(図11)が加わり噴射量が増大する。噴射量が増大するため、空燃比(AF)は目標空燃比から乖離することとなる。そこで、この分割噴射回数の切り替え時に生じる瞬間的な空燃比偏差を、噴射切り替え学習値1−2として記憶する。このように、噴射切り替え学習値は更新される。
また、分割噴射回数が2回に切り替わり所定時間が経過した後は、実施の形態1と同様のフィードバック制御が実施され、現機関負荷の範囲に対応する負荷方向学習値が更新される。
(学習ルーチン)
図10は、上述の学習値の更新を実現するために、ECU50が実行する学習ルーチンのフローチャートである。図6に示すルーチンでは、まず、ECU50は、空燃比学習可能条件が成立するか否かを判定する(ステップS100)。空燃比学習可能条件とは、例えば、水温が所定値(暖機完了状態)以上であること、空燃比フィードバック制御が実行中であることなどである。空燃比学習可能条件が成立しないと判定される場合には、その後、本ルーチンの処理は終了される。
ステップS100において、空燃比学習可能条件が成立すると判定される場合には、次に、ECU50は、空燃比センサ32により検出される検出空燃比と目標空燃比との空燃比偏差が所定値以上であるか否かを判定する(ステップS110)。この所定値は、例えば、製品ばらつきによる誤差を考慮して予め定めた値である。空燃比偏差が所定値未満であると判定される場合には、その後、本ルーチンの処理は終了される。
ステップS110において、空燃比偏差が所定値以上であると判定される場合には、次に、ECU50は、分割噴射回数の切り替えがあるか否かを判定する(ステップS120)。上述したとおり、本システムでは、負荷方向学習値を切り替える運転領域と分割噴射回数を切り替える運転領域とが略一致するように設定されている。分割噴射回数の切り替えがあったか否かは、運転領域(機関負荷の範囲)又は負荷方向学習値から判定することができる。分割噴射回数の切り替えがないと判定される場合には、後述するステップS150の処理がなされる。
ステップS120において、分割噴射回数の切り替えがあると判定される場合には、次に、ECU50は、前回の分割噴射回数の切り替えから所定時間が経過しているか否かを判定する(ステップ130)。所定時間が経過していない場合には、その後、本ルーチンは終了される。
ステップS130において、所定時間が経過していると判定される場合には、次に、ECU50は、今回の分割噴射回数の切り替えから所定時間が経過しているか否かを判定する(ステップ140)。この所定時間は、分割噴射回数を切り替えた直後に、瞬間的に生じる空燃比の変動を検出できるタイミングに合わせる。
ステップ140において、分割噴射回数の切り替えから所定時間が経過していないと判定される場合には、ECU50は、噴射切り替え学習値の値を更新する(ステップS150)。具体的には、まず、空燃比センサ32により切り替え直後の空燃比が検出される。ECU50は、この検出空燃比と目標空燃比との偏差から、切り替え直後の空燃比の瞬間変動量を算出する。ECU50は、この瞬間変動量に基づいて、噴射切り替え学習値の値を更新する。例えば、分割噴射回数が1回から2回に切り替えられた場合には、噴射切り替え学習値1‐2が更新される(図9)。
一方、分割噴射回数の切り替えから所定時間が経過したと判定される場合には、ECU50は、負荷方向用学習値の値を更新する(ステップS160)。具体的には、ECU50は、空燃比センサ32により検出される検出空燃比を目標空燃比に近づけるように、検出空燃比と目標空燃比との偏差に基づいて、基本噴射量を増減補正する噴射補正量を算出する。ECU50は、この噴射補正量に基づいて、現運転領域における負荷方向学習値を更新する。
以上説明したように、図10に示す学習ルーチンによれば、負荷方向学習値と噴射切り替え学習値とを、それぞれ個別に更新することができる。また、本実施形態のシステムでは、これらの学習値から、機関負荷及び分割噴射回数に応じた反映学習値を算出することができる(図8、図9)。そのため、参考例2におけるシステムと同様の効果を、少ない学習値の数で得ることができる。学習値の数が少ないため、学習速度を高めることができる。このため、本発明によれば、学習速度と学習精度とを両立した学習を実現することができる。その結果、空燃比制御性を向上させることができる。

尚、上述した実施の形態4においては、ECU50が前記第6の発明における「記憶手段」に、ECU50が負荷方向学習値と噴射切り替え学習値とから反映学習値を算出することが前記第6の発明における「反映学習値算出手段」に、それぞれ相当している。また、ここでは、ECU50が、上記ステップS140の処理を実行することにより前記第7の発明における「判定手段」が、上記ステップS150の処理を実行することにより前記第7の発明における「噴射切り替え学習値更新手段」が、それぞれ実現されている。

Claims (3)

