JP5417815B2 - Diffraction element, optical head device, and projection display device - Google Patents

Diffraction element, optical head device, and projection display device Download PDF

Info

Publication number
JP5417815B2
JP5417815B2 JP2008299504A JP2008299504A JP5417815B2 JP 5417815 B2 JP5417815 B2 JP 5417815B2 JP 2008299504 A JP2008299504 A JP 2008299504A JP 2008299504 A JP2008299504 A JP 2008299504A JP 5417815 B2 JP5417815 B2 JP 5417815B2
Authority
JP
Japan
Prior art keywords
light
diffraction
wavelength
small
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008299504A
Other languages
Japanese (ja)
Other versions
JP2010127977A (en
Inventor
利昌 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008299504A priority Critical patent/JP5417815B2/en
Publication of JP2010127977A publication Critical patent/JP2010127977A/en
Application granted granted Critical
Publication of JP5417815B2 publication Critical patent/JP5417815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Optical Head (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、複数の異なる波長で入射する光に対して、最も高い回折効率で回折する回折光の次数がそれぞれの波長で異なる回折素子、該回折素子を用いる光学系として、CD、DVD、光磁気ディスクなどの光記録媒体および「Blu−ray」(登録商標:以下BD)などの高密度光記録媒体に情報の記録および再生を行う光ヘッド装置、そして投射型表示装置に関する。   The present invention relates to a diffraction element in which the orders of diffracted light diffracted at the highest diffraction efficiency with respect to light incident at a plurality of different wavelengths are different at each wavelength, and an optical system using the diffraction element as a CD, DVD, light The present invention relates to an optical head device that records and reproduces information on an optical recording medium such as a magnetic disk and a high-density optical recording medium such as “Blu-ray” (registered trademark: BD), and a projection display device.

光記録媒体を記録または再生する光ヘッド装置、プロジェクタなどの投影装置において、複数の異なる波長の光が同一方向から入射して、それぞれの波長の光を異なる方向に偏向分離させる分波機能または、複数の異なる波長の光が異なる方向から入射してそれぞれの波長の光を同一方向に透過させる合波機能を有する光学部品が多く利用されている。このように、分波させたり合波させたりする光学部品には、高い光利用効率が得られることが求められ、例えば、光ヘッド装置において、波長405nmのBD用の光を反射させるとともに波長660nmのDVD用の光および波長785nmのCD用の光を透過させる機能を有するダイクロイックビームスプリッタおよび、BD用の光を透過させるとともにDVD用、CD用の光を反射させる機能を有するダイクロイックビームスプリッタが報告されている(特許文献1)。   In a projection apparatus such as an optical head device or a projector that records or reproduces an optical recording medium, a demultiplexing function for allowing light of a plurality of different wavelengths to enter from the same direction and deflecting and separating the light of each wavelength in different directions, or 2. Description of the Related Art Many optical components having a multiplexing function that allows light of different wavelengths to enter from different directions and transmit light of the respective wavelengths in the same direction are often used. As described above, an optical component that is demultiplexed or multiplexed is required to have high light utilization efficiency. For example, in an optical head device, BD light with a wavelength of 405 nm is reflected and a wavelength of 660 nm is reflected. Reported dichroic beam splitter that has the function of transmitting light for DVD and CD light of wavelength 785 nm, and dichroic beam splitter that has the function of transmitting light for BD and reflecting light for DVD and CD (Patent Document 1).

しかし、特許文献1に記載の光ヘッド装置は、BD用、DVD用およびCD用の3つの異なる波長の光をそれぞれ分波する場合、ダイクロイックビームスプリッタが2個必要になる。さらに、ダイクロイックビームスプリッタによる光の反射方向が90°であるために、その反射方向に別の光学部品を配置する必要があり、全体の構成として光ヘッド装置が大型化するという問題点があった。   However, the optical head device described in Patent Document 1 requires two dichroic beam splitters when demultiplexing light of three different wavelengths for BD, DVD, and CD. Further, since the light reflection direction by the dichroic beam splitter is 90 °, it is necessary to arrange another optical component in the reflection direction, and there is a problem that the optical head device is enlarged as a whole structure. .

そこで、このような装置を小型化するために、複数の異なる波長の光を分波させたり合波させたりする光学部品として、回折格子が形成された回折素子によって、回折角の異なる回折光を利用して分波または合波している。このような回折素子として、とくに特定の次数の回折光の回折効率が高いブレーズド形状の回折格子が形成され、波長によって同一の次数の回折光の回折角が異なることを利用する回折素子または、一方の波長の光は0次回折光、他方の波長の光は1次回折光を利用する回折素子が報告されている(特許文献2)。   Therefore, in order to reduce the size of such a device, diffracted light with different diffraction angles is produced by a diffractive element formed with a diffraction grating as an optical component that demultiplexes or multiplexes light of different wavelengths. Uses demultiplexing or multiplexing. As such a diffractive element, in particular, a diffractive element utilizing the fact that a blazed diffraction grating having a high diffraction efficiency of a specific order of diffracted light is formed and the diffraction angle of diffracted light of the same order differs depending on the wavelength, or There has been reported a diffractive element that utilizes 0th-order diffracted light for light having a wavelength of 1 and 1st-order diffracted light for light of the other wavelength (Patent Document 2).

また、複数の波長の光が入射する回折格子構造を有するものの応用例として、回折レンズがあり、とくに光ヘッド装置において、カバー厚さがそれぞれ異なる複数の光記録媒体の情報記録面に、それぞれの波長の光を良好に集光させるために用いられる回折レンズが報告されている(特許文献3)。   Further, as an application example of a diffraction grating structure in which light of a plurality of wavelengths is incident, there is a diffractive lens. In particular, in an optical head device, each of information recording surfaces of a plurality of optical recording media having different cover thicknesses is provided on each information recording surface. A diffractive lens used for condensing light of a wavelength has been reported (Patent Document 3).

特開2007−179640号公報JP 2007-179640 A 特開2006−048822号公報JP 2006-048822 A 特開2008−176932号公報JP 2008-176932 A

特許文献2に記載の光ヘッド装置に使用される回折素子は、DVD用とCD用の波長の光に対して回折角の違いを利用して分波または合波させている。とくに、DVD用の波長の回折光とCD用の波長の回折光を0次回折光と1次回折光との組み合わせを用いている。しかし、このような回折素子を用いる場合、これら2つの異なる波長の回折光同士の回折角の差が小さいと、これらの光を利用する光学部品同士の位置が接近しすぎることがあり光学部品の配置の関係で、これらの光の回折角の差を大きくする必要がある。しかし、回折角を大きくするためには、回折格子の格子ピッチを短くしなければならず、回折格子の高い加工精度が要求されるという問題があった。   The diffractive element used in the optical head device described in Patent Document 2 demultiplexes or multiplexes light having a wavelength for DVD and CD using a difference in diffraction angle. In particular, a combination of 0th-order diffracted light and 1st-order diffracted light is used for diffracted light having a wavelength for DVD and diffracted light having a wavelength for CD. However, when such a diffractive element is used, if the difference in diffraction angle between the diffracted lights of these two different wavelengths is small, the positions of the optical parts using these lights may be too close. Due to the arrangement, it is necessary to increase the difference in the diffraction angles of these lights. However, in order to increase the diffraction angle, the grating pitch of the diffraction grating has to be shortened, and there is a problem that high processing accuracy of the diffraction grating is required.

また、特許文献3に記載の光ヘッド装置に使用される回折光学素子は、BD用、DVD用およびCD用の波長の光に対して最も回折効率が高い次数の光が0次回折光(直進透過光)と同じ符号となる次数の回折光の組合せとなる回折格子の構成を有する。そして、これらの回折光によって、それぞれ異なる規格の光記録媒体の情報記録面に良好に集光させるため、回折させた光をさらに屈折させる屈折面を形成して発散/収束を調整しており、このように屈折面がなく回折格子だけでは、回折光学素子を透過する光の進行方向(角度)の差を大きくできず、また、回折角の差を大きくしようとすると回折格子の格子ピッチを短くしなければならず、回折格子の高い加工精度が要求されるという問題があった。   Further, in the diffractive optical element used in the optical head device described in Patent Document 3, the light having the highest diffraction efficiency with respect to the light of the wavelength for BD, DVD, and CD is zero-order diffracted light (straight forward transmission). The diffraction grating is a combination of orders of diffracted light having the same sign as that of the light. And, in order to collect light well on the information recording surfaces of optical recording media of different standards by these diffracted lights, a refracting surface that further refracts the diffracted light is formed to adjust the divergence / convergence, Thus, a diffraction grating alone with no refracting surface cannot increase the difference in the traveling direction (angle) of light transmitted through the diffractive optical element, and if the diffraction angle difference is increased, the grating pitch of the diffraction grating is shortened. There is a problem that high processing accuracy of the diffraction grating is required.

本発明は上述の実情に鑑み、複数の波長の光が入射して、それぞれの波長の光において回折効率が最も高い次数の光同士の回折角が異なるとともに、これらの回折角の差を大きくでき、かつ作製が容易な回折素子を提供することを目的とする。   In the present invention, in consideration of the above-described circumstances, light of a plurality of wavelengths is incident, the diffraction angles of the light beams having the highest diffraction efficiency in the light of each wavelength are different, and the difference between these diffraction angles can be increased. An object of the present invention is to provide a diffraction element that is easy to manufacture.

本発明は上記問題を解決するためになされたものであり、波長が異なるm個の光が入射し(m≧2の整数)、前記光の位相を変調して透過する回折素子であって、前記回折素子は、透光性基板上に回折格子が形成されるかまたは前記透光性基板の一つの面が回折格子となる形状を有し、前記回折格子は、格子ピッチPxの幅を有し、前記格子ピッチPxの幅の方向と直交する方向に延伸してなる単位領域が前記格子ピッチPxの幅の方向に繰り返して配置され、前記単位領域は、回折格子が形成されない前記透光性基板の面と平行で距離が同一となる面からなる区画を1つの小領域とするとき、前記透光性基板面からの距離が互いに異なるN個の小領域を含み、前記小領域は、前記格子ピッチPxの幅の方向と直交する方向に延伸して構成され(N≧3の整数)、m個の前記光のうち、最も短い波長を波長λ、最も長い波長を波長λとし、λ≦λ≦λである波長λの光が同相で入射するとき、最も位相が進む前記小領域であるゼロの小領域を透過する光の位相と、前記ゼロの小領域と異なる前記小領域を透過する前記波長λの光の位相との差で定義される位相差がそれぞれπの整数倍であり、前記位相差のうちの少なくとも1つは、πの奇数倍であって、入射するm個の前記光は、それぞれ最も高い回折効率が得られる次数の回折光を1つ有し、さらに、+p次の回折効率が最も高い光と、−q次の回折効率が最も高い光(p,q≧1の整数)を、それぞれ少なくとも1つずつ含む回折素子を提供する。 The present invention has been made to solve the above problem, and is a diffractive element in which m pieces of light having different wavelengths are incident (an integer of m ≧ 2), and the phase of the light is modulated and transmitted. The diffraction element has a shape in which a diffraction grating is formed on a light-transmitting substrate or one surface of the light-transmitting substrate is a diffraction grating, and the diffraction grating has a width of a grating pitch Px. A unit region extending in a direction orthogonal to the direction of the width of the grating pitch Px is repeatedly arranged in the direction of the width of the grating pitch Px, and the unit region does not form a diffraction grating. When a section composed of a plane parallel to the surface of the substrate and having the same distance is defined as one small region, the small region includes N small regions whose distances from the translucent substrate surface are different from each other. Stretched in a direction perpendicular to the width direction of the lattice pitch Px (Integer N ≧ 3), among the m of the light, the shortest wavelength of the wavelength lambda 1, the longest wavelength and the wavelength λ m, λ 1 ≦ λ a ≦ λ wavelength lambda a light phase is m in case the incident, the difference between the highest and the phase of the light which the phase advances passes small areas of zero is a small region, the wavelength lambda a of the phase of the light transmitted through the small region which is different from the small region of the zero Are each an integer multiple of π, and at least one of the phase differences is an odd multiple of π , and each of the m light beams incident has the highest diffraction efficiency. 1st order diffracted light, and at least one light having the highest + p-order diffraction efficiency and light having the highest −q-order diffraction efficiency (integers of p, q ≧ 1). A diffractive element is provided.

また、波長が異なるm個の光が入射し(m≧2の整数)、前記光の位相を変調して透過する回折素子であって、前記回折素子は、透光性基板上に回折格子が形成されるかまたは前記透光性基板の一つの面が回折格子となる形状を有し、前記透光性基板上の点Aを基点として前記透光性基板面と平行する直線上に格子ピッチP、P、…、P(P>P>…>P)の順に円形の領域または外縁が円である輪帯状の領域を含むM個の単位領域を有し、前記単位領域は、断面が前記透光性基板面と平行し、かつ高さが異なる面を有するとともに、前記点Aを中心とした円の円周方向に沿って延伸してなるN個の小領域を有し(N≧3の整数)、m個の前記光のうち、最も短い波長を波長λ、最も長い波長を波長λとし、λ≦λ≦λである波長λの光が同相で入射するとき、最も位相が進む前記小領域であるゼロの小領域を透過する光の位相と、前記ゼロの小領域と異なる前記小領域を透過する前記波長λの光の位相との差で定義される位相差がそれぞれπの整数倍であり、前記位相差のうちの少なくとも1つは、πの奇数倍であって、入射するm個の前記光は、それぞれ最も高い回折効率が得られる次数の回折光を1つ有し、さらに、+p次の回折効率が最も高い光と、−q次の回折効率が最も高い光(p,q≧1の整数)を、それぞれ少なくとも1つずつ含む回折素子を提供する。
また、前記位相差のうち少なくとも1つは、πである回折素子を提供する。
In addition, a diffractive element in which m pieces of light having different wavelengths are incident (an integer greater than or equal to m ≧ 2) and modulates the phase of the light and transmits the diffractive element, and the diffractive element has a diffraction grating on a translucent substrate. Formed or has a shape in which one surface of the translucent substrate becomes a diffraction grating, and a grating pitch on a straight line parallel to the translucent substrate surface with a point A on the translucent substrate as a base point P 1, P 2, ..., P M in the order of (P 1> P 2> ... > P M) having a M unit area including the annular area is a circle with a circular region or an outer edge, said unit The region has N small regions formed by extending along a circumferential direction of a circle centered on the point A, and having a cross section having a plane parallel to the translucent substrate surface and a different height. a (integer N ≧ 3), among the m of the light, the wavelength lambda 1 of the shortest wavelength, the longest wavelength is the wavelength lambda m, lambda 1 when the wavelength lambda a light is λ a ≦ λ m is incident in phase, and most the phase advances of light transmitted through the small region of zero is a small area phase, the small region different from the zero of the small region phase difference defined by the difference between the wavelength lambda a of the phase of the light transmitted through is an integer multiple of [pi respectively, at least one of the phase difference is an odd multiple of [pi, incident Each of the m light beams has one diffracted light of the order that can obtain the highest diffraction efficiency, and further has the highest + p-order diffraction efficiency and the light with the highest -q-order diffraction efficiency (p , Q ≧ 1), and a diffraction element including at least one each.
In addition, a diffraction element in which at least one of the phase differences is π is provided.

また、前記+p次の回折効率、前記−q次の回折効率のp,qの値がいずれも1である上記の回折素子を提供する。また、前記単位領域は3個の前記小領域からなって、前記単位領域の端部よりそれぞれ第1の小領域、第2の小領域、第3の小領域とし、前記第1の小領域の幅をX、前記第2の小領域の幅をX、前記第3の小領域の幅をXとするとき、
=X=X=Px/3、
である上記の回折素子を提供する。
Also provided is the above-described diffraction element in which the values of p and q of the + p-order diffraction efficiency and the −q-order diffraction efficiency are 1, respectively. In addition, the unit area includes three small areas, and each of the first small area, the second small area, and the third small area from the end of the unit area. When the width is X 1 , the width of the second small region is X 2 , and the width of the third small region is X 3 ,
X 1 = X 2 = X 3 = Px / 3,
The above-described diffraction element is provided.

また、前記第1の小領域が前記ゼロの小領域であって、前記第1の小領域の位相差をφ(0)、前記第2の小領域の位相差をφ(1)、前記第3の小領域の位相差をφ(2)とするとき、
φ(0)=0、
φ(1)=π、
φ(2)=2π、
となる前記単位領域の形状を有する上記の回折素子を提供する。
The first small area is the zero small area, the phase difference of the first small area is φ (0), the phase difference of the second small area is φ (1), and the first small area is When the phase difference of the small region of 3 is φ (2),
φ (0) = 0,
φ (1) = π,
φ (2) = 2π,
The diffraction element having the shape of the unit region is provided.

また、前記単位領域は4個の前記小領域からなって、前記単位領域の端部よりそれぞれ第1の小領域、第2の小領域、第3の小領域、第4の小領域とし、前記第1の小領域の幅をX、前記第2の小領域の幅をX、前記第3の小領域の幅をX、前記第4の小領域の幅をXとするとき、
:X:X:X=3:7:7:3、
である上記の回折素子を提供する。
In addition, the unit area is composed of four small areas, and the first small area, the second small area, the third small area, and the fourth small area from the end of the unit area, respectively, When the width of the first small region is X 1 , the width of the second small region is X 2 , the width of the third small region is X 3 , and the width of the fourth small region is X 4 ,
X 1 : X 2 : X 3 : X 4 = 3: 7: 7: 3,
The above-described diffraction element is provided.

また、前記第1の小領域が前記ゼロの小領域であって、前記第1の小領域の位相差をφ(0)、前記第2の小領域の位相差をφ(1)、前記第3の小領域の位相差をφ(2)、前記第3の小領域の位相差をφ(3)とするとき、
φ(0)=0、
φ(1)=π、
φ(2)=2π、
φ(3)=3π、
となる前記単位領域の形状を有する上記の回折素子を提供する。
The first small area is the zero small area, the phase difference of the first small area is φ (0), the phase difference of the second small area is φ (1), and the first small area is When the phase difference of the third small region is φ (2) and the phase difference of the third small region is φ (3),
φ (0) = 0,
φ (1) = π,
φ (2) = 2π,
φ (3) = 3π,
The diffraction element having the shape of the unit region is provided.

また、前記回折格子は、複屈折性を有する複屈折性材料と等方性透明材料とが、前記回折格子の凸部と凹部とを構成してなる偏光回折格子であって、前記複屈折性材料の常光屈折率nまたは異常光屈折率n(n≠n)のいずれか一方の屈折率が等方性透明材料の屈折率nと等しい上記の回折素子を提供する。 The diffraction grating is a polarization diffraction grating in which a birefringent material having birefringence and an isotropic transparent material constitute a convex portion and a concave portion of the diffraction grating, and the birefringence Provided is the above-described diffraction element in which either one of the ordinary refractive index n o or the extraordinary refractive index n e (n o ≠ n e ) of the material is equal to the refractive index n s of the isotropic transparent material.

また、光源と、前記光源からの光を偏向分離するビームスプリッタと、前記ビームスプリッタを出射した光を光ディスク上に集光させる対物レンズと、前記光ディスクで反射した光を検出する光検出器と、を備える光ヘッド装置であって、前記光源と前記ビームスプリッタとの間の光路中および、前記ビームスプリッタと前記光検出器との間の光路中に、上記の回折素子が配置される光ヘッド装置を提供する。 A light source; a beam splitter that deflects and separates the light from the light source; an objective lens that focuses the light emitted from the beam splitter onto the optical disk ; and a photodetector that detects the light reflected by the optical disk ; And an optical head in which the diffraction element is disposed in an optical path between the light source and the beam splitter and in an optical path between the beam splitter and the photodetector. Providing equipment.

また、光源と、前記光源を出射した光を光ディスク上に集光させる対物レンズと、前記光源と前記光ディスクとの間に配置された、前記光に対して1/4波長の位相差を生じる1/4波長板と、前記光ディスクで反射した光を検出する光検出器と、を備える光ヘッド装置であって、前記光源と前記対物レンズとの光路と、前記対物レンズと前記光検出器との光路と共通する光路中に上記の回折素子が配置された光ヘッド装置を提供する。
Further, a phase difference of ¼ wavelength is generated with respect to the light, which is disposed between the light source , an objective lens for condensing the light emitted from the light source on the optical disc, and the light source and the optical disc. / 4 wavelength plate and a photodetector for detecting light reflected by the optical disc, comprising: an optical path between the light source and the objective lens; and the objective lens and the photodetector. Provided is an optical head device in which the above-described diffraction element is arranged in an optical path common to the optical path.

光源と、前記光源からの光を偏向分離するビームスプリッタと、前記ビームスプリッタを出射した光を光ディスク上に集光させる対物レンズと、前記光ディスクで反射した光を検出する光検出器と、を備える光ヘッド装置であって、前記ビームスプリッタと前記対物レンズとの間の光路中に、上記の回折素子が配置される光ヘッド装置を提供する。   A light source; a beam splitter that deflects and separates light from the light source; an objective lens that condenses the light emitted from the beam splitter onto the optical disc; and a photodetector that detects the light reflected by the optical disc. An optical head device is provided, wherein the diffraction element is disposed in an optical path between the beam splitter and the objective lens.

また、前記光源は、3つの異なる波長λ、波長λ、波長λの光を発射し、前記波長λは395〜415nmの範囲の405nm波長帯、前記波長λは640〜680nmの範囲の660nm波長帯、前記波長λは765〜805nmの範囲の785nm波長帯、である上記の光ヘッド装置を提供する。 The light source emits light having three different wavelengths λ 1 , λ 2 , and λ 3. The wavelength λ 1 is a 405 nm wavelength band ranging from 395 to 415 nm, and the wavelength λ 2 is 640 to 680 nm. range 660nm wavelength band of the wavelength lambda 3 provides the optical head device is a 785nm wavelength band, in the range of 765~805Nm.

さらに、光源と、表示する画像に応じて前記光源から出射された可視光を変調する液晶ライトバルブと、前記液晶ライトバルブにより生成された画像を拡大投影する投影レンズと、を備えた投射型表示装置において、前記液晶ライトバルブと前記投影レンズとの光路中に上記の回折素子が配置される投射型表示装置を提供する。   Further, a projection type display comprising: a light source; a liquid crystal light valve that modulates visible light emitted from the light source according to a displayed image; and a projection lens that magnifies and projects an image generated by the liquid crystal light valve. In the apparatus, there is provided a projection display device in which the diffraction element is disposed in an optical path between the liquid crystal light valve and the projection lens.

本発明は、回折現象により波長が異なる複数の光に対して、分波させたり、あるいは合波させたりする回折素子、とくに、一方の波長の光のうち最も回折効率が高くなる方向(次数)であるA方向に対し、他方の波長の光のうち最も回折効率が高くなる方向(次数)は光軸に対してA方向とは軸対称側となる効果を有する回折素子であって、該回折素子を用いる光ヘッド装置および投射型表示装置などの光学装置の小型化を実現できるものである。   The present invention relates to a diffractive element that divides or multiplexes a plurality of lights having different wavelengths due to a diffraction phenomenon, in particular, a direction (order) in which the diffraction efficiency is highest among lights of one wavelength. The direction (order) in which the diffraction efficiency is the highest among the lights of the other wavelength with respect to the A direction is a diffractive element having an effect of being axially symmetric with respect to the A direction with respect to the optical axis. Miniaturization of optical devices such as an optical head device using an element and a projection display device can be realized.

(第1の実施形態)
図1は、第1の実施形態に係る回折素子100の平面模式図である。回折素子100は、透光性基板120上に透過光の位相を空間的に変調する単位領域110が周期的に配列したものである。ここでいう周期的という意味は、単位領域が一方向に隙間なく繰り返し配置されていることを意味する。例えば、図1の回折素子100のように帯状の単位領域110が、単位領域110の延伸方向と直交するX方向にピッチPxの幅で配列している状態であるとする。なお、ピッチPxを以下、格子ピッチPxという。また、回折素子100に光が入射する領域を有効領域としたとき、有効領域は、少なくとも単位領域110の格子ピッチPxが3以上配列したものを含むように構成されているとよい。この場合、単位領域110はX方向に周期的に繰り返され、一つの単位領域110の延伸方向はY方向(ピッチPxの幅と直交する方向)に平行する。そして、1つの単位領域110の外縁はY方向に延伸する長方形であるが、外縁の形状は長方形に限らず、2辺がY方向に平行であれば、この2辺をつなぐ線はX方向の直線に限らず曲線等であってもよい。
(First embodiment)
FIG. 1 is a schematic plan view of the diffraction element 100 according to the first embodiment. In the diffractive element 100, unit regions 110 that spatially modulate the phase of transmitted light are periodically arranged on a translucent substrate 120. Here, the term “periodic” means that the unit regions are repeatedly arranged in one direction without any gap. For example, it is assumed that the band-shaped unit regions 110 are arranged with a width of the pitch Px in the X direction orthogonal to the extending direction of the unit regions 110 as in the diffraction element 100 of FIG. Hereinafter, the pitch Px is referred to as a lattice pitch Px. In addition, when an area where light is incident on the diffraction element 100 is an effective area, the effective area is preferably configured to include at least three grating pitches Px of unit areas 110 arranged. In this case, the unit region 110 is periodically repeated in the X direction, and the extending direction of one unit region 110 is parallel to the Y direction (a direction orthogonal to the width of the pitch Px). The outer edge of one unit region 110 is a rectangle extending in the Y direction. However, the shape of the outer edge is not limited to a rectangle, and if two sides are parallel to the Y direction, the line connecting the two sides is the X direction. Not only a straight line but also a curve or the like may be used.

単位領域110は、複数の小領域からなり、本実施形態では、3つの幾何学的な区画である小領域110a、110bおよび110cから構成される。この小領域110a、110bおよび110cは、ある波長λの光が同相で入射したとき、透過する波長λの光の位相が互いに異なるものである。また、一つの小領域は、透過する光の位相が同じとなる区画を1つの単位として考える。小領域110a、110bおよび110cから構成される単位領域110は、透光性基板120と異なる材料で構成されていてもよく、また、透光性基板120と同じ材料であったり、透光性基板120の一つの面が凹凸状に加工されていたりしてもよい。   The unit area 110 includes a plurality of small areas, and in the present embodiment, the unit area 110 includes small areas 110a, 110b, and 110c that are three geometric sections. The small regions 110a, 110b, and 110c are different from each other in the phase of light having a wavelength λ that is transmitted when light having a wavelength λ is incident in the same phase. Further, in one small region, a section where the phase of transmitted light is the same is considered as one unit. The unit region 110 composed of the small regions 110a, 110b, and 110c may be made of a material different from that of the light-transmitting substrate 120, or may be made of the same material as the light-transmitting substrate 120, or may be a light-transmitting substrate. One surface of 120 may be processed into an uneven shape.

また、小領域110a、110bおよび110cのうち、透過する光の位相が最も進む小領域をゼロの小領域とする。ここで、ゼロの小領域の透過光の複素振幅をU(0)と定義する。次に、ゼロの小領域を透過する光の位相に対して、透過する光の位相が異なる小領域の位相差をφ(m)、透過光の複素振幅をU(m)とする。ただし、mは、後述するステップ数(=小領域の数)をNとすると、mは0〜N−1の整数であって、例えば、小領域110aをゼロの小領域とするとき、小領域110aはm=0、小領域110bはm=1、そして小領域110cはm=2として与えられる。また、上記の定義より、ゼロの小領域は位相差がゼロ、つまりφ(0)=0となる。   Further, among the small areas 110a, 110b, and 110c, the small area in which the phase of the transmitted light is most advanced is defined as a small small area. Here, the complex amplitude of the transmitted light in the small zero region is defined as U (0). Next, let φ (m) be the phase difference of a small region in which the phase of transmitted light is different from the phase of light transmitted through the small region of zero, and U (m) be the complex amplitude of transmitted light. However, m is an integer of 0 to N-1 where N is the number of steps (= number of small areas) described later. For example, when the small area 110a is a small area of zero, the small area 110a is given as m = 0, small area 110b is given as m = 1, and small area 110c is given as m = 2. Further, from the above definition, the small region of zero has zero phase difference, that is, φ (0) = 0.

次に、単位領域110の構成について説明する。図2(a)は、本実施形態の単位領域110を示す平面模式図であって、図2(b)は、図2(a)に示す単位領域110のA−A´の断面(X方向)および入射する光に対して発生する位相差を説明する模式図であり、段差を有する回折格子が形成される。なお、光は平坦な透光性基板面111(X−Y面)の法線方向(Z方向)から入射するものとする。また、光の透過側は、小領域同士の境界で一定の値の段差を有し、小領域110a、110bおよび110cの光の透過側はいずれも透光性基板面111と平行で平坦な面(平坦部)である。また、単位領域における平坦部の数をステップ数Nとし、この場合、回折素子100はステップ数N=3であって、Nは単位領域110を構成する小領域の数に相当する。   Next, the configuration of the unit area 110 will be described. FIG. 2A is a schematic plan view showing the unit region 110 of the present embodiment, and FIG. 2B is a cross-sectional view taken along the line AA ′ of the unit region 110 shown in FIG. ) And a phase difference generated with respect to incident light, and a diffraction grating having a step is formed. In addition, light shall inject from the normal line direction (Z direction) of the flat translucent board | substrate surface 111 (XY plane). Further, the light transmission side has a step having a constant value at the boundary between the small regions, and the light transmission side of each of the small regions 110a, 110b, and 110c is a flat surface parallel to the translucent substrate surface 111. (Flat part). Further, the number of flat portions in the unit region is defined as a step number N. In this case, the diffraction element 100 has a step number N = 3, and N corresponds to the number of small regions constituting the unit region 110.

ここで、簡単のため、単位領域は屈折率nを有する等方性材料である透光性基板120の一方の面が加工されて形成されるものとし、この場合において、単位領域110b、110cを透過する光の位相差φ(m)を考える。このとき、回折素子100の光が透過する側の(等方性の)媒質の屈折率をn、小領域110aをゼロの小領域(位相差φ(0)=0)、小領域110aと小領域110bとの段差をdとすると、小領域110bを透過する光の位相差φ(1)は、図2(b)に示すように小領域110aを透過する光の光路長と小領域110b透過する光路長との差(=光路長差)d・|n−n|より、
φ(1)=2πd・|n−n|/λ[rad] ・・・ (1)
で表すことができる。また、とくに光が透過する側の媒質を空気(n=1)とすると、上記の式(1)より、
φ(1)=2πd・|n−1|/λ[rad] ・・・ (2)
となる。
Here, for simplicity, the unit area is assumed to one surface of the translucent substrate 120 is isotropic material having a refractive index n s is formed by machining, in this case, the unit area 110b, 110c Let us consider the phase difference φ (m) of the light passing through. At this time, the refractive index of the (isotropic) medium through which light of the diffraction element 100 is transmitted is n A , the small region 110a is a small region (phase difference φ (0) = 0), and the small region 110a. When the level difference between the small regions 110b and d 1, a small region 110b passing through the wave phi (1) of light, the optical path length of light passing through the small regions 110a as shown in FIG. 2 (b) and a small area 110b Difference from the optical path length transmitted (= optical path length difference) d 1 · | n s −n A |
φ (1) = 2πd 1 · | n s -n A | / λ [rad] ··· (1)
It can be expressed as Further, when the medium on the light transmitting side is air (n A = 1), from the above equation (1),
φ (1) = 2πd 1 · | n s −1 | / λ [rad] (2)
It becomes.

次に、本実施形態の回折素子100の回折作用について説明する。回折素子100は、前述のように材料や単位領域110の形状が決まることによって、各小領域の位相差φ(m)が決まり、この回折格子の光学特性によって、各次数の回折効率がそれぞれ決定される。回折効率は、回折格子に入射する光の光量に対して、特定の方向に透過、回折する光の光量の比で表される。また、回折効率は、回折格子が薄いものと見なせる場合、スカラー回折理論より、回折格子のX軸方向の格子ピッチPxを有する回折格子のq次回折効率ηは、次式で与えられる。 Next, the diffractive action of the diffraction element 100 of this embodiment will be described. In the diffraction element 100, the phase difference φ (m) of each small region is determined by determining the material and the shape of the unit region 110 as described above, and the diffraction efficiency of each order is determined by the optical characteristics of the diffraction grating. Is done. The diffraction efficiency is represented by the ratio of the amount of light transmitted and diffracted in a specific direction to the amount of light incident on the diffraction grating. Further, when the diffraction efficiency can be regarded as being thin, the q-order diffraction efficiency η q of the diffraction grating having the grating pitch Px in the X-axis direction of the diffraction grating is given by the following equation from scalar diffraction theory.

Figure 0005417815
Figure 0005417815

また、式(3)のjは虚数単位、φ(x)は、回折格子の形状を特徴づける位相シフト関数である。単位領域が光損失のない透明材料からなる場合、位相シフト関数φ(x)をφ(m)とすると小領域の透過光の複素振幅U(m)は、
U(m)=exp{jφ(m)} ・・・ (4)
で置き換えることができる。
In Expression (3), j is an imaginary unit, and φ (x) is a phase shift function that characterizes the shape of the diffraction grating. When the unit region is made of a transparent material having no optical loss, the complex amplitude U (m) of transmitted light in a small region is given by assuming that the phase shift function φ (x) is φ (m).
U (m) = exp {jφ (m)} (4)
Can be replaced.

このように、具体的に本実施形態の回折素子100を考えると、回折効率ηは、単位領域の格子ピッチPxに含まれる小領域110a、110bおよび110cのそれぞれの分割幅X、XおよびXと、それぞれの位相差φ(m)の各パラメータによって決定されることがわかる。波長が異なる複数の光が入射し、それぞれの波長の光のうち、最も回折効率が高い次数であるqの符号が、少なくとも2つの波長の光の間で異なるという効果を得るため、分割幅X、XおよびXとして、
=X=X=Px/3 ・・・ (5)
を与える(X:X:X=1:1:1)。
Thus, when the diffraction element 100 of the present embodiment is specifically considered, the diffraction efficiency η q is determined by the divided widths X 1 and X 2 of the small regions 110a, 110b and 110c included in the grating pitch Px of the unit region. And X 3 and the respective parameters of the phase difference φ (m). In order to obtain an effect that a plurality of lights having different wavelengths are incident and the sign of q, which is the order having the highest diffraction efficiency among the lights of the respective wavelengths, differs between the lights of at least two wavelengths, the division width X 1 , X 2 and X 3 as
X 1 = X 2 = X 3 = Px / 3 (5)
(X 1 : X 2 : X 3 = 1: 1: 1).

次に、位相差φ(m)を考えたとき、
φ(0)=0 ・・・ (6a)
φ(1)=nπ[rad] ・・・ (6b)
φ(2)=nπ[rad] ・・・ (6c)
の関係を満たすようにする。なお、n,nは自然数である(n≠n)。
Next, when considering the phase difference φ (m),
φ (0) = 0 (6a)
φ (1) = n 1 π [rad] (6b)
φ (2) = n 2 π [rad] (6c)
To satisfy the relationship. Note that n 1 and n 2 are natural numbers (n 1 ≠ n 2 ).

そして、式(6b)、式(6c)を満足するための、単位領域が有する物理的な段差について考える。式(2)と式(6b)を用いてさらに、光の透過側の媒質が空気であるとき、
|n−1|・d=n・λ/2 ・・・ (7a)
を満足するように、小領域110bの段差dを決定するようにする。さらに、小領域110aに対する小領域110cの位相差φ(2)も、位相差φ(1)と同じ考え方を用いて、
|n−1|・d=n・λ/2 ・・・ (7b)
を満足するように段差dを決定するとよい。なお、凹凸部の段差と接触する媒体は空気に限らず別の透明材料(n>1,n≠n)であってもよい。また、位相差を発生するために段差を有する部分の材料は等方性材料に限らず、複屈折性を有する材料であってもよい。
Then, a physical level difference in the unit region for satisfying the expressions (6b) and (6c) will be considered. Further, when the medium on the light transmission side is air using the equations (2) and (6b),
| N s -1 | · d 1 = n 1 · λ / 2 (7a)
So as to satisfy the, so as to determine a step d 1 of the small region 110b. Furthermore, the phase difference φ (2) of the small region 110c with respect to the small region 110a is also the same as the phase difference φ (1).
| N s -1 | · d 2 = n 2 · λ / 2 (7b)
The step d 2 may be determined so as to satisfy In addition, the medium which contacts the level | step difference of an uneven | corrugated | grooved part is not restricted to air, and may be another transparent material (n A > 1, n A ≠ n s ). Further, the material of the portion having a step for generating a phase difference is not limited to an isotropic material, and may be a material having birefringence.

ここで、式(6b)および式(6c)において、n=1、n=2、つまり、φ(1)=π、φ(2)=2πとする場合を考える(d=2×d)。なお、周辺の媒質が空気(n=1)である場合、
=λ/{2・|n−1|} ・・・ (8a)
=2λ/{2・|n−1|} ・・・ (8b)
とするとよい。
Here, in the equations (6b) and (6c), consider a case where n 1 = 1 and n 2 = 2, that is, φ (1) = π and φ (2) = 2π (d 2 = 2 × d 1). If the surrounding medium is air (n A = 1),
d 1 = λ / {2 · | n s -1 |} (8a)
d 2 = 2λ / {2 · | n s -1 |} (8b)
It is good to do.

このような回折格子は、透光性基板の表面を直接微細加工して形成してもよいし、透光性基板120の表面に誘電体膜を成膜し、誘電体膜を回折格子の形状に加工してもよい。回折格子の微細加工法としては、フォトマスクを用いてフォトリソグラフィ工程およびドライエッチング工程を繰り返して作製する方法を用いるか、あるいは回折格子を転写する型を用いて透光性基板120の表面を直接成形加工する、または、透光性基板120の表面にコートされた透光性樹脂に回折格子を転写成形する方法を用いてもよい。   Such a diffraction grating may be formed by directly microfabricating the surface of the translucent substrate, or a dielectric film is formed on the surface of the translucent substrate 120, and the dielectric film is formed in the shape of the diffraction grating. May be processed. As a microfabrication method of the diffraction grating, a method in which a photolithographic process and a dry etching process are repeated using a photomask is used, or the surface of the translucent substrate 120 is directly applied using a mold for transferring the diffraction grating. You may use the method of carrying out a shaping | molding process or transcription-molding a diffraction grating to the translucent resin coated on the surface of the translucent board | substrate 120. FIG.

次に、形成した回折格子によって、式(5)、式(6a)〜式(6c)の関係を満たす回折素子100を与え、回折効率の式(3)を用いて、実際に入射する光の波長λを変化させたときの回折効率ηを計算によって求める。このとき、例えば、帯域を有する波長λの光に含まれる、帯域を持たない特定の波長λにおける+1次回折効率η+1(q=+1)および−1次回折効率η−1(q=−1)の値は約30%と等しくなる。また、特定の波長λにおける直進透過率に相当する0次回折効率η(q=0)の値は約11%となる。 Next, the formed diffraction grating gives the diffraction element 100 satisfying the relations of the formulas (5) and (6a) to (6c), and the diffraction efficiency formula (3) is used to calculate the actually incident light. The diffraction efficiency η q when the wavelength λ is changed is obtained by calculation. At this time, for example, the + 1st order diffraction efficiency η +1 (q = + 1) and the −1st order diffraction efficiency η −1 (q = −) at a specific wavelength λa not included in the light having the wavelength λ having the band. The value of 1) is equal to about 30%. The value of a particular wavelength lambda 0 order diffraction efficiency corresponding to the rectilinear transmittance in a η 0 (q = 0) is about 11%.

また、実際に回折素子100を構成する材料は、入射する光の波長によって屈折率が異なる波長依存性(波長分散)を有しており、このため、屈折率の変化によって値が変化する回折効率ηもこの波長依存性を考慮して設計する必要がある。屈折率の波長依存性n(λ)は、
n(λ)=A+B/λ+C/λ ・・・ (9)
のコーシーの公式によって与えられる。
In addition, the material that actually constitutes the diffraction element 100 has wavelength dependency (wavelength dispersion) in which the refractive index varies depending on the wavelength of incident light, and therefore, the diffraction efficiency whose value varies with the change in refractive index. It is necessary to design η q in consideration of this wavelength dependency. The wavelength dependence n (λ) of the refractive index is
n (λ) = A + B / λ 2 + C / λ 4 (9)
Given by Cauchy's formula.

なお、式(9)において、A,BおよびCは、各材料がもつ固有定数であって、石英ガラスの場合、A=1.450、B=0.002466、そしてC=0.000141と固有の値となる。一方、周辺の媒質である空気は、波長によらず1であって、A=1、B=0、そしてC=0である。   In Equation (9), A, B, and C are intrinsic constants of the respective materials. In the case of quartz glass, A = 1.450, B = 0.002566, and C = 0.001431. It becomes the value of. On the other hand, air, which is a surrounding medium, is 1 regardless of the wavelength, and A = 1, B = 0, and C = 0.

ここで、特定の波長λを510nmに設定し、式(5)、式(6a)〜式(6c)が成立するようにし、さらに回折素子100を石英ガラスで構成する場合において、波長λの値を380〜820[nm]の範囲で変化させる。図3は、この条件において波長λに対する回折効率ηの特性を計算したものであって、とくに回折次数q=−1,0,+1について示したものである。このように、使用する材料の波長分散特性を考慮すると例えば、波長λ=391[nm]の光に対して+1次回折効率η+1が68.4%と最も高くなり、波長λ=753[nm]の光に対して−1次回折効率η−1が68.4%と最も高くなる。なお、回折光の次数は、図2(b)において透光性基板面111に入射する光の進行方向を基準に右側(+X方向)に回折する光をプラス(+)に次数の回折光、左側(−X方向)に回折する光をマイナス(−)の次数の回折光とし、他の実施形態においてもとくに説明がない場合はそのように解釈するものとする。 Here, set a specific wavelength lambda a to 510 nm, in a case where Equation (5), so Equation (6a) ~ formula (6c) is established, further constituting the diffraction element 100 with quartz glass, the wavelength lambda The value is changed in the range of 380 to 820 [nm]. FIG. 3 shows the characteristics of the diffraction efficiency η q with respect to the wavelength λ under these conditions, and particularly shows the diffraction orders q = −1, 0, +1. In this way, considering the wavelength dispersion characteristics of the material used, for example, the + 1st order diffraction efficiency η +1 is the highest at 68.4% with respect to light of wavelength λ 1 = 391 [nm], and wavelength λ 2 = 753. The −1st order diffraction efficiency η −1 is the highest at 68.4% with respect to [nm] light. The order of the diffracted light is diffracted light of the order of plus (+) with respect to the light diffracted to the right (+ X direction) with reference to the traveling direction of the light incident on the translucent substrate surface 111 in FIG. The light diffracted to the left side (−X direction) is the diffracted light of the minus (−) order, and it is interpreted as such unless otherwise described in other embodiments.

このように回折素子100は、式(6a)および式(6b)において、n=1、n=2としたが、nおよびnが自然数(n≠n)であればこの組み合わせに限らない。図4(a)は、回折素子の単位領域130を示す断面模式図であって、n=1、n=4である場合を示すものである。また、材料および小領域130a、130bおよび130cの分割幅X、XおよびXは、単位領域110と同じである。また、図4(a)では、段差に相当する部分を位相差φ(1)、φ(2)で示している。同様に、図4(b)は、回折素子の単位領域140を示す断面模式図であって、n=1、n=3である場合を示すものであって、それ以外の条件は単位領域130と同じである。 As described above, the diffraction element 100 has n 1 = 1 and n 2 = 2 in the equations (6a) and (6b), but if n 1 and n 2 are natural numbers (n 1 ≠ n 2 ) Not limited to combinations. FIG. 4A is a schematic cross-sectional view showing the unit region 130 of the diffractive element, where n 1 = 1 and n 2 = 4. Further, the division widths X 1 , X 2 and X 3 of the material and the small regions 130 a, 130 b and 130 c are the same as those of the unit region 110. In FIG. 4A, portions corresponding to the steps are indicated by phase differences φ (1) and φ (2). Similarly, FIG. 4B is a schematic cross-sectional view showing the unit region 140 of the diffractive element, where n 1 = 1 and n 2 = 3, and the other conditions are unit. It is the same as the area 130.

ここで、単位領域110を有する回折素子100と同様に式(5)を満足し、さらに特定の波長λを510nmと設定し、単位領域130はφ(1)=π、φ(2)=4πを有し、単位領域140はφ(1)=π、φ(2)=3πを有する回折素子を考える。同様に、石英ガラスを用いた場合、波長λの値を380〜820[nm]の範囲で変化させ、透光性基板面131または透光性基板面141の法線方向から光を入射させたときの回折効率ηの特性を計算する。図5(a)は、図4(a)に示す単位領域130を有する回折素子を構成する場合の特性、図5(b)は、図4(b)に示す単位領域140を有する回折素子を構成する場合の特性の計算結果である。 Here, similarly to the diffraction element 100 having a unit area 110 to satisfy equation (5), further a specific wavelength lambda a is set to 510 nm, a unit region 130 is φ (1) = π, φ (2) = Consider a diffractive element having 4π and the unit region 140 having φ (1) = π and φ (2) = 3π. Similarly, when quartz glass is used, the value of the wavelength λ is changed in the range of 380 to 820 [nm], and light is incident from the normal direction of the translucent substrate surface 131 or the translucent substrate surface 141. The characteristic of the diffraction efficiency η q is calculated. FIG. 5A shows characteristics when the diffractive element having the unit region 130 shown in FIG. 4A is configured, and FIG. 5B shows the diffractive element having the unit region 140 shown in FIG. 4B. It is the calculation result of the characteristic in the case of comprising.

この結果より、図5(a)では、波長λ=446[nm]の光に対して+1次回折効率η+1が64.6%と最も高くなり、波長λ=598[nm]の光に対して−1次回折効率η−1が64.6%と最も高くなる。また、図5(b)では、波長λ=450[nm]の光に対して−1次回折効率η−1が44.0%と最も高くなり、波長λ=590[nm]の光に対して+1次回折効率η+1が44.0%と最も高くなる。また、これまでの説明では、単位領域の断面の凹凸が図2(b)のように右上がりの階段状の形状として説明したが、これに限らず、左上がりの階段状の形状を有するものであってもよい。また、異なる複数の波長の光においてそれぞれ最も高い回折効率は、光利用効率を高くするために40%以上であれば好ましく、50%以上であればより好ましく、60%以上であればさらに好ましい。 From this result, in FIG. 5A, the + 1st order diffraction efficiency η +1 is the highest at 64.6% with respect to the light of wavelength λ 1 = 446 [nm], and the light of wavelength λ 2 = 598 [nm]. In contrast, the −1st order diffraction efficiency η −1 is the highest at 64.6%. In FIG. 5B, the −1st order diffraction efficiency η −1 is the highest at 44.0% with respect to the light with the wavelength λ 1 = 450 [nm], and the light with the wavelength λ 2 = 590 [nm]. + 1st order diffraction efficiency η + 1 is the highest at 44.0%. In the above description, the unevenness of the cross section of the unit region has been described as a stepped shape that rises to the right as shown in FIG. 2B. However, the present invention is not limited to this, and has a stepped shape that rises to the left. It may be. In addition, the highest diffraction efficiency for light of a plurality of different wavelengths is preferably 40% or more, more preferably 50% or more, and further preferably 60% or more in order to increase the light utilization efficiency.

また、入射光の進行方向と回折光の方向とがなす角度である回折角をθで与えると、波長λ、回折次数qおよび格子ピッチPxとの関係は、ブラッグの回折式より、
qλ=Px・sinθ ・・・ (10)
で与えられる。例えば、格子ピッチPx=5μmである場合、図3より、波長405nmの光のうち回折効率が最も高い+1次回折光の回折角θ+1(405)≒4.6°、波長660nmの光のうち回折効率が最も高い−1次回折光の回折角θ−1(660)≒−7.6°、となり、これらの角度の差が12.2°と比較的大きくできる。
Further, when a diffraction angle, which is an angle formed by the traveling direction of the incident light and the direction of the diffracted light, is given by θ, the relationship between the wavelength λ, the diffraction order q, and the grating pitch Px is as follows from Bragg's diffraction formula:
qλ = Px · sinθ (10)
Given in. For example, when the grating pitch Px = 5 μm, the diffraction angle θ +1 (405) ≈4.6 ° of the + 1st order diffracted light having the highest diffraction efficiency among the light with the wavelength of 405 nm is diffracted among the light with the wavelength of 660 nm as shown in FIG. The diffraction angle θ −1 (660) ≈−7.6 ° of the −1st order diffracted light having the highest efficiency is obtained, and the difference between these angles can be made relatively large at 12.2 °.

一方、角度の差が同様に12.2°とする回折格子として、本発明とは異なり、例えば、405nmの光で0次回折光、660nmの光で+1次回折光を利用する回折格子の場合、回折格子のピッチを約3.1μmにしなければならない。また、同じ角度の差の条件で、405nmの光および660nmの光いずれも+1次回折光を利用する回折格子の場合、回折格子のピッチを約1.3μmにしなければならず、本願発明の回折格子ピッチPxよりも小さくなる。これより、異なる波長の光に対して一定の角度で分光または合波させる光学装置に本願発明の回折素子を用いる場合でも従来の回折格子よりも格子ピッチPxを細かくする必要がなく、加工の容易性が得られる。このように、これまでは角度の差を大きくするためには格子ピッチPxを小さくしなければならず、格子ピッチPxを大きくすると異なる波長において利用する回折光の角度の差が小さくなるといったトレードオフの関係があったが、本願発明の回折素子ではこの角度の差を大きくすることができるので、これらの光を利用する光学部品の配置がしやすくなり、装置の小型化が実現できる。   On the other hand, unlike the present invention, the diffraction grating having the same angle difference of 12.2 ° is different from the present invention. For example, in the case of a diffraction grating using 0th-order diffracted light with 405 nm light and + 1st-order diffracted light with 660 nm light, The pitch of the grating must be about 3.1 μm. In the case of a diffraction grating using + 1st order diffracted light for both 405 nm light and 660 nm light under the same angle difference condition, the pitch of the diffraction grating must be about 1.3 μm. It becomes smaller than the pitch Px. As a result, even when the diffraction element of the present invention is used in an optical device that splits or multiplexes light of different wavelengths at a constant angle, it is not necessary to make the grating pitch Px finer than the conventional diffraction grating, and processing is easy. Sex is obtained. Thus, until now, in order to increase the angle difference, the grating pitch Px must be reduced, and when the grating pitch Px is increased, the difference in the angle of diffracted light used at different wavelengths is reduced. However, in the diffraction element of the present invention, the difference in angle can be increased, so that it is easy to arrange optical components using these lights, and downsizing of the apparatus can be realized.

(第2の実施形態)
図6(a)は第2の実施形態に係る回折素子200を示す平面模式図であって、回折素子200は、透過光の位相を空間的に変調する単位領域210が周期的に配列したものである。回折素子200は、回折格子を形成する材料が複屈折性を有する材料で構成され、これによって入射する光の偏光依存性を発生させる点が回折素子100と異なる。図6(b)は、単位領域210の断面模式図であって、平行に配置される透光性基板220a、220bの間に、回折格子形状をなす複屈折性材料層230と、等方性材料層240とが挟持されて構成される。
(Second Embodiment)
FIG. 6A is a schematic plan view showing the diffractive element 200 according to the second embodiment. The diffractive element 200 is formed by periodically arranging unit regions 210 that spatially modulate the phase of transmitted light. It is. The diffractive element 200 is different from the diffractive element 100 in that the material forming the diffraction grating is made of a material having birefringence, and this generates polarization dependency of incident light. FIG. 6B is a schematic cross-sectional view of the unit region 210, and a birefringent material layer 230 having a diffraction grating shape between the translucent substrates 220 a and 220 b arranged in parallel, and an isotropic property. The material layer 240 is sandwiched.

また、単位領域210の平面(X−Y面)の形状は、第1の実施形態に係る回折素子100の単位領域110と同じであって、単位領域210は小領域210a、小領域210bおよび小領域210cからなる。また、単位領域210の周期である格子ピッチPxおよび小領域210a、小領域210bおよび小領域210cの分割幅X、XおよびXはそれぞれ単位領域110と同様に上記の式(5)を満足する。 Further, the shape of the plane (XY plane) of the unit region 210 is the same as that of the unit region 110 of the diffractive element 100 according to the first embodiment, and the unit region 210 includes the small region 210a, the small region 210b, and the small region. It consists of area 210c. The lattice pitch Px, which is the period of the unit region 210, and the division widths X 1 , X 2, and X 3 of the small region 210a, the small region 210b, and the small region 210c are the same as in the unit region 110, respectively. Satisfied.

複屈折性材料層230は、常光屈折率nおよび異常光屈折率n(n≠n)を有し、例えば、その進相軸(常光屈折率を示す方向)が図6(b)のX方向に揃うように形成する。また、等方性材料層240は、光学的に透明で屈折率nの等方性の材料であって、n=nを満足するような材料で構成されるものとして考える。この場合、上記の式(8a)および式(8b)において、nをn、1をnに置き換え、
=λ/{2・|n−n|} ・・・ (11a)
2=2λ/{2・|n−n|} ・・・ (11b)
を満足するように複屈折性材料層230の段差dおよびdを決定する。なお、等方性材料層240は、複屈折性材料層230の凹凸(段差)を埋めるように形成されていればよく、図6(b)のように複屈折性材料層230の凹凸(段差)の凸部を覆うように形成されていてもよい。
The birefringent material layer 230 has an ordinary light refractive index n o and an extraordinary light refractive index n e (n o ≠ n e ). For example, the fast axis (direction indicating the ordinary light refractive index) is shown in FIG. ) In the X direction. Moreover, isotropic material layer 240 is a material of the isotropic refractive index n B optically clear, considered as being constructed of a material that satisfies n o = n B. In this case, in the above formulas (8a) and (8b), n s is replaced with ne , and 1 is replaced with n B.
d 1 = λ / {2 · | n e -n B |} ··· (11a)
d 2 = 2λ / {2 · | n e -n B |} ··· (11b)
Steps d 1 and d 2 of the birefringent material layer 230 are determined so as to satisfy the above. The isotropic material layer 240 may be formed so as to fill the unevenness (step) of the birefringent material layer 230, and the unevenness (step difference) of the birefringent material layer 230 as shown in FIG. ) May be formed so as to cover the convex portion.

複屈折性材料層230を構成する材料としては、水晶やLiNbOなどの複屈折性結晶や、例えばポリカーボネートなどの有機フィルムを延伸させた複屈折性フィルム、複屈折性を有する液晶モノマーを一方向に配向させた後に重合固化させた高分子液晶などが用いられる。高分子液晶を用いると、回折格子の長手方向とは無関係に光学軸(進相軸および遅相軸)を与えることができ、設計自由度が高く好ましい。 As a material constituting the birefringent material layer 230, birefringent crystals such as quartz and LiNbO 3 , a birefringent film obtained by stretching an organic film such as polycarbonate, and a liquid crystal monomer having birefringence are unidirectional. For example, a polymer liquid crystal or the like that is polymerized and solidified after being oriented in the above is used. Use of a polymer liquid crystal is preferable because it can provide an optical axis (a fast axis and a slow axis) regardless of the longitudinal direction of the diffraction grating, and has a high degree of design freedom.

このような単位領域210の構成とすることで、入射する光のうちY方向の直線偏光は、複屈折性材料層230と等方性材料層240とで屈折率の差が生じる(Δn=|n−n|)ので、回折作用が生じるが、X方向の直線偏光は、複屈折性材料層230と等方性材料層240との間で屈折率の差がない(Δn=|n−n|=0)ので、回折されずにそのまま直進透過する。このように複屈折性材料層230を形成することで、入射する光に対して回折させるかまたは直進透過させるといった偏光依存性を発現させることができる。とくに、複屈折材料層230に入射する常光屈折率方向の波長分散特性または異常光屈折率方向の波長分散特性いずれか一方と等方性材料層240との波長分散特性が一致するように考慮すると、光を直進透過させる場合の(直進)透過率が高くなるので好ましい。 With such a configuration of the unit region 210, a difference in refractive index between the birefringent material layer 230 and the isotropic material layer 240 occurs in linearly polarized light in the Y direction of incident light (Δn = | n e −n B |), a diffractive action occurs, but the linearly polarized light in the X direction has no difference in refractive index between the birefringent material layer 230 and the isotropic material layer 240 (Δn = | n o− n B | = 0), so that the light passes straight without being diffracted. By forming the birefringent material layer 230 in this manner, polarization dependency such as diffracting or linearly transmitting incident light can be exhibited. In particular, it is considered that the wavelength dispersion characteristic of the isotropic material layer 240 coincides with either the wavelength dispersion characteristic in the ordinary light refractive index direction or the wavelength dispersion characteristic in the extraordinary light refractive index direction incident on the birefringent material layer 230. It is preferable because the transmittance in the case where light is transmitted in a straight line (straight) is high.

この結果、Y方向の直線偏光が入射すると、例えば、+1次回折効率η+1が最も大きい波長帯域と、−1次回折効率η−1が最も大きい波長帯域とが異なる波長依存性を有し、X方向の直線偏光が入射すると透過率はほぼ100%となり、回折光は発生しない。また、n=n、n≠nとして説明したが、等方性材料層240の屈折率nが複屈折性材料層230の異常光屈折率に等しい、つまり、n≠n、n=nであってもよい。また、等方性材料層240に複屈折性材料を用いることもでき、このとき、常光屈折率n´、異常光屈折率n´とすると、n´またはn´のいずれか一方が、複屈折性材料層230のnまたはnいずれか一方と等しくなるように設計してもよい。 As a result, when the Y-direction of the linearly polarized light is incident, for example, it has a largest wavelength band + 1-order diffraction efficiency eta +1, and the greatest wavelength band -1 order diffraction efficiency eta -1 different wavelength dependency, When linearly polarized light in the X direction is incident, the transmittance is almost 100%, and no diffracted light is generated. Further, although it has been described that n o = n B and n e ≠ n B , the refractive index n B of the isotropic material layer 240 is equal to the extraordinary refractive index of the birefringent material layer 230, that is, n o ≠ n. B may be n e = n B. It is also possible to use a birefringent material in the isotropic material layer 240, whereas this time, the ordinary refractive index n o ', extraordinary refractive index n e' When either n o 'or n e' but it may be designed to be equal to either one n o or n e of the birefringent material layer 230.

本実施形態では、単位領域110に相当する回折格子として単位領域210を有する回折素子200について説明したが、これに限らず、特定の偏光方向の光に対して、第1の実施形態の単位領域130のようにφ(1)=π、φ(2)=4π、または単位領域140のようにφ(1)=π、φ(2)=3πを有するものであってもよい。   In the present embodiment, the diffraction element 200 having the unit region 210 as a diffraction grating corresponding to the unit region 110 has been described. However, the present invention is not limited to this, and the unit region of the first embodiment is not limited to light having a specific polarization direction. As in 130, φ (1) = π, φ (2) = 4π, or as in the unit region 140, φ (1) = π, φ (2) = 3π may be used.

第2の実施形態の回折素子200も同様に、異なる波長の光に対して一定の角度で分波または合波させる光学装置に本願発明の回折素子を用いる場合でも従来の回折格子よりも格子ピッチPxを細かくする必要がなく、加工の容易性が得られる。さらに、入射する光の偏光方向によって、分波および合波の制御をすることができる。また、同様にこれらの回折光を利用する光学装置の小型化を実現することができる。   Similarly, in the diffraction element 200 of the second embodiment, even when the diffraction element of the present invention is used in an optical device that demultiplexes or multiplexes light of different wavelengths at a constant angle, the grating pitch is larger than that of the conventional diffraction grating. There is no need to make Px fine, and the ease of processing can be obtained. Further, the demultiplexing and multiplexing can be controlled according to the polarization direction of the incident light. Similarly, it is possible to reduce the size of an optical device that uses these diffracted lights.

(第3の実施形態)
図7は、第3の実施形態に係る回折素子300の平面模式図である。回折素子300は、透光性基板320上に透過光の位相を空間的に変調する単位領域310が周期的に配列したものである。例えば、図7の回折素子300のように帯状の単位領域310がX方向にピッチPxで配列している状態であるとする。また、回折素子300に光が入射する領域を有効領域としたとき、有効領域は、少なくとも単位領域310のPxが3以上配列したものを含むように構成されているとよい。
(Third embodiment)
FIG. 7 is a schematic plan view of a diffraction element 300 according to the third embodiment. In the diffraction element 300, unit regions 310 that spatially modulate the phase of transmitted light are periodically arranged on a light-transmitting substrate 320. For example, it is assumed that the band-shaped unit regions 310 are arranged at a pitch Px in the X direction as in the diffraction element 300 of FIG. In addition, when an area where light is incident on the diffraction element 300 is an effective area, the effective area may include at least three Px of the unit area 310 arranged.

単位領域310は、複数の小領域からなり、本実施形態では、4つの幾何学的な区画である小領域310a、310b、310cおよび310dから構成される。この小領域310a、310b、310cおよび110cは、ある波長λの光が同相で入射したとき、透過する波長λの光の位相が互いに異なるものである。このように第1の実施形態に係る回折素子100の単位領域110が3つの小領域で構成されるのに対し、本実施形態に係る回折素子300の単位領域310は4つの小領域で構成される点が異なる。ここで、単位領域310は、透光性基板320と異なる材料で構成されていてもよく、また、透光性基板320と同じ材料であったり、透光性基板320の一つの面が凹凸状に加工されていたりしてもよい。   The unit area 310 includes a plurality of small areas. In the present embodiment, the unit area 310 includes small areas 310a, 310b, 310c, and 310d that are four geometric sections. The small regions 310a, 310b, 310c, and 110c are different from each other in the phase of light having a wavelength λ that is transmitted when light having a wavelength λ is incident in the same phase. As described above, the unit region 110 of the diffractive element 100 according to the first embodiment is configured by three small regions, whereas the unit region 310 of the diffractive element 300 according to the present embodiment is configured by four small regions. Is different. Here, the unit region 310 may be made of a material different from that of the light-transmitting substrate 320, or may be made of the same material as the light-transmitting substrate 320, or one surface of the light-transmitting substrate 320 is uneven. It may be processed into.

次に、各小領域に位相差を与える単位領域310の構成について説明する。図8(a)は、本実施形態の単位領域310を示す平面模式図であって、図8(b)は、図8(a)に示す小領域310のB−B´の断面(X方向)を示す模式図であり、段差を有する回折格子が形成される。なお、光は平坦な透光性基板面311(X−Y面)の法線方向(Z方向)から入射するものとする。また、光の透過側は、小領域同士の境界で一定の値の段差を有し、小領域310a、310b、310cおよび310dの光の透過側はいずれも透光性基板面311と平行で平坦な面(平坦部)である。この場合、ステップ数N=4であって、Nは単位領域310を構成する小領域の数に相当する。   Next, the configuration of the unit region 310 that gives a phase difference to each small region will be described. FIG. 8A is a schematic plan view showing the unit region 310 of the present embodiment, and FIG. 8B is a cross-sectional view (X direction) of BB ′ of the small region 310 shown in FIG. ) And a diffraction grating having a step is formed. Note that light enters from the normal direction (Z direction) of the flat translucent substrate surface 311 (XY plane). Further, the light transmission side has a step of a certain value at the boundary between the small regions, and the light transmission side of each of the small regions 310a, 310b, 310c, and 310d is flat and parallel to the translucent substrate surface 311. This is a flat surface (flat part). In this case, the number of steps N = 4, and N corresponds to the number of small areas constituting the unit area 310.

本実施形態では、波長が異なる複数の光が入射し、それぞれの波長の光のうち、最も回折効率が高い次数である回折次数qの符号が、少なくとも2つの波長の光の間で異なるという効果は第1および第2の実施形態と同じで、構成が異なる形態であって、小領域310a、310b、310cおよび310dの分割幅をそれぞれ、X、X、XおよびXとしたとき、
:X:X:X=3:7:7:3 ・・・ (12)
を与える。
In the present embodiment, a plurality of lights having different wavelengths are incident, and the sign of the diffraction order q, which is the order having the highest diffraction efficiency among the lights of the respective wavelengths, is different between the lights of at least two wavelengths. Is the same as the first and second embodiments, but has a different configuration, and the division widths of the small regions 310a, 310b, 310c and 310d are X 1 , X 2 , X 3 and X 4 respectively. ,
X 1 : X 2 : X 3 : X 4 = 3: 7: 7: 3 (12)
give.

次に、回折素子300の光の透過側の媒質が空気(屈折率=1)であるとき、小領域310aを透過する光を基準として、小領域310b、小領域310c、小領域310dを透過する光の位相差φ(0)、φ(1)、φ(2)、φ(3)をそれぞれ、
φ(0)=0 ・・・ (13a)
φ(1)=nπ[rad] ・・・ (13b)
φ(2)=nπ[rad] ・・・ (13c)
φ(3)=nπ[rad] ・・・ (13d)
の関係を満たすようにする。なお、n,nおよびnは自然数である(n≠n≠n)。このとき、n=1、n=2そして、n=3として、φ(1)=π、φ(2)=2π、φ(3)=3πとなるように、段差を調整する。なお、位相差は小領域310aを透過する光を基準としているのでφ(0)=0である。
Next, when the medium on the light transmission side of the diffraction element 300 is air (refractive index = 1), the light is transmitted through the small region 310b, the small region 310c, and the small region 310d with reference to the light transmitted through the small region 310a. The optical phase differences φ (0), φ (1), φ (2), φ (3) are
φ (0) = 0 (13a)
φ (1) = n 1 π [rad] (13b)
φ (2) = n 2 π [rad] (13c)
φ (3) = n 3 π [rad] (13d)
To satisfy the relationship. Note that n 1 , n 2, and n 3 are natural numbers (n 1 ≠ n 2 ≠ n 3 ). At this time, assuming that n 1 = 1, n 2 = 2 and n 3 = 3, the steps are adjusted so that φ (1) = π, φ (2) = 2π, and φ (3) = 3π. Since the phase difference is based on the light transmitted through the small region 310a, φ (0) = 0.

上記のように形成した回折格子によって、式(12)および、φ(1)=π、φ(2)=2π、φ(3)=3πとなる回折素子300を与え、回折効率の式(3)を用いて、実際に入射する光の波長λを変化させたときの回折効率ηを計算によって求める。このとき、例えば、帯域を有する波長λの光に含まれる、帯域を持たない特定の波長λにおける+1次回折効率η+1(q=+1)および−1次回折効率η−1(q=−1)の値は約14%と等しくなる。また、直進透過率に相当する0次回折効率η(q=0)の値は約0%となる。 The diffraction grating formed as described above gives the diffraction element 300 in which Equation (12) and φ (1) = π, φ (2) = 2π, φ (3) = 3π are given, and the diffraction efficiency equation (3 ) To obtain the diffraction efficiency η q by changing the wavelength λ of the actually incident light. At this time, for example, the + 1st order diffraction efficiency η +1 (q = + 1) and the −1st order diffraction efficiency η −1 (q = −) at a specific wavelength λa not included in the light having the wavelength λ having the band. The value of 1) is equal to about 14%. In addition, the value of the 0th-order diffraction efficiency η 0 (q = 0) corresponding to the straight transmittance is about 0%.

また、第1の実施形態と同様に、上記の式(9)のように波長分散を考慮し、回折素子300が石英ガラスを加工して構成される場合について考える。ここで、特定の波長λを515nmに設定し、φ(1)=π、φ(2)=2π、φ(3)=3πとなるように、小領域間の段差を与え、波長λの値を370〜860[nm]の範囲で変化させる。図9は、この条件において波長λに対する回折効率ηの特性を計算したものであって、とくにq=−1,0,+1について示したものである。このように、使用する材料の波長分散特性を考慮すると例えば、波長λ=376[nm]の光に対して+1次回折効率η+1が71.6%と最も高くなり、波長λ=856[nm]の光に対して−1次回折効率η−1が71.6%と最も高くなる。 Similarly to the first embodiment, a case where the diffraction element 300 is formed by processing quartz glass in consideration of wavelength dispersion as in the above formula (9) will be considered. Here, a specific wavelength lambda a is set to 515nm, φ (1) = π , φ (2) = 2π, φ (3) = so that the 3 [pi], giving a level difference between the small regions, the wavelength lambda The value is changed in the range of 370 to 860 [nm]. FIG. 9 shows the calculation results of the diffraction efficiency η q with respect to the wavelength λ under these conditions, and particularly shows q = −1, 0, +1. Thus, considering the wavelength dispersion characteristics of the material used, for example, the + 1st order diffraction efficiency η + 1 is the highest at 71.6% with respect to light of wavelength λ 1 = 376 [nm], and wavelength λ 2 = 856. The −1st order diffraction efficiency η −1 is the highest at 71.6% with respect to [nm] light.

このように回折素子300は、式(13b)〜式(13d)において、n=1、n=2そしてn=3としたが、n、nおよびnが自然数(n≠n≠n)であればこの組み合わせに限らない。図10(a)は、回折素子の単位領域330を示す断面模式図であって、n=1、n=5そしてn=3である場合の構成を示すものである。また、材料および小領域330a、330b、330cおよび330dの分割幅X、X、XおよびXは単位領域310と同じである。また、図10(a)では、段差に相当する部分を位相差φ(1)、φ(2)およびφ(3)で示している。同様に、図10(b)は、回折素子の単位領域340を示す断面模式図であって、n=1、n=4そしてn=3である場合を示すものであって、それ以外の条件は単位領域330と同じである。 As described above, in the diffraction element 300, n 1 = 1, n 2 = 2 and n 3 = 3 in the expressions (13b) to (13d), but n 1 , n 2 and n 3 are natural numbers (n 1 if ≠ n 2n 3) is not limited to this combination. FIG. 10A is a schematic cross-sectional view showing the unit region 330 of the diffractive element, and shows a configuration when n 1 = 1, n 2 = 5, and n 3 = 3. Further, the division widths X 1 , X 2 , X 3 and X 4 of the material and the small regions 330 a, 330 b, 330 c and 330 d are the same as those of the unit region 310. In FIG. 10A, the portions corresponding to the steps are indicated by phase differences φ (1), φ (2), and φ (3). Similarly, FIG. 10B is a schematic cross-sectional view showing the unit region 340 of the diffractive element, where n 1 = 1, n 2 = 4 and n 3 = 3. The other conditions are the same as those of the unit region 330.

ここで、単位領域310を有する回折素子300と同様に式(12)を満足し、さらに特定の波長λを515nmと設定し、単位領域330はφ(1)=π、φ(2)=5π、φ(3)=3πを有し、単位領域340はφ(1)=π、φ(2)=4π、φ(3)=3πを有する回折素子を考える。同様に、石英ガラスを用いた場合、波長λの値を380〜820[nm]の範囲で変化させ、透光性基板面331または透光性基板面341の法線方向から光を入射させたときの回折効率ηの特性を計算する。図11(a)は、図10(a)に示す単位領域330を有する回折素子を構成する場合の特性、図11(b)は、図10(b)に示す単位領域340を有する回折素子を構成する場合の特性の計算結果である。 Here, to satisfy the equation (12) as well as the diffraction element 300 having a unit area 310, further a specific wavelength lambda a is set to 515 nm, a unit region 330 is φ (1) = π, φ (2) = Consider a diffraction element having 5π, φ (3) = 3π, and the unit region 340 having φ (1) = π, φ (2) = 4π, and φ (3) = 3π. Similarly, when quartz glass is used, the value of the wavelength λ is changed in the range of 380 to 820 [nm], and light is incident from the normal direction of the light transmitting substrate surface 331 or the light transmitting substrate surface 341. The characteristic of the diffraction efficiency η q is calculated. FIG. 11A shows characteristics when the diffractive element having the unit region 330 shown in FIG. 10A is configured, and FIG. 11B shows the diffractive element having the unit region 340 shown in FIG. It is the calculation result of the characteristic in the case of comprising.

この結果より、図11(a)では、波長λ=391[nm]の光に対して+1次回折効率η+1が68.4%と最も高くなり、波長λ=775[nm]の光に対して−1次回折効率η−1が68.4%と最も高くなる。また、図11(b)では、波長λ=441[nm]の光に対して+1次回折効率η+1が38.4%と最も高くなり、波長λ=621[nm]の光に対して−1次回折効率η−1が38.4%と最も高くなる。 From this result, in FIG. 11A, the + 1st -order diffraction efficiency η + 1 is the highest at 68.4% with respect to the light with the wavelength λ 1 = 391 [nm], and the light with the wavelength λ 2 = 775 [nm]. On the other hand, the -1st order diffraction efficiency η -1 is the highest at 68.4%. In FIG. 11B, the + 1st order diffraction efficiency η + 1 is the highest at 38.4% with respect to the light with the wavelength λ 1 = 441 [nm], and the light with the wavelength λ 2 = 621 [nm]. -1st order diffraction efficiency η -1 is the highest at 38.4%.

このように、波長の異なる複数の光が入射する場合、各波長の回折効率が最も高くなる回折光の符号が少なくとも2つの波長の光の間で異なる。これより、異なる波長の光に対して一定の角度で分波または合波させる光学装置に本願発明の回折素子を用いる場合でも従来の回折格子よりも格子ピッチPxを細かくする必要がなく、加工の容易性が得られる。また、第2の実施形態の図8(b)に示す単位領域310のような位相差を有する回折素子300を用いると、70%以上の回折効率を得ることができ、さらに、従来の回折格子よりも格子ピッチPxを細かくする必要がなく、加工の容易性が得られる。また、同様にこれらの回折光を利用する光学装置の小型化を実現することができる。   As described above, when a plurality of light beams having different wavelengths are incident, the sign of the diffracted light beam having the highest diffraction efficiency of each wavelength is different between the light beams of at least two wavelengths. Thus, even when the diffraction element of the present invention is used in an optical device that demultiplexes or multiplexes light of different wavelengths at a constant angle, it is not necessary to make the grating pitch Px finer than the conventional diffraction grating. Ease is obtained. In addition, when a diffraction element 300 having a phase difference like the unit region 310 shown in FIG. 8B of the second embodiment is used, a diffraction efficiency of 70% or more can be obtained, and a conventional diffraction grating can be obtained. It is not necessary to make the lattice pitch Px finer than that, and the ease of processing can be obtained. Similarly, it is possible to reduce the size of an optical device that uses these diffracted lights.

(第4の実施形態)
図12(a)は第4の実施形態に係る回折素子400を示す平面模式図であって、回折素子400は、透過光の位相を空間的に変調する単位領域410が周期的に配列したものである。回折素子400は、回折格子を形成する材料が複屈折性を有する材料で構成され、これによって入射する光の偏光依存性を発生させる点が回折素子300と異なる。図12(b)は、単位領域410の断面模式図であって、平行に配置される透光性基板420a、420bの間に、回折格子形状をなす複屈折性材料層430と、等方性材料層440とが挟持されて構成される。
(Fourth embodiment)
FIG. 12A is a schematic plan view showing the diffractive element 400 according to the fourth embodiment. The diffractive element 400 includes unit regions 410 that spatially modulate the phase of transmitted light and are periodically arranged. It is. The diffractive element 400 is different from the diffractive element 300 in that the material forming the diffraction grating is made of a material having birefringence, thereby generating the polarization dependence of incident light. FIG. 12B is a schematic cross-sectional view of the unit region 410, and a birefringent material layer 430 having a diffraction grating shape between the translucent substrates 420a and 420b arranged in parallel, and an isotropic property. The material layer 440 is sandwiched.

また、単位領域410の平面(X−Y面)の形状は、第3の実施形態に係る回折素子300の単位領域310と同じであって、単位領域410は小領域410a、小領域410b、小領域410cおよび小領域410dからなる。また、単位領域410の周期である格子ピッチPxおよび各小領域の分割幅X、X、XおよびXはそれぞれ単位領域310と同様に上記の式(12)を満足する。 Further, the shape of the plane (XY plane) of the unit region 410 is the same as that of the unit region 310 of the diffraction element 300 according to the third embodiment, and the unit region 410 includes the small region 410a, the small region 410b, and the small region. It consists of a region 410c and a small region 410d. Further, the lattice pitch Px which is the period of the unit region 410 and the division widths X 1 , X 2 , X 3 and X 4 of each small region satisfy the above formula (12) similarly to the unit region 310.

複屈折性材料層430は、常光屈折率nおよび異常光屈折率n(n≠n)を有し、例えば、その進相軸(常光屈折率を示す方向)が図12(b)のX方向に揃うように形成する。また、等方性材料層440には、光学的に透明で屈折率nの等方性の材料から構成され、n=nを満足するような材料で構成されるものとして考える。この場合、
=λ/{2・|n−n|} ・・・ (14a)
=2λ/{2・|n−n|} ・・・ (14b)
=3λ/{2・|n−n|} ・・・ (14c)
を満足するように複屈折性材料層430の段差d、dおよびdを決定する。なお、等方性材料層440は、複屈折性材料層430の凹凸(段差)を埋めるように形成されていればよく、図12(b)のように複屈折性材料層430の凹凸(段差)の凸部を覆うように形成されていてもよい。なお、複屈折性材料層430は、第2の実施形態の複屈折性材料層430と同様の材料を用いることができる。
Birefringent material layer 430 has a ordinary refractive index n o and extraordinary refractive index n e (n on e), for example, the fast axis (direction indicated ordinary refractive index) of FIG. 12 (b ) In the X direction. Furthermore, the isotropic material layer 440 is composed of an isotropic material having a refractive index n B optically clear, considered as being constructed of a material that satisfies n o = n B. in this case,
d 1 = λ / {2 · | n e -n B |} ··· (14a)
d 2 = 2λ / {2 · | n e -n B |} ··· (14b)
d 3 = 3λ / {2 · | n e -n B |} ··· (14c)
Steps d 1 , d 2 and d 3 of the birefringent material layer 430 are determined so as to satisfy the above. The isotropic material layer 440 only needs to be formed so as to fill the unevenness (step) of the birefringent material layer 430, and the unevenness (step difference) of the birefringent material layer 430 as shown in FIG. ) May be formed so as to cover the convex portion. The birefringent material layer 430 can be made of the same material as the birefringent material layer 430 of the second embodiment.

このような単位領域410の構成とすることで、第2の実施形態と同様に、入射する光のうちY方向の直線偏光は、複屈折性材料層430と等方性材料層440とで屈折率の差が生じる(Δn=|n−n|)ので、回折作用が生じるが、X方向の直線偏光は、複屈折性材料層430と等方性材料層440との間で屈折率の差がない(Δn=|n−n|=0)ので、回折されずにそのまま直進透過する。このように複屈折性材料層430を形成することで、入射する光に対して回折させるかまたは直進透過させるといった偏光依存性を発現させることができる。とくに、複屈折材料層430に入射する常光屈折率方向の波長分散特性または異常光屈折率方向の波長分散特性いずれか一方と等方性材料層440との波長分散特性が一致するように考慮すると、光を直進透過させる場合の(直進)透過率が高くなるので好ましい。 By adopting such a unit region 410, linearly polarized light in the Y direction out of incident light is refracted by the birefringent material layer 430 and the isotropic material layer 440, as in the second embodiment. Since a difference in refractive index occurs (Δn = | n e −n B |), a diffractive action occurs, but linearly polarized light in the X direction has a refractive index between the birefringent material layer 430 and the isotropic material layer 440. (Δn = | n o −n B | = 0), the light passes straight through without being diffracted. By forming the birefringent material layer 430 in this manner, polarization dependency such as diffracting or linearly transmitting incident light can be exhibited. In particular, it is considered that the wavelength dispersion characteristic of the isotropic material layer 440 coincides with either the wavelength dispersion characteristic in the ordinary light refractive index direction or the wavelength dispersion characteristic in the extraordinary light refractive index direction incident on the birefringent material layer 430. It is preferable because the transmittance in the case where light is transmitted in a straight line (straight) is high.

この結果、Y方向の直線偏光が入射すると、例えば、+1次回折効率η+1が最も大きい波長帯域と、−1次回折効率η−1が最も大きい波長帯域とが異なる波長依存性を有し、X方向の直線偏光が入射すると透過率はほぼ100%となり、回折光は発生しない。また、n=n、n≠nとして説明したが、等方性材料層440の屈折率nが複屈折性材料層430の異常光屈折率に等しい、つまり、n≠n、n=nであってもよい。また、等方性材料層440に複屈折性材料を用いることもでき、このとき、常光屈折率n´、異常光屈折率n´とすると、n´またはn´のいずれか一方が、複屈折性材料層430のnまたはnいずれか一方と等しくなるように設計してもよい。 As a result, when the Y-direction of the linearly polarized light is incident, for example, it has a largest wavelength band + 1-order diffraction efficiency eta +1, and the greatest wavelength band -1 order diffraction efficiency eta -1 different wavelength dependency, When linearly polarized light in the X direction is incident, the transmittance is almost 100%, and no diffracted light is generated. In addition, although it has been described that n o = n B and n e ≠ n B , the refractive index n B of the isotropic material layer 440 is equal to the extraordinary refractive index of the birefringent material layer 430, that is, n o ≠ n. B may be n e = n B. It is also possible to use a birefringent material in the isotropic material layer 440, whereas this time, the ordinary refractive index n o ', extraordinary refractive index n e' When either n o 'or n e' but it may be designed to be equal to either one n o or n e of the birefringent material layer 430.

本実施形態では、単位領域310に相当する回折格子として単位領域410を有する回折素子400について説明したが、これに限らず、特定の偏光方向の光に対して、第3の実施形態の単位領域330のようにφ(1)=π、φ(2)=5π、φ(3)=3π、または単位領域340のようにφ(1)=π、φ(2)=4π、φ(2)=3πを有するものであってもよい。また、第4の実施形態の回折素子400は、第3の実施形態の回折素子と同様に、異なる波長の光に対して一定の角度で分波または合波させる光学装置に本願発明の回折素子を用いる場合でも従来の回折格子よりも格子ピッチPxを細かくする必要がなく、加工の容易性が得られる。さらに、入射する光の偏光方向によって、分波および合波の制御をすることができる。また、同様にこれらの回折光を利用する光学装置の小型化を実現することができる。   In the present embodiment, the diffraction element 400 having the unit region 410 as a diffraction grating corresponding to the unit region 310 has been described. However, the present invention is not limited to this, and the unit region of the third embodiment is not limited to this. Φ (1) = π, φ (2) = 5π, φ (3) = 3π as in 330, or φ (1) = π, φ (2) = 4π, φ (2) as in unit region 340 = 3π may be included. Further, the diffraction element 400 of the fourth embodiment is similar to the diffraction element of the third embodiment in that the diffraction device of the present invention is applied to an optical device that demultiplexes or multiplexes light of different wavelengths at a certain angle. Even in the case of using, it is not necessary to make the grating pitch Px finer than that of the conventional diffraction grating, and the ease of processing can be obtained. Further, the demultiplexing and multiplexing can be controlled according to the polarization direction of the incident light. Similarly, it is possible to reduce the size of an optical device that uses these diffracted lights.

(第5の実施形態)
図13は第5の実施形態に係る回折素子として、回折レンズ500の平面模式図および、X軸の断面を示す断面模式図である。ここで、光はX−Y平面に対して法線方向から入射し、光軸は直交座標(x,y)=(0,0)に一致するものとして説明する。そして、光軸を中心にX−Y平面において同心円状に輪帯状の領域が形成されている。なお、回折レンズ500は、光軸と交わる点である点Aを含み円形の領域となる単位領域510、単位領域510の外縁と接して囲む輪帯状の単位領域520、単位領域520の外縁と接して囲む輪帯状の単位領域530が点Aを中心に回転対称性を有して形成されている。また、回折レンズ500は、単位領域510、520、530の構成を示したが、これは回折レンズ500の特徴を示すための模式図であって、実際には単位領域530よりさらに外側に同心円状の輪帯状の単位領域が広がるように構成されている。また、「輪帯」とは、各単位領域の外縁として定義し、図13の平面模式図において、太線部分、つまり輪帯511、521、531に相当する。また、この「輪帯」によってできる領域が単位領域と言い換えることもできる。
(Fifth embodiment)
FIG. 13 is a schematic plan view of a diffractive lens 500 as a diffractive element according to the fifth embodiment, and a schematic cross-sectional view showing a cross section along the X axis. Here, it is assumed that light is incident on the XY plane from the normal direction and the optical axis coincides with the orthogonal coordinates (x, y) = (0, 0). An annular region is formed concentrically on the XY plane around the optical axis. The diffractive lens 500 is in contact with the outer edge of the unit region 510, which is a circular region including the point A that intersects the optical axis, the annular unit region 520 that is in contact with the outer edge of the unit region 510, and the outer periphery of the unit region 520. A ring-shaped unit region 530 is formed with rotational symmetry about the point A. Further, the diffractive lens 500 has a configuration of the unit regions 510, 520, and 530. However, this is a schematic diagram for illustrating the characteristics of the diffractive lens 500, and actually the concentric shape further outward from the unit region 530. The ring-shaped unit area is configured to expand. Further, the “annular zone” is defined as the outer edge of each unit region, and corresponds to the thick line portions, that is, the annular zones 511, 521, and 531 in the schematic plan view of FIG. An area formed by the “ring zone” can also be referred to as a unit area.

また、回折レンズ500は、入射する光に対して発生する+1次回折光または−1次回折光を用いた位相型のフレネルゾーンプレートとして考えることができる。ここで、+1次回折光は光軸に近づくように回折する1次回折光、そして、−1次回折光は光軸から遠ざかるように回折する1次回折光として定義する。次に、点Aを中心としたときの輪帯の半径の設定について説明する。前述のようにフレネルゾーンプレートとして考えたとき、各単位領域を透過する光の最大光路差は1波長、例えば405nmの光が入射した場合の最大光路差が405nm、となるような形状を有する。そして、点Aからm番目の輪帯の半径rは、
=(2mλf)1/2 ・・・ (15)
で表される。
The diffractive lens 500 can be considered as a phase type Fresnel zone plate using + 1st order diffracted light or −1st order diffracted light generated with respect to incident light. Here, + 1st order diffracted light is defined as first order diffracted light that diffracts so as to approach the optical axis, and −1st order diffracted light is defined as first order diffracted light that diffracts away from the optical axis. Next, the setting of the radius of the annular zone when the point A is the center will be described. As described above, when considered as a Fresnel zone plate, the maximum optical path difference of light transmitted through each unit region has a shape such that the maximum optical path difference when light having a wavelength of, for example, 405 nm is incident is 405 nm. And the radius rm of the m- th zone from point A is
r m = (2mλ 0 f) 1/2 (15)
It is represented by

ここで、λは最大回折効率を得るための基準となる波長であり、fはレンズ作用によって得られる焦点距離である。例えば、式(15)に基づいて、波長λの光がX−Y平面の法線方向から入射する場合、回折する光の焦点距離fが決まると、各輪帯の設定すべき半径を得ることができる。このようにm個の輪帯の各半径が決まるとm個の単位領域が与えられる。 Here, λ 0 is a reference wavelength for obtaining the maximum diffraction efficiency, and f is a focal length obtained by the lens action. For example, when light having a wavelength λ 0 is incident from the normal direction of the XY plane based on Expression (15), when the focal length f of the diffracted light is determined, the radius to be set for each annular zone is obtained. be able to. Thus, when each radius of m ring zones is determined, m unit areas are provided.

次に、図13の単位領域510、単位領域520および単位領域530の構成について説明する。ここで単位領域510は、式(15)より平面が半径rの円形の領域であって、半径rに等しいピッチPが点Aを中心に回転してできた領域として考えることもできる。ここでピッチPを有する単位領域510は、点Aを中心とした半径P11の円形となる小領域510a、同心円状で幅がP12の輪帯状となる小領域510bおよび同心円状で幅がP13の輪帯状となる小領域510cからなり、それぞれの小領域の分割幅P11、P12およびP13は、
11=P12=P13=P/3 ・・・ (16a)
の関係を有する。
Next, the configuration of the unit area 510, the unit area 520, and the unit area 530 in FIG. 13 will be described. Here, the unit area 510 is a circular area having a radius r 1 on the plane according to the equation (15), and can be considered as an area formed by rotating a pitch P 1 equal to the radius r 1 around the point A. . Here the unit region 510 having a pitch P 1 in the small region 510a serving as a circular radius P 11 around the point A, the width width concentrically in small areas 510b and concentric to the annular P 12 It consists small region 510c where the annular P 13, dividing the width of each of the small regions P 11, P 12 and P 13 are
P 11 = P 12 = P 13 = P 1/3 ··· (16a)
Have the relationship.

また、単位領域520のピッチPはr−rに相当し、単位領域530のピッチPはr−rに相当する。また、単位領域520は、3つの同心円状の小領域520a、小領域520b、小領域520cからなり、それぞれの小領域の分割幅P21、P22およびP23は、
21=P22=P23=P/3 ・・・ (16b)
の関係を有し、単位領域530は、3つの同心円状の小領域530a、小領域530b、小領域530cからなり、それぞれの小領域の分割幅P31、P32およびP33は、
31=P32=P33=P/3 ・・・ (16c)
の関係を有する。なお、小領域は、第1〜第4の実施形態と同様に、透過する光の位相が同じとなる区画を1つの単位として考える。
Further, the pitch P 2 of the unit region 520 corresponds to r 2 -r 1, and the pitch P 3 of the unit region 530 corresponds to r 3 -r 2 . The unit area 520 includes three concentric small areas 520a, 520b, and 520c. The division widths P 21 , P 22 and P 23 of each small area are:
P 21 = P 22 = P 23 = P 2/3 ··· (16b)
The unit region 530 is composed of three concentric small regions 530a, 530b, and 530c, and the divided widths P 31 , P 32, and P 33 of each small region are
P 31 = P 32 = P 33 = P 3/3 ··· (16c)
Have the relationship. In the small region, as in the first to fourth embodiments, a section where the phase of transmitted light is the same is considered as one unit.

次に、位相差φ(m)について考える。位相差φ(m)は、第1〜第4の実施形態と同じ考え方に基づき、例えば、単位領域510のうち小領域510cを透過する光の位相を基準とし、小領域510bを透過する光の位相差をφ(1)、小領域510aを透過する光の位相差をφ(2)として与えると、
φ(0)=0 ・・・ (17a)
φ(1)=π[rad] ・・・ (17b)
φ(2)=2π[rad] ・・・ (17c)
の関係を満たすようにする。
Next, the phase difference φ (m) will be considered. The phase difference φ (m) is based on the same concept as in the first to fourth embodiments, for example, with reference to the phase of the light transmitted through the small region 510c of the unit region 510, and the light transmitted through the small region 510b. When the phase difference is given as φ (1) and the phase difference of the light transmitted through the small region 510a is given as φ (2),
φ (0) = 0 (17a)
φ (1) = π [rad] (17b)
φ (2) = 2π [rad] (17c)
To satisfy the relationship.

単位領域520は、小領域520cを基準とし、小領域520b、小領域520aの位相差がそれぞれ式(17b)、式(17c)となるようにする。単位領域530も同様に、小領域530cを基準とし、小領域530b、小領域530aの位相差がそれぞれ式(17b)、式(17c)となるようにする。また、式(17a)〜(17c)を満足するように、それぞれ段差dおよびdを与えるが、回折レンズ500が屈折率nの材料で形成され、また周辺の媒質が空気である場合、式(8a)および式(8b)を用いて段差を設定するとよい。 The unit region 520 is set so that the phase difference between the small region 520b and the small region 520a is expressed by the equations (17b) and (17c), respectively, with the small region 520c as a reference. Similarly, the unit region 530 is set so that the phase difference between the small region 530b and the small region 530a is expressed by the equations (17b) and (17c), respectively, with the small region 530c as a reference. Further, steps d 1 and d 2 are provided so as to satisfy the expressions (17a) to (17c), respectively, but the diffractive lens 500 is formed of a material having a refractive index n s and the surrounding medium is air. The steps may be set using the equations (8a) and (8b).

このような条件において、例えば、BD用の波長405nmの光については、+1次回折光が凸レンズとして機能するように焦点距離fを決め、それに対応する輪帯の半径を式(15)より決定する。また、回折効率ηの波長依存性は、第1の実施形態に係る回折素子100の特性である図3のグラフに相当する特性を有し、例えば、BD用の波長405nmの光に対して大きな+1次回折効率となる、DVD用の波長660nmおよびCD用の波長780nmに対して大きな−1次回折効率となるので、DVD、CDに対して凹レンズとなるように、波長選択性の回折レンズを作製することが可能である。 Under such conditions, for example, for light with a wavelength of 405 nm for BD, the focal length f is determined so that the + 1st-order diffracted light functions as a convex lens, and the radius of the corresponding annular zone is determined from the equation (15). Further, the wavelength dependency of the diffraction efficiency η q has a characteristic corresponding to the graph of FIG. 3 which is the characteristic of the diffraction element 100 according to the first embodiment. For example, for the light with a wavelength of 405 nm for BD Wavelength-selective diffractive lens so as to be a concave lens for DVD and CD because it has a large + 1st order diffraction efficiency and a large -1st order diffraction efficiency for DVD wavelength 660 nm and CD wavelength 780 nm. Can be produced.

図14は、具体的に回折レンズ500にBD用、DVD用、CD用の3つの波長の光が入射したとき、それぞれの光の集光特性について示す模式図であって、具体的に、回折レンズから波長の異なる光が入射し、回折レンズ500の光透過側に対物レンズ560、そして対物レンズの光透過側に光ディスク570を配置する光学系を示すものある。光ディスク570は、それぞれの規格によって情報記録面の位置が異なるため、回折レンズ500を用いることによって、BD、DVDおよびCDの各情報記録面に対して良好に集光することができるものである。図14(a)および図14(b)は、具体的にBD用の405nm波長帯の光540B、550Bの集光特性、DVD用の660nm波長帯の光540D、550Dの集光特性、CD用の785nm波長帯の光540C、550Cの集光特性を示すものである。   FIG. 14 is a schematic diagram showing the condensing characteristics of light when three wavelengths of light for BD, DVD, and CD are incident on the diffraction lens 500. Specifically, FIG. 1 shows an optical system in which light having different wavelengths enters from a lens, and an objective lens 560 is disposed on the light transmission side of the diffraction lens 500 and an optical disk 570 is disposed on the light transmission side of the objective lens. Since the position of the information recording surface of the optical disc 570 differs depending on the respective standards, by using the diffraction lens 500, it is possible to condense well on each information recording surface of BD, DVD and CD. 14 (a) and 14 (b) specifically show condensing characteristics of light 540B and 550B in the 405 nm wavelength band for BD, condensing characteristics of light 540D and 550D in the 660 nm wavelength band for DVD, and for CD. The light condensing characteristics of light 540C and 550C in the 785 nm wavelength band are shown.

また図14(a)は、BD用、DVD用およびCD用の光は、いずれも回折レンズ500に平行光として入射する光学系であって、図15(b)は、CD用の光について有限系配置とし回折レンズ500に発散しながら進行する光として入射させると、焦点距離が長くなりレンズ設計上有利に働くため好ましい場合がある。   FIG. 14A shows an optical system in which BD light, DVD light, and CD light all enter the diffraction lens 500 as parallel light, and FIG. 15B shows a finite number of light for CD. It may be preferable to use a system arrangement so as to be incident on the diffractive lens 500 as light that travels while diverging because the focal length becomes long and the lens design works advantageously.

ここで、回折レンズ500にBD用の光が入射すると、回折レンズ500は凸レンズとして機能するので、対物レンズ560を透過して光ディスク570の情報記録面570B(光ディスクの入射面より0.1mm)に集光する。また、回折レンズ500にDVD用の光が入射すると、回折レンズ500は凹レンズとして機能するので、対物レンズ560を透過して光ディスク570の情報記録面570D(光ディスクの入射面より0.6mm)に集光する。そして、回折レンズ500にCD用の光が入射すると、回折レンズは凹レンズとして機能し、光ディスク570の情報記録面570C(光ディスクの入射面より1.2mm)に集光する。このように回折レンズ500と1つの対物レンズ560を用いることによって3つの異なる波長で規格の異なる光ディスクの各情報記録面に対して収差を抑えて良好に集光することができる。   Here, when BD light is incident on the diffractive lens 500, the diffractive lens 500 functions as a convex lens, so that it passes through the objective lens 560 and enters the information recording surface 570B of the optical disc 570 (0.1 mm from the incident surface of the optical disc). Condensate. Further, when DVD light enters the diffractive lens 500, the diffractive lens 500 functions as a concave lens. Therefore, the diffractive lens 500 passes through the objective lens 560 and collects on the information recording surface 570D of the optical disc 570 (0.6 mm from the incident surface of the optical disc). Shine. When the light for CD enters the diffractive lens 500, the diffractive lens functions as a concave lens, and is condensed on the information recording surface 570C of the optical disc 570 (1.2 mm from the incident surface of the optical disc). In this way, by using the diffraction lens 500 and one objective lens 560, it is possible to condense well while suppressing aberration with respect to each information recording surface of an optical disc having different standards at three different wavelengths.

また、回折レンズ500は、図13の模式図の形状として説明したがこれに限らない。図15は、回折レンズの別の構成を示す例であって、図15(a)は、図13と同じ回折レンズ500の断面模式図、図15(b)は、単位領域を構成する小領域の断面の階段形状の傾きが回折レンズ500に対して逆方向となる回折レンズ501の断面模式図である。図15(b)に示す回折レンズ501は、BD用の光に対して凹レンズとして機能させ、DVD用の光およびCD用の光に対して凸レンズとして機能させることができる。また、図15(c)に示す回折レンズ502のように平行に配向される透光性基板503a、503bの間に回折レンズ500と同じ格子形状を有する複屈折性材料層504と、複屈折材料層504と等方性材料層505によって構成されていてもよい。この場合、第2の実施形態と同様に、入射光に対して回折作用の偏光依存性を持たせることができる。   Moreover, although the diffraction lens 500 was demonstrated as a shape of the schematic diagram of FIG. 13, it is not restricted to this. FIG. 15 is an example showing another configuration of the diffractive lens. FIG. 15A is a schematic cross-sectional view of the same diffractive lens 500 as in FIG. 13, and FIG. 15B is a small region constituting the unit region. FIG. 6 is a schematic cross-sectional view of a diffractive lens 501 in which the inclination of the staircase shape of the cross section of FIG. The diffractive lens 501 shown in FIG. 15B can function as a concave lens for BD light, and can function as a convex lens for DVD light and CD light. Further, a birefringent material layer 504 having the same lattice shape as that of the diffractive lens 500 between the translucent substrates 503a and 503b oriented in parallel like the diffractive lens 502 shown in FIG. The layer 504 and the isotropic material layer 505 may be included. In this case, similarly to the second embodiment, the polarization dependency of the diffraction action can be given to the incident light.

また、回折レンズ500の単位領域を構成する3つの小領域の位相差は、式(17a)〜式(17c)を満たすものに限らず、例えば図4(a)、図4(b)に示すような位相差を有するものであってもよい。さらに、回折レンズの単位領域を構成する小領域の数は3に限らず、4であってもよく、4である場合、第3の実施形態に基づく分割幅が式(12)を満たし、4つの小領域の位相差は、例えば図8(b)、図10(a)、図10(b)に示すような位相差を有するものであってもよい。   Further, the phase difference between the three small regions constituting the unit region of the diffractive lens 500 is not limited to satisfying the equations (17a) to (17c), and for example, as shown in FIGS. 4 (a) and 4 (b). It may have such a phase difference. Further, the number of small regions constituting the unit region of the diffractive lens is not limited to 3, and may be 4. In the case of 4, the division width based on the third embodiment satisfies Expression (12), and 4 The phase difference between the two small regions may have a phase difference as shown in FIGS. 8B, 10A, and 10B, for example.

第5の実施形態の回折レンズ500も同様に、異なる波長の光に対してそれぞれ異なる角度で回折させることができるが、例えば第1の実施形態の光学特性と同様に、BD用の波長の光で最も回折効率が高い+1次回折光の回折角θ+1(405)と、DVD用の波長の光で最も回折効率が高い−1次回折光の回折角θ−1(660)との差が従来の回折レンズに比べると大きいので、従来の回折レンズに対してピッチP、P、P、…を大きく設定することができる。したがって、本発明の回折レンズを用いる場合ピッチを細かくする必要がなく、加工の容易性が得られる。 Similarly, the diffractive lens 500 of the fifth embodiment can diffract light of different wavelengths at different angles. For example, similarly to the optical characteristics of the first embodiment, light of a wavelength for BD is used. The difference between the diffraction angle θ +1 (405) of the + 1st order diffracted light having the highest diffraction efficiency and the diffraction angle θ −1 (660) of the −1st order diffracted light having the highest diffraction efficiency for the DVD wavelength light is Since it is larger than the diffractive lens, the pitches P 1 , P 2 , P 3 ,... Can be set larger than the conventional diffractive lens. Therefore, when the diffractive lens of the present invention is used, it is not necessary to make the pitch fine, and easy processing is obtained.

(第6の実施形態)
図16は本発明の第6の実施形態に係る光ヘッド装置600の構成を示す模式図である。光源としては、BD用の波長である405nm波長帯の光を出射する半導体レーザ610B、DVD用の波長である660nm波長帯の光とCD用の波長として785nm波長帯の光を出射するハイブリッド型の半導体レーザ610Dとを用いる。なお、各半導体レーザを出射した光は進行方向に直交し紙面に平行な直線偏光を有するものとして説明する。各半導体レーザを出射した光は、回折素子620を透過してZ方向の直線偏光となってX方向に進行し、偏光ビームスプリッタ630に入射して光ディスク670の方向(Z方向)に進行する。そしてコリメータレンズ640を透過した光は1/4波長板650によって左回りの円偏光となって対物レンズ660を透過して光ディスク670に到達する。光ディスク670で反射された光は右回りの円偏光となって対物レンズ660を透過し、1/4波長板でY方向の直線偏光となる。そしてコリメータレンズ640および偏光ビームスプリッタ630を直進透過し、回折素子680に入射する。
(Sixth embodiment)
FIG. 16 is a schematic diagram showing a configuration of an optical head device 600 according to the sixth embodiment of the present invention. As a light source, a semiconductor laser 610B that emits light in a wavelength band of 405 nm that is a wavelength for BD, a hybrid type that emits light in a wavelength band of 660 nm that is a wavelength for DVD and light in a wavelength band of 785 nm as a wavelength for CD A semiconductor laser 610D is used. In the following description, it is assumed that the light emitted from each semiconductor laser has linearly polarized light orthogonal to the traveling direction and parallel to the paper surface. The light emitted from each semiconductor laser passes through the diffraction element 620 and becomes linearly polarized light in the Z direction, travels in the X direction, enters the polarization beam splitter 630, and travels in the direction of the optical disk 670 (Z direction). Then, the light transmitted through the collimator lens 640 becomes counterclockwise circularly polarized light by the quarter wavelength plate 650, passes through the objective lens 660, and reaches the optical disk 670. The light reflected by the optical disk 670 becomes clockwise circularly polarized light, passes through the objective lens 660, and becomes linearly polarized light in the Y direction by the quarter wavelength plate. Then, the light travels straight through the collimator lens 640 and the polarization beam splitter 630 and enters the diffraction element 680.

回折素子680に入射した光は、入射する光の波長によって回折方向(角度)が異なり、BD用と、DVDとCD併用の光検出器690B、690Dに到達する。例えば、BD用の光は+1次回折光、DVD用およびCD用の光は−1次回折光を用いると、BD用の光に対して、DVD用およびCD用の光の回折方向(回折角)が大きく異なる。このように、回折されたBD用の光、DVD用およびCD用の光は光検出器690B、690Dの各受光面に集光され、光ディスク670に記録された情報の再生信号、フォーカスエラー信号、トラッキングエラー信号などの光情報が検出される。なお、光ヘッド装置600は、上記のフォーカスエラー信号に基づいて対物レンズ660を光軸方向に移動制御する図示しないフォーカスサーボと、上記のトラッキングエラー信号に基づいて対物レンズ660を光軸方向に垂直となる方向に制御する図示しないトラッキングサーボと、を備える。   The light incident on the diffractive element 680 has different diffraction directions (angles) depending on the wavelength of the incident light, and reaches the photodetectors 690B and 690D for BD and for both DVD and CD. For example, if BD light is + 1st order diffracted light, and DVD and CD light is -1st order diffracted light, the diffraction direction (diffraction angle) of DVD and CD light is different from BD light. to differ greatly. In this way, the diffracted BD light, DVD light, and CD light are condensed on the respective light receiving surfaces of the photodetectors 690B and 690D, and the reproduction signal of the information recorded on the optical disk 670, the focus error signal, Optical information such as a tracking error signal is detected. The optical head device 600 includes a focus servo (not shown) that controls the movement of the objective lens 660 in the optical axis direction based on the focus error signal, and the objective lens 660 that is perpendicular to the optical axis direction based on the tracking error signal. And a tracking servo (not shown) for controlling in the direction to be.

また、光ヘッド装置600に配置される回折素子620および回折素子680は、第1〜第4の実施形態に係る回折素子を用いることができる。ここでは、例として第1の実施形態に係る回折素子100を配置するものとして説明する。第1の実施形態に係る回折素子の回折効率の波長依存性は、図3に示したように、BD用の波長(405nm)では、+1次回折光が最も高く、DVD用の波長(660nm)およびCD用の波長(785nm)では−1次回折光が最も高い。   In addition, as the diffraction element 620 and the diffraction element 680 arranged in the optical head device 600, the diffraction elements according to the first to fourth embodiments can be used. Here, it demonstrates as what arrange | positions the diffraction element 100 which concerns on 1st Embodiment as an example. As shown in FIG. 3, the wavelength dependence of the diffraction efficiency of the diffraction element according to the first embodiment has the highest + 1st order diffracted light at the BD wavelength (405 nm), the DVD wavelength (660 nm), and At the wavelength for CD (785 nm), the −1st order diffracted light is the highest.

ここで、上記の式(10)を用いて、回折素子620を透過するBD用、DVD用、CD用のそれぞれの光が回折して進行する方向がX方向となるように、各半導体レーザの出射方向(角度)を決めることができる。例えば、BD用の波長の光は+1次回折効率が高いので、q=+1、λ=405とし、回折素子620の固定のPxの値を決め、これによって回折角θを求めることができる。同様にして、DVD、CDについては−1次回折効率が最も高いので、それぞれq=−1を与えて回折角θを求めることができる。ここで、DVD用の光とCD用の光の−1次回折光の回折角は式(10)の計算により厳密には異なるが、格子ピッチPxの幅を調整することによって、この2つの波長の光の回折角の差を小さくでき、これによって回折角をほぼ同じ角度θとすることができる。図16において、回折角の符号は光軸を基準として時計回りの方向をプラス(+)、反時計周りの方向をマイナス(−)として表す。図16では、X方向を基準にθおよびθを与えているが符号の考え方は同じである。このように各半導体レーザの位置を調整すると、回折素子620を透過した光は同軸(X方向)上に進行することになるため、複数の異なる波長の光を用いる場合でも、回折素子620以降の光学部品を共通化できるという点で好ましい。 Here, by using the above equation (10), the BD, DVD, and CD light transmitted through the diffractive element 620 is diffracted and travels in the X direction so that each of the semiconductor lasers The emission direction (angle) can be determined. For example, since light having a wavelength for BD has high + 1st order diffraction efficiency, q = + 1 and λ = 405, and the fixed Px value of the diffractive element 620 is determined, whereby the diffraction angle θ 1 can be obtained. Similarly, DVD, since the highest is -1 order diffraction efficiency for CD, can each give q = -1 obtaining a diffraction angle theta 2. Here, although the diffraction angles of the −1st order diffracted light of the DVD light and the CD light differ strictly according to the calculation of Expression (10), by adjusting the width of the grating pitch Px, these two wavelengths can be obtained. it can reduce the difference between the diffraction angle of the light, which makes it possible to the diffraction angle substantially the same angle theta 2. In FIG. 16, the sign of the diffraction angle represents the clockwise direction as plus (+) and the counterclockwise direction as minus (−) with respect to the optical axis. In FIG. 16, θ 1 and θ 2 are given with reference to the X direction, but the concept of the sign is the same. When the position of each semiconductor laser is adjusted in this way, the light transmitted through the diffraction element 620 travels on the same axis (X direction). Therefore, even when a plurality of light beams having different wavelengths are used, This is preferable in that the optical parts can be shared.

次に、回折素子680について説明する。回折素子680も回折素子620と同じ特性を有するものを配置することができ、光ディスク670で反射した複数の異なる波長の光が入射する。前述の説明と同様に、例えば、回折素子680に入射するBD用の波長の光は+1次回折効率が最も高く、DVD用の波長の光およびCD用の波長の光は−1次回折効率が最も高く、また、それぞれの回折光の回折角が異なるので、同じ進行方向で入射した3つの光のうちBD用の光の回折角はθ、DVD用の光およびCD用の光の回折角はθと大きく異なる。したがって、回折素子680に入射する、波長の異なる複数の光を大きく分離できるので、光検出器の配置等が容易となるので光ヘッド装置の小型化が実現でき、また、他の光がノイズとして光検出器に到達しにくくなるために品質のよい光ヘッド装置を実現できる。また、回折素子620と回折素子680とは同じものを用いてもよいが、それぞれ回折角の特性が異なる回折光を発生するものを用いてもよく、BD用の光として−1次回折光、DVD用の光およびCD用の光として+1次回折光を用いるものであってもよい。 Next, the diffraction element 680 will be described. A diffractive element 680 having the same characteristics as the diffractive element 620 can be arranged, and a plurality of light beams having different wavelengths reflected by the optical disk 670 are incident thereon. Similar to the above description, for example, BD wavelength light entering the diffraction element 680 has the highest + 1st order diffraction efficiency, and DVD wavelength light and CD wavelength light have -1st order diffraction efficiency. Since the diffraction angle of each diffracted light is the highest and the diffraction angles of the BD light among the three lights incident in the same traveling direction are θ 1 , the diffraction angles of the DVD light and the CD light are It is quite different from θ 2. Accordingly, since a plurality of light beams having different wavelengths incident on the diffraction element 680 can be largely separated, the arrangement of the photodetectors can be facilitated, so that the optical head device can be miniaturized, and other light can be used as noise. Since it becomes difficult to reach the photodetector, a high-quality optical head device can be realized. Further, the same diffraction element 620 and diffraction element 680 may be used, but those that generate diffracted light having different diffraction angle characteristics may be used. + 1st order diffracted light may be used as the light for CD and the light for CD.

(第7の実施形態)
図17は本発明の第7の実施形態に係る光ヘッド装置700の構成を示す模式図であるって、第6の実施形態に係る光ヘッド装置600と同じ光学部品には同じ番号を付して説明の重複を避ける。光ヘッド装置700はBD用、DVD用およびCD用の3つの異なる波長を発射するハイブリッド型の半導体レーザ710が備わっている。また、回折素子720は、第2の実施形態または第4の実施形態に係る偏光依存性を有する回折素子を用いることができる。
(Seventh embodiment)
FIG. 17 is a schematic diagram showing a configuration of an optical head device 700 according to the seventh embodiment of the present invention. The same optical components as those of the optical head device 600 according to the sixth embodiment are denoted by the same reference numerals. Avoid duplication of explanation. The optical head device 700 includes a hybrid semiconductor laser 710 that emits three different wavelengths for BD, DVD, and CD. Further, the diffraction element 720 can be the diffraction element having polarization dependency according to the second embodiment or the fourth embodiment.

ここでは、回折素子720として、第2の実施形態に係る回折素子200を用いる場合について説明する。半導体レーザ710より発射したX方向の直線偏光の光は、回折素子720に入射すると偏光状態を変えずに出射し、左回りの円偏光となって光ディスク670に到達する。光ディスク670で反射した光は1/4波長板650でY方向の直線偏光となって、再び回折素子720に入射する。このとき、回折素子では、複屈折材料層と等方性材料層との屈折率差より回折作用が生じ、BD用の波長の光は回折角θ、DVD用の波長の光およびCD用の波長の光はそれぞれ回折角θとなって、それぞれ光検出器690Bおよび690Dに到達する。このように、偏光依存性を有する回折素子720を用いることで、さらに光学部品を少なくなるために小型化が実現できるとともに、波長の異なる複数の光を大きく分離できるので光検出器の配置等が容易となり、さらに、他の光がノイズとして光検出器に到達しにくくなるために品質のよい光ヘッド装置を実現することができる。 Here, a case where the diffraction element 200 according to the second embodiment is used as the diffraction element 720 will be described. The linearly polarized light in the X direction emitted from the semiconductor laser 710 enters the diffraction element 720 and is emitted without changing the polarization state, and reaches the optical disk 670 as counterclockwise circularly polarized light. The light reflected by the optical disc 670 is converted into linearly polarized light in the Y direction by the quarter-wave plate 650 and enters the diffraction element 720 again. At this time, in the diffractive element, a diffractive action occurs due to a difference in refractive index between the birefringent material layer and the isotropic material layer, and the light with the wavelength for BD has a diffraction angle θ 1 , the light with the wavelength for DVD, and the light for CD Each of the wavelengths of light has a diffraction angle θ 2 and reaches the photodetectors 690B and 690D, respectively. In this way, by using the polarization-dependent diffraction element 720, the optical components can be further reduced, so that downsizing can be realized, and a plurality of lights having different wavelengths can be largely separated, so that the arrangement of photodetectors and the like can be reduced. In addition, since other light does not easily reach the photodetector as noise, a high-quality optical head device can be realized.

(第8の実施形態)
図18は、第8の実施形態に係る投射型液晶表示装置800の構成を示す模式図である。投射用の光源として、青色の光を出射する半導体レーザ810B、緑色の光を出射する半導体レーザ810G、そして赤色の光を出射する半導体レーザ810Rが備わっている。そして、各半導体レーザを出射した青色の光は液晶ライトバルブ820B、緑色の光は液晶ライトバルブ820G、そして、赤色の光は液晶ライトバルブ820Rを透過して回折素子830に入射する。回折素子830により、透過または回折作用によって1つの方向に揃って透過した光は投射レンズ840に集光され各液晶ライトバルブの合成画像がスクリーン850に結像される。
(Eighth embodiment)
FIG. 18 is a schematic diagram showing a configuration of a projection type liquid crystal display device 800 according to the eighth embodiment. As a light source for projection, a semiconductor laser 810B that emits blue light, a semiconductor laser 810G that emits green light, and a semiconductor laser 810R that emits red light are provided. The blue light emitted from each semiconductor laser passes through the liquid crystal light valve 820B, the green light passes through the liquid crystal light valve 820G, and the red light passes through the liquid crystal light valve 820R and enters the diffraction element 830. The light transmitted through the diffraction element 830 in one direction by transmission or diffraction action is condensed on the projection lens 840 and a combined image of each liquid crystal light valve is formed on the screen 850.

回折素子830には第2の実施形態または第4の実施形態に係る偏光依存性を有する回折素子を用いることができる。ここでは、第2の実施形態に係る回折素子200を用いる場合について説明する。このとき、青色の半導体レーザ810BからはY方向の直線偏光が出射し、液晶ライトバルブ820BにおいてY方向の直線偏光成分の画像信号が角度θで入射する。同様に赤色の半導体レーザ810RからY方向の直線偏光が出射し、液晶ライトバルブ820RにおいてY方向の直線偏光成分の画像信号が角度θで入射する。なお、この角度θと角度θは、回折素子830の回折角に相当し、各色の光の光軸を基準として時計回りの方向をプラス(+)、反時計周りの方向をマイナス(−)として表す。図18では、Z方向を基準にθおよびθを与えているが符号の考え方は同じである。 As the diffraction element 830, the diffraction element having polarization dependency according to the second embodiment or the fourth embodiment can be used. Here, a case where the diffraction element 200 according to the second embodiment is used will be described. At this time, from the blue semiconductor laser 810B linearly polarized light is emitted in the Y-direction, the image signal of the linearly polarized light component in the Y direction in the liquid crystal light valve 820B is incident at an angle theta 1. Similarly Y direction of linearly polarized light emitted from the red semiconductor laser 810R, the image signal of the linearly polarized light component in the Y direction in the liquid crystal light valve 820R is incident at an angle theta 2. The angle θ 1 and the angle θ 2 correspond to the diffraction angle of the diffraction element 830, and the clockwise direction is plus (+) and the counterclockwise direction is minus (−) with respect to the optical axis of the light of each color. ). In FIG. 18, θ 1 and θ 2 are given based on the Z direction, but the concept of the sign is the same.

また、緑色の半導体レーザ810Gからは、X方向の直線偏光が出射し、液晶ライトバルブ820GにおいてX方向の直線偏光成分の画像信号が回折素子830の光軸に沿って入射する。また、回折素子830は、Y方向の偏光方向で入射する光に対して回折させ、X方向の偏光方向で入射する光に対して透過させるようにすると、青色の光は、+1次回折効率が最も高くなるように回折し、赤色の光は、−1次回折効率が最も高くなるように回折する。さらに緑色の光はX方向の偏光方向で入射するので回折せずにそのまま透過する。このとき、青色の光に対する+1次回折光の回折角θだけ光軸から傾けて入射させるように半導体レーザ810Bおよび液晶ライトバルブ820Bを配置することで回折素子830を透過した青色の光は光軸に沿って進行する。同様に、赤色の光に対する−1次回折光の回折角θだけ光軸から傾けて入射させるように半導体レーザ810Rおよび液晶ライトバルブ820Rを配置することで回折素子830を透過した赤色の光は光軸に沿うので、青色、緑色そして赤色の3色の光は合成されて光軸に沿って投射レンズ840に進行し、スクリーン850上に結像されて表示される。 The green semiconductor laser 810G emits linearly polarized light in the X direction, and an image signal of the linearly polarized component in the X direction enters the liquid crystal light valve 820G along the optical axis of the diffraction element 830. In addition, when the diffraction element 830 diffracts light incident in the Y polarization direction and transmits light incident in the X polarization direction, the blue light has a first-order diffraction efficiency. The light is diffracted so as to be the highest, and the red light is diffracted so that the −1st order diffraction efficiency is the highest. Further, since the green light is incident in the polarization direction of the X direction, it is transmitted without being diffracted. At this time, by arranging the semiconductor laser 810B and the liquid crystal light valve 820B so as to be inclined and incident from the optical axis by the diffraction angle θ 1 of the + 1st order diffracted light with respect to the blue light, the blue light transmitted through the diffraction element 830 is optical axis. Proceed along. Similarly, by arranging the semiconductor laser 810R and the liquid crystal light valve 820R so as to be incident on the red light by being inclined from the optical axis by the diffraction angle θ 2 of the −1st order diffracted light, the red light transmitted through the diffraction element 830 is light. The light beams of the three colors of blue, green, and red are combined and travel along the optical axis to the projection lens 840, and are imaged and displayed on the screen 850.

このように、偏光依存性のある回折素子を透過型液晶表示装置に用いることで、各色の光の合成を高い光利用効率を保った状態で1つの素子で実現できるので、光学部品点数を少なくすることができるとともに小型化を実現することができる。また、光源は半導体レーザに限らず、各色の発光ダイオード(LED)でもよい。なお、ここでは、青色の光および赤色の光に対して最も高い回折効率の次数をそれぞれ+1、−1次としたが、これに限らず、−1次と+1次との組み合わせや他の回折の次数を用いるものであってもよい。   In this way, by using a polarization-dependent diffraction element in a transmissive liquid crystal display device, it is possible to combine light of each color with a single element while maintaining high light utilization efficiency, so the number of optical components is reduced. In addition, it is possible to achieve downsizing. Further, the light source is not limited to the semiconductor laser, but may be a light emitting diode (LED) of each color. Here, the order of the highest diffraction efficiency for the blue light and the red light is +1 and −1, respectively. However, the order is not limited to this, and combinations of the −1st order and the + 1st order and other diffractions are also possible. May be used.

(実施例1)
実施例1として、図1に基づいて第1の実施形態に係る回折素子100を作製する。透光性基板120として石英ガラス基板を用い、その片面をフォトリソグラフィ工程およびドライエッチング工程によって1つの方向に延伸する回折格子形状に加工する。そして石英ガラス基板の両面に反射防止膜を形成する。このとき、図2に基づく単位領域110のピッチPx=5μmとし、単位領域110を構成する小領域110a、小領域110bおよび小領域110cの分割幅X、XおよびXをそれぞれ1.67μmと均等に3分割する。そして、波長510nmの光が入射するとき、小領域110aを出射する光の位相を基準とし、小領域110bの位相差φ(1)=π、小領域110cの位相差φ(2)=2πを満たすため、段差d=0.552μm、段差d=1.104μmとなるように加工する。
Example 1
As Example 1, the diffraction element 100 according to the first embodiment is manufactured based on FIG. A quartz glass substrate is used as the light-transmitting substrate 120, and one surface thereof is processed into a diffraction grating shape extending in one direction by a photolithography process and a dry etching process. Then, antireflection films are formed on both sides of the quartz glass substrate. At this time, the pitch Px of the unit regions 110 based on FIG. 2 is set to 5 μm, and the division widths X 1 , X 2, and X 3 of the small regions 110a, 110b, and 110c constituting the unit region 110 are 1.67 μm, respectively. And equally divided into three. When light having a wavelength of 510 nm is incident, the phase difference φ (1) = π of the small region 110b and the phase difference φ (2) = 2π of the small region 110c are set with reference to the phase of the light emitted from the small region 110a. In order to satisfy this, processing is performed so that the level difference d 1 = 0.552 μm and the level difference d 2 = 1.104 μm.

回折素子100に380〜820nmの光を入射すると、波長391nmにおいて+1次回折効率η+1が68.4%と最大となる。一方で波長753nmにおいては、−1次回折効率η−1が68.4%と最大となる。このように、回折素子100に入射する光の波長が異なると回折効率が最も高い次数が異なり、入射する光の波長によって偏向分離できる効果を得ることができる。 When light of 380 to 820 nm is incident on the diffractive element 100, the + 1st order diffraction efficiency η + 1 becomes 68.4% at the wavelength of 391 nm. On the other hand, at the wavelength of 753 nm, the −1st order diffraction efficiency η −1 is the maximum of 68.4%. As described above, when the wavelength of light incident on the diffraction element 100 is different, the order having the highest diffraction efficiency is different, and an effect of being able to be deflected and separated depending on the wavelength of incident light can be obtained.

(実施例2)
実施例2として、第2の実施形態である回折素子200を作製する。図6において透光性基板220aとして石英ガラス基板を用い、Y方向に配向処理をした図示しない配向膜を形成する。そして、配向膜を形成したもう1枚の図示しない透光性基板を配向膜が対向しさらに配向方向が揃うように平行に配置してできる空隙の厚さが4.18μmとなるようにして周辺をシールする。その後、図示しない注入口から液晶モノマーを注入し、紫外線を照射して液晶を重合硬化させる。これによって、厚さ4.18μmで、波長483nmの光に対するX方向の屈折率である常光屈折率n=1.555、Y方向の屈折率である異常光屈折率n=1.669の高分子液晶層が形成される。なお、式(9)において、高分子液晶のA,BおよびCは、常光屈折率方向においてA=1.523、B=0.0067、そしてC=0.000168となり、異常光屈折率方向においてA=1.6211、B=0.0090、そしてC=0.000488となる。
(Example 2)
As Example 2, the diffraction element 200 according to the second embodiment is manufactured. In FIG. 6, a quartz glass substrate is used as the translucent substrate 220a, and an alignment film (not shown) subjected to alignment treatment in the Y direction is formed. Then, another transparent substrate (not shown) on which the alignment film is formed is arranged in parallel so that the alignment film faces and the alignment direction is aligned, so that the gap thickness is 4.18 μm. To seal. Thereafter, a liquid crystal monomer is injected from an injection port (not shown), and the liquid crystal is polymerized and cured by irradiation with ultraviolet rays. As a result, the thickness is 4.18 μm, the ordinary light refractive index n o = 1.555, which is the refractive index in the X direction, and the extraordinary light refractive index n e = 1.669, which is the refractive index in the Y direction, for light with a wavelength of 483 nm. A polymer liquid crystal layer is formed. In the formula (9), A, B and C of the polymer liquid crystal are A = 1.523, B = 0.0007 and C = 0.000168 in the ordinary light refractive index direction, and in the extraordinary light refractive index direction. A = 1.6211, B = 0.090, and C = 0.000488.

その後、図示しない透光性基板を離散し、フォトリソグラフィ工程およびドライエッチング工程によって高分子液晶層を1つの方向に延伸する回折格子形状に加工して、複屈折性材料層230を形成する。このとき、図6(b)に基づく単位領域210のピッチPx=5μmとし、単位領域210を構成する小領域210a、小領域210bおよび小領域210cの分割幅X、XおよびXをそれぞれ1.67μmと均等に3分割する。また、等方性材料層240は、式(9)において、A=1.523、B=0.0079、そしてC=−0.000178となり、高分子液晶層の常光屈折率方向の特性とほぼ同じ特性を示す透明接着剤を用いる。このようにすることで、常光屈折率方向で入射する光の透過率を高めることができる。一方、異常光屈折率方向の光が入射するとき、回折効率を大きくするために、483nmの光が入射するとき、小領域210aを出射する光の位相を基準とし、小領域210bの位相差φ(1)=π、小領域210cの位相差φ(2)=2πを満たすために、段差d=2.09μm、段差d=4.18μm、となるように加工する。 Thereafter, the translucent substrate (not shown) is separated, and the polymer liquid crystal layer is processed into a diffraction grating shape extending in one direction by a photolithography process and a dry etching process to form the birefringent material layer 230. At this time, the pitch Px of the unit regions 210 based on FIG. 6B is set to 5 μm, and the division widths X 1 , X 2 and X 3 of the small regions 210a, 210b and 210c constituting the unit region 210 are respectively set. Divide equally into 1.67 μm. Further, in the isotropic material layer 240, A = 1.523, B = 0.0079, and C = −0.000178 in the formula (9), and the characteristics of the polymer liquid crystal layer in the normal light refractive index direction are almost the same. A transparent adhesive showing the same characteristics is used. By doing in this way, the transmittance | permeability of the light which injects in a normal light refractive index direction can be raised. On the other hand, in order to increase the diffraction efficiency when light in the extraordinary refractive index direction is incident, when the light of 483 nm is incident, the phase difference φ of the small region 210b is set with reference to the phase of the light emitted from the small region 210a. In order to satisfy (1) = π and the phase difference φ (2) = 2π of the small region 210c, processing is performed so that the level difference d 1 = 2.09 μm and the level difference d 2 = 4.18 μm.

次いで、483nmの光が入射するときの高分子液晶の常光屈折率nにほぼ等しい上記の等方性材料層240に相当する屈折率n=1.553の接着剤により、複屈折性材料層230の凹凸(段差)を充填し、透光性基板220bとなる石英ガラス基板と接着し平坦化する。なお、石英ガラス基板の界面(空気接触側)には図示しない反射防止膜を形成する。なお、このような複屈折性材料層230、等方性材料層240とすることで、波長483nmの光のY方向の直線偏光、つまり異常光に対して、位相差φ(1)=π、位相差φ(2)=2π、位相差φ(3)=3πとなるので回折し、一方、X方向の直線偏光、つまり常光に対しては位相差が生じないので直進透過する、偏光依存性を有する。 Then, approximately equal the adhesive with a refractive index n B = 1.553 which corresponds to an isotropic material layer 240 of the birefringent material in the ordinary refractive index n o of the liquid crystal polymer when the light of 483nm is incident The unevenness (step) of the layer 230 is filled and bonded to a quartz glass substrate to be a light-transmitting substrate 220b and flattened. An antireflection film (not shown) is formed on the interface (air contact side) of the quartz glass substrate. In addition, by using the birefringent material layer 230 and the isotropic material layer 240 as described above, the phase difference φ (1) = π with respect to linearly polarized light in the Y direction of light having a wavelength of 483 nm, that is, extraordinary light. Diffraction because the phase difference φ (2) = 2π and the phase difference φ (3) = 3π. On the other hand, linearly polarized light in the X direction, that is, ordinary light, no phase difference occurs, so that the light travels straight. Have

作製した回折素子200に入射する光のうち、Y方向の直線偏光の波長λの値を380〜820[nm]の範囲で変化させる。図19(a)は、この条件において波長λに対する回折効率ηの特性を計算したものであって、とくに回折次数q=−1,0,+1について示したものである。このとき、BD用の波長帯域である405±10nmの範囲における+1次回折効率η+1は60%以上を示し、また、DVD用の波長帯域である660±20nmの範囲における−1次回折効率η−1および、CD用の波長帯域である785±20nmの範囲における−1次回折効率η−1はいずれも60%以上を示す。 Of the light incident on the produced diffraction element 200, the value of the wavelength λ of linearly polarized light in the Y direction is changed in the range of 380 to 820 [nm]. FIG. 19A shows the characteristics of the diffraction efficiency η q with respect to the wavelength λ under this condition, and particularly shows the diffraction orders q = −1, 0, +1. At this time, the + 1st order diffraction efficiency η + 1 in the range of 405 ± 10 nm, which is the wavelength band for BD, is 60% or more, and the −1st order diffraction efficiency η in the range of 660 ± 20 nm, which is the wavelength band for DVD. −1 and −1st order diffraction efficiency η −1 in the range of 785 ± 20 nm, which is the wavelength band for CD, show 60% or more.

一方、図19(b)は、X方向の直線偏光の波長λの値を380〜820[nm]の範囲で変化させるとき、波長λに対する回折効率ηの特性を計算したものである。これより、BD用、DVD用、CD用のいずれの波長帯域においても直進透過率に相当する0次回折光ηは94%以上となり、入射する光の偏光方向によって透過または回折の特性を有する回折素子を得ることができる。 On the other hand, FIG. 19B shows the characteristics of the diffraction efficiency η q with respect to the wavelength λ when the value of the wavelength λ of the linearly polarized light in the X direction is changed in the range of 380 to 820 [nm]. As a result, the 0th-order diffracted light η 0 corresponding to the straight-line transmittance is 94% or more in any wavelength band for BD, DVD, and CD, and the diffraction has transmission or diffraction characteristics depending on the polarization direction of incident light. An element can be obtained.

(実施例3)
実施例3として、第4の実施形態である回折素子400を作製する。図12において透光性基板420aとして石英ガラス基板を用い、Y方向に配向処理をした図示しない配向膜を形成する。そして、配向膜を形成したもう1枚の図示しない透光性基板を配向膜が対向しさらに配向方向が揃うように平行に配置してできる空隙の厚さが6.4μmとなるようにして周辺をシールする。その後、図示しない注入口から液晶モノマーを注入し、紫外線を照射して液晶を重合硬化させる。これによって、厚さ6.4μmで、波長489nmの光に対するX方向の屈折率である常光屈折率n=1.554、Y方向の屈折率である異常光屈折率n=1.667の高分子液晶層が形成される。なお、高分子液晶層の波長分散特性は、実施例2と同じ特性を有するものを用いる。
(Example 3)
As Example 3, the diffraction element 400 according to the fourth embodiment is manufactured. In FIG. 12, a quartz glass substrate is used as the light-transmitting substrate 420a, and an alignment film (not shown) that is aligned in the Y direction is formed. Then, another transparent substrate (not shown) on which the alignment film is formed is arranged in parallel so that the alignment film faces and the alignment direction is aligned, so that the thickness of the gap is 6.4 μm. To seal. Thereafter, a liquid crystal monomer is injected from an injection port (not shown), and the liquid crystal is polymerized and cured by irradiation with ultraviolet rays. As a result, the ordinary light refractive index n o = 1.554, which is the refractive index in the X direction, and the extraordinary light refractive index n e = 1.667, which is the refractive index in the Y direction, are 6.4 μm in thickness and have a wavelength of 489 nm. A polymer liquid crystal layer is formed. The wavelength dispersion characteristic of the polymer liquid crystal layer is the same as that of Example 2.

その後、図示しない透光性基板を離散し、フォトリソグラフィ工程およびドライエッチング工程によって高分子液晶層を1つの方向に延伸する回折格子形状に加工して、複屈折性材料層430を形成する。このとき、図12(b)に基づく単位領域410のピッチPx=10μmとし、単位領域410を構成する小領域410a、小領域410b、小領域410cおよび小領域410dの分割幅X、X、XおよびXのうち、X=X=1.5μm、X=X=3.5μmとする。また、各小領域の段差は、等方性材料層440の屈折率nが常光屈折率nに等しい場合を考え、489nmの光が入射するとき、小領域410aを出射する光の位相を基準とし、小領域410bの位相差φ(1)=π、小領域410cの位相差φ(2)=2π、そして小領域410cの位相差φ(2)=3πを満たすために、段差d=2.14μm、段差d=4.27μm、そして段差d=6.40μmとなるように加工する。 Thereafter, the translucent substrate (not shown) is separated, and the polymer liquid crystal layer is processed into a diffraction grating shape extending in one direction by a photolithography process and a dry etching process to form the birefringent material layer 430. At this time, the pitch Px of the unit regions 410 based on FIG. 12B is set to 10 μm, and the divided widths X 1 , X 2 , and the small regions 410a, 410b, 410c, and 410d constituting the unit region 410 are divided. Of X 3 and X 4 , X 1 = X 4 = 1.5 μm and X 2 = X 3 = 3.5 μm. Further, regarding the step of each small region, considering the case where the refractive index n B of the isotropic material layer 440 is equal to the ordinary light refractive index n o , the phase of the light emitted from the small region 410a when 489 nm light enters. In order to satisfy the phase difference φ (1) = π of the small region 410b, the phase difference φ (2) = 2π of the small region 410c, and the phase difference φ (2) = 3π of the small region 410c as a reference, the step d 1 = 2.14 μm, step d 2 = 4.27 μm, and step d 3 = 6.40 μm.

次いで、489nmの光が入射するときの高分子液晶の常光屈折率nにほぼ等しい屈折率n=1.553の接着剤により、複屈折性材料層430の凹凸(段差)を充填し、透光性基板420bとして石英ガラス基板と接着し平坦化する。また、接着剤の波長分散特性は、実施例2と同じ特性を有するものを用いる。なお、石英ガラス基板の界面(空気接触側)には図示しない反射防止膜を形成する。このような複屈折性材料層430、等方性材料層440とすることで、波長489nmの光のY方向の直線偏光、つまり異常光に対して、位相差φ(1)=π、位相差φ(2)=2π、位相差φ(3)=3πとなるので回折し、一方、X方向の直線偏光、つまり常光に対しては位相差が生じないので直進透過する、偏光依存性を有する。 Then, the substantially same refractive index n adhesive B = 1.553 to the ordinary refractive index n o of the liquid crystal polymer when the light of 489nm is incident, filling the irregularities of the birefringent material layer 430 (step), The light-transmitting substrate 420b is bonded and flattened with a quartz glass substrate. The wavelength dispersion characteristic of the adhesive is the same as that of Example 2. An antireflection film (not shown) is formed on the interface (air contact side) of the quartz glass substrate. By using such a birefringent material layer 430 and an isotropic material layer 440, a phase difference φ (1) = π, a phase difference with respect to linearly polarized light in the Y direction of light having a wavelength of 489 nm, that is, extraordinary light. Since it has φ (2) = 2π and phase difference φ (3) = 3π, it is diffracted. On the other hand, linearly polarized light in the X direction, that is, normal light, no phase difference is generated, so that it travels straight and has polarization dependency. .

作製した回折素子400に入射する光のうち、Y方向の直線偏光の波長λの値を380〜820[nm]の範囲で変化させる。図20(a)は、この条件において波長λに対する回折効率ηの特性を計算したものであって、とくに回折次数q=−1,0,+1について示したものである。このとき、BD用の波長帯域である405±10nmの範囲における+1次回折効率η+1は60%以上を示し、また、DVD用の波長帯域である660±20nmの範囲における−1次回折効率η−1および、CD用の波長帯域である785±20nmの範囲における−1次回折効率η−1はいずれも60%以上を示す。 Of the light incident on the produced diffraction element 400, the value of the wavelength λ of linearly polarized light in the Y direction is changed in the range of 380 to 820 [nm]. FIG. 20A shows the calculation of the characteristics of the diffraction efficiency η q with respect to the wavelength λ under this condition, and particularly shows the diffraction orders q = −1, 0, +1. At this time, the + 1st order diffraction efficiency η + 1 in the range of 405 ± 10 nm, which is the wavelength band for BD, is 60% or more, and the −1st order diffraction efficiency η in the range of 660 ± 20 nm, which is the wavelength band for DVD. −1 and −1st order diffraction efficiency η −1 in the range of 785 ± 20 nm, which is the wavelength band for CD, show 60% or more.

一方、図20(b)は、X方向の直線偏光の波長λの値を380〜820[nm]の範囲で変化させるとき、波長λに対する回折効率ηの特性を計算したものである。これより、BD用、DVD用、CD用のいずれの波長帯域においても直進透過率に相当する0次回折光ηは94%以上となり、入射する光の偏光方向によって透過または回折の特性を有する回折素子を得ることができる。 On the other hand, FIG. 20B shows the calculation of the characteristics of the diffraction efficiency η q with respect to the wavelength λ when the value of the wavelength λ of the linearly polarized light in the X direction is changed in the range of 380 to 820 [nm]. As a result, the 0th-order diffracted light η 0 corresponding to the straight-line transmittance is 94% or more in any wavelength band for BD, DVD, and CD, and the diffraction has transmission or diffraction characteristics depending on the polarization direction of incident light. An element can be obtained.

(実施例4)
実施例4は、第8の実施形態に係る投射型液晶表示装置800の回折素子830の位置に第2の実施形態に係る図6に示す回折素子200を配置する。回折素子200の作製方法は、実施例2と同じ方法であって、また、使用する材料および形状も同じものである。
Example 4
In Example 4, the diffraction element 200 shown in FIG. 6 according to the second embodiment is arranged at the position of the diffraction element 830 of the projection type liquid crystal display device 800 according to the eighth embodiment. The manufacturing method of the diffractive element 200 is the same as that of the second embodiment, and the materials and shapes used are also the same.

このようにして作製した回折素子200を図18の投射型液晶表示装置800の回折素子830の位置に、複屈折性材料層230の常光屈折率nとなる方向が、X方向となるように配置する。ここで、青色光を出射する半導体レーザ810BからのY方向の直線偏光の光が液晶ライトバルブ820Bを透過して回折素子830に入射すると実施例2における光学特性と同様に、+1次回折光の回折効率η+1が60%以上発生し、投射レンズ840の光軸に沿った方向へ進行する。同様に、赤色光を出射する半導体レーザ810RからのY方向の直線偏光の光が液晶ライトバルブ820Rを透過して回折素子830に入射すると−1次回折光の回折効率η−1が60%以上発生し、投射レンズ840の光軸に沿った方向へ進行する。 As such the diffractive element 200 manufactured by the the position of the diffraction element 830 of the projection type liquid crystal display device 800 of FIG. 18, the direction in which the ordinary refractive index n o of the birefringent material layer 230, the X-direction Deploy. Here, when the linearly polarized light in the Y direction from the semiconductor laser 810B emitting blue light passes through the liquid crystal light valve 820B and enters the diffraction element 830, the diffraction of the + 1st order diffracted light is performed in the same manner as the optical characteristics in the second embodiment. Efficiency η + 1 is generated by 60% or more, and proceeds in the direction along the optical axis of the projection lens 840. Similarly, when linearly polarized light in the Y direction from the semiconductor laser 810R that emits red light passes through the liquid crystal light valve 820R and enters the diffraction element 830, diffraction efficiency η −1 of −1st order diffracted light is generated by 60% or more. Then, it proceeds in the direction along the optical axis of the projection lens 840.

一方、緑色光を出射する半導体レーザ810GからのX方向の直線偏光の光が液晶ライトバルブ820Gを透過して回折素子830に入射すると95%以上の直進透過率(0次回折効率)で投射レンズ840の光軸に沿った方向へ直進透過する。この結果、液晶ライトバルブ820B、820Gおよび820Rで生成された青色、緑色および赤色の透過光は本発明の回折素子200により光軸が揃うように合成され、投射レンズ840により液晶ライトバルブの合成画像がスクリーン850に結像される。   On the other hand, when linearly polarized light in the X direction from the semiconductor laser 810G that emits green light passes through the liquid crystal light valve 820G and enters the diffraction element 830, the projection lens has a linear transmittance (0th-order diffraction efficiency) of 95% or more. The light passes straight in the direction along the optical axis 840. As a result, the transmitted light of blue, green, and red generated by the liquid crystal light valves 820B, 820G, and 820R is combined so that the optical axes are aligned by the diffraction element 200 of the present invention, and a composite image of the liquid crystal light valve is generated by the projection lens 840. Is imaged on the screen 850.

このように本願発明の回折素子を用いることで、従来の投射型液晶表示装置に用いられていた高価で、かつ立体形状のダイクロイックプリズムを用いることなく実現できるため、安価でかつ小型化が実現できる。とくにダイクロイックプリズムの場合、各波長の半導体レーザをダイクロイックプリズムの各入射面に垂直に配置しなければならない制限があるため、さらに小型化の面で困難を生じる。その点において、本実施例の回折素子は平板状で、かつ入射面に対し垂直もしくは斜めに入射するため小型化の面で大きな利点を有する。   Thus, by using the diffraction element of the present invention, it can be realized without using an expensive and three-dimensional dichroic prism used in a conventional projection type liquid crystal display device. . In particular, in the case of a dichroic prism, since there is a restriction that a semiconductor laser having each wavelength must be arranged perpendicularly to each incident surface of the dichroic prism, there is a difficulty in further downsizing. In that respect, the diffractive element of this embodiment is flat and has a great advantage in terms of miniaturization because it is incident perpendicularly or obliquely to the incident surface.

以上説明したように、本発明の回折格子形状の回折素子を用いることにより、複数の異なる波長の光が入射するとき、回折する光の次数の符号が波長によって異なるようにして大きく偏向させることができる。とくに、3つの小領域に分割あるいは4つの小領域に分割された単位領域が周期的に配列した回折格子であって、格子ピッチが従来の回折格子より細かくならない比較的簡単な構成により上記機能を実現できる。さらに、本発明の回折素子を用いることにより、複数の波長帯域の光に対して、第1の偏光方向の入射光は、いずれの波長の光も高い直進透過率が得られ、第1の偏光方向と直交する第2の偏光方向の入射光は、波長を選択して透過する方向を偏向させることができる。このような回折素子を光ヘッド装置または投射型液晶表示装置に適用することで装置の小型化が実現できる。   As described above, by using the diffraction grating-shaped diffraction element of the present invention, when a plurality of light beams having different wavelengths are incident, the sign of the order of the light to be diffracted can be largely deflected depending on the wavelength. it can. In particular, it is a diffraction grating in which unit areas divided into three small areas or unit areas divided into four small areas are periodically arranged, and the above function is achieved with a relatively simple configuration in which the grating pitch is not finer than that of a conventional diffraction grating. realizable. Furthermore, by using the diffractive element of the present invention, the incident light in the first polarization direction has a high linear transmittance for light of any wavelength with respect to light of a plurality of wavelength bands. The incident light in the second polarization direction orthogonal to the direction can be deflected in the direction of transmission by selecting the wavelength. By applying such a diffractive element to an optical head device or a projection type liquid crystal display device, the size of the device can be reduced.

第1の実施形態に係る回折素子の構成例を示す平面模式図FIG. 2 is a schematic plan view showing a configuration example of the diffraction element according to the first embodiment. 第1の実施形態に係る回折素子の単位領域を示す平面模式図および断面模式図Plane schematic diagram and cross-sectional schematic diagram showing a unit region of the diffraction element according to the first embodiment 第1の実施形態に係る回折素子へ入射する光の波長λに対する回折効率ηの特性を示す一例のグラフExample graph showing characteristics of diffraction efficiency η q with respect to wavelength λ of light incident on the diffraction element according to the first embodiment 第1の実施形態に係る回折素子の他の構成を示す断面模式図Sectional schematic diagram which shows the other structure of the diffraction element which concerns on 1st Embodiment. 第1の実施形態に係る回折素子へ入射する光の波長λに対する回折効率ηの特性を示す一例のグラフExample graph showing characteristics of diffraction efficiency η q with respect to wavelength λ of light incident on the diffraction element according to the first embodiment 第2の実施形態に係る回折素子の単位領域を示す平面模式図および断面模式図Plane schematic diagram and cross-sectional schematic diagram showing a unit region of the diffraction element according to the second embodiment 第3の実施形態に係る回折素子の構成例を示す平面模式図Plane schematic diagram showing a configuration example of a diffraction element according to the third embodiment 第3の実施形態に係る回折素子の単位領域を示す平面模式図および断面模式図Plane schematic diagram and cross-sectional schematic diagram showing a unit region of the diffraction element according to the third embodiment 第3の実施形態に係る回折素子へ入射する光の波長λに対する回折効率ηの特性を示す一例のグラフExample graph showing characteristics of diffraction efficiency η q with respect to wavelength λ of light incident on the diffraction element according to the third embodiment 第3の実施形態に係る回折素子の他の構成を示す断面模式図Sectional schematic diagram which shows the other structure of the diffraction element which concerns on 3rd Embodiment. 第3の実施形態に係る回折素子へ入射する光の波長λに対する回折効率ηの特性を示す一例のグラフExample graph showing characteristics of diffraction efficiency η q with respect to wavelength λ of light incident on the diffraction element according to the third embodiment 第4の実施形態に係る回折素子の単位領域を示す平面模式図および断面模式図Plane schematic diagram and cross-sectional schematic diagram showing a unit region of a diffraction element according to the fourth embodiment 第5の実施形態に係る回折レンズの単位領域を示す平面模式図および断面模式図Plane schematic diagram and cross-sectional schematic diagram showing a unit region of a diffractive lens according to a fifth embodiment 第5の実施形態に係る回折レンズを用いて規格の異なる光ディスクに集光させるための光学系の模式図Schematic diagram of an optical system for focusing on an optical disc of different standards using a diffractive lens according to the fifth embodiment 第5の実施形態に係る回折レンズの他の構成を示す断面模式図Sectional model which shows the other structure of the diffraction lens which concerns on 5th Embodiment. 第1〜第4の実施形態に係る回折素子を用いる光ヘッド装置の構成例Configuration example of optical head device using diffraction elements according to first to fourth embodiments 第2、第4の実施形態に係る回折素子を用いる光ヘッド装置の構成例Configuration example of optical head device using diffractive element according to second and fourth embodiments 第2、第4の実施形態に係る回折素子を用いる投射型液晶表示装置の構成例Configuration example of projection type liquid crystal display device using diffraction element according to second and fourth embodiments 実施例2において、回折素子へ入射する光の波長λに対する回折効率ηの特性を示す一例のグラフIn Example 2, the graph of an example which shows the characteristic of diffraction efficiency (eta) q with respect to wavelength (lambda) of the light which injects into a diffraction element 実施例3において、回折素子へ入射する光の波長λに対する回折効率ηの特性を示す一例のグラフIn Example 3, the graph of an example which shows the characteristic of diffraction efficiency (eta) q with respect to wavelength (lambda) of the light which injects into a diffraction element

符号の説明Explanation of symbols

100、200、300、400、620、680、720、830 回折素子
110、130、140、210、310、330、340、410、510、520、530 単位領域
110a、110b、110c、130a、130b、130c、140a、140b、140c、210a、210b、210c、310a、310b、310c、310d、330a、330b、330c、330d、340a、340b、340c、340d、410a、410b、410c、410d、510a、510b、510c、520a、520b、520c、530a、530b、530c 小領域
111、131、141、311、331、341 透光性基板面
120、220、220a、220b、320、420、420a、420b 透光性基板
230、430 複屈折性材料層
240、440 等方性材料層
500、501、502 回折レンズ
511、521、531 輪帯
540B、550B BD用の405nm波長帯の光
540D、550D DVD用の660nm波長帯の光
540C、550C CD用の785nm波長帯の光
560、660 対物レンズ
570、670 光ディスク
570B BDの情報記録面
570D DVDの情報記録面
570C CDの情報記録面
600、700 光ヘッド装置
610B BD用の半導体レーザ
610D DVD/CD用の2波長を出射する半導体レーザ
630 偏光ビームスプリッタ
640 コリメータレンズ
650 1/4波長板
690B BD用の光検出器
690D DVD/CD用の光検出器
710 BD/DVD/CD用の3波長を出射する半導体レーザ
800 投射型液晶表示装置
810B 青色光用半導体レーザ
810G 緑色光用半導体レーザ
810R 赤色光用半導体レーザ
820B、820G、820C 液晶ライトバルブ
840 投射レンズ
850 スクリーン
100, 200, 300, 400, 620, 680, 720, 830 Diffraction element 110, 130, 140, 210, 310, 330, 340, 410, 510, 520, 530 Unit regions 110a, 110b, 110c, 130a, 130b, 130c, 140a, 140b, 140c, 210a, 210b, 210c, 310a, 310b, 310c, 310d, 330a, 330b, 330c, 330d, 340a, 340b, 340c, 340d, 410a, 410b, 410c, 410d, 510a, 510b, 510c, 520a, 520b, 520c, 530a, 530b, 530c Small region 111, 131, 141, 311, 331, 341 Translucent substrate surface 120, 220, 220a, 220b, 320, 420, 420a, 420 b Translucent substrate 230, 430 Birefringent material layer 240, 440 Isotropic material layer 500, 501, 502 Diffractive lens 511, 521, 531 Ring 540B, 550B Light 540D, 550D for BD 540D, 550D DVD 560 nm wavelength light 540C, 550C 785 nm wavelength light 560, 660 Objective lens 570, 670 Optical disc 570B BD information recording surface 570D DVD information recording surface 570C CD information recording surface 600, 700 Optical head Device 610B Semiconductor laser for BD 610D Semiconductor laser for emitting two wavelengths for DVD / CD 630 Polarizing beam splitter 640 Collimator lens 650 1/4 wavelength plate 690B Photo detector for BD 690D Photo detector for DVD / CD 710 Output 3 wavelengths for BD / DVD / CD Semiconductor laser 800 to be projected Projection type liquid crystal display device 810B Semiconductor laser for blue light 810G Semiconductor laser for green light 810R Semiconductor laser for red light 820B, 820G, 820C Liquid crystal light valve 840 Projection lens 850 Screen

Claims (14)

波長が異なるm個の光が入射し(m≧2の整数)、前記光の位相を変調して透過する回折素子であって、
前記回折素子は、透光性基板上に回折格子が形成されるかまたは前記透光性基板の一つの面が回折格子となる形状を有し、
前記回折格子は、格子ピッチPxの幅を有し、前記格子ピッチPxの幅の方向と直交する方向に延伸してなる単位領域が前記格子ピッチPxの幅の方向に繰り返して配置され、
前記単位領域は、回折格子が形成されない前記透光性基板の面と平行で距離が同一となる面からなる区画を1つの小領域とするとき、前記透光性基板面からの距離が互いに異なるN個の小領域を含み、前記小領域は、前記格子ピッチPxの幅の方向と直交する方向に延伸して構成され(N≧3の整数)、
m個の前記光のうち、最も短い波長を波長λ、最も長い波長を波長λとし、λ≦λ≦λである波長λの光が同相で入射するとき、最も位相が進む前記小領域であるゼロの小領域を透過する光の位相と、前記ゼロの小領域と異なる前記小領域を透過する前記波長λの光の位相との差で定義される位相差がそれぞれπの整数倍であり、
前記位相差のうちの少なくとも1つは、πの奇数倍であって、
入射するm個の前記光は、それぞれ最も高い回折効率が得られる次数の回折光を1つ有し、さらに、+p次の回折効率が最も高い光と、−q次の回折効率が最も高い光(p,q≧1の整数)を、それぞれ少なくとも1つずつ含む回折素子。
A diffractive element in which m pieces of light having different wavelengths are incident (an integer of m ≧ 2), and the phase of the light is modulated and transmitted.
The diffraction element has a shape in which a diffraction grating is formed on a translucent substrate or one surface of the translucent substrate becomes a diffraction grating,
The diffraction grating has a width of the grating pitch Px, and unit regions formed by extending in a direction orthogonal to the width direction of the grating pitch Px are repeatedly arranged in the width direction of the grating pitch Px,
The unit regions have different distances from the surface of the light-transmitting substrate when a single region is formed of a section made of a surface that is parallel to the surface of the light-transmitting substrate on which the diffraction grating is not formed and has the same distance. N small regions are included, and the small regions are configured to extend in a direction orthogonal to the width direction of the lattice pitch Px (an integer of N ≧ 3).
of the m of the light, the wavelength lambda 1 of the shortest wavelength, the longest wavelength is the wavelength lambda m, when the wavelength lambda a light is λ 1 ≦ λ a ≦ λ m is incident in phase, most phase a phase of light transmitted through the small areas of zero is a small region advances, the phase difference is defined by the difference between the phase of the light having the wavelength lambda a configured to transmit the small region which is different from the small region of the zero respectively an integer multiple of π,
At least one of the phase differences is an odd multiple of π,
The incident m light beams each have one diffracted light beam having the highest diffraction efficiency, and the light having the highest + p-order diffraction efficiency and the light beam having the highest -q-order diffraction efficiency. A diffraction element including at least one each of (p, q ≧ 1).
波長が異なるm個の光が入射し(m≧2の整数)、前記光の位相を変調して透過する回折素子であって、
前記回折素子は、透光性基板上に回折格子が形成されるかまたは前記透光性基板の一つの面が回折格子となる形状を有し、
前記透光性基板上の点Aを基点として前記透光性基板面と平行する直線上に格子ピッチP、P、…、P(P>P>…>P)の順に円形の領域または外縁が円である輪帯状の領域を含むM個の単位領域を有し、
前記単位領域は、断面が前記透光性基板面と平行し、かつ高さが異なる面を有するとともに、前記点Aを中心とした円の円周方向に沿って延伸してなるN個の小領域を有し(N≧3の整数)、
m個の前記光のうち、最も短い波長を波長λ、最も長い波長を波長λとし、λ≦λ≦λである波長λの光が同相で入射するとき、最も位相が進む前記小領域であるゼロの小領域を透過する光の位相と、前記ゼロの小領域と異なる前記小領域を透過する前記波長λの光の位相との差で定義される位相差がそれぞれπの整数倍であり、
前記位相差のうちの少なくとも1つは、πの奇数倍であって、
入射するm個の前記光は、それぞれ最も高い回折効率が得られる次数の回折光を1つ有し、さらに、+p次の回折効率が最も高い光と、−q次の回折効率が最も高い光(p,q≧1の整数)を、それぞれ少なくとも1つずつ含む回折素子。
A diffractive element in which m pieces of light having different wavelengths are incident (an integer of m ≧ 2), and the phase of the light is modulated and transmitted.
The diffraction element has a shape in which a diffraction grating is formed on a translucent substrate or one surface of the translucent substrate becomes a diffraction grating,
A grid pitch P 1 , P 2 ,..., P M (P 1 > P 2 >...> P M ) in this order on a straight line parallel to the translucent substrate surface with the point A on the translucent substrate as a base point. M unit areas including a circular area or a ring-shaped area whose outer edge is a circle,
The unit region has N small cross-sections having cross-sections parallel to the translucent substrate surface and different heights, and extending along a circumferential direction of a circle centered on the point A. Has a region (an integer of N ≧ 3),
of the m of the light, the wavelength lambda 1 of the shortest wavelength, the longest wavelength is the wavelength lambda m, when the wavelength lambda a light is λ 1 ≦ λ a ≦ λ m is incident in phase, most phase a phase of light transmitted through the small areas of zero is a small region advances, the phase difference is defined by the difference between the phase of the light having the wavelength lambda a configured to transmit the small region which is different from the small region of the zero respectively an integer multiple of π,
At least one of the phase differences is an odd multiple of π,
The incident m light beams each have one diffracted light beam having the highest diffraction efficiency, and the light having the highest + p-order diffraction efficiency and the light beam having the highest -q-order diffraction efficiency. A diffraction element including at least one each of (p, q ≧ 1).
前記位相差のうち少なくとも1つは、πである請求項1または2に記載の回折素子。 The diffraction element according to claim 1 , wherein at least one of the phase differences is π . 前記+p次の回折効率、前記−q次の回折効率のp,qの値がいずれも1である請求項1〜3いずれか1項に記載の回折素子。 The diffraction element according to any one of claims 1 to 3 , wherein the values of p and q of the + p-order diffraction efficiency and the -q-order diffraction efficiency are 1, respectively. 前記単位領域は3個の前記小領域からなって、前記単位領域の端部よりそれぞれ第1の小領域、第2の小領域、第3の小領域とし、
前記第1の小領域の幅をX、前記第2の小領域の幅をX、前記第3の小領域の幅をXとするとき、
=X=X=Px/3、
である請求項1〜いずれか1項に記載の回折素子。
The unit area is composed of three small areas, and the first small area, the second small area, and the third small area from the end of the unit area,
When the width of the first small region is X 1 , the width of the second small region is X 2 , and the width of the third small region is X 3 ,
X 1 = X 2 = X 3 = Px / 3,
The diffraction element according to any one of claims 1 to 4 .
前記第1の小領域が前記ゼロの小領域であって、
前記第1の小領域の位相差をφ(0)、前記第2の小領域の位相差をφ(1)、前記第3の小領域の位相差をφ(2)とするとき、
φ(0)=0、
φ(1)=π、
φ(2)=2π、
となる前記単位領域の形状を有する請求項に記載の回折素子。
The first subregion is the zero subregion;
When the phase difference of the first small region is φ (0), the phase difference of the second small region is φ (1), and the phase difference of the third small region is φ (2),
φ (0) = 0,
φ (1) = π,
φ (2) = 2π,
The diffraction element according to claim 5 , having a shape of the unit region.
前記単位領域は4個の前記小領域からなって、前記単位領域の端部よりそれぞれ第1の小領域、第2の小領域、第3の小領域、第4の小領域とし、
前記第1の小領域の幅をX、前記第2の小領域の幅をX、前記第3の小領域の幅をX、前記第4の小領域の幅をXとするとき、
:X:X:X=3:7:7:3、
である請求項1〜いずれか1項に記載の回折素子。
The unit area is composed of four small areas, and each of the unit areas includes a first small area, a second small area, a third small area, and a fourth small area from an end of the unit area,
When the width of the first small region is X 1 , the width of the second small region is X 2 , the width of the third small region is X 3 , and the width of the fourth small region is X 4 ,
X 1 : X 2 : X 3 : X 4 = 3: 7: 7: 3,
The diffraction element according to any one of claims 1 to 4 .
前記第1の小領域が前記ゼロの小領域であって、
前記第1の小領域の位相差をφ(0)、前記第2の小領域の位相差をφ(1)、前記第3の小領域の位相差をφ(2)、前記第の小領域の位相差をφ(3)とするとき、
φ(0)=0、
φ(1)=π、
φ(2)=2π、
φ(3)=3π、
となる前記単位領域の形状を有する請求項に記載の回折素子。
The first subregion is the zero subregion;
The phase difference of the first small area is φ (0), the phase difference of the second small area is φ (1), the phase difference of the third small area is φ (2), and the fourth small area is When the phase difference of the region is φ (3),
φ (0) = 0,
φ (1) = π,
φ (2) = 2π,
φ (3) = 3π,
The diffraction element according to claim 7 , having a shape of the unit region.
前記回折格子は、複屈折性を有する複屈折性材料と等方性透明材料とが、前記回折格子の凸部と凹部とを構成してなる偏光回折格子であって、
前記複屈折性材料の常光屈折率nまたは異常光屈折率n(n≠n)のいずれか一方の屈折率が等方性透明材料の屈折率nと等しい請求項1〜いずれか1項に記載の回折素子。
The diffraction grating is a polarization diffraction grating in which a birefringent material having birefringence and an isotropic transparent material constitute a convex part and a concave part of the diffraction grating,
The birefringent claim ordinary equal to the refractive index n o or the extraordinary refractive index n e (n o ≠ n e ) any refractive index n s of one refractive index is isotropic transparent material materials 1-8 The diffraction element according to any one of the above.
光源と、
前記光源からの光を偏向分離するビームスプリッタと、
前記ビームスプリッタを出射した光を光ディスク上に集光させる対物レンズと、
前記光ディスクで反射した光を検出する光検出器と、を備える光ヘッド装置であって、
前記光源と前記ビームスプリッタとの間の光路中および、前記ビームスプリッタと前記光検出器との間の光路中に、請求項1または請求項いずれか1項に記載の回折素子が配置される光ヘッド装置。
A light source;
A beam splitter for deflecting and separating light from the light source;
An objective lens for condensing the light emitted from the beam splitter onto the optical disc;
A light detector for detecting light reflected by the optical disc ,
In the optical path, the diffraction element according to any one of claims 1 or claim 4-9 disposed between the optical path and the light detector, the beam splitter between the light source and the beam splitter Optical head device.
光源と、
前記光源を出射した光を光ディスク上に集光させる対物レンズと、
前記光源と前記光ディスクとの間に配置された、前記光に対して1/4波長の位相差を生じる1/4波長板と、
前記光ディスクで反射した光を検出する光検出器と、を備える光ヘッド装置であって、
前記光源と前記対物レンズとの光路と、前記対物レンズと前記光検出器との光路と共通する光路中に請求項に記載の回折素子が配置された光ヘッド装置。
A light source;
An objective lens for condensing the light emitted from the light source onto the optical disc;
A quarter-wave plate disposed between the light source and the optical disc, which produces a quarter-wave phase difference with respect to the light;
A light detector for detecting light reflected by the optical disc,
An optical head device in which the diffraction element according to claim 9 is disposed in an optical path common to an optical path between the light source and the objective lens and an optical path between the objective lens and the photodetector.
光源と、
前記光源からの光を偏向分離するビームスプリッタと、
前記ビームスプリッタを出射した光を光ディスク上に集光させる対物レンズと、
前記光ディスクで反射した光を検出する光検出器と、を備える光ヘッド装置であって、
前記ビームスプリッタと前記対物レンズとの間の光路中に、請求項2に記載の回折素子が配置される光ヘッド装置。
A light source;
A beam splitter for deflecting and separating light from the light source;
An objective lens for condensing the light emitted from the beam splitter onto the optical disc;
A light detector for detecting light reflected by the optical disc,
An optical head device in which the diffraction element according to claim 2 is arranged in an optical path between the beam splitter and the objective lens.
前記光源は、3つの異なる波長λ、波長λ、波長λの光を発射し、
前記波長λは395〜415nmの範囲の405nm波長帯、
前記波長λは640〜680nmの範囲の660nm波長帯、
前記波長λは765〜805nmの範囲の785nm波長帯、
である請求項1012いずれか1項に記載の光ヘッド装置。
The light source emits light of three different wavelengths λ 1 , wavelength λ 2 , wavelength λ 3 ,
The wavelength λ 1 is a 405 nm wavelength band in the range of 395 to 415 nm,
The wavelength λ 2 is a 660 nm wavelength band in the range of 640 to 680 nm,
The wavelength λ 3 is a 785 nm wavelength band in the range of 765 to 805 nm,
The optical head device according to any one of claims 10 to 12 .
光源と、
表示する画像に応じて前記光源から出射された可視光を変調する液晶ライトバルブと、
前記液晶ライトバルブにより生成された画像を拡大投影する投影レンズと、を備えた投射型表示装置において、
前記液晶ライトバルブと前記投影レンズとの光路中に請求項に記載の回折素子が配置される投射型表示装置。
A light source;
A liquid crystal light valve that modulates visible light emitted from the light source according to an image to be displayed;
In a projection display device comprising a projection lens that magnifies and projects an image generated by the liquid crystal light valve,
A projection display device in which the diffraction element according to claim 9 is arranged in an optical path between the liquid crystal light valve and the projection lens.
JP2008299504A 2008-11-25 2008-11-25 Diffraction element, optical head device, and projection display device Expired - Fee Related JP5417815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008299504A JP5417815B2 (en) 2008-11-25 2008-11-25 Diffraction element, optical head device, and projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008299504A JP5417815B2 (en) 2008-11-25 2008-11-25 Diffraction element, optical head device, and projection display device

Publications (2)

Publication Number Publication Date
JP2010127977A JP2010127977A (en) 2010-06-10
JP5417815B2 true JP5417815B2 (en) 2014-02-19

Family

ID=42328447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008299504A Expired - Fee Related JP5417815B2 (en) 2008-11-25 2008-11-25 Diffraction element, optical head device, and projection display device

Country Status (1)

Country Link
JP (1) JP5417815B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138044A (en) * 2014-01-20 2015-07-30 シチズンホールディングス株式会社 Reflective liquid crystal optical element
JP2015212765A (en) * 2014-05-02 2015-11-26 Hoya株式会社 Coloring structure and component
CN111352181A (en) * 2018-12-21 2020-06-30 余姚舜宇智能光学技术有限公司 Binary optical element, manufacturing method thereof and projection module
JP7176439B2 (en) * 2019-02-25 2022-11-22 住友電気工業株式会社 optical module

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542134B1 (en) * 1999-03-24 2003-04-01 Intel Corporation Projection system
DE60140028D1 (en) * 2000-07-22 2009-11-12 Samsung Electronics Co Ltd Compatible optical scanning device
JP4341332B2 (en) * 2002-07-31 2009-10-07 旭硝子株式会社 Optical head device
JP4260062B2 (en) * 2004-05-14 2009-04-30 三洋電機株式会社 Optical pickup device
WO2006038535A1 (en) * 2004-10-01 2006-04-13 Nalux Co., Ltd. Diffraction grating and optical system including the diffraction grating
JP2006202423A (en) * 2005-01-21 2006-08-03 Ricoh Co Ltd Multiwavelength compatible optical pickup device and optical information recording/reproducing device
JP4613651B2 (en) * 2005-03-16 2011-01-19 旭硝子株式会社 Staircase diffraction element and optical head device

Also Published As

Publication number Publication date
JP2010127977A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4341332B2 (en) Optical head device
US8320226B2 (en) Optical element having three or more sub-wavelength convexo-concave structures
JP4534907B2 (en) Optical head device
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP5417815B2 (en) Diffraction element, optical head device, and projection display device
JP4613651B2 (en) Staircase diffraction element and optical head device
JP5012171B2 (en) Reflective diffractive polarizer and optical device
JP4300784B2 (en) Optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JP2012159802A (en) Optical element, optical pickup, optical information processor, optical attenuator, polarization conversion element, projector optical system, isolator and optical instrument
KR101097078B1 (en) Diffraction element and optical head device
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP4985799B2 (en) Polarization diffraction element and laminated optical element
JP2011233208A (en) Wavelength selective wave plate, wavelength selective diffraction element and optical head device
JP4337510B2 (en) Diffraction element and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP2010164752A (en) Optical element, optical pickup, optical information processing device, optical attenuator, polarization conversion element, projector optical system, and optical equipment
JP2001014714A (en) Optical element and optical disk device
JPH1068820A (en) Polarization diffraction element and optical head device formed by using the same
JP2010267337A (en) Laminated phase plate and optical head device
JP2004069977A (en) Diffraction optical element and optical head unit
JP2010153039A (en) Diffraction element for three wavelengths, diffraction element for three wavelengths with topology plate and optical head apparatus
JP2011060405A (en) Optical head
JP2005017507A (en) Hologram element and optical pickup device
JP2009289355A (en) Optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131104

R151 Written notification of patent or utility model registration

Ref document number: 5417815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees