JP4534907B2 - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP4534907B2
JP4534907B2 JP2005240033A JP2005240033A JP4534907B2 JP 4534907 B2 JP4534907 B2 JP 4534907B2 JP 2005240033 A JP2005240033 A JP 2005240033A JP 2005240033 A JP2005240033 A JP 2005240033A JP 4534907 B2 JP4534907 B2 JP 4534907B2
Authority
JP
Japan
Prior art keywords
wavelength
light
polarization
polarized light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005240033A
Other languages
Japanese (ja)
Other versions
JP2006236549A (en
Inventor
利昌 垣内
裕 熊井
周志 高谷
公貴 梨子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005240033A priority Critical patent/JP4534907B2/en
Publication of JP2006236549A publication Critical patent/JP2006236549A/en
Application granted granted Critical
Publication of JP4534907B2 publication Critical patent/JP4534907B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Head (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Recording Or Reproduction (AREA)

Description

本発明は、広帯域位相板および偏光回折素子を搭載した光ヘッド装置に関する。 The present invention relates to an optical head equipment mounted with broadband phase plate and the polarizing diffraction element.

光ディスクおよび光磁気ディスクなどの光記録媒体(以下、光ディスクという)に光学的情報を記録したり、光ディスクに記録された情報を再生したりする光ヘッド装置においては、記録密度の高密度化のため、使用されるレーザ光の短波長化が進められている。しかしながら、HD DVD、ブルーレイなどの、短波長レーザ光を用いる高密度ディスクを読み書きする光ヘッド装置においても、これまでに普及しているDVD−R/RWおよびCD−R/RWなどの光ディスクも記録・再生可能とする必要があり、短波長光源に加えて、赤色光源および近赤外域の光源を併せて設置しこれらの光ディスクすべてを読み書き可能とする、いわゆる3波長互換のための様々な記録・再生方式が提案されている。   In an optical head device that records optical information on an optical recording medium such as an optical disk and a magneto-optical disk (hereinafter referred to as an optical disk) and reproduces information recorded on the optical disk, the recording density is increased. The wavelength of laser light to be used is being shortened. However, even in an optical head device that reads and writes a high-density disk using a short wavelength laser beam such as HD DVD and Blu-ray, optical disks such as DVD-R / RW and CD-R / RW that have been widely used are also recorded.・ It is necessary to be able to reproduce, and in addition to the short wavelength light source, a red light source and a near-infrared light source are installed together so that all of these optical disks can be read and written. A playback method has been proposed.

それぞれの光ディスクに用いられるいずれの波長に対しても高い光利用効率を実現するためには、光源から光ディスクに至る往路では高透過率であって光ディスクから光検出器に至る復路では高回折効率を有する偏光回折素子を有する偏光光学系を用いた光ヘッド装置が考えられる。そのような偏光光学系を用いた光ヘッド装置の構成の例を図9に示す。   In order to achieve high light utilization efficiency for any wavelength used for each optical disk, high transmittance is required in the forward path from the light source to the optical disk, and high diffraction efficiency in the return path from the optical disk to the photodetector. An optical head device using a polarization optical system having a polarization diffraction element is conceivable. An example of the configuration of an optical head device using such a polarization optical system is shown in FIG.

図9において、出射波長帯410nm、660nmおよび780nmの半導体レーザ11、12および13からの直線偏光の光束は、それぞれの波長用の偏光回折素子17、18および19を直進透過し、それぞれの偏光回折素子と一体化された1/4位相板20、21および22により円偏光に変換される。その後、波長660nm帯の光を反射させ波長780nm帯の光を透過する合波プリズム23と660nm帯および780nm帯の光を透過させ波長410nm帯の光を反射する合波プリズム24とにより合波され、コリメートレンズ25で平行光とされ、アクチュエータ27に保持された3波長共通の対物レンズ26により光ディスク28の情報記録面に集光、照射される。   In FIG. 9, linearly polarized light beams from the semiconductor lasers 11, 12, and 13 in the emission wavelength bands of 410 nm, 660 nm, and 780 nm pass straight through the polarization diffraction elements 17, 18 and 19 for the respective wavelengths, and the polarization diffractions thereof. It is converted into circularly polarized light by the quarter phase plates 20, 21 and 22 integrated with the element. Thereafter, the light is combined by a combining prism 23 that reflects light in the wavelength band of 660 nm and transmits light in the wavelength band of 780 nm, and a combining prism 24 that transmits light in the band of 660 nm and 780 nm and reflects light in the wavelength band of 410 nm. The collimated lens 25 converts the light into parallel light, which is condensed and irradiated on the information recording surface of the optical disk 28 by the objective lens 26 common to the three wavelengths held by the actuator 27.

光ディスク28の情報記録面で反射され、情報記録面に形成されたピットの情報を含んだ3つの波長の戻り光束は、円偏光の回転方向が逆転した逆回りの円偏光となって経路を逆方向に進行し、それぞれ1/4位相板20、21および22を再度透過して光源から出射された光束の偏光方向と直交する偏光方向の直線偏光に変換され偏光回折素子17、18および19により回折され、それぞれの波長に対応する光検出器14、15および16に導かれて、光ディスク28に記録された情報が読み出される。   The three-wavelength return light beam reflected by the information recording surface of the optical disk 28 and including the information of the pits formed on the information recording surface becomes circularly polarized light in the reverse direction with the rotation direction of the circularly polarized light reversed. Traveled in the direction of the light and again transmitted through the quarter phase plates 20, 21, and 22, and converted into linearly polarized light having a polarization direction orthogonal to the polarization direction of the light beam emitted from the light source, by the polarization diffraction elements 17, 18, and 19 The information diffracted and guided to the photodetectors 14, 15 and 16 corresponding to the respective wavelengths is read out.

図9に示したような従来の光ヘッド装置では、波長ごとに偏光回折素子や1/4位相板などの光学素子を配置する必要があるので、部品点数が増えて装置の体積が大きくなり、さらに組立調整にも時間がかかるという問題がある。そのため、3つの半導体レーザを近接させて配置する構成や、複数の波長を発振できる半導体レーザを用いる構成が提案されている。   In the conventional optical head device as shown in FIG. 9, since it is necessary to arrange an optical element such as a polarization diffraction element or a quarter phase plate for each wavelength, the number of parts increases and the volume of the apparatus increases. Furthermore, there is a problem that assembly adjustment takes time. Therefore, a configuration in which three semiconductor lasers are arranged close to each other and a configuration using a semiconductor laser that can oscillate a plurality of wavelengths have been proposed.

このような構成に光ヘッド装置に必要とされる410nm、660nmおよび780nmの3波長帯に対して共通に用いることができる広帯域位相板として、複屈折を示す層2層を積層した構成により各波長帯に対して1/4波長相当の位相差を発生させる広帯域位相板が特許文献1に記載されている。しかしながら、前記3波長のすべてを偏光選択して回折させる偏光回折素子は、すべての波長帯に対して良好な回折効率を実現するのが難しいという問題がある。また、780nm帯の光を用いる光ディスク(CD)では保護層厚さが厚いため、前述のような偏光光学系を用いると保護層の複屈折の偏差による記録・再生特性の変動が生じ易いという問題もある。
特開2004−219977号公報
As a broadband phase plate that can be used in common for the three wavelength bands of 410 nm, 660 nm, and 780 nm required for the optical head device in such a configuration, each wavelength can be obtained by stacking two layers exhibiting birefringence. Patent Document 1 discloses a broadband phase plate that generates a phase difference corresponding to a quarter wavelength with respect to a band. However, a polarization diffraction element that selectively diffracts all three wavelengths by polarization is problematic in that it is difficult to achieve good diffraction efficiency for all wavelength bands. Further, since an optical disk (CD) using light in the 780 nm band has a large protective layer thickness, the use of the polarizing optical system as described above tends to cause fluctuations in recording / reproducing characteristics due to the birefringence deviation of the protective layer. There is also.
Japanese Patent Application Laid-Open No. 2004-219977

本発明は、3波長互換に用いられる光ヘッド装置を提供し、前述の問題を解決することを目的とする。 The present invention provides an optical head equipment used in the three-wavelength compatible, and has as its object to solve the aforementioned problems.

本発明は、光源と、偏光回折素子と、広帯域位相板と、光検出器と、を備える光ヘッド装置において、前記光源は、波長410nm帯、660nm帯および780nm帯の直線偏光の光束を出射する光源であって、前記偏光回折素子は、所定の偏光方向の直線偏光は直進透過させ、前記所定の偏光方向と直交する直線偏光は回折させる偏光回折素子であって、前記広帯域位相板は、波長410nm帯の光に対して略(2m−1)・λ/4、波長660nm帯の光に対して略(2m−1)・λ/4、波長780nm帯の光に対して略m・λ(λは波長、m、m、mは自然数)の位相差をそれぞれ発生させる広帯域位相板であって、前記光源から出射され、前記偏光回折素子に入射した波長410nm帯および660nm帯の直線偏光の光束は、前記偏光回折素子により直進透過され、前記広帯域位相板により略円偏光に変換されて光記録媒体に照射され、光記録媒体の情報記録面で反射されて逆回りの略円偏光となった戻り光束は、前記広帯域位相板により光源から出射された光束と直交する偏光方向の略直線偏光に変換され、前記偏光回折素子により回折されて光検出器へと導かれ、前記光源から出射され、前記偏光回折素子に入射した波長780nm帯の直線偏光の光束は、前記偏光回折素子により直進透過され、前記広帯域位相板により偏光状態を実質的に変化されずに透過されて光記録媒体に照射され、光記録媒体の情報記録面で反射された戻り光束は、前記広帯域位相板により偏光状態を実質的に変化されずに透過され、前記偏光回折素子により直進透過されて光検出器へと導かれることを特徴とする光ヘッド装置を提供する。 The present invention provides an optical head device including a light source, a polarization diffraction element, a broadband phase plate, and a photodetector, and the light source emits linearly polarized light beams having wavelengths of 410 nm, 660 nm, and 780 nm. The polarization diffractive element is a polarization diffractive element that linearly transmits linearly polarized light in a predetermined polarization direction and diffracts linearly polarized light orthogonal to the predetermined polarization direction, and the broadband phase plate has a wavelength Approximately (2m a −1) · λ / 4 for light in the 410 nm band, approximately (2m b −1) · λ / 4 for light in the wavelength 660 nm band, approximately m c for light in the wavelength 780 nm band A broadband phase plate that generates a phase difference of λ (λ is a wavelength, m a , m b , and mc are natural numbers), and is emitted from the light source and incident on the polarization diffraction element at a wavelength range of 410 nm and 660 nm Obi The polarized light beam is transmitted straight through the polarization diffraction element, converted into substantially circularly polarized light by the broadband phase plate, irradiated to the optical recording medium, reflected by the information recording surface of the optical recording medium, and reversely circularly polarized light. The returned light beam is converted into substantially linearly polarized light having a polarization direction orthogonal to the light beam emitted from the light source by the broadband phase plate, is diffracted by the polarization diffraction element, and is guided to a photodetector. The linearly polarized light beam having a wavelength of 780 nm that is emitted and incident on the polarization diffraction element is transmitted straight through the polarization diffraction element and transmitted through the broadband phase plate without substantially changing the polarization state. The reflected light beam reflected on the information recording surface of the optical recording medium is transmitted without substantially changing the polarization state by the broadband phase plate, and transmitted straight by the polarization diffraction element. It is to provide an optical head device which is characterized in that is guided to the photodetector.

前記広帯域位相板が発生させる位相差が高次になると、各波長帯域において広帯域位相板が発生させる位相差の波長依存性が大きくなり、例えば温度変化により光源が出射する光束の波長が変動したときに、広帯域位相板が発生させる位相差が所望の値からずれが大きくなるおそれがある。そのため、位相差は低次であることが好ましい。すなわち前記m、m、およびmは7以下の自然数であることが好ましく、より好ましくは6以下の自然数である。 When the phase difference generated by the broadband phase plate becomes higher, the wavelength dependency of the phase difference generated by the broadband phase plate increases in each wavelength band. For example, when the wavelength of the light beam emitted from the light source fluctuates due to a temperature change In addition, the phase difference generated by the broadband phase plate may be greatly deviated from a desired value. Therefore, the phase difference is preferably low order. That is, m a , m b , and m c are preferably natural numbers of 7 or less, and more preferably natural numbers of 6 or less.

前記広帯域位相板が2層の複屈折材料からなる層を有しており、前記広帯域位相板が発生させる位相差は、波長410nm帯の光に対して略9λ/4、波長660nm帯の光束に対して略5λ/4、波長780nm帯の光に対して略λ、あるいは、波長410nm帯の光に対して略11λ/4、波長660nm帯の光束に対して略5λ/4、波長780nm帯の光に対して略λであることが好ましい。 The broadband phase plate has a layer made of two birefringent materials, and the phase difference generated by the broadband phase plate is approximately 9λ / 4 with respect to light having a wavelength of 410 nm and light flux having a wavelength of 660 nm. On the other hand, approximately 5λ / 4, approximately λ for light in the wavelength 780 nm band, approximately 11λ / 4 for light in the wavelength 410 nm band, approximately 5λ / 4 for light flux in the wavelength 660 nm band, and approximately 780 nm wavelength. It is preferably approximately λ with respect to light.

ここで「波長410nm帯」とは、390〜440nmの波長範囲から本発明の広帯域位相板を用いる波長、すなわち使用する光源の波長に合わせて選ばれる1つの波長をいい、「波長660nm帯」、「波長780nm帯」とは、それぞれ640〜680nm、760〜800nmの波長範囲から同様に選ばれる1つの波長をいう。   Here, the “wavelength 410 nm band” refers to a wavelength using the broadband phase plate of the present invention from the wavelength range of 390 to 440 nm, that is, one wavelength selected according to the wavelength of the light source to be used, “wavelength 660 nm band”, The “wavelength 780 nm band” refers to one wavelength that is similarly selected from a wavelength range of 640 to 680 nm and 760 to 800 nm, respectively.

また、「位相差が略9λ/4である」とは、角度表示した位相差が9λ/4にあたる角度±5度未満の範囲内であることをいう。同様に「略5λ/4」「略λ」「略11λ/4」とは、角度表示したそれぞれの角度に対して±5度未満の範囲内であることをいう。ここで、角度表示した位相差[度]は、長さで表示した位相差[nm]と、
位相差[度]=(位相差[nm]/波長[nm])×360度
なる関係にあり、例えばλ板は角度表示すると360度となる。
Further, “the phase difference is approximately 9λ / 4” means that the phase difference expressed in angle is within a range of less than an angle ± 5 degrees corresponding to 9λ / 4. Similarly, “substantially 5λ / 4”, “substantially λ”, and “substantially 11λ / 4” mean that the angle is within a range of less than ± 5 degrees with respect to each angle. Here, the phase difference [degree] displayed in angle is the phase difference [nm] displayed in length,
There is a relationship of phase difference [degree] = (phase difference [nm] / wavelength [nm]) × 360 degrees. For example, a λ plate is 360 degrees when expressed in angle.

前記光ヘッド装置における前記偏光回折素子は、第1の回折格子と第2の回折格子とを積層され備える偏光回折素子であって、前記第1の回折格子は、前記光源から入射した波長410nm帯、660nm帯および780nm帯の直線偏光の光束を直線透過させ、前記光源からの直線偏光と直交する偏光方向をもつ、波長410nm帯の直線偏光を回折させ、波長660nm帯の直線偏光を直進透過させる回折格子であって、前記第2の回折格子は、前記光源から入射した波長410nm帯、660nm帯および780nm帯の直線偏光の光束を直線透過させ、前記光源からの直線偏光と直交する偏光方向をもつ、波長410nm帯の直線偏光を直進透過させ、波長660nm帯の直線偏光を回折させる回折格子であることが好ましい。   The polarization diffraction element in the optical head device is a polarization diffraction element including a first diffraction grating and a second diffraction grating laminated, and the first diffraction grating has a wavelength of 410 nm incident from the light source. The linearly polarized light flux of 660 nm band and 780 nm band is linearly transmitted, the linearly polarized light of wavelength 410 nm having the polarization direction orthogonal to the linearly polarized light from the light source is diffracted, and the linearly polarized light of wavelength 660 nm band is transmitted straight. The second diffraction grating linearly transmits linearly polarized light beams having wavelengths of 410 nm, 660 nm, and 780 nm incident from the light source, and has a polarization direction orthogonal to the linearly polarized light from the light source. A diffraction grating that linearly transmits linearly polarized light with a wavelength of 410 nm and diffracts linearly polarized light with a wavelength of 660 nm is preferable.

さらに、前記第1の回折格子が、光学異方性材料からなり、鋸歯形状の断面をもつ一方向に伸長する凸条部が、周期的かつ互いに平行に形成されたブレーズド回折格子、または、光学異方性材料からなり、所望の鋸歯形状を8段以上の階段状に近似した鋸歯形状の断面をもつ一方向に伸長する凸条部が、周期的かつ互いに平行に形成された擬似ブレーズド回折格子であって、前記第2の回折格子が、光学異方性材料からなり、矩形断面をもつ一方向に伸長する凸条部が、周期的かつ互いに平行に形成された回折格子とすることが好ましい。   Further, the first diffraction grating is made of an optically anisotropic material, and a blazed diffraction grating in which ridges extending in one direction having a sawtooth cross section are formed periodically and parallel to each other, or optical A quasi-blazed diffraction grating made of an anisotropic material and having ridges extending in one direction and having a sawtooth-shaped cross section approximating a desired sawtooth shape of a step shape of 8 or more steps, formed periodically and parallel to each other The second diffraction grating is preferably made of an optically anisotropic material, and the ridges extending in one direction having a rectangular cross section are periodically and parallel to each other. .