  1. 過給機を備えた内燃機関の噴射量学習装置であって、
    燃料噴射弁による1燃焼サイクル内での分割噴射回数を、前記内燃機関の各機関負荷領域に応じて切り替える噴射回数切り替え手段と、
    前記各機関負荷領域に個別に設けられた噴射補正量に相関する学習値を、前記各機関負荷領域に応じて切り替える学習値切り替え手段と、
    前記内燃機関の排気中の検出空燃比を目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記学習値を更新する学習値更新手段と、を備え、
    前記各機関負荷領域は、1つの機関負荷領域に対して1つの前記分割噴射回数と1つの前記学習値とが対応し、前記噴射回数切り替え手段により前記分割噴射回数を切り替える機関負荷領域と前記学習値切り替え手段により前記学習値切り替える機関負荷領域とが一致していること、
    を特徴とする内燃機関の噴射量学習装置。
  2. 前記噴射回数切り替え手段によって分割噴射回数を切り替えるタイミングごとに個別に設けられた噴射補正量に相関する噴射切り替え学習値を記憶する記憶手段と、
    前記運転領域に応じて前記学習値及び前記分割噴射回数を共に切り替える際に、前記学習値に前記噴射切り替え学習値を加えて、最終的な噴射補正量に相関する反映学習値を算出する反映学習値算出手段と、
    を更に備えることを特徴とする請求項記載の内燃機関の噴射量学習装置。
  3. 前記内燃機関の排気中の検出空燃比が、前記分割噴射回数を切り替えた直後に変動した空燃比であるか否かを判定する判定手段と、
    前記検出空燃比が前記分割噴射回数を切り替えた直後に変動した空燃比である場合に、前記検出空燃比を前記目標空燃比に近づけるように、前記検出空燃比と前記目標空燃比との比較値に基づいて前記噴射切り替え学習値を更新する噴射切り替え学習値更新手段と、
    を更に備えることを特徴とする請求項記載の内燃機関の噴射量学習装置。
JP2012523482A 2010-07-09 2010-07-09 内燃機関の噴射量学習装置 Expired - Fee Related JP5418678B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/061683 WO2012004884A1 (ja) 2010-07-09 2010-07-09 内燃機関の噴射量学習装置

Publications (2)

Publication Number Publication Date
JPWO2012004884A1 JPWO2012004884A1 (ja) 2013-09-02
JP5418678B2 true JP5418678B2 (ja) 2014-02-19

Family

ID=45440883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012523482A Expired - Fee Related JP5418678B2 (ja) 2010-07-09 2010-07-09 内燃機関の噴射量学習装置

Country Status (2)

Country Link
JP (1) JP5418678B2 (ja)
WO (1) WO2012004884A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10655557B2 (en) 2014-08-29 2020-05-19 Hitachi Automotive Systems, Ltd. Control device of internal combustion engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277836A (ja) * 1985-05-31 1986-12-08 Fuji Heavy Ind Ltd 自動車用エンジンの電子制御方式
JPH11343911A (ja) * 1998-03-31 1999-12-14 Mazda Motor Corp 筒内噴射式エンジンの燃料制御装置
JP2006125370A (ja) * 2004-11-01 2006-05-18 Denso Corp 噴射量学習制御装置
JP2008095615A (ja) * 2006-09-15 2008-04-24 Denso Corp 燃料噴射制御装置
JP2008309085A (ja) * 2007-06-15 2008-12-25 Denso Corp 燃料噴射制御装置およびそれを用いた燃料噴射システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277836A (ja) * 1985-05-31 1986-12-08 Fuji Heavy Ind Ltd 自動車用エンジンの電子制御方式
JPH11343911A (ja) * 1998-03-31 1999-12-14 Mazda Motor Corp 筒内噴射式エンジンの燃料制御装置
JP2006125370A (ja) * 2004-11-01 2006-05-18 Denso Corp 噴射量学習制御装置
JP2008095615A (ja) * 2006-09-15 2008-04-24 Denso Corp 燃料噴射制御装置
JP2008309085A (ja) * 2007-06-15 2008-12-25 Denso Corp 燃料噴射制御装置およびそれを用いた燃料噴射システム

Also Published As

Publication number Publication date
JPWO2012004884A1 (ja) 2013-09-02
WO2012004884A1 (ja) 2012-01-12

Similar Documents

Publication Publication Date Title
JP4349344B2 (ja) エンジンの制御装置
JP4363398B2 (ja) 内燃機関の空燃比制御装置
US7356985B2 (en) Air-fuel ratio controller for internal combustion engine
US7707822B2 (en) Cylinder air-fuel ratio controller for internal combustion engine
JP4736058B2 (ja) 内燃機関の空燃比制御装置
US10280881B2 (en) Air quantity calculation device for internal combustion engine
US20110213544A1 (en) Fuel injection controller for internal combustion engine
JP2007231884A (ja) 内燃機関の制御装置
JP2008128160A (ja) 内燃機関の制御装置
JP5418678B2 (ja) 内燃機関の噴射量学習装置
US8958973B2 (en) Fuel injection control device for engine
JP2015190397A (ja) 内燃機関のスート排出量推定装置
JP6274401B2 (ja) エンジンの燃料噴射制御装置
JP2012117472A (ja) 内燃機関の制御装置
JP4900347B2 (ja) 内燃機関の制御装置
JP2006009674A (ja) 内燃機関の制御装置
US20030230073A1 (en) Exhaust gas cleaning system of internal combustion engine
JP2011179344A (ja) 内燃機関の燃料噴射制御装置
US11047332B2 (en) Controller and control method for internal combustion engine
JP2004316613A (ja) 内燃機関の可変バルブ制御装置
JP4854796B2 (ja) 内燃機関の異常検出装置
JP2011214411A (ja) 内燃機関の燃料噴射制御装置
JP5177329B2 (ja) 内燃機関の制御装置
JP2009114884A (ja) 燃料噴射量補正装置
JP2009281284A (ja) エンジン吸気流量検出装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

LAPS Cancellation because of no payment of annual fees