また、前記偏光回折素子は、フォーカスエラー信号および/またはトラッキング信号を発生させる偏光回折素子とすることが好ましい。   The polarization diffraction element is preferably a polarization diffraction element that generates a focus error signal and / or a tracking signal.

本発明の光ヘッド装置において、前記広帯域位相板は前記偏光回折素子と積層一体化されていることが好ましい。この構成とすることにより、光ヘッド装置を構成する部品の小型化、部品点数の削減に一層の効果が得られ、光ヘッド装置をさらに小型化することが可能になる。   In the optical head device of the present invention, the broadband phase plate is preferably laminated and integrated with the polarization diffraction element. With this configuration, a further effect can be obtained in reducing the size of the components constituting the optical head device and reducing the number of components, and the optical head device can be further reduced in size.

本発明の光ヘッド装置では、410nm、660nmおよび780nmの3つの波長帯に対して良好な記録・再生特性が実現される。また、部品点数が削減されて構成が単純化され組み立て調整が容易で、小型化、低コスト化された構成が実現される。780nm波長帯に対して、十分高い光の利用効率が得られるとともに、光ディスクの保護層の偏差による再生・記録特性の低下を抑制できる。   In the optical head device of the present invention, good recording / reproducing characteristics are realized for three wavelength bands of 410 nm, 660 nm, and 780 nm. In addition, the number of parts is reduced, the configuration is simplified, assembly adjustment is easy, and a configuration that is reduced in size and cost is realized. With respect to the 780 nm wavelength band, sufficiently high light utilization efficiency can be obtained, and deterioration in reproduction / recording characteristics due to deviation of the protective layer of the optical disk can be suppressed.

また、本発明の広帯域位相板は、前記3つの波長帯を用いて記録・再生をおこなう光ヘッド装置に好ましく用いられる。本発明の広帯域位相板を用いると、前記光ヘッド装置において前記3つの波長帯において良好な記録・再生特性が実現されるとともに、部品点数が削減されて構成が単純化され、組立て調整が容易になる。   The broadband phase plate of the present invention is preferably used in an optical head device that performs recording / reproduction using the three wavelength bands. When the broadband phase plate according to the present invention is used, good recording / reproduction characteristics are realized in the three wavelength bands in the optical head device, the number of parts is reduced, the configuration is simplified, and assembly adjustment is easy. Become.

また、本発明の偏光回折素子は、前記3つの波長帯を用いて記録・再生をおこなう光ヘッド装置に好ましく用いられる。本発明の広帯域位相板を用いると、前記光ヘッド装置において前記3つの波長帯において良好な記録・再生特性が実現されるとともに、部品点数が削減されて構成が単純化され、組立て調整が容易になる。   The polarization diffraction element of the present invention is preferably used in an optical head device that performs recording / reproduction using the three wavelength bands. When the broadband phase plate according to the present invention is used, good recording / reproduction characteristics are realized in the three wavelength bands in the optical head device, the number of parts is reduced, the configuration is simplified, and assembly adjustment is easy. Become.

以下、本発明の実施の形態について、図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係る光ヘッド装置の第1の構成例を示すブロック図である。なおこの構成は本発明の光ヘッド装置の構成の一例であって、これに限定されるものではない。
(First embodiment)
FIG. 1 is a block diagram showing a first configuration example of the optical head device according to the first embodiment of the present invention. This configuration is an example of the configuration of the optical head device of the present invention, and the present invention is not limited to this.

この光ヘッド装置は、波長410nm帯、波長660nm帯および波長780nm帯の光源としてそれぞれ波長405nm、660nmおよび780nmの直線偏光の光束を出射する半導体レーザ401、402および403とを備えている。   This optical head device includes semiconductor lasers 401, 402, and 403 that emit linearly polarized light beams having wavelengths of 405 nm, 660 nm, and 780 nm, respectively, as light sources having a wavelength of 410 nm, a wavelength of 660 nm, and a wavelength of 780 nm.

波長405nmの光束を出射する半導体レーザ401から出射された直線偏光の光束は、波長405nmの光を反射し波長660nmおよび波長780nmの光を透過させる合波プリズム408と、コリメートレンズ410とを透過する。次いでアクチュエータ414に保持された偏光回折素子411を透過し、広帯域位相板412により円偏光に変換され、同じくアクチュエータ414に保持された対物レンズ413により光ディスク415の情報記録面上に集光、照射される。情報記録面に形成されたピットの情報を含んで光ディスク415から反射された戻り光束は、それぞれの経路を逆方向に進行する。すなわち戻り光束は広帯域位相板412により光源から出射された光束とは直交する偏光方向の直線偏光に変換され、偏光回折素子411で回折され、コリメートレンズ410を透過し合波プリズム408で反射されたのち、光検出器404に入射して、光ディスク415に記録された情報が読み出される。   The linearly polarized light beam emitted from the semiconductor laser 401 that emits a light beam with a wavelength of 405 nm is transmitted through the collimating lens 410 and the combining prism 408 that reflects the light with a wavelength of 405 nm and transmits the light with a wavelength of 660 nm and 780 nm. . Next, the light passes through the polarization diffraction element 411 held by the actuator 414, is converted into circularly polarized light by the broadband phase plate 412, and is condensed and irradiated on the information recording surface of the optical disk 415 by the objective lens 413 similarly held by the actuator 414. The The return light beam reflected from the optical disk 415 including the information of the pits formed on the information recording surface travels in the opposite direction on each path. That is, the return light beam is converted into linearly polarized light having a polarization direction orthogonal to the light beam emitted from the light source by the broadband phase plate 412, diffracted by the polarization diffraction element 411, transmitted through the collimator lens 410, and reflected by the combining prism 408. After that, the light is incident on the photodetector 404 and the information recorded on the optical disk 415 is read out.

波長660nmに対しては、波長660nmの光束を出射する半導体レーザ402から出射された直線偏光の光束は、波長660nmの光を反射し波長780nmの光を透過させる合波プリズム409で反射され、波長405nmの光を反射し波長660nmおよび波長780nmの光を透過させる合波プリズム408を透過したのち、コリメートレンズ410を透過する。次いでアクチュエータ414に保持された偏光回折素子411を透過し、広帯域位相板412により円偏光に変換され、対物レンズ413により光ディスク415の情報記録面上に集光、照射される。情報記録面に形成されたピットの情報を含んで光ディスク415から反射された戻り光束は、それぞれの経路を逆方向に進行する。すなわち戻り光束は広帯域位相板412により光源から出射された光束とは直交する偏光方向の直線偏光に変換され、偏光回折素子411で回折され、コリメートレンズ410を透過したのち、合波プリズム408を透過し、合波プリズム409で反射されたのち光検出器405に入射して、光ディスク415に記録された情報が読み出される。   For a wavelength of 660 nm, a linearly polarized light beam emitted from the semiconductor laser 402 that emits a light beam having a wavelength of 660 nm is reflected by a combining prism 409 that reflects light having a wavelength of 660 nm and transmits light having a wavelength of 780 nm. After passing through a combining prism 408 that reflects light of 405 nm and transmits light of wavelength 660 nm and wavelength 780 nm, it passes through the collimating lens 410. Next, the light passes through the polarization diffraction element 411 held by the actuator 414, is converted into circularly polarized light by the broadband phase plate 412, and is condensed and irradiated onto the information recording surface of the optical disk 415 by the objective lens 413. The return light beam reflected from the optical disk 415 including the information of the pits formed on the information recording surface travels in the opposite direction on each path. That is, the return light beam is converted into linearly polarized light having a polarization direction orthogonal to the light beam emitted from the light source by the broadband phase plate 412, diffracted by the polarization diffraction element 411, transmitted through the collimator lens 410, and then transmitted through the combining prism 408. Then, after being reflected by the multiplexing prism 409, it enters the photodetector 405, and information recorded on the optical disk 415 is read out.

波長780nmの場合は、ディスクの保護層厚さが厚いため、前述のような偏光光学系を用いると保護層の複屈折の偏差による記録・再生特性の変動が生じる。したがって、ガラス等で形成された無偏光回折素子を用いた光学系が用いられる。半導体レーザ403から出射した直線偏光の光束は、無偏光回折格子407を透過し、波長660nmの光を反射し波長780nmの光を透過させる合波プリズム409、波長405nmの光を反射し波長660nmおよび波長780nmの光を透過させる合波プリズム408をそれぞれ透過したのち、コリメートレンズ410を透過し、アクチュエータ414に保持された偏光回折素子411を透過する。次いで、広帯域位相板412を透過し、同じくアクチュエータ414に保持された対物レンズ413により光ディスク415の情報記録面上に集光、照射され、光ディスク415から反射された戻り光束は、同経路を逆進して広帯域位相板412へ入射する。780nm波長帯の光束は、広帯域位相板で偏光状態を変えないため、戻り光束も偏光回折素子411を回折されずに透過する。透過された戻り光束はコリメートレンズ410を透過したのち、合波プリズム408、合波プリズム409で透過され、無偏光回折素子407で回折された一次回折光が光検出器406で検出され、光ディスク415に記録された情報が読み出される。   When the wavelength is 780 nm, the thickness of the protective layer of the disk is large. Therefore, when the polarizing optical system as described above is used, the recording / reproduction characteristics fluctuate due to the birefringence deviation of the protective layer. Therefore, an optical system using a non-polarizing diffraction element formed of glass or the like is used. The linearly polarized light beam emitted from the semiconductor laser 403 passes through the non-polarized diffraction grating 407, reflects the light with a wavelength of 660 nm, and transmits the light with a wavelength of 780 nm, reflects the light with a wavelength of 405 nm, reflects the light with a wavelength of 660 nm, and After passing through the combining prism 408 that transmits light having a wavelength of 780 nm, the light passes through the collimator lens 410 and the polarization diffraction element 411 held by the actuator 414. Next, the return light beam that is transmitted through the broadband phase plate 412, condensed and irradiated on the information recording surface of the optical disk 415 by the objective lens 413 that is also held by the actuator 414, and reflected from the optical disk 415 travels backward on the same path. Then, the light enters the broadband phase plate 412. Since the light beam in the 780 nm wavelength band does not change the polarization state by the broadband phase plate, the return light beam is also transmitted through the polarization diffraction element 411 without being diffracted. The transmitted return light beam is transmitted through the collimating lens 410, then transmitted through the combining prism 408 and the combining prism 409, and the first-order diffracted light diffracted by the non-polarization diffraction element 407 is detected by the photodetector 406, and the optical disk 415 The information recorded in is read out.

本発明の第1の構成の光ヘッド装置では、410nmおよび660nmの各波長帯の光束に対しては直線偏光を円偏光に、円偏光を直線偏光にそれぞれ変換し、波長780nm波長帯の光束に対しては実質的に偏光状態を変化させず、それぞれ透過させる広帯域位相板と、光源からの光束と同じ偏光方向の直線偏光を直進透過させ、直交する偏光方向の直線偏光を回折させる偏光回折素子と、を備えることにより、前記3つのすべての波長帯において、良好な記録・再生特性が得られる。また、良好な特性の光ヘッド装置を、少ない部品数かつ小型化された構成で実現することができる。   In the optical head device according to the first configuration of the present invention, linearly polarized light is converted into circularly polarized light and circularly polarized light is converted into linearly polarized light with respect to light beams in the 410 nm and 660 nm wavelength bands, and converted into light beams in the wavelength band of 780 nm. On the other hand, a broadband phase plate that substantially transmits the polarization state without changing the polarization state, and a polarization diffraction element that linearly transmits linearly polarized light in the same polarization direction as the light beam from the light source and diffracts linearly polarized light in the orthogonal polarization direction. With these, good recording / reproducing characteristics can be obtained in all three wavelength bands. In addition, an optical head device having good characteristics can be realized with a small number of components and a miniaturized configuration.

以下、まず、本発明の広帯域位相板について説明する。   Hereinafter, the broadband phase plate of the present invention will be described first.

このような光ヘッド装置に用いられる、本発明の広帯域位相板は、通常、複屈折層と、少なくとも1枚の透明基板とを備えている。本発明の広帯域位相板は、前記複屈折層が1枚の透明基板上に保持されている構成であってもよいし、前記複屈折層が2枚の透明基板間に挟持されている構成であってもよい。透明基板は前記3つの波長帯の光に対して透明であれば、樹脂板、樹脂フィルムなど種々の材料を用いることができるが、ガラスや石英ガラスなどの光学的等方性材料を用いると、透過光に複屈折性の影響を与えないため好ましい。   The broadband phase plate of the present invention used in such an optical head device usually includes a birefringent layer and at least one transparent substrate. The broadband phase plate of the present invention may be configured such that the birefringent layer is held on one transparent substrate, or the birefringent layer is sandwiched between two transparent substrates. There may be. If the transparent substrate is transparent to the light of the three wavelength bands, various materials such as a resin plate and a resin film can be used, but if an optically isotropic material such as glass or quartz glass is used, This is preferable because the transmitted light is not affected by birefringence.

本発明の広帯域位相板に用いる複屈折層としては、複屈折性有機材料を基板上に配向させつつ層形成したものや、ポリカーボネートなどの有機材料を延伸加工し分子を配向させ複屈折性を付与した高分子フィルムを用いることができる。前記基板上に配向させつつ層形成した複屈折性有機材料としては液晶が例示される。液晶は、種々の液晶性化合物から所望の特性を有するものを選び出したり、またそれらを混合した混合組成物としたりすることにより、分散係数を所望の値に近似させることができるので好ましい。また、液晶層の厚さは、液晶層形成時に液晶層を挟持する基板間に挟むスペーサー径を変更するだけで容易に調整が可能で、それによりリタデーション値を容易に制御できる点からも好ましい。液晶としては、低分子液晶を用いることができるが、重合性の液晶前駆体を光重合等の手段により重合、硬化させて形成された高分子液晶を用いてもよい。高分子液晶を用いると、配向方向が物理的に固定されており、また広帯域位相板の機械強度が増すので、信頼性が向上したり、温度変化による熱膨張・熱収縮で素子が太鼓状に変形して生じる収差が低減されたりするので好ましい。   As the birefringent layer used in the broadband phase plate of the present invention, a layer formed by orienting a birefringent organic material on a substrate or an organic material such as polycarbonate is stretched to orient molecules and impart birefringence. The polymer film can be used. An example of the birefringent organic material formed on the substrate while being oriented is liquid crystal. The liquid crystal is preferable because the dispersion coefficient can be approximated to a desired value by selecting one having various properties from various liquid crystal compounds or by preparing a mixed composition obtained by mixing them. Further, the thickness of the liquid crystal layer can be easily adjusted only by changing the diameter of the spacer sandwiched between the substrates sandwiching the liquid crystal layer when the liquid crystal layer is formed, which is preferable from the viewpoint that the retardation value can be easily controlled. As the liquid crystal, a low molecular liquid crystal can be used, and a polymer liquid crystal formed by polymerizing and curing a polymerizable liquid crystal precursor by means of photopolymerization or the like may be used. When polymer liquid crystal is used, the orientation direction is physically fixed and the mechanical strength of the broadband phase plate is increased, so that the reliability is improved, and the element is formed into a drum shape due to thermal expansion / contraction due to temperature change. This is preferable because the aberration caused by deformation is reduced.

複屈折材料としては、液晶以外に、基板上に異方性蒸着などの成膜方法で複屈折性を持たせて形成したTiO膜などの無機材料膜や、所望の厚さに加工した水晶、LiNbOなどの複屈折性を有する無機材料のシートを用いることもできる。 As the birefringent material, in addition to the liquid crystal, an inorganic material film such as a TiO 2 film formed by providing a birefringence on the substrate by a film forming method such as anisotropic vapor deposition, or a crystal processed to a desired thickness A sheet of an inorganic material having birefringence such as LiNbO 3 can also be used.

一般に複屈折材料によるリタデーションは波長依存性を有し、A、B、Cを材料に固有の分散係数、複屈折材料の厚さをdnmとすると、コーシーの式から式(1)のような波長の関数R(λ)で表される。   In general, retardation by a birefringent material is wavelength-dependent. When A, B, and C are dispersion coefficients specific to the material and the thickness of the birefringent material is dnm, the wavelength expressed by the equation (1) from Cauchy's equation. Is expressed by the function R (λ).

R(λ)=(A+B/λ+C/λ)・d (1)
(1)式において、波長405nm、660nmおよび780nmにおける位相差を、それぞれ9λ/4、5λ/4、λとおくと、各波長における条件式は(2a)、(2b)、(2c)のようになる。
R (λ) = (A + B / λ + C / λ 2 ) · d (1)
In the equation (1), if the phase differences at wavelengths of 405 nm, 660 nm and 780 nm are set to 9λ / 4, 5λ / 4, and λ, respectively, the conditional expressions at each wavelength are as follows: (2a), (2b), (2c) become.

R(405nm)=911nm (2a)
R(660nm)=825nm (2b)
R(780nm)=780nm (2c)
(2a)、(2b)、(2c)から分散係数A、B、Cを求めると、
A=363.7/d、B=436100/d、C=−86840000/d
(3)
が得られる。すなわちこのような分散係数をもつ複屈折材料を用いて厚さdnmの層を1層形成して前記複屈折層とし広帯域位相板を作製すると、前記3つの波長において前記の所望の位相差が得られるので好ましい。
R (405 nm) = 911 nm (2a)
R (660 nm) = 825 nm (2b)
R (780 nm) = 780 nm (2c)
When the dispersion coefficients A, B, and C are obtained from (2a), (2b), and (2c),
A = 363.7 / d, B = 436100 / d, C = −86840000 / d
(3)
Is obtained. That is, when a broadband phase plate is formed by forming a single layer having a thickness of dnm using a birefringent material having such a dispersion coefficient as the birefringent layer, the desired phase difference is obtained at the three wavelengths. This is preferable.

また、複屈折層は、複屈折を示す層が複数層積層された構成とすることも可能であり、このような構成によれば適用可能な複屈折材料の選択の幅が広がるので好ましい。積層数は製造工程の単純化のため2層とすることが好ましいが、3層以上積層して用いることも可能である。複屈折を示す層を2層積層して構成された本発明の広帯域位相板は、以下のように設計することができる。   In addition, the birefringent layer may have a configuration in which a plurality of layers exhibiting birefringence are laminated, and such a configuration is preferable because the range of selection of applicable birefringent materials is widened. The number of stacked layers is preferably two layers for simplification of the manufacturing process, but three or more layers can be stacked and used. The broadband phase plate of the present invention configured by laminating two layers exhibiting birefringence can be designed as follows.

複屈折層が、複屈折を示す第1および第2の複屈折層が積層された積層構成であるときに、係る積層複屈折層に光を入射させたときに発生する位相差は、ストークス・パラメーターを使って式(4)のような行列式で表される。

Figure 0004534907
When the birefringent layer has a laminated structure in which the first and second birefringent layers exhibiting birefringence are laminated, the phase difference generated when light is incident on the laminated birefringent layer is the Stokes- It is expressed by a determinant like equation (4) using parameters.
Figure 0004534907

ここで入射光の偏光状態は式(5):

Figure 0004534907
で表わされるように水平直線偏光である。式(4)においてθ1,2は、第1および第2の複屈折層のそれぞれの進相軸と透明基板面内の基準方向とのなす角度であり、Δ1,2は第1および第2の複屈折層のそれぞれで生じる位相差である。また、[Tθ1,2]は座標軸を角度θ1,2だけ回転する旋光子行列で、[CΔ1,2]は位相をΔ1,2だけシフトさせる移相子行列で、それぞれ式(6)、式(7)のように表される。
Figure 0004534907
Here, the polarization state of the incident light is expressed by equation (5):
Figure 0004534907
It is horizontal linearly polarized light as expressed by In Equation (4), θ 1 and 2 are angles formed by the fast axes of the first and second birefringent layers and the reference direction in the transparent substrate surface, and Δ 1 and 2 are the first and second 2 is a phase difference generated in each of the two birefringent layers. [T θ1,2 ] is an optical rotator matrix that rotates the coordinate axis by an angle θ 1,2 , and [C Δ1,2 ] is a phase shifter matrix that shifts the phase by Δ 1,2. ) And Expression (7).
Figure 0004534907

Figure 0004534907
Figure 0004534907

ここで、位相のシフト量Δ1,2とは各波長における角度[ラジアン]表示のリタデーション値であり、Δ1,2=Δn・d1,2・2π/λなる式で表される。 Here, the shift amount delta 1, 2 phases then retardation values of the angle [radian] Display at each wavelength is expressed by Δ 1,2 = Δn · d 1,2 · 2π / λ becomes equation.

この行列式を、前記リタデーション値を所望の位相差に置いた条件のもとで解けば、各波長において所望の位相差をもつ積層による広帯域波長板の構成、すなわち、複屈折材料からなる2層の複屈折層それぞれの進相軸と基準方向とのなす角度θ、θと厚さd、dとが求められる。しかしながらこの行列式は解析的に解くことができず、近似解が得られるのみである。さらに分散係数は材料固有であるため、一般には、3波長以上の波長において所望の位相差を与える積層構成の解は得られない。 If this determinant is solved under the condition in which the retardation value is set to a desired phase difference, the configuration of a broadband wave plate by lamination having a desired phase difference at each wavelength, that is, two layers made of a birefringent material angle theta 1 with fast axis and the reference direction of each birefringent layer, theta 2 and thickness d 1, d 2 and is determined. However, this determinant cannot be solved analytically and only an approximate solution can be obtained. Furthermore, since the dispersion coefficient is specific to the material, in general, it is not possible to obtain a solution for a laminated structure that gives a desired phase difference at a wavelength of three or more wavelengths.

本願発明者は、各波長における位相差を波長410nm帯で(2m−1)・λ/4、波長660nm帯で(2m−1)・λ/4、および波長780nm帯でm・λ (λは波長、m、m、mは自然数)と置いたときに、第1の態様として、複屈折材料として延伸ポリカーボネート(分散係数はA=0.01052、B=0、C=564.7)を用いると、波長410nm帯で9λ/4、波長660nm帯で5λ/4、および波長780nm帯でλの位相差が得られる積層構成のよい近似解が得られることを見出した。すなわち、1層目は厚さ75μmで進相軸が基準方向となす角12度とし、2層目は厚さ66μmで進相軸が基準方向となす角を65度とすると、それぞれの波長での所望の位相差から±5度未満の位相差が得られる。 The present inventor has a phase difference at each wavelength in the wavelength 410nm band (2m a -1) · λ / 4, at wavelength 660nm band (2m b -1) · λ / 4, and the wavelength 780nm band m c · lambda (lambda is the wavelength, m a, m b, m c is a natural number) when placed with, as a first aspect, the stretching polycarbonate (dispersion coefficient as the birefringent material a = 0.01052, B = 0, C = Using 564.7), it has been found that a good approximate solution can be obtained for a laminated structure in which a phase difference of 9λ / 4 at a wavelength of 410 nm, 5λ / 4 at a wavelength of 660 nm, and λ at a wavelength of 780 nm is obtained. That is, if the first layer has a thickness of 75 μm and the phase advance axis is 12 degrees, and the second layer has a thickness of 66 μm and the phase advance axis is 65 degrees, the respective wavelengths are A phase difference of less than ± 5 degrees is obtained from the desired phase difference.

また、別の態様として、分散係数がA=0.1011、B=0、C=9230の複屈折材料を用いると、波長410nm帯で11λ/4、波長660nm帯で5λ/4、および波長780nm帯でλの位相差に対してよい近似解が得られることを見出した。すなわち、1層目は厚さ1.7μmで進相軸が基準方向となす角を8度とし、2層目は厚さ7μmで進相軸が基準方向となす角を147度とすると、それぞれの波長での所望の位相差から±5度未満の位相差が得られる。このような分散をもつ材料としては、所定の組成の高分子液晶が例示される。   As another aspect, when a birefringent material having dispersion coefficients of A = 0.1011, B = 0, and C = 9230 is used, 11λ / 4 in the wavelength 410 nm band, 5λ / 4 in the wavelength 660 nm band, and 780 nm wavelength It was found that a good approximate solution can be obtained for the phase difference of λ in the band. That is, if the first layer has a thickness of 1.7 μm and the phase advance axis is 8 degrees, and the second layer has a thickness of 7 μm and the phase advance axis is 147 degrees, A phase difference of less than ± 5 degrees is obtained from the desired phase difference at a wavelength of. Examples of the material having such a dispersion include polymer liquid crystals having a predetermined composition.

このような構成により本発明の広帯域位相板は、410nmおよび660nmの波長帯の、前記基準方向および前記基準方向と直交する方向の直線偏光に対して前記の各位相差を発生させ、直線偏光を円偏光に、円偏光を直線偏光にそれぞれ変換して透過させる。また、780nm波長帯の光に対して、実質的に偏光状態を変化させずに透過させる。   With such a configuration, the broadband phase plate of the present invention generates the respective phase differences with respect to the linearly polarized light in the wavelength direction of 410 nm and 660 nm in the reference direction and the direction orthogonal to the reference direction, and the linearly polarized light is circularly converted. Circular polarized light is converted into linearly polarized light and transmitted through polarized light. In addition, light in the 780 nm wavelength band is transmitted without substantially changing the polarization state.

広帯域位相板が発生する位相差と所望の値との差が大きいと、広帯域位相板に入射した直線偏光は円偏光に変換されず楕円偏光として出射されて再生・記録の信号強度が弱まるので好ましくない。また、広帯域位相板面内の基準方向となす角度が45度となる方向を位相板の見かけの光学軸としたときに、見かけの光学軸が入射する直線偏光の偏光方向に対して所定の角度から傾いていると、やはり所望の位相差が得られず出射光は楕円偏光となり、好ましくない。   If the difference between the phase difference generated by the broadband phase plate and the desired value is large, the linearly polarized light incident on the broadband phase plate is not converted into circularly polarized light and is emitted as elliptically polarized light, which is preferable because the signal strength of reproduction / recording is weakened. Absent. In addition, when the apparent optical axis of the phase plate is a direction where the angle formed with the reference direction in the broadband phase plate surface is 45 degrees, the apparent optical axis is a predetermined angle with respect to the polarization direction of the linearly polarized light incident thereon. If it is inclined from the angle, the desired phase difference cannot be obtained, and the emitted light becomes elliptically polarized light, which is not preferable.

前記基準方向と平行または直交する偏光方向の直線偏光を入射させたときに、前記見かけの光学軸に対して楕円率を計算すると、広帯域位相板が発生させる位相差と所望の値との差が±5度未満のとき、見かけの光学軸が入射する直線偏光の偏光方向に対して所定の角度に対して傾きがない場合は0.92以上、見かけの光学軸が±1度以下の範囲で傾いている場合でも0.91以上の良好な楕円率値が得られる。すなわち広帯域位相板が発生させる位相差と所望の値との差を±5度未満とすれば、±1度以下までの光学軸の傾きがあっても0.90以上の良好な楕円率が得られる。広帯域位相板の位相差と所望の値との差を±4度以下とすると、±2度以下の見かけの光学軸の傾きがあっても楕円率は0.91以上であり、0.90以上の良好な楕円率が得られる。   When the ellipticity is calculated with respect to the apparent optical axis when linearly polarized light having a polarization direction parallel or orthogonal to the reference direction is incident, the difference between the phase difference generated by the broadband phase plate and a desired value is obtained. When it is less than ± 5 degrees, the apparent optical axis is 0.92 or more when there is no inclination with respect to the polarization direction of the linearly polarized light that is incident, and the apparent optical axis is within ± 1 degree. A good ellipticity value of 0.91 or more can be obtained even when tilted. That is, if the difference between the phase difference generated by the broadband phase plate and the desired value is less than ± 5 degrees, a good ellipticity of 0.90 or more can be obtained even if the optical axis tilts to ± 1 degrees or less. It is done. If the difference between the phase difference of the broadband phase plate and the desired value is ± 4 degrees or less, the ellipticity is 0.91 or more even if there is an apparent optical axis inclination of ± 2 degrees or less, and 0.90 or more A good ellipticity can be obtained.

次に、本発明の偏光回折素子について説明する。   Next, the polarization diffraction element of the present invention will be described.

図4(a)は、本発明の偏光回折素子541の概念的な断面構造を示す図である。図4(b)および(c)は、偏光回折素子541の作用を説明するための図である。偏光回折素子541は、第1の回折格子551、第2の回折格子552とを積層され備えていて、石英ガラス基板302、303と、石英ガラス基板302、303の間に挟持された波長410nm帯用の回折格子の凸条部542、波長660nm帯用の回折格子の凸条部543および充填材544とによって構成される。基板302、303は、偏光回折素子541を使用する波長帯において高透過率の材料であれば、石英ガラスに限定されず他の材料からなる基板を用いることもできる。   FIG. 4A is a diagram showing a conceptual cross-sectional structure of the polarization diffraction element 541 of the present invention. 4B and 4C are diagrams for explaining the operation of the polarization diffraction element 541. FIG. The polarization diffraction element 541 includes a first diffraction grating 551 and a second diffraction grating 552 laminated, and a wavelength of 410 nm band sandwiched between the quartz glass substrates 302 and 303 and the quartz glass substrates 302 and 303. Diffractive ridges 542 for the diffraction grating, ridges 543 for the diffraction grating for the wavelength 660 nm band, and filler 544. The substrates 302 and 303 are not limited to quartz glass as long as the materials have high transmittance in the wavelength band in which the polarization diffraction element 541 is used, and substrates made of other materials can also be used.

第1、第2の回折格子551、552は、それぞれ波長410nm帯、波長660nm帯および波長780nm帯の直線偏光を、光の波長と偏光方向に応じて回折または透過させるようになっていて、それぞれが回折または透過させる直線偏光の偏光方向が一致するように積層されている。以下、これらの回折格子が透過させる直線偏光の偏光方向を第1偏光といい、これらの回折格子が回折させる、第1偏光と直交する直線偏光の偏光方向を第2偏光という。   The first and second diffraction gratings 551 and 552 are configured to diffract or transmit linearly polarized light having a wavelength of 410 nm, a wavelength of 660 nm, and a wavelength of 780 nm, respectively, according to the wavelength and direction of polarization of light. Are laminated so that the polarization directions of the linearly polarized light to be diffracted or transmitted coincide with each other. Hereinafter, the polarization direction of linearly polarized light transmitted by these diffraction gratings is referred to as first polarization, and the polarization direction of linearly polarized light that is diffracted by these diffraction gratings and is orthogonal to the first polarization is referred to as second polarization.

第1、第2の回折格子の積層順は問わない。また、図4の断面図のように回折格子面を対向させて積層させてもよく、また、回折格子面を同一方向として積層させてもよい。   The order of stacking the first and second diffraction gratings is not limited. Further, as shown in the cross-sectional view of FIG. 4, the diffraction grating surfaces may be laminated to face each other, or the diffraction grating surfaces may be laminated in the same direction.

ある波長の光を回折させるように設計された回折格子は、近接する他の波長の光をも一部回折させるため、波長410nm帯の第2偏光を回折させる第1の回折格子551は、波長660nm帯の第2偏光に対しても回折作用を持ち、入射した波長660nm帯の第2偏光を、一部回折させ一部を透過する。同様に、波長660nm帯の第2偏光を回折させる第2の回折格子552は、波長410nm帯の第2偏光の光に対しても回折作用を持ち、入射した波長410nm帯の第2偏光の光を、一部回折させ一部を透過する。また、第1、第2の回折格子551、552は、波長780nm帯の第1偏光を透過させるようになっている。   Since the diffraction grating designed to diffract light of a certain wavelength also partially diffracts light of other nearby wavelengths, the first diffraction grating 551 that diffracts the second polarized light with a wavelength of 410 nm has the wavelength It also has a diffractive action on the second polarized light in the 660 nm band, and partially diffracts and transmits a part of the incident second polarized light in the 660 nm band. Similarly, the second diffraction grating 552 that diffracts the second polarized light having a wavelength of 660 nm has a diffraction effect on the second polarized light having a wavelength of 410 nm, and the incident second polarized light having a wavelength of 410 nm. Is partially diffracted and partially transmitted. The first and second diffraction gratings 551 and 552 transmit the first polarized light having a wavelength of 780 nm.

ここで、偏光回折素子541の波長410nm帯の光の利用効率を、波長410nm帯の第2偏光に対する第1の回折格子551の回折効率と第2の回折格子552の透過率との積とし、波長660nm帯の光の利用効率を、波長660nm帯の第2偏光に対する第2の回折格子552の回折効率と第1の回折格子551の透過率との積とする。このとき、偏光回折素子541は、波長410nm帯の光の利用効率が波長660nm帯の光の利用効率よりも高いことが好ましい。この構成とすることにより、本発明の偏光回折素子541を光ヘッド装置に用いたときに、波長660nm帯および780nm帯の光を用いた光記録媒体の読み書きの特性を保ちつつ、光記録媒体による反射率や光検出器での検出感度が低い波長410nm帯の光を有効に利用することができる。   Here, the use efficiency of light in the wavelength 410 nm band of the polarization diffraction element 541 is the product of the diffraction efficiency of the first diffraction grating 551 and the transmittance of the second diffraction grating 552 for the second polarized light in the wavelength 410 nm band, The utilization efficiency of light in the wavelength 660 nm band is the product of the diffraction efficiency of the second diffraction grating 552 and the transmittance of the first diffraction grating 551 for the second polarized light in the wavelength 660 nm band. At this time, it is preferable that the polarization diffraction element 541 has higher utilization efficiency of light having a wavelength of 410 nm than light utilization efficiency of light having a wavelength of 660 nm. With this configuration, when the polarization diffraction element 541 of the present invention is used in an optical head device, the read / write characteristics of the optical recording medium using light in the wavelength of 660 nm band and 780 nm band are maintained, and the optical recording medium is used. Light with a wavelength of 410 nm, which has low reflectance and detection sensitivity with a photodetector, can be used effectively.

このような偏光回折素子541は、第1の回折格子551として、一方向に伸長する、鋸歯形状の断面をもつ凸条部が、周期的かつ互いに平行に形成されたブレーズド回折格子を、第2の回折格子552として、一方向に伸長する、矩形形状の断面をもつ凸条部が、周期的かつ互いに平行に形成された回折格子を、それぞれ用いて、前述のように、それぞれの回折格子に対する第1偏光および第2偏光の方向を一致させて積層させた構成とすることにより実現される。   In such a polarization diffraction element 541, as the first diffraction grating 551, a blazed diffraction grating in which convex portions having a sawtooth-shaped cross section extending in one direction are formed periodically and in parallel with each other is used. As described above, each of the diffraction gratings 552 having a rectangular cross section extending in one direction and having a rectangular cross section formed periodically and in parallel with each other is used as described above. This is realized by adopting a configuration in which the directions of the first polarized light and the second polarized light coincide with each other.

第1の回折格子551は、鋸歯状断面の凸条部を形成する光学異方性材料が、回折格子面内の互いに直交する方向の直線偏光に対して示す屈折率をそれぞれn、n(n≠n)としたときに、nまたはnを充填材544の屈折率と実質的に等しくすることが好ましい。充填剤544と等しい屈折率を示す偏光方向が、第1偏光の偏光方向とされる。 The first diffraction grating 551 has n 1 and n 2 , respectively, that indicate the refractive indexes of the optically anisotropic material forming the ridges having a sawtooth cross-section with respect to linearly polarized light in directions orthogonal to each other within the diffraction grating surface. When (n 1 ≠ n 2 ), it is preferable to make n 1 or n 2 substantially equal to the refractive index of the filler 544. The polarization direction showing the same refractive index as that of the filler 544 is the polarization direction of the first polarization.

このような鋸歯状断面の凸条部をもつブレーズド回折格子は、例えば、光学異方性材料からなる層を形成した後、グレーマスクを用いたドライエッチングにより形成することができる。また、凸条部の断面形状を、鋸歯状形状に代えて、所望の鋸歯状形状を同一のステップ幅で、同一の段差をもつ多段の階段状で近似した形状とした、擬似ブレーズド回折格子とすることもできる。このような擬似ブレーズド回折格子は、開口を変化させた複数のマスクを用いて、形成することができる。階段状の段差は、回折させる波長すなわち405nmを、Δnおよびステップ数で割った値とする。ここで、Δnは、鋸歯状断面の凸条部を構成する光学異方性材料の、波長410nm帯の第2偏光に対する屈折率と充填材の屈折率との差であり、ステップ数は8以上とされる。   Such a blazed diffraction grating having a convex portion having a sawtooth cross section can be formed by, for example, dry etching using a gray mask after forming a layer made of an optically anisotropic material. Further, the pseudo blazed diffraction grating, in which the cross-sectional shape of the ridge portion is replaced with a sawtooth shape, and the desired sawtooth shape is approximated by a multi-stepped shape having the same step width and the same step width; You can also Such a pseudo blazed diffraction grating can be formed by using a plurality of masks whose apertures are changed. The stepped step is a value obtained by dividing the diffracted wavelength, that is, 405 nm by Δn and the number of steps. Here, Δn is the difference between the refractive index of the optically anisotropic material constituting the convex portion of the sawtooth cross section with respect to the second polarized light having a wavelength of 410 nm and the refractive index of the filler, and the number of steps is 8 or more. It is said.

この構成とすることにより、鋸歯状断面の凸条部と充填剤544の屈折率が実質的に等しい第1偏光をそのまま透過させるとともに、屈折率が互いに異なる第2偏光に対しては、波長410nm帯では回折させ、波長660nm帯では一部回折させ一部透過させる回折格子が得られる。   With this configuration, the first polarized light having substantially the same refractive index of the convex portion of the sawtooth section and the filler 544 is transmitted as it is, and the wavelength of 410 nm is applied to the second polarized light having different refractive indexes. A diffraction grating that is diffracted in the band and partially diffracted and partially transmitted in the wavelength 660 nm band is obtained.

第2の回折格子552は、矩形断面の凸条部が一方向に伸長した回折格子とし、矩形断面の凸条部を光学異方性材料で形成し、回折格子面内の互いに直交する方向の直線偏光に対して光学異方性材料が示す屈折率をそれぞれn、n(n≠n)としたときに、nまたはnが充填材544の屈折率と実質的に等しくすることが好ましい。充填剤544と等しい屈折率を示す偏光方向が、第1偏光の偏光方向とされる。 The second diffraction grating 552 is a diffraction grating in which the ridges of the rectangular cross section are extended in one direction, the ridges of the rectangular cross section are formed of an optically anisotropic material, and in the direction perpendicular to each other in the diffraction grating surface When the refractive index of the optically anisotropic material with respect to the linearly polarized light is n 3 and n 4 (n 3 ≠ n 4 ), n 3 or n 4 is substantially equal to the refractive index of the filler 544. It is preferable to do. The polarization direction showing the same refractive index as that of the filler 544 is the polarization direction of the first polarization.

このような鋸歯状断面は、光学異方性材料からなる層を形成した後、ストライプ状のマスクを用いたドライエッチングにより形成することができる。矩形断面の凸条部の高さは、回折させる波長すなわち660nmを、Δnおよび2で割った値とする。ここで、Δnは、矩形断面の凸条部を構成する光学異方性材料の、波長660nm帯の第2偏光に対する屈折率と充填材の屈折率との差である。   Such a sawtooth cross section can be formed by dry etching using a striped mask after forming a layer made of an optically anisotropic material. The height of the convex portion of the rectangular cross section is a value obtained by dividing the wavelength of diffraction, that is, 660 nm by Δn and 2. Here, Δn is the difference between the refractive index of the optically anisotropic material constituting the convex section of the rectangular cross section with respect to the second polarized light in the wavelength 660 nm band and the refractive index of the filler.

この構成とすることにより、矩形断面の凸条部と充填剤544の屈折率が実質的に等しい第1偏光をそのまま透過させるとともに、前記の屈折率が互いに異なる第2偏光に対しては、波長410nm帯では一部回折させ一部透過させて、波長660nm帯では回折させる回折格子が得られる。   By adopting this configuration, the first polarized light having substantially the same refractive index of the ridges having a rectangular cross section and the filler 544 is transmitted as it is, and the second polarized light having a different refractive index is used as a wavelength. A diffraction grating can be obtained that is partially diffracted and partially transmitted in the 410 nm band and diffracted in the wavelength 660 nm band.

第1および第2の回折格子の光学異方性材料としては、液晶を重合硬化させた高分子液晶を用いると、材料を選ぶことにより屈折率の調整が可能で、基板の配向処理により所望の屈折率を示す方向を制御でき、また、格子の加工が容易なため好ましい。   As the optically anisotropic material of the first and second diffraction gratings, when a polymer liquid crystal obtained by polymerizing and curing liquid crystal is used, the refractive index can be adjusted by selecting the material, and the desired refractive index can be adjusted by aligning the substrate. The direction showing the refractive index can be controlled, and the grating can be easily processed, which is preferable.

高分子液晶を用いた回折格子面は、2枚の基板を、前述の所望の段差が得られるように決められたギャップで対向配置させたセル中に、重合性液晶を注入し、光照射や熱重合により重合硬化させて高分子液晶層を形成し、次いで一方の基板を除去して、フォトリソグラフィグラフィおよびエッチングにより高分子液晶層を加工して、作製される。2枚の基板の、液晶が接する面に、配向膜を形成して一方向にラビングする配向処理を施して液晶分子が揃う方向を制御することにより、第1偏光および第2偏光に対して所望の屈折率を示す光学異方性材料層が得られる。   A diffraction grating surface using a polymer liquid crystal is prepared by injecting a polymerizable liquid crystal into a cell in which two substrates are arranged to face each other with a gap determined so as to obtain the desired level difference. A polymer liquid crystal layer is formed by polymerizing and curing by thermal polymerization, and then one substrate is removed and the polymer liquid crystal layer is processed by photolithography and etching. By controlling the direction in which the liquid crystal molecules are aligned by forming an alignment film on the surface of the two substrates in contact with the liquid crystal and rubbing in one direction, the desired direction for the first polarization and the second polarization is obtained. An optically anisotropic material layer having a refractive index of 1 is obtained.

第1および第2の回折格子の凸条部が伸長する方向は、第1および第2偏光の方向によらず、任意に決めることができる。すなわち、光ヘッド装置に組み込んだときに、戻り光が光検出器の所望の受光面に導かれるように、決められる。   The direction in which the ridges of the first and second diffraction gratings extend can be arbitrarily determined regardless of the directions of the first and second polarizations. That is, it is determined so that the return light is guided to a desired light receiving surface of the photodetector when incorporated in the optical head device.

また、第1および第2の回折格子を、回折格子面内が複数の領域からなる回折格子とし、それぞれの領域の、周期的かつ互いに平行で一方向に伸長する凸条部が伸長する方向を、互いに異なる所定の方向とする構成により、フォーカスエラー信号および/またはトラッキング信号の検出に必要な光ビームを生成させることができる。   Further, the first and second diffraction gratings are diffraction gratings having a plurality of regions in the diffraction grating surface, and the direction in which the protruding strips extending in one direction in each region are periodically parallel to each other is extended. With the configuration in which the predetermined directions are different from each other, it is possible to generate a light beam necessary for detecting the focus error signal and / or the tracking signal.

以下、本発明の広帯域位相板と他の光学素子とを積層一体化した積層光学素子について説明する。   Hereinafter, a laminated optical element in which the broadband phase plate of the present invention and another optical element are laminated and integrated will be described.

本発明の広帯域位相板を、他の光学素子と積層一体化して積層光学素子とすると、光ヘッド装置を構成する部品数をさらに減らすことができ、また調整が容易になり好ましい。その場合、複屈折層が1枚の透明基板上に保持されている前記構成とすることが、積層光学素子の厚さを薄型化や軽量化が図れるためより好ましい。積層一体化する他の素子としては、入射した直線偏光の光束の偏光方向によって光束を直進透過させたり回折させたりする偏光回折素子が好ましく例示される。図5に、広帯域位相板と偏光回折素子とが積層一体化された積層光学素子の一例の概略断面図を示す。この場合、本発明の広帯域位相板305は1枚の石英ガラス基板301上に複屈折層304が保持された構成とされている。また、偏光回折素子は、410nm波長帯用偏光回折素子306が形成された石英ガラス基板302と、660nm波長帯用偏光回折素子307が形成された石英ガラス基板303とを、偏光回折素子が形成された面を対向させて積層し、2枚の基板間を等方性透明材料からなる充填材308で充填した構成とされている。すなわち、積層光学素子は、波長410nm帯および660nm帯における所定の偏光方向の直線偏光、すなわち第1偏光を、偏光回折素子306、307は直進透過させ、広帯域位相板305は略円偏光に変換するように、また、所定の偏光方向と直交する偏光方向の直線偏光、すなわち第2偏光を偏光回折素子306、307が回折させるように、広帯域位相板305と、石英基板302と303に挟持された偏光回折素子306、307とを、方向を揃えて積層一体化して作製される。   When the broadband phase plate of the present invention is laminated and integrated with other optical elements to form a laminated optical element, the number of parts constituting the optical head device can be further reduced, and adjustment is facilitated. In that case, it is more preferable that the birefringent layer is held on a single transparent substrate because the thickness of the laminated optical element can be reduced and the weight can be reduced. As another element to be laminated and integrated, a polarization diffraction element that linearly transmits or diffracts a light beam depending on the polarization direction of the incident linearly polarized light beam is preferably exemplified. FIG. 5 shows a schematic cross-sectional view of an example of a laminated optical element in which a broadband phase plate and a polarization diffraction element are laminated and integrated. In this case, the broadband phase plate 305 of the present invention is configured such that a birefringent layer 304 is held on a single quartz glass substrate 301. The polarization diffraction element is formed by combining a quartz glass substrate 302 on which a 410 nm wavelength band polarization diffraction element 306 is formed and a quartz glass substrate 303 on which a 660 nm wavelength band polarization diffraction element 307 is formed. The two surfaces are laminated so that the two substrates are filled with a filler 308 made of an isotropic transparent material. That is, the laminated optical element transmits linearly polarized light in a predetermined polarization direction in the wavelength 410 nm band and the 660 nm band, that is, the first polarized light, the polarization diffraction elements 306 and 307 pass straight through, and the broadband phase plate 305 converts it into substantially circular polarized light. In addition, the linearly polarized light in the polarization direction orthogonal to the predetermined polarization direction, that is, the second polarized light is sandwiched between the broadband phase plate 305 and the quartz substrates 302 and 303 so that the polarization diffraction elements 306 and 307 diffract the light. The polarization diffraction elements 306 and 307 are manufactured by stacking and integrating the directions.

以下、本発明の広帯域位相板と本発明の偏光回折素子とを積層一体化した積層光学素子540の作用について、図6(b)および(c)を用いて説明する。   Hereinafter, the operation of the laminated optical element 540 in which the broadband phase plate of the present invention and the polarization diffraction element of the present invention are laminated and integrated will be described with reference to FIGS. 6B and 6C.

積層光学素子540は、図6(a)に示した概念的な断面構造のように、石英ガラス基板301、302に挟持された広帯域位相板305と、石英ガラス基板302、303に挟持された偏光回折素子541とが積層されて構成される。石英ガラス基板302は、共通に用いられている。この構成により、積層光学素子540は、偏光回折格子541側から入射した波長410nm帯、660nm帯および780nm帯の第1偏光を、それぞれ円偏光、円偏光および第1偏光に変換して直進透過させ、積層光学素子540の広帯域位相板305側から入射した波長410nm帯、660nm帯の逆回りの円偏光を、いずれも第2偏光に変換し、回折して出射させる。また、広帯域位相板305側から入射した波長780nm帯の第1偏光を、偏光状態を実質的に変えずに直進透過させる。   The laminated optical element 540 includes a broadband phase plate 305 sandwiched between the quartz glass substrates 301 and 302 and a polarization sandwiched between the quartz glass substrates 302 and 303 as in the conceptual cross-sectional structure illustrated in FIG. A diffractive element 541 is laminated. The quartz glass substrate 302 is commonly used. With this configuration, the laminated optical element 540 converts the first polarized light with wavelengths of 410 nm, 660 nm, and 780 nm incident from the polarization diffraction grating 541 side into circularly polarized light, circularly polarized light, and first polarized light, respectively, and transmits them straight. The circularly polarized light in the reverse direction of the wavelength 410 nm band and the 660 nm band incident from the broadband phase plate 305 side of the laminated optical element 540 is converted into the second polarized light, and is diffracted and emitted. Further, the first polarized light having a wavelength of 780 nm that is incident from the broadband phase plate 305 side is transmitted in a straight line without substantially changing the polarization state.

なお、積層光学素子540は、波長780nm帯の光を回折させる回折格子がさらに積層された構成としてもよい。このように構成することによって、光ヘッド装置の一層の小型化が可能となる。   The laminated optical element 540 may have a configuration in which diffraction gratings that diffract light having a wavelength of 780 nm band are further laminated. With this configuration, the optical head device can be further reduced in size.

(第2の実施の形態)
図7は、本発明の第2の実施の形態に係る光ヘッド装置の第2の構成例を示すブロック図である。図7において、光ヘッド装置500は、波長410nm帯の直線偏光の光束を出射する第1の光源511と、波長660nm帯の直線偏光の光束を出射する第2の光源528と、第1の光源511から出射された光束と第2の光源528から出射された光束とを合波する合波手段529と、合波された光束を平行光束化する第1のコリメータ512と、第1のコリメータ512を透過した光束の一部を反射し、残りを透過させる偏光ビームスプリッタ513と、偏光ビームスプリッタ513で反射した光束を受光して光記録媒体600に向かう光束の光量をモニタする第1のモニタ用光検出器514と、光記録媒体600で反射した波長410nm帯の光束の戻り光を受光する第1の光検出器516と、第1の光検出器516上に上記の戻り光を集光する第1の集光レンズ515と、波長780nm帯の直線偏光の光束を出射する第3の光源521と、第3の光源521が出射した光束を複数のビームに変換するビーム変換用回折格子522と、入射した光束の一部を透過させ、残りを反射させるビームスプリッタ523と、ビームスプリッタ523で反射した光束を平行光束化する第2のコリメータ524と、ビームスプリッタ523を透過した光束を受光して光記録媒体600に向かう光束の光量をモニタする第2のモニタ用光検出器525と、光記録媒体600で反射した波長780nm帯の戻り光を受光する第2の光検出器527と、第2の光検出器527上に波長780nm帯の戻り光を集光する第2の集光レンズ526と、偏光ビームスプリッタ513を透過した光束と第2のコリメータ524を透過した光束を合波する合波手段531と、偏光回折素子と広帯域位相板とが積層された積層光学素子540と、積層光学素子540を出射した光束を光記録媒体600に集光させる対物レンズ532とを備えている。ここで、偏光回折素子と広帯域位相板とは、第1の実施形態におけるものと同様である。
(Second Embodiment)
FIG. 7 is a block diagram showing a second configuration example of the optical head apparatus according to the second embodiment of the present invention. In FIG. 7, an optical head device 500 includes a first light source 511 that emits a linearly polarized light beam having a wavelength of 410 nm, a second light source 528 that emits a linearly polarized light beam having a wavelength of 660 nm, and a first light source. 511 for combining the light beam emitted from the light source 511 and the light beam emitted from the second light source 528, a first collimator 512 for converting the combined light beam into a parallel light beam, and a first collimator 512. A first portion for monitoring the light quantity of the light beam directed to the optical recording medium 600 by receiving the light beam reflected by the polarization beam splitter 513 and receiving the light beam reflected by the polarization beam splitter 513. The photodetector 514, the first photodetector 516 that receives the return light of the light beam having a wavelength of 410 nm reflected by the optical recording medium 600, and the return on the first photodetector 516. A first condensing lens 515 that collects light, a third light source 521 that emits a linearly polarized light beam having a wavelength of 780 nm, and a beam conversion that converts the light beam emitted by the third light source 521 into a plurality of beams. A diffraction grating 522, a beam splitter 523 that transmits a part of the incident light beam and reflects the remainder, a second collimator 524 that converts the light beam reflected by the beam splitter 523 into a parallel light beam, and a light beam that has passed through the beam splitter 523 The second monitor photodetector 525 that monitors the amount of the light flux that travels toward the optical recording medium 600 and the second photodetector 527 that receives the return light having a wavelength of 780 nm reflected by the optical recording medium 600. A second condenser lens 526 that condenses the return light having a wavelength of 780 nm on the second photodetector 527 and a light beam that has passed through the polarization beam splitter 513. Multiplexing means 531 for combining the light beams transmitted through the second collimator 524, a laminated optical element 540 in which a polarization diffraction element and a broadband phase plate are laminated, and a light beam emitted from the laminated optical element 540 as an optical recording medium 600 And an objective lens 532 for condensing the light. Here, the polarization diffraction element and the broadband phase plate are the same as those in the first embodiment.

第1の光源511、第2の光源528および第3の光源521は、それぞれ波長405nm、660nm、780nmの直線偏光の光束を出射する半導体レーザ等である。ビーム変換用回折格子522は、波長780nm帯の直線偏光を例えば3ビーム等の複数ビームにするようになっている。コリメータ512、524は、入射光を平行光束化するようになっている。偏光ビームスプリッタ513は入射光を偏光方向に応じて反射または透過させるようになっている。   The first light source 511, the second light source 528, and the third light source 521 are semiconductor lasers or the like that emit linearly polarized light beams having wavelengths of 405 nm, 660 nm, and 780 nm, respectively. The beam conversion diffraction grating 522 is configured to convert linearly polarized light having a wavelength of 780 nm into a plurality of beams such as three beams. The collimators 512 and 524 convert incident light into parallel light fluxes. The polarization beam splitter 513 reflects or transmits incident light according to the polarization direction.

モニタ用光検出器514、525および光検出器516、527は、入射光の光量に応じた電気信号を出力するようになっている。集光レンズ515、526は、入射光をそれぞれ光検出器516、527の受光面上に集光するようになっている。合波手段531は、入射した波長410nm帯の直線偏光、波長660nm帯の直線偏光および波長780nm帯の直線偏光とを合波するようになっている。対物レンズ532は入射した光を光記録媒体600上に集光するようになっている。   The monitor photodetectors 514 and 525 and the photodetectors 516 and 527 output an electrical signal corresponding to the amount of incident light. The condensing lenses 515 and 526 condense incident light on the light receiving surfaces of the photodetectors 516 and 527, respectively. The multiplexing means 531 multiplexes the incident linearly polarized light having a wavelength of 410 nm, the linearly polarized light having a wavelength of 660 nm, and the linearly polarized light having a wavelength of 780 nm. The objective lens 532 condenses incident light on the optical recording medium 600.

以下、本発明の第2の実施の形態に係る光ヘッド装置500の作用について説明する。   The operation of the optical head device 500 according to the second embodiment of the present invention will be described below.

この光ヘッド装置500では、積層光学素子540は、偏光回折素子と広帯域位相板とが積層されていて、光源側に偏光回折素子が、光記録媒体側に広帯域位相板が、それぞれ置かれて配置されている。   In this optical head device 500, the laminated optical element 540 is formed by laminating a polarization diffraction element and a broadband phase plate, and placing a polarization diffraction element on the light source side and a broadband phase plate on the optical recording medium side. Has been.

第1の光源511および第2の光源528が出射した波長410nm帯および660nm帯の直線偏光のうち、偏光ビームスプリッタ513を透過する成分が、第1偏光として積層光学素子540に入射するように構成され、第2偏光成分は、偏光ビームスプリッタ513で反射される。同様に、第3の光源521が出射した波長780nm帯の直線偏光は、第1偏光として積層光学素子540に入射するように構成されている。   Of the linearly polarized light in the wavelength range of 410 nm and 660 nm emitted from the first light source 511 and the second light source 528, the component transmitted through the polarization beam splitter 513 is incident on the laminated optical element 540 as the first polarized light. Then, the second polarization component is reflected by the polarization beam splitter 513. Similarly, linearly polarized light having a wavelength of 780 nm band emitted from the third light source 521 is configured to enter the laminated optical element 540 as the first polarized light.

第1の光源511を出射した波長410nm帯の直線偏光は、合波手段529を透過し、第1のコリメータ512を透過して平行光束化され、偏光ビームスプリッタ513に入射する。偏光ビームスプリッタ513に入射した波長410nm帯の直線偏光は、偏光ビームスプリッタ513を透過する第1偏光と偏光ビームスプリッタ513で反射する第2偏光とに振り分けられる。   The linearly polarized light having a wavelength of 410 nm emitted from the first light source 511 is transmitted through the multiplexing unit 529, is transmitted through the first collimator 512, is converted into a parallel beam, and is incident on the polarization beam splitter 513. The linearly polarized light having a wavelength of 410 nm incident on the polarizing beam splitter 513 is distributed into a first polarized light that passes through the polarizing beam splitter 513 and a second polarized light that is reflected by the polarizing beam splitter 513.

偏光ビームスプリッタ513で反射した波長410nm帯の第2偏光は第1のモニタ用光検出器514に入射し、第1のモニタ用光検出器514によって第1の光源511の出射光量が検出される。偏光ビームスプリッタ513を透過した波長410nm帯の第1偏光は、合波手段531を透過し、積層光学素子540の偏光回折素子にまず入射し直進透過して広帯域位相板で円偏光に変換されて直進して出射する。   The second polarized light having a wavelength of 410 nm reflected by the polarizing beam splitter 513 is incident on the first monitor photodetector 514, and the first monitor photodetector 514 detects the amount of light emitted from the first light source 511. . The first polarized light having a wavelength of 410 nm transmitted through the polarizing beam splitter 513 is transmitted through the combining means 531, first incident on the polarization diffraction element of the laminated optical element 540, transmitted straight, and converted into circularly polarized light by the broadband phase plate. Go straight ahead and exit.

積層光学素子540を出射した波長410nm帯の円偏光は、対物レンズ532で光記録媒体600上に集光され、光記録媒体600で反射されて逆回りの円偏光の戻り光となる。波長410nm帯の戻り光は、対物レンズ532を透過し、積層光学素子540の広帯域位相板にまず入射して第2偏光に変換され、偏光回折素子で所定の角度回折してフォーカスエラー信号検出用の光束が生成される。次いで、合波手段531を透過し、偏光ビームスプリッタ513で反射され、第1の集光レンズ515によって第1の光検出器516上の受光面に集光され、第1の光検出器516によって情報が読み出される。   The circularly polarized light having a wavelength of 410 nm emitted from the laminated optical element 540 is condensed on the optical recording medium 600 by the objective lens 532, reflected by the optical recording medium 600, and becomes reversely circularly polarized return light. The return light having a wavelength of 410 nm is transmitted through the objective lens 532, first incident on the broadband phase plate of the laminated optical element 540, converted into the second polarized light, and diffracted at a predetermined angle by the polarization diffraction element for detecting a focus error signal. Are generated. Next, the light is transmitted through the multiplexing unit 531, reflected by the polarization beam splitter 513, collected on the light receiving surface on the first photodetector 516 by the first condenser lens 515, and collected by the first photodetector 516. Information is read.

第2の光源528が出射した波長660nm帯の直線偏光は、合波手段529を反射して、波長410nm帯の場合と同様に、第1のコリメータ512、偏光ビームスプリッタ513、合波手段531を経て、積層光学素子540に第1偏光として入射する。偏光ビームスプリッタ513で反射した波長660nm帯の第2偏光は、波長410nm帯の場合と同様に、第1のモニタ用光検出器514に入射し、第2の光源528の出射光量が検出される。積層光学素子540に入射した波長660nm帯の第1偏光は、波長410nm帯の場合と同様に、偏光回折素子を直進透過し広帯域位相板で円偏光に変換されて、積層光学素子540を円偏光として直進して出射する。   The linearly polarized light of the wavelength 660 nm band emitted from the second light source 528 reflects the multiplexing means 529, and the first collimator 512, the polarization beam splitter 513, and the multiplexing means 531 are reflected in the same manner as in the case of the wavelength 410nm band. Then, the light enters the laminated optical element 540 as the first polarized light. The second polarized light having a wavelength of 660 nm reflected by the polarization beam splitter 513 is incident on the first monitor photodetector 514 and the amount of light emitted from the second light source 528 is detected, as in the case of the wavelength of 410 nm. . As in the case of the wavelength 410 nm band, the first polarized light having a wavelength of 660 nm that is incident on the laminated optical element 540 passes through the polarization diffraction element and is converted into circularly polarized light by the broadband phase plate, and the laminated optical element 540 is circularly polarized. Go straight ahead and exit.

積層光学素子540を出射した波長660nm帯の円偏光は、対物レンズ532で光記録媒体600上に集光され、光記録媒体600で反射されて逆回りの円偏光の戻り光となる。波長660nm帯の戻り光は、対物レンズ532を透過し、波長410nm帯の場合と同様に、積層光学素子540の、広帯域位相板により第2偏光に変換され、偏光回折素子により所定の角度回折してフォーカスエラー信号検出用の光束が生成される。次いで、合波手段531、偏光ビームスプリッタ513、第1の集光レンズ515を経て、第1の光検出器516上の受光面に集光され、第1の光検出器516によって情報が読み出される。   The circularly polarized light having a wavelength of 660 nm band emitted from the laminated optical element 540 is condensed on the optical recording medium 600 by the objective lens 532, reflected by the optical recording medium 600, and becomes reversely circularly polarized return light. The return light of the wavelength 660 nm band is transmitted through the objective lens 532, converted into the second polarized light by the broadband phase plate of the laminated optical element 540, and diffracted by a predetermined angle by the polarization diffraction element, as in the case of the wavelength 410nm band. Thus, a light beam for detecting a focus error signal is generated. Next, the light is condensed on the light receiving surface on the first photodetector 516 through the multiplexing means 531, the polarization beam splitter 513, and the first condenser lens 515, and information is read out by the first photodetector 516. .

また、第3の光源521が出射した波長780nm帯の直線偏光は、ビーム変換用回折格子522で例えば3ビーム化されてビームスプリッタ523に入射し、一部がビームスプリッタ523を透過して第2のモニタ用光検出器525に入射し、第3の光源521の出射光量がモニタされる。ビームスプリッタ523で反射された直線偏光は、合波手段531で反射して第1偏光として積層光学素子540に入射し、偏光状態を実質的に変化されずに積層光学素子540を、直進透過する。   Further, the linearly polarized light having a wavelength of 780 nm emitted from the third light source 521 is converted into, for example, three beams by the beam conversion diffraction grating 522 and is incident on the beam splitter 523, and a part of the linearly polarized light is transmitted through the beam splitter 523. , The amount of light emitted from the third light source 521 is monitored. The linearly polarized light reflected by the beam splitter 523 is reflected by the combining means 531 and enters the laminated optical element 540 as the first polarized light, and passes straight through the laminated optical element 540 without substantially changing the polarization state. .

積層光学素子540を出射した波長780nm帯の第1偏光は、対物レンズ532で光記録媒体600上に集光され、光記録媒体600で反射されて第1偏光の戻り光となる。戻り光は、対物レンズ532を透過し、積層光学素子540を再び直進透過し、合波手段531で反射し、ビームスプリッタ523を透過して、第2の集光レンズ526によって、第2の光検出器527上の受光面に集光される。第2の光検出器527によって情報が読み出される。   The first polarized light having a wavelength of 780 nm emitted from the laminated optical element 540 is condensed on the optical recording medium 600 by the objective lens 532, reflected by the optical recording medium 600, and becomes return light of the first polarized light. The return light passes through the objective lens 532, travels straight through the laminated optical element 540 again, is reflected by the multiplexing means 531, passes through the beam splitter 523, and is transmitted through the second condenser lens 526 to the second light. The light is collected on the light receiving surface on the detector 527. Information is read by the second photodetector 527.

(第3の実施の形態)
図8は、本発明の第3の実施の形態に係る光ヘッド装置の第3の構成例を示すブロック図である。図8において、光ヘッド装置700は、波長410nm帯、660nm帯および780nm帯の直線偏光の光束を出射する光源711と、偏光回折素子と広帯域位相板とが積層された積層光学素子540に、波長780nm帯の光束を直進透過させるとともに一部回折させる波長780nm帯用の回折格子721をさらに積層した3波長用積層光学素子720と、コリメータ712と、対物レンズ713と、光検出器714と、を備えている。ここで、偏光回折素子、広帯域位相板と、それらが積層された積層光学素子とは、第1の実施形態におけるものと同様である。
(Third embodiment)
FIG. 8 is a block diagram showing a third configuration example of the optical head apparatus according to the third embodiment of the present invention. In FIG. 8, an optical head device 700 includes a light source 711 that emits linearly polarized light beams having wavelengths of 410 nm, 660 nm, and 780 nm, and a laminated optical element 540 in which a polarization diffraction element and a broadband phase plate are laminated. A three-wavelength laminated optical element 720 further laminated with a diffraction grating 721 for a wavelength of 780 nm that allows a light beam in the 780 nm band to pass straight through and partially diffract, a collimator 712, an objective lens 713, and a photodetector 714. I have. Here, the polarization diffraction element, the broadband phase plate, and the laminated optical element in which they are laminated are the same as those in the first embodiment.

ここで、光源711から出射される波長410nm帯および660nm帯の光束は直線偏光であって偏光方向はともに第1偏光とする。波長780nm帯の光束はコヒーレントで有れば、円偏光でも楕円偏光でもよいが、上記の第1偏光とすると、波長780nm帯の光の利用効率を高くできるため、好適である。   Here, it is assumed that the light beams in the wavelength range of 410 nm and 660 nm emitted from the light source 711 are linearly polarized light and the polarization direction is both the first polarized light. The light beam in the wavelength band of 780 nm may be either circularly polarized light or elliptically polarized light as long as it is coherent. However, the first polarized light described above is preferable because the use efficiency of light in the wavelength band of 780 nm can be increased.

波長780nm帯用の回折格子721は偏光型である必要はなく、例えば、透明基板の一方の面に、一方向に伸長する、透明材料からなる凸条部が周期的かつ互いに平行に形成されている無偏光回折素子を用いることができる。また、波長780nm帯用の回折格子721は、少なくとも1枚の透明基板の一方の面に、一方向に伸長する、光学多層膜からなる凸条部が周期的かつ互いに平行に形成されていて、前記凸条部の間の凹部の空間部分を満たすように、かつ、前記凸条部の最上面を覆うまで透明な充填材料によって充填、被覆された構造を有する回折格子を用いることがより好ましい。この構成とすると、波長780nm帯の光を選択的に一部回折するとともに一部を透過させ、また波長410nm帯および660nm帯の光を実質的に回折させずに透過させることができるためである。   The diffraction grating 721 for the wavelength of 780 nm band does not need to be a polarization type. For example, convex strips made of a transparent material extending in one direction are periodically and parallel to each other on one surface of the transparent substrate. An unpolarized diffraction element can be used. Further, the diffraction grating 721 for a wavelength of 780 nm band has, on one surface of at least one transparent substrate, ridges made of an optical multilayer film extending in one direction are formed periodically and parallel to each other. It is more preferable to use a diffraction grating having a structure filled and covered with a transparent filling material so as to fill the space portion of the concave portion between the convex portions and cover the uppermost surface of the convex portion. This is because the light in the wavelength band of 780 nm can be selectively diffracted and partially transmitted, and the light in the wavelengths of 410 nm and 660 nm can be transmitted without being substantially diffracted. .

このような波長780nm帯用の回折格子721は、より具体的には以下のようにして形成することができる。まず、石英ガラス、ガラスなどの透明基板上に、真空蒸着法、スパッタリング法などにより、使用波長における光学吸収が十分に小さい、屈折率nの低屈折率材料層と、屈折率nの高屈折率材料層と、を所定の膜厚で積層した光学多層膜を形成する。各層の材料としては、SiO、SiON、ZrO、Ta、Nb、TiO、Al、MgFなどの無機材料や、有機材料を用いることができるが、低屈折率材料層としてはSiO、高屈折率材料層としてはTaが好ましく例示される。 More specifically, the diffraction grating 721 for the wavelength of 780 nm band can be formed as follows. First, on a transparent substrate such as quartz glass or glass, a low refractive index material layer having a refractive index n L and a high refractive index n H having a sufficiently small optical absorption at a wavelength used by a vacuum deposition method, a sputtering method, or the like. An optical multilayer film in which a refractive index material layer is laminated with a predetermined film thickness is formed. As the material of each layer, inorganic materials such as SiO 2 , SiON, ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , TiO 2 , Al 2 O 3 , MgF 2 , and organic materials can be used. Preferred examples of the refractive index material layer include SiO 2 and examples of the high refractive index material layer include Ta 2 O 5 .

光学多層膜の各層の膜厚構成は、光学膜厚の和(n+n)が、反射帯波長λの(2m+1)/2倍(ただしmは0または正の整数)となるように、それぞれの膜厚が決められた、膜厚dの低屈折材料層と、膜厚dの高屈折率材料層との2層からなる組を、交互に積層し、かつ、積層された光学多層膜の平均屈折率、すなわち、各層の光学膜厚の総和を総膜厚で除した値が、後述する充填剤の屈折率nと、波長410nm帯および660nm帯において実質的に等しくなるようにされた膜構成を基本構成として決められる。ここで反射帯波長λは、波長410nm帯、660nm帯および780nm帯の3つの波長帯の光を透過させるように決められた波長で、720nmとされる。 As for the film thickness configuration of each layer of the optical multilayer film, the sum of the optical film thicknesses (n L d L + n H d H ) is (2m + 1) / 2 times the reflection band wavelength λ r (where m is 0 or a positive integer) A set of two layers of a low-refractive material layer having a thickness d L and a high-refractive index material layer having a thickness d H , each having a determined thickness, are alternately stacked, and The average refractive index of the laminated optical multilayer film, that is, the value obtained by dividing the total optical film thickness of each layer by the total film thickness is substantially equal to the refractive index n M of the filler, which will be described later, and the wavelengths of 410 nm and 660 nm. The film configuration that is made equal to each other is determined as the basic configuration. Here, the reflection band wavelength λ r is a wavelength determined to transmit light in the three wavelength bands of the 410 nm band, the 660 nm band, and the 780 nm band, and is 720 nm.

次いで、この光学多層膜を、フォトリソグラフィとドライエッチングにより加工して、一方向に伸長するストライプ状の、光学多層膜からなる凸条部と、光学多層膜が除去されて基板面が露出された凹部とが、互いに平行かつ周期的に形成された格子状とする。さらに、凹部を充填するとともに凸条部の周囲を覆って表面が平滑となるように、屈折率nMの充填材からなる層を形成して、波長780nm帯用の回折格子が得られる。このようにして得られた波長780nm帯用の回折格子は、波長780nm帯の光を直進透過させるとともに一部回折させ、波長410nm帯および660nm帯の光は回折させずに直進透過させる。   Next, this optical multilayer film was processed by photolithography and dry etching, and the strip-shaped convex stripes extending in one direction and the optical multilayer film were removed to expose the substrate surface. The recesses are formed in a lattice shape formed in parallel and periodically. Further, a layer made of a filler having a refractive index of nM is formed so as to fill the concave portion and cover the periphery of the convex portion so as to have a smooth surface, whereby a diffraction grating for a wavelength of 780 nm band is obtained. The diffraction grating for the wavelength of 780 nm band obtained in this manner allows light in the wavelength of 780 nm band to pass straight through and partly diffracts, and allows light in the wavelengths of 410 nm and 660 nm to pass through without being diffracted.

このとき、前述の光学多層膜は、前記基本構成から、さらに全積層数と各層の膜厚を微調整することが好ましく、また、充填材には、使用する波長に対して光学吸収が十分に小さい材料を用いることが好ましく、SiO、SiONなどの酸化物、酸窒化物や、アクリル樹脂、エポキシ樹脂などの有機物材料や、含フッ素芳香族ポリマー材料、液晶などの複屈折性材料などを用いることができる。 At this time, it is preferable that the above-mentioned optical multilayer film further finely adjust the total number of layers and the film thickness of each layer from the basic configuration, and the filler has sufficient optical absorption for the wavelength used. Small materials are preferably used, and oxides such as SiO 2 and SiON, oxynitrides, organic materials such as acrylic resins and epoxy resins, fluorine-containing aromatic polymer materials, and birefringent materials such as liquid crystals are used. be able to.

この光ヘッド装置700の構成では、3波長用積層光学素子720は、偏光回折素子と広帯域位相板とが積層された積層光学素子540に、さらに波長780nm帯用の回折格子721が積層されていて、この構成により、光ヘッド装置の一層の小型化が可能となる。このとき、3波長用積層光学素子720において、第1および第2の偏光回折格子は、広帯域位相板層より光源側に置かれていれば、積層する順番や回折格子面の方向は任意である。また、波長780nm帯用の回折格子721は、この3波長用積層光学素子中で積層される順番や方向は任意である。   In the configuration of this optical head device 700, the three-wavelength laminated optical element 720 includes a laminated optical element 540 in which a polarization diffraction element and a broadband phase plate are laminated, and a diffraction grating 721 for a wavelength of 780 nm band. With this configuration, the optical head device can be further reduced in size. At this time, in the three-wavelength laminated optical element 720, the first and second polarizing diffraction gratings are placed on the light source side from the broadband phase plate layer, and the order of lamination and the direction of the diffraction grating surface are arbitrary. . Further, the order and direction in which the diffraction grating 721 for the wavelength of 780 nm band is laminated in the laminated optical element for three wavelengths is arbitrary.

以下、本発明の第の実施の形態に係る光ヘッド装置700の作用について説明する。光源711を出射した波長410nm帯および660nm帯の第1偏光の直線偏光は、3波長用積層光学素子720を円偏光に変換されて直進透過し、コリメータ712を透過して平行光束化され、対物レンズ713で光記録媒体600上に集光される。光記録媒体600で反射された波長410nm帯および660nm帯の戻り光は、対物レンズ713およびコリメータ712を透過し、3波長用積層光学素子720でともに第2偏光に変換されると共に所定の角度で回折されてフォーカスエラー信号検出用の光束が生成され、光検出器714上の受光面に入射し、光検出器714によって情報が読み出される。 The operation of the optical head device 700 according to the third embodiment of the present invention will be described below. The linearly polarized light of the first polarized light having a wavelength of 410 nm and 660 nm emitted from the light source 711 is converted into circularly polarized light through the three-wavelength laminated optical element 720, and is transmitted through the collimator 712 to be converted into a parallel light beam. The light is condensed on the optical recording medium 600 by the lens 713. The return light in the wavelength range of 410 nm and 660 nm reflected by the optical recording medium 600 is transmitted through the objective lens 713 and the collimator 712, and is converted into the second polarized light by the three-wavelength laminated optical element 720 and at a predetermined angle. The light beam is diffracted to generate a focus error signal detection light, which is incident on the light receiving surface on the photodetector 714, and information is read by the photodetector 714.

光源711を出射した波長780nm帯の光束は、3波長用積層光学素子720を構成する積層光学素子540をほぼ直進透過し、波長780nm帯用の回折格子721を一部の回折する部分を除き直進透過する。3波長用積層光学素子720を透過した波長780nm帯の光束は、コリメータ712を透過して平行光束化され、対物レンズ713で光記録媒体600上に集光され、光記録媒体600で反射されて戻り光となる。波長780nm帯の戻り光は、対物レンズ713およびコリメータ712を透過し、3波長用積層光学素子720を構成する波長780nm帯用の回折格子721の作用により所定の角度で回折され、光検出器714上の受光面に入射し、光検出器714によって情報が読み出される。   The light beam having a wavelength of 780 nm band emitted from the light source 711 passes through the laminated optical element 540 constituting the three-wavelength laminated optical element 720 substantially straightly and goes straight except for a part of the diffraction grating 721 for the wavelength 780 nm band that is diffracted. To Penetrate. The light beam in the wavelength band of 780 nm that has passed through the three-wavelength laminated optical element 720 is transmitted through the collimator 712 to be converted into a parallel light beam, collected on the optical recording medium 600 by the objective lens 713, and reflected by the optical recording medium 600. Return light. The return light in the wavelength band of 780 nm passes through the objective lens 713 and the collimator 712, and is diffracted at a predetermined angle by the action of the diffraction grating 721 for wavelength band of 780 nm that constitutes the three-wavelength laminated optical element 720. The light is incident on the upper light receiving surface, and information is read out by the photodetector 714.

なお、上記では、光源711を出射した光束の光量を検出するためのビームスプリッタと光検出器等からなるモニタ手段が設けられていない構成について説明したが、係るモニタ手段を所定の光路中に設けた構成としてもよい。   In the above description, a configuration is described in which a monitor unit including a beam splitter and a photodetector for detecting the amount of light emitted from the light source 711 is not provided. However, such a monitor unit is provided in a predetermined optical path. It is good also as a structure.

以下に本願発明を、例を挙げてさらに具体的に説明するが、本願発明は以下の説明に限定されるものではない。例1〜3および例5〜9は実施例で、例4は比較例である。   Hereinafter, the present invention will be described more specifically with examples, but the present invention is not limited to the following description. Examples 1 to 3 and Examples 5 to 9 are examples, and Example 4 is a comparative example.

[例1]
まず、高分子液晶からなる複屈折材料1層で構成された広帯域位相板について、図2の模式的断面図を用いて説明する。
[Example 1]
First, a broadband phase plate composed of one layer of birefringent material made of polymer liquid crystal will be described with reference to the schematic cross-sectional view of FIG.

波長405nmでの屈折率が1.47の石英ガラス基板101、105にポリイミド膜102、104を塗布し、表面を矢印106、107の方向に不織布によりラビングして水平配向膜を形成した。図1(b)に矢印106、107に示すようにラビングは、基板の一辺を基準方向とし、基準方向となす角が45度であって基板を対向させたときにそれぞれの基板のラビング方向が同じ方向になるようにおこなった。その後、周囲にスペーサーを混入したシール(図示せず)を施し間隔が12.8μmで一定となるように両基板を配置して空セルを形成した。次いで[化1]に示す液晶化合物(1)、(2)、(3)および(4)をモル比1:1:1:1で混合した光重合性液晶化合物を調整し、これをシールに設けた注入孔から空セル中に注入して注入孔を封止後、紫外光を照射して液晶化合物を光重合させて、厚さは12.8μmの高分子液晶層103を形成した。

Figure 0004534907
Polyimide films 102 and 104 were applied to quartz glass substrates 101 and 105 having a refractive index of 1.47 at a wavelength of 405 nm, and the surfaces were rubbed with nonwoven fabric in the directions of arrows 106 and 107 to form a horizontal alignment film. As shown by arrows 106 and 107 in FIG. 1B, the rubbing is performed by setting one side of the substrate as a reference direction, and an angle with the reference direction is 45 degrees. It was done in the same direction. Thereafter, a seal (not shown) in which a spacer was mixed in the periphery was applied, and both the substrates were arranged so that the distance was constant at 12.8 μm to form an empty cell. Next, a photopolymerizable liquid crystal compound prepared by mixing the liquid crystal compounds (1), (2), (3) and (4) shown in [Chemical Formula 1] at a molar ratio of 1: 1: 1: 1 was prepared, and this was used as a seal. After injecting into the empty cell from the provided injection hole and sealing the injection hole, the liquid crystal compound was photopolymerized by irradiating with ultraviolet light to form a polymer liquid crystal layer 103 having a thickness of 12.8 μm.
Figure 0004534907

形成された高分子液晶層103は、分散係数の理想解である前述の式(3)に十分近い分散係数 A=0.05052、B=9.824、C=−615.9を有する。また、波長405nm、660nm、785nmにおける常光屈折率nはそれぞれ1.566、1.537、1.532、異常光屈折率nはそれぞれ1.637、1.601、1.594であった。本例の広帯域位相板に対して、偏光方向が前記基準方向と平行な直線偏光を入射させて、発生した位相差を求めると、波長405nm、660nmおよび785nmの光に対して、それぞれ808度、447度および364度であった。また、位相板面内で基準方向と45度の角度をなす方向を位相板の光学軸としてそれぞれの波長に対する楕円率を求めると、0.97、0.95、0.03で良好な値であった。 The formed polymer liquid crystal layer 103 has dispersion coefficients A = 0.05052, B = 9.824, and C = −615.9 that are sufficiently close to the above-described equation (3), which is an ideal solution of the dispersion coefficient. The wavelength 405 nm, 660 nm, respectively ordinary refractive index n o of 785 nm 1.566,1.537,1.532, the extraordinary refractive index n e were respectively 1.637,1.601,1.594 . When a linearly polarized light whose polarization direction is parallel to the reference direction is incident on the broadband phase plate of this example and the generated phase difference is obtained, 808 degrees with respect to light having wavelengths of 405 nm, 660 nm, and 785 nm, 447 degrees and 364 degrees. Further, when the ellipticity for each wavelength is obtained with the direction forming an angle of 45 degrees with the reference direction in the phase plate surface as the optical axis of the phase plate, 0.97, 0.95, and 0.03 are good values. there were.

[例2]
次に、延伸配向された延伸ポリカーボネート層2層が積層された構成の広帯域位相板について、図3を用いて説明する。
[Example 2]
Next, a broadband phase plate having a configuration in which two stretched and oriented stretched polycarbonate layers are laminated will be described with reference to FIG.

波長405nmでの屈折率が1.47の石英ガラス基板201に、ガラス基板の一辺を基準方向とし、第1の複屈折層として厚さ75μmの第1のポリカーボネート層203を、図3(b)の矢印205で示したように、進相軸方向が基準方向となす角が12度になるように接着した。次に第1のポリカーボネート層203の上に、第2の複屈折層として厚さ66μmの第2のポリカーボネート層204を、図3(b)の矢印206で示したように、進相軸方向が基準方向となす角が65度で第1のポリカーボネート層203の進相軸方向となす角が53度となるように接着し、さらに石英ガラス基板202を接着、積層した。   A quartz glass substrate 201 having a refractive index of 1.47 at a wavelength of 405 nm and a first polycarbonate layer 203 having a thickness of 75 μm as a first birefringent layer with one side of the glass substrate as a reference direction is shown in FIG. As shown by the arrow 205, the angle was set so that the angle between the fast axis direction and the reference direction was 12 degrees. Next, a second polycarbonate layer 204 having a thickness of 66 μm as a second birefringent layer is formed on the first polycarbonate layer 203 as shown by an arrow 206 in FIG. The first polycarbonate layer 203 was bonded so that the angle formed with the reference direction was 65 degrees and the angle formed with the fast axis direction of the first polycarbonate layer 203 was 53 degrees, and the quartz glass substrate 202 was bonded and laminated.

例1と同様にして、本例の広帯域位相板に対して偏光方向が前記基準方向と平行な直線偏光を入射させて求めた波長405nm、660nmおよび785nmの光に対する位相差はそれぞれ805度、445度、365度であり、楕円率はそれぞれ0.91、0.91および0.04と良好な値であった。   In the same manner as in Example 1, the phase differences with respect to light having wavelengths of 405 nm, 660 nm, and 785 nm obtained by making linearly polarized light whose polarization direction is parallel to the reference direction incident on the broadband phase plate of this example are 805 degrees and 445 respectively. The ellipticity was a good value of 0.91, 0.91, and 0.04, respectively.

[例3]
次に、2層の高分子液晶層が積層された構成の広帯域位相板について説明する。例1と同様にして、石英ガラス基板に、表面がラビングされたポリイミド膜からなる水平配向膜を形成しシールを施して、基板間隔がそれぞれ1.7μm、7μmの空セルを2組形成した。ラビングは、基板間隔1.7μmの空セルに対しては、基板を対向させたときに基準方向とした基板の一辺となす角が8度の方向、基板間隔7μmの空セルに対しては147度の方向となるように施した。次いで、[化2]に示す液晶化合物(5)、(6)、(7)および(8)を質量比1:1:1:1で混合した光重合性液晶化合物を調整し、例1と同様にそれぞれのセルに注入し光重合させて高分子液晶層を形成した。このようにして形成された高分子液晶層はA=0.1011、B=0、C=9230なる分散係数を有し、波長405nm、660nm、785nmにおける常光屈折率noがそれぞれ1.608、1.557、1.551、異常光屈折率neがそれぞれ1.765、1.679、1.667であった。

Figure 0004534907
[Example 3]
Next, a broadband phase plate having a structure in which two polymer liquid crystal layers are laminated will be described. In the same manner as in Example 1, a horizontal alignment film made of a polyimide film whose surface was rubbed was formed on a quartz glass substrate and sealed to form two sets of empty cells having a substrate interval of 1.7 μm and 7 μm, respectively. The rubbing is performed in a direction in which the angle formed with one side of the substrate as a reference direction when the substrate is opposed to an empty cell with a substrate interval of 1.7 μm is 8 degrees, and for an empty cell with a substrate interval of 7 μm. It was given so as to be in the direction of the degree. Next, a photopolymerizable liquid crystal compound prepared by mixing the liquid crystal compounds (5), (6), (7) and (8) shown in [Chemical Formula 2] at a mass ratio of 1: 1: 1: 1 was prepared. Similarly, it injected into each cell and photopolymerized, and formed the polymer liquid crystal layer. The polymer liquid crystal layer thus formed has dispersion coefficients of A = 0.1011, B = 0, and C = 9230, and the ordinary refractive index no at wavelengths of 405 nm, 660 nm, and 785 nm is 1.608, .557, 1.551, and extraordinary refractive index ne were 1.765, 1.679, 1.667, respectively.
Figure 0004534907

次いで、高分子液晶層を挟持する液晶セルの一方の基板を離型剥離し、基準方向を一致させかつ互いのラビング方向がなす角が139度となるように高分子液晶層を重ね合わせて前記3波長帯で透明な接着剤を用いて接着して、本例の高分子液晶層が2層積層された構成の広帯域位相板を得た。   Next, one substrate of the liquid crystal cell sandwiching the polymer liquid crystal layer is released and peeled off, and the polymer liquid crystal layer is overlapped so that the reference direction is coincident and the angle formed by the rubbing directions is 139 degrees. A broadband phase plate having a configuration in which two polymer liquid crystal layers of this example were laminated was obtained by bonding using a transparent adhesive in the three wavelength bands.

例1と同様にして、本例の広帯域位相板に対して前記基準方向と平行な偏光方向の直線偏光を入射させて出射された光の位相差を求めると波長405nm、660nmおよび785nmの光に対して、それぞれ990度、452度、356度であり、楕円率はそれぞれ0.99、0.97および0.03であった。   In the same manner as in Example 1, when the phase difference of the emitted light is obtained by making linearly polarized light having a polarization direction parallel to the reference direction incident on the broadband phase plate of this example, light having wavelengths of 405 nm, 660 nm, and 785 nm is obtained. On the other hand, they were 990 degrees, 452 degrees, and 356 degrees, respectively, and the ellipticities were 0.99, 0.97, and 0.03, respectively.

[例4]
例2と同様に延伸配向させた延伸ポリカーボネート1層を、進相軸方向が基準方向となす角が45度になるように石英ガラス基板に接着して広帯域位相板を形成した。波長405nm、660nmおよび785nmの光に対して発生させる位相差がそれぞれ810度、450度および360度となるように延伸させたポリカーボネート層の厚さは70μmであった。例1と同様にして、本例の広帯域位相板が発生させる位相差を測定したところ、波長405nm、660nmおよび785nmの光に対して、それぞれ869度、451度、367度であり、各波長に対する所望の位相差は得られなかった。
[Example 4]
A broadband polycarbonate phase plate was formed by adhering one stretched polycarbonate layer stretched and oriented in the same manner as in Example 2 to a quartz glass substrate so that the angle between the fast axis direction and the reference direction was 45 degrees. The thickness of the polycarbonate layer stretched so that the phase differences generated with respect to light having wavelengths of 405 nm, 660 nm, and 785 nm were 810 degrees, 450 degrees, and 360 degrees was 70 μm. When the phase difference generated by the broadband phase plate of this example was measured in the same manner as in Example 1, it was 869 degrees, 451 degrees, and 367 degrees for light of wavelengths 405 nm, 660 nm, and 785 nm, respectively. The desired phase difference was not obtained.

[例5]
例1の広帯域位相板を組み込んで、図1に構成を示す光ヘッド装置を構成した。この光ヘッド装置において、半導体レーザ401、402および403から出射された波長405nm、660nmおよび780nmの直線偏光は、波長660nmの光を反射し波長780nmの光を透過させる合波プリズム409および波長405nmの光を反射し波長660nmおよび780nmの光を透過させる合波プリズム408により合波され、コリメートレンズ410、アクチュエータ414に保持された偏光回折素子411、例1の広帯域位相板412、対物レンズ413を経て光ディスク415の情報記録面に集光、照射される。情報記録面に形成されたピットの情報を含んで光ディスク415から反射された戻り光束は、それぞれの経路を逆方向に進行する。
[Example 5]
An optical head device having the configuration shown in FIG. 1 was constructed by incorporating the broadband phase plate of Example 1. In this optical head device, the linearly polarized light having wavelengths of 405 nm, 660 nm, and 780 nm emitted from the semiconductor lasers 401, 402, and 403 reflects the light having the wavelength of 660nm and transmits the light having the wavelength of 780nm, and the light having the wavelength of 405nm. The light is reflected by a light combining prism 408 that reflects light and transmits light having wavelengths of 660 nm and 780 nm, passes through a collimating lens 410, a polarization diffraction element 411 held by an actuator 414, the broadband phase plate 412 of Example 1, and an objective lens 413. The information recording surface of the optical disk 415 is condensed and irradiated. The return light beam reflected from the optical disk 415 including the information of the pits formed on the information recording surface travels in the opposite direction on each path.

ここで、前記3つの波長の光源は、出射する光束の直線偏光の偏光方向は偏光回折素子411で回折を生じない方向に揃えられているので、波長405nmおよび660nmの光束は、往路では偏光回折素子411で回折されずに直進透過して例1の広帯域位相板412に入射し、それぞれ9λ/4、5λ/4の位相差を生じて円偏光に変換されて光ディスクに照射される。復路においては、情報記録面で反射されて逆回りの円偏光になった戻り光束は例1の広帯域位相板412により光源と直交する直線偏光に変換されるので、偏光回折素子411で回折され、コリメートレンズ410、合波プリズム408、409を経てそれぞれの波長の光検出器404、405に導かれて、記録された情報が読み出される。   Here, the light sources of the three wavelengths are aligned so that the polarization direction of the linearly polarized light of the emitted light beam is not diffracted by the polarization diffraction element 411. Therefore, the light beams having wavelengths of 405 nm and 660 nm The light is transmitted straight without being diffracted by the element 411, enters the broadband phase plate 412 of Example 1, and generates phase differences of 9λ / 4 and 5λ / 4, respectively, is converted into circularly polarized light, and is irradiated onto the optical disk. In the return path, the return light beam reflected by the information recording surface and converted into the reverse circularly polarized light is converted into linearly polarized light orthogonal to the light source by the broadband phase plate 412 of Example 1, and is diffracted by the polarization diffraction element 411. The light is guided to the photodetectors 404 and 405 having the respective wavelengths through the collimating lens 410 and the combining prisms 408 and 409, and the recorded information is read out.

また波長780nmについては、半導体レーザ403から出射された直線偏光のレーザ光は、無偏光回折格子407を透過した後、合波プリズム409、408により各々透過され、コリメートレンズ410と、アクチュエータ414に保持された偏光回折素子411、例1の広帯域位相板412および対物レンズ413とを経て光ディスク415に集光、照射される。波長780nmの光束は例1の広帯域位相板412により偏光状態を変えられないので、復路においても波長780nmの戻り光束は偏光回折素子411を回折されずに直進透過し、コリメートレンズ410、合波プリズム408、409を透過して、無偏光回折格子407により回折された1次回折光が光検出器406に導かれて、光ディスク415に記録された情報が読み出される。   For the wavelength of 780 nm, the linearly polarized laser beam emitted from the semiconductor laser 403 passes through the non-polarized diffraction grating 407 and then passes through the combining prisms 409 and 408, and is held by the collimator lens 410 and the actuator 414. The optical disc 415 is condensed and irradiated through the polarization diffraction element 411, the broadband phase plate 412 of Example 1 and the objective lens 413. Since the polarization state of the light beam having the wavelength of 780 nm cannot be changed by the broadband phase plate 412 of Example 1, the return light beam having the wavelength of 780 nm is transmitted straight through the polarization diffraction element 411 without being diffracted even in the return path, and the collimating lens 410 and the combining prism. First-order diffracted light that passes through 408 and 409 and is diffracted by the non-polarized diffraction grating 407 is guided to the photodetector 406, and information recorded on the optical disk 415 is read out.

以上述べたように、例1の広帯域位相板を用いた本例の光ヘッド装置では、波長405nm、660nmおよび780nmの光束を用いて、光ディスクに対して、良好な記録・再生特性で書き込み、読み取りをおこなうことができた。   As described above, in the optical head device of this example using the broadband phase plate of Example 1, writing and reading are performed on the optical disc with good recording / reproducing characteristics using light beams with wavelengths of 405 nm, 660 nm, and 780 nm. I was able to do.

[例6、例7]
例2、例3の広帯域位相板をそれぞれ用いた以外は例5と同様の構成の光ヘッド装置を作製して評価をおこなった。その結果、例5と同様に、波長405nm、660nmおよび780nmの光束を用いて、光ディスクに対して、良好な記録・再生特性で書き込み、読み取りをおこなうことができた。
[Example 6, Example 7]
An optical head device having the same configuration as in Example 5 was prepared and evaluated except that the broadband phase plates of Examples 2 and 3 were used, respectively. As a result, in the same manner as in Example 5, it was possible to write to and read from the optical disc with good recording / reproducing characteristics using light beams with wavelengths of 405 nm, 660 nm, and 780 nm.

[例8]
図4(a)の概略断面図を示した偏光回折素子541は、重合時に、波長405nmの光に対して常光屈折率nが1.541で異常光屈折率nが1.588、波長660nmの光に対して常光屈折率nが1.517で異常光屈折率nが1.556のアクリル系の光重合性高分子液晶、および、屈折率が波長405nmの光に対して1.541、波長660nmの光に対して1.519の充填材を用いて以下のように形成する。まず、石英ガラス基板303の1つの基板面に配向膜を形成し、ラビング法によって配向処理を施す。本例ではラビング方向は、回折格子の長手方向とした。
[Example 8]
Polarization diffraction element 541 showing a schematic cross-sectional view of FIG. 4 (a), when the polymerization, the extraordinary refractive index n e with ordinary refractive index n o with respect to the wavelength 405nm of light 1.541 is 1.588, wavelength 660nm of the ordinary refractive index n o is the extraordinary refractive index n e at 1.517 with respect to light of acrylic 1.556 photopolymerizable polymer liquid crystal, and, with respect to the refractive index of the wavelength of 405nm light 1 .541, using a 1.519 filler for light having a wavelength of 660 nm, and forming as follows. First, an alignment film is formed on one surface of the quartz glass substrate 303, and an alignment process is performed by a rubbing method. In this example, the rubbing direction is the longitudinal direction of the diffraction grating.

次に、不図示のシール用の材料としてエポキシ樹脂系接着剤を用い、エポキシ樹脂系接着剤を、石英ガラス基板303の配向膜が形成された基板面の光学的有効領域の外周に印刷する。同様に、所定の不図示の基板(以下、取替え基板という。)の1つの基板面に配向膜を形成してラビング法によって配向処理を施し、配向処理面を対向させて、石英ガラス基板303と取替え基板とを対向させて熱圧着し、シールを形成し、セルを作製する。取替え基板のラビング方向は、基板を対向させたときに互いに平行となるようにおこなった。   Next, an epoxy resin adhesive is used as a sealing material (not shown), and the epoxy resin adhesive is printed on the outer periphery of the optically effective area of the substrate surface on which the alignment film of the quartz glass substrate 303 is formed. Similarly, an alignment film is formed on one substrate surface of a predetermined substrate (not shown) (hereinafter referred to as a replacement substrate) and subjected to alignment treatment by a rubbing method. The replacement substrate is made to face and thermocompression bonding is performed to form a seal, and a cell is manufactured. The rubbing direction of the replacement substrate was made parallel to each other when the substrates were opposed to each other.

次に、このセルに、真空注入法で、上記の光重合性高分子液晶を注入してUV露光を行い、高分子液晶を固化させる。次に、取替え基板を除去し、フォトリソグラフィ技術とエッチング技術を用いて高分子液晶をエッチングし、8ステップで、ステップの幅が同一で、各ステップ間の段差が同一の擬似ブレーズ回折格子面を形成する。ここで、擬似ブレーズ回折格子面は、ピッチpが20μmで、各ステップの段差が第1の回折格子で回折させる波長405nmをΔnおよびステップ数で割った値とされる。Δnは、高分子液晶の異常光屈折率n1.588と充填材の屈折率1.541との差0.047であり、ステップ数は、上記の「8」である。 Next, the above-described photopolymerizable polymer liquid crystal is injected into this cell by vacuum injection, and UV exposure is performed to solidify the polymer liquid crystal. Next, the replacement substrate is removed, and the polymer liquid crystal is etched using the photolithography technique and the etching technique, and the pseudo-blazed diffraction grating surface having the same step width and the same step difference between the steps is formed in 8 steps. Form. Here, the pseudo-blazed diffraction grating surface has a pitch p of 20 μm, and a step difference of each step is a value obtained by dividing the wavelength 405 nm diffracted by the first diffraction grating by Δn and the number of steps. Δn is the difference 0.047 between the refractive index 1.541 of the filler and the polymer liquid crystal of the extraordinary refractive index n e 1.588, the number of steps is "8" above.

同様に、石英ガラス基板302の1つの基板面に、高分子液晶からなる、矩形断面形状を有する回折格子面を形成する。ここで、矩形断面の回折格子は、ピッチpが33μmで、段差が第2の回折格子で回折させる波長660nmをΔnおよび2で割った値とされる。   Similarly, a diffraction grating surface made of a polymer liquid crystal and having a rectangular cross section is formed on one surface of the quartz glass substrate 302. Here, the diffraction grating having a rectangular cross section has a pitch p of 33 μm, and a level difference of 660 nm that is diffracted by the second diffraction grating is divided by Δn and 2.

最後に、石英ガラス基板303と石英ガラス基板302とを、それぞれの基板の回折格子形成面を対向させるとともに、それぞれの基板のラビング方向が平行となるように配置し、基板間およびそれぞれの回折格子面の凹部を充填するように充填材を充填して、波長410nm帯用の鋸歯状断面の第1の回折格子551と、波長660nm帯用の矩形断面の第2の回折格子552とが積層された偏光回折素子541が形成される。   Finally, the quartz glass substrate 303 and the quartz glass substrate 302 are disposed so that the diffraction grating forming surfaces of the respective substrates face each other and the rubbing directions of the respective substrates are parallel to each other, and between the substrates and each diffraction grating. The first diffraction grating 551 having a sawtooth cross section for a wavelength of 410 nm and a second diffraction grating 552 having a rectangular cross section for a wavelength of 660 nm are stacked so as to fill the concave portion of the surface. The polarization diffraction element 541 is formed.

最後に、偏光回折素子541と広帯域位相板305とを積層して、例8の積層光学素子540が得られる。   Finally, the polarizing diffraction element 541 and the broadband phase plate 305 are laminated to obtain the laminated optical element 540 of Example 8.

例5の構成の光ヘッド装置における広帯域位相板および偏光回折素子を、本例の積層光学素子に代えた以外は同様の構成の光ヘッド装置を作製して、例5と同様の評価をおこなった。その結果、波長405nm、660nmおよび780nmの光束を用いて、光ディスクに対して、良好な記録・再生特性で書き込み、読み取りをおこなうことができた。   An optical head device having the same configuration was produced except that the broadband phase plate and the polarization diffraction element in the optical head device having the configuration of Example 5 were replaced with the laminated optical element of this example, and evaluation similar to that in Example 5 was performed. . As a result, it was possible to write to and read from the optical disk with good recording / reproducing characteristics using light beams having wavelengths of 405 nm, 660 nm, and 780 nm.

[例9]
第1および第2の回折格子のピッチを、それぞれ1.0μmおよび1.7μmとした以外は例8と同様にして作製した積層光学素子540に、さらに波長780nm帯用の無偏光回折格子721を積層して、例9の、3波長用積層光学素子720が得られる。この無偏光回折素子721は、一方の透明基板の一方の面に、光学多層膜を形成し、フォトリソグラフィおよびドライエッチングにより光学多層膜を加工して、断面形状が矩形で、一方向に伸長する凸条部と、光学多層膜が除かれて基板表面が露出された凹部とが、互いに平行かつ周期的に形成された回折格子面を形成し、この格子形成面を内側にしてもう1枚の透明基板と対向配置してセルを形成し、充填材を充填して形成される。
[Example 9]
A non-polarized diffraction grating 721 for a wavelength of 780 nm band is further added to the laminated optical element 540 manufactured in the same manner as in Example 8 except that the pitches of the first and second diffraction gratings are 1.0 μm and 1.7 μm, respectively. By laminating, the three-wavelength laminated optical element 720 of Example 9 is obtained. This non-polarization diffraction element 721 forms an optical multilayer film on one surface of one transparent substrate, processes the optical multilayer film by photolithography and dry etching, has a rectangular cross-sectional shape, and extends in one direction. The ridges and the recesses from which the substrate surface is exposed by removing the optical multilayer film form a diffraction grating surface that is formed in parallel and periodically, and another sheet is formed with the grating formation surface inside. A cell is formed facing the transparent substrate and filled with a filler.

充填材としては、含フッ素芳香族ポリマーを用いる。前記光学多層膜は、低屈折率材料層としてSiO膜、高屈折率材料層としてTa膜をそれぞれ用い、光学膜厚の和が反射波長帯とされた波長720nmの1/2倍となるようにそれぞれの膜厚を決めた、SiO膜とTa膜の2層の組を、交互に16組積層した、合計32層、総膜厚3.85μmの膜構成をもち、真空蒸着法により形成される。この光学多層膜の平均屈折率は、充填材として用いる含フッ素芳香族ポリマーの屈折率、すなわち光の波長410nm帯において1.58、660nm帯において1.54と実質的に等しくされる。また前記格子の格子ピッチは2μmでデューティは0.5である。 A fluorine-containing aromatic polymer is used as the filler. The optical multilayer film uses a SiO 2 film as a low-refractive index material layer and a Ta 2 O 5 film as a high-refractive index material layer, respectively. Each film thickness was determined so that the two layers of SiO 2 film and Ta 2 O 5 film were alternately stacked, with a total of 32 layers and a total film thickness of 3.85 μm. And formed by a vacuum deposition method. The average refractive index of this optical multilayer film is made substantially equal to the refractive index of the fluorinated aromatic polymer used as the filler, that is, 1.58 in the 410 nm wavelength band and 1.54 in the 660 nm wavelength band. The grating pitch of the grating is 2 μm and the duty is 0.5.

[例10]
例9の3波長用積層光学素子を用いて、図8に構成を示した光ヘッド装置を構成する。光源光として、波長405nm、660nmおよび780nmの光束を用いて、光ディスクに対して書き込み、読み取りをおこなうと、良好な記録・再生特性が得られる。
[Example 10]
Using the three-wavelength laminated optical element of Example 9, the optical head device shown in FIG. Good recording / reproducing characteristics can be obtained by writing to and reading from an optical disc using light beams having wavelengths of 405 nm, 660 nm, and 780 nm as light source light.

本発明の光ヘッド装置の構成によれば、波長410nm帯、660nm帯および780nm帯の光を用いるそれぞれの光ディスクを良好な特性で記録・再生することができる According to the configuration of the optical head device of the present invention, it is possible to record / reproduce each optical disc using light having wavelengths of 410 nm, 660 nm and 780 nm with good characteristics .

本願発明の第1の実施の形態に係る光ヘッド装置の第1の構成例を示すブロック図1 is a block diagram showing a first configuration example of an optical head device according to a first embodiment of the present invention. 本願発明の複屈折材料1層からなる広帯域位相板の概略断面図および平面図Schematic sectional view and plan view of a broadband phase plate comprising one layer of the birefringent material of the present invention 本願発明の複屈折材料2層からなる広帯域位相板の概略断面図および平面図Schematic sectional view and plan view of a broadband phase plate comprising two layers of the birefringent material of the present invention 本願発明の偏光回折素子541の概略断面図、および、作用を説明するための図Schematic sectional view of the polarization diffraction element 541 of the present invention, and a diagram for explaining the operation 本願発明の広帯域位相板と偏光回折素子とが積層一体化された素子の概略断面図Schematic sectional view of an element in which the broadband phase plate of the present invention and a polarization diffraction element are laminated and integrated 本願発明の積層光学素子540の概念的な断面構造、および、積層光学素子540の作用を説明するための図The figure for demonstrating the notional sectional structure of the laminated optical element 540 of this invention, and the effect | action of the laminated optical element 540 本願発明の第2の実施の形態に係る光ヘッド装置の第2の構成例を示すブロック図The block diagram which shows the 2nd structural example of the optical head apparatus based on 2nd Embodiment of this invention. 本願発明の第3の実施の形態に係る光ヘッド装置の第3の構成例を示すブロック図Block diagram showing a third configuration example of the optical head apparatus according to the third embodiment of the present invention. 従来の光ヘッド装置の構成を示すブロック図Block diagram showing the configuration of a conventional optical head device

符号の説明Explanation of symbols

11、12、13 半導体レーザ
14、15、16 光検出器
17、18、19 偏光回折素子
20、21、22 1/4位相板
23、24 合波プリズム
25 コリメートレンズ
26 対物レンズ
27 アクチュエータ
28 光ディスク
101、105 石英ガラス基板
102、104 配向膜(ポリイミド膜)
103 高分子液晶層
106、107 ラビング方向
201、202 石英ガラス基板
203、204 ポリカーボネート層
205、206 ポリカーボネート層の進相軸方向
301,302,303 石英ガラス基板
304 複屈折層
305 広帯域位相板
306 410nm 波長帯用偏光回折素子
307 660nm波長帯用偏光回折素子
308 充填材
401、402、403 半導体レーザ
404、405、406 光検出器
407 無偏光回折格子
408、409 合波プリズム
410 コリメートレンズ
411 偏光回折素子
412 広帯域位相板
413 対物レンズ
414 アクチュエータ
415 光ディスク
500、700 光ヘッド装置
511、521、528、711 光源
512、524、712 コリメータ
513 偏光ビームスプリッタ
514、525 モニタ用光検出器
515、526 集光レンズ
516、527、714 光検出器
522 ビーム変換用回折格子
523 ビームスプリッタ
529、531 合波手段
532、713 対物レンズ
540 積層光学素子
541 偏光回折素子
542 第1の回折格子の鋸歯状断面の凸条部
543 第2の回折格子の矩形断面の凸条部
544 充填材
551 第1の回折格子
552 第2の回折格子
600 光記録媒体
720 3波長用積層光学素子
721 波長780nm帯用の回折格子
11, 12, 13 Semiconductor laser 14, 15, 16 Photo detector 17, 18, 19 Polarization diffraction element 20, 21, 22 1/4 phase plate 23, 24 Combined prism 25 Collimator lens 26 Objective lens 27 Actuator 28 Optical disk 101 , 105 Quartz glass substrate 102, 104 Alignment film (polyimide film)
103 Polymer liquid crystal layer 106, 107 Rubbing direction 201, 202 Quartz glass substrate 203, 204 Polycarbonate layer 205, 206 Fast axis direction of polycarbonate layer 301, 302, 303 Quartz glass substrate 304 Birefringent layer 305 Broadband phase plate 306 410 nm Wavelength Polarization diffraction element for band 307 Polarization diffraction element for wavelength band of 660 nm 308 Filler 401, 402, 403 Semiconductor laser 404, 405, 406 Photodetector 407 Unpolarized diffraction grating 408, 409 Combined prism 410 Collimate lens 411 Polarization diffraction element 412 Broadband phase plate 413 Objective lens 414 Actuator 415 Optical disk 500, 700 Optical head device 511, 521, 528, 711 Light source 512, 524, 712 Collimator 513 Polarized beam sp 515, 526 Condensing lens 516, 527, 714 Photo detector 522 Beam conversion diffraction grating 523 Beam splitter 529, 531 Multiplexing means 532, 713 Objective lens 540 Laminated optical element 541 Polarized light Diffraction element 542 Saw-shaped section of first diffraction grating 543 Projection section of second diffraction grating rectangular section 544 Filler 551 First diffraction grating 552 Second diffraction grating 600 Optical recording medium 720 3 Wavelength laminated optical element 721 Diffraction grating for wavelength 780 nm band

Claims (7)

光源と、偏光回折素子と、広帯域位相板と、光検出器とを備える光ヘッド装置において、
前記光源は、波長410nm帯、660nm帯および780nm帯の直線偏光の光束を出射する光源であって、
前記偏光回折素子は、所定の偏光方向の直線偏光は直進透過させ、前記所定の偏光方向と直交する直線偏光は回折させる偏光回折素子であって、
前記広帯域位相板は、波長410nm帯の光に対して略(2m−1)・λ/4、波長660nm帯の光に対して略(2m−1)・λ/4、波長780nm帯の光に対して略m・λ(λは波長、m、m、mは自然数)の位相差をそれぞれ発生させる広帯域位相板であって、
前記光源から出射され、前記偏光回折素子に入射した波長410nm帯および660nm帯の直線偏光の光束は、前記偏光回折素子により直進透過され、前記広帯域位相板により略円偏光に変換されて光記録媒体に照射され、
光記録媒体の情報記録面で反射されて逆回りの略円偏光となった戻り光束は、前記広帯域位相板により光源から出射された光束と直交する偏光方向の略直線偏光に変換され、前記偏光回折素子により回折されて光検出器へと導かれ、
前記光源から出射され、前記偏光回折素子に入射した波長780nm帯の直線偏光の光束は、前記偏光回折素子により直進透過され、前記広帯域位相板により偏光状態を実質的に変化されずに透過されて光記録媒体に照射され、
光記録媒体の情報記録面で反射された戻り光束は、前記広帯域位相板により偏光状態を実質的に変化されずに透過され、前記偏光回折素子により直進透過されて光検出器へと導かれることを特徴とする光ヘッド装置。
In an optical head device comprising a light source, a polarization diffraction element, a broadband phase plate, and a photodetector,
The light source is a light source that emits a linearly polarized light beam having a wavelength of 410 nm, 660 nm, and 780 nm,
The polarization diffractive element is a polarization diffractive element that linearly transmits linearly polarized light in a predetermined polarization direction and diffracts linearly polarized light orthogonal to the predetermined polarization direction,
The broadband phase plate has a wavelength of about (2 m a −1) · λ / 4 for light of a wavelength of 410 nm and a wavelength of about (2 m b −1) · λ / 4 for light of a wavelength of 660 nm, and a wavelength of 780 nm. A broadband phase plate that generates a phase difference of approximately mc · λ (λ is a wavelength, m a , m b , and mc are natural numbers), respectively,
A linearly polarized light beam having a wavelength of 410 nm and 660 nm that is emitted from the light source and incident on the polarization diffraction element is transmitted straight through the polarization diffraction element, and is converted into substantially circular polarization by the broadband phase plate, thereby being an optical recording medium. Irradiated to
The return light beam reflected by the information recording surface of the optical recording medium and turned into substantially circularly polarized light in the reverse direction is converted into substantially linearly polarized light in the polarization direction orthogonal to the light beam emitted from the light source by the broadband phase plate, and the polarized light Diffracted by the diffraction element and guided to the photodetector,
A linearly polarized light beam having a wavelength of 780 nm that is emitted from the light source and incident on the polarization diffraction element is transmitted straight through the polarization diffraction element, and transmitted through the broadband phase plate without substantially changing the polarization state. Irradiated to an optical recording medium,
The return light beam reflected by the information recording surface of the optical recording medium is transmitted by the broadband phase plate without substantially changing the polarization state, is transmitted straight by the polarization diffraction element, and is guided to the photodetector. An optical head device.
前記広帯域位相板が2層の複屈折材料からなる層を有しており、
前記広帯域位相板が発生させる位相差が、波長410nm帯の光に対して略9λ/4、波長660nm帯の光束に対して略5λ/4、波長780nm帯の光に対して略λである請求項1に記載の光ヘッド装置。
The broadband phase plate has two layers of birefringent material;
The phase difference generated by the broadband phase plate is approximately 9λ / 4 for light having a wavelength of 410 nm, approximately 5λ / 4 for light having a wavelength of 660 nm, and approximately λ for light having a wavelength of 780 nm. Item 4. The optical head device according to Item 1.
前記広帯域位相板が2層の複屈折材料からなる層を有しており、
前記広帯域位相板が発生させる位相差が、波長410nm帯の光に対して略11λ/4、波長660nm帯の光束に対して略5λ/4、波長780nm帯の光に対して略λである請求項1に記載の光ヘッド装置。
The broadband phase plate has two layers of birefringent material;
The phase difference generated by the broadband phase plate is approximately 11λ / 4 for light having a wavelength of 410 nm, approximately 5λ / 4 for light having a wavelength of 660 nm, and approximately λ for light having a wavelength of 780 nm. Item 4. The optical head device according to Item 1.
前記偏光回折素子が、第1の回折格子と第2の回折格子とを積層され備える偏光回折素子であって、
前記第1の回折格子は、
前記光源から入射した波長410nm帯、660nm帯および780nm帯の直線偏光の光束を直線透過させ、
前記光源からの直線偏光と直交する偏光方向をもつ、波長410nm帯の直線偏光を回折させ、波長660nm帯の直線偏光を直進透過させる回折格子であって、
前記第2の回折格子は、
前記光源から入射した波長410nm帯、660nm帯および780nm帯の直線偏光の光束を直線透過させ、
前記光源からの直線偏光と直交する偏光方向をもつ、波長410nm帯の直線偏光を直進透過させ、波長660nm帯の直線偏光を回折させる回折格子であることを特徴とする請求項1、2または3のいずれかに記載の光ヘッド装置。
The polarization diffraction element is a polarization diffraction element comprising a first diffraction grating and a second diffraction grating laminated,
The first diffraction grating is:
Linearly transmitting a linearly polarized light beam having a wavelength of 410 nm, 660 nm, and 780 nm that is incident from the light source;
A diffraction grating that diffracts linearly polarized light having a wavelength of 410 nm and having a polarization direction orthogonal to the linearly polarized light from the light source, and linearly transmits linearly polarized light having a wavelength of 660 nm,
The second diffraction grating is
Linearly transmitting a linearly polarized light beam having a wavelength of 410 nm, 660 nm, and 780 nm that is incident from the light source;
4. A diffraction grating that linearly transmits linearly polarized light with a wavelength of 410 nm and has a polarization direction orthogonal to the linearly polarized light from the light source and diffracts linearly polarized light with a wavelength of 660 nm. The optical head device according to any one of the above.
前記第1の回折格子が、光学異方性材料からなり、鋸歯形状の断面をもつ一方向に伸長する凸条部が周期的かつ互いに平行に形成されたブレーズド回折格子、または、光学異方性材料からなり、所望の鋸歯形状を8段以上の階段状に近似した鋸歯形状の断面をもつ一方向に伸長する凸条部が周期的かつ互いに平行に形成された擬似ブレーズド回折格子であって、
前記第2の回折格子が、光学異方性材料からなり、矩形断面をもつ一方向に伸長する凸条部が周期的かつ互いに平行に形成された回折格子である請求項4に記載の光ヘッド装置。
The first diffraction grating is made of an optically anisotropic material, and a blazed diffraction grating in which ridges extending in one direction having a sawtooth-shaped cross section are formed periodically and parallel to each other, or optical anisotropy A quasi-blazed diffraction grating made of a material and having ridges extending in one direction having a sawtooth cross section approximating a desired sawtooth shape with a step shape of 8 or more steps, formed periodically and parallel to each other,
5. The optical head according to claim 4, wherein the second diffraction grating is a diffraction grating made of an optically anisotropic material and having ridges extending in one direction having a rectangular cross section formed periodically and parallel to each other. apparatus.
前記偏光回折素子がフォーカスエラー信号および/またはトラッキング信号を発生させる請求項4または5に記載の光ヘッド装置。   6. The optical head device according to claim 4, wherein the polarization diffraction element generates a focus error signal and / or a tracking signal. 前記広帯域位相板と、前記偏光回折素子とが積層一体化された積層光学素子とされている請求項1〜6のいずれか1項に記載の光ヘッド装置。   The optical head device according to claim 1, wherein the broadband optical plate is a laminated optical element in which the polarization diffraction element is laminated and integrated.
JP2005240033A 2005-01-31 2005-08-22 Optical head device Expired - Fee Related JP4534907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240033A JP4534907B2 (en) 2005-01-31 2005-08-22 Optical head device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005024099 2005-01-31
JP2005240033A JP4534907B2 (en) 2005-01-31 2005-08-22 Optical head device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010038209A Division JP4985799B2 (en) 2005-01-31 2010-02-24 Polarization diffraction element and laminated optical element

Publications (2)

Publication Number Publication Date
JP2006236549A JP2006236549A (en) 2006-09-07
JP4534907B2 true JP4534907B2 (en) 2010-09-01

Family

ID=37043987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240033A Expired - Fee Related JP4534907B2 (en) 2005-01-31 2005-08-22 Optical head device

Country Status (1)

Country Link
JP (1) JP4534907B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188577A (en) * 2006-01-12 2007-07-26 Matsushita Electric Ind Co Ltd Optical pickup and optical information storage device provided with same
JP4732289B2 (en) * 2006-09-21 2011-07-27 シャープ株式会社 Optical pickup device
WO2008081941A1 (en) * 2007-01-05 2008-07-10 Asahi Glass Co., Ltd. Wavelength selecting wavelength plate and optical head device using it
JP5316409B2 (en) * 2007-07-27 2013-10-16 旭硝子株式会社 Phase difference element and optical head device
JP5083014B2 (en) * 2008-04-21 2012-11-28 旭硝子株式会社 Broadband wave plate and optical head device
JP2010048997A (en) * 2008-08-21 2010-03-04 Asahi Glass Co Ltd Imaging lens
JP5071316B2 (en) * 2008-09-10 2012-11-14 旭硝子株式会社 Broadband wave plate and optical head device
WO2024024701A1 (en) * 2022-07-27 2024-02-01 Agc株式会社 Optically anisotropic film and phase difference plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123952A (en) * 2000-08-09 2002-04-26 Ricoh Co Ltd Optical pickup device and optical disk driver
JP2004029280A (en) * 2002-06-25 2004-01-29 Jsr Corp Wavelength plate for laser beam optical system
JP2004213854A (en) * 2002-12-30 2004-07-29 Samsung Electro Mech Co Ltd Optical pickup apparatus using hologram optical element and method of forming hologram pattern
JP2004219977A (en) * 2002-07-31 2004-08-05 Asahi Glass Co Ltd Phase correction element and optical head system
JP2005004964A (en) * 1999-01-19 2005-01-06 Matsushita Electric Ind Co Ltd Optical pickup, multi-wavelength semiconductor laser unit, and optical information recording and reproducing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005004964A (en) * 1999-01-19 2005-01-06 Matsushita Electric Ind Co Ltd Optical pickup, multi-wavelength semiconductor laser unit, and optical information recording and reproducing method
JP2002123952A (en) * 2000-08-09 2002-04-26 Ricoh Co Ltd Optical pickup device and optical disk driver
JP2004029280A (en) * 2002-06-25 2004-01-29 Jsr Corp Wavelength plate for laser beam optical system
JP2004219977A (en) * 2002-07-31 2004-08-05 Asahi Glass Co Ltd Phase correction element and optical head system
JP2004213854A (en) * 2002-12-30 2004-07-29 Samsung Electro Mech Co Ltd Optical pickup apparatus using hologram optical element and method of forming hologram pattern

Also Published As

Publication number Publication date
JP2006236549A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
JP4534907B2 (en) Optical head device
WO1999018459A1 (en) Optical head device and a diffraction element suitable for the device, and a method of manufacturing the diffraction element and the optical head device
JP5012171B2 (en) Reflective diffractive polarizer and optical device
KR20090046833A (en) Wavelength selective light-shielding element and optical head unit employing the same
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP4474706B2 (en) Optical head device
JP3545905B2 (en) Polarization separation element and optical head using the polarization separation element
JP5061899B2 (en) Phase plate and optical head device
JP4985799B2 (en) Polarization diffraction element and laminated optical element
JP3667984B2 (en) Broadband polarization separation element and optical head using the broadband polarization separation element
KR101097078B1 (en) Diffraction element and optical head device
JP2003288733A (en) Aperture-limiting element and optical head device
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP4349335B2 (en) Optical head device
JP2011233208A (en) Wavelength selective wave plate, wavelength selective diffraction element and optical head device
US8040781B2 (en) Wavelength selecting wavelength plate and optical head device using it
JP2001344800A (en) Optical head device
JP4337510B2 (en) Diffraction element and optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
WO2004044905A1 (en) Double-wavelength light source unit and optical head device
KR100990347B1 (en) Phase plate and optical information recording/reproducing device
JP5083014B2 (en) Broadband wave plate and optical head device
JP4876826B2 (en) Phase difference element and optical head device
JP2008004146A (en) Optical element and optical head device provided with optical element
JP2004133074A (en) Diffraction grating and optical pickup

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees