JP2010048997A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2010048997A
JP2010048997A JP2008212673A JP2008212673A JP2010048997A JP 2010048997 A JP2010048997 A JP 2010048997A JP 2008212673 A JP2008212673 A JP 2008212673A JP 2008212673 A JP2008212673 A JP 2008212673A JP 2010048997 A JP2010048997 A JP 2010048997A
Authority
JP
Japan
Prior art keywords
light
diffracted light
optical element
order diffracted
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008212673A
Other languages
Japanese (ja)
Inventor
Mitsuo Osawa
光生 大澤
Koji Miyasaka
浩司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008212673A priority Critical patent/JP2010048997A/en
Publication of JP2010048997A publication Critical patent/JP2010048997A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multifocal lens having higher performance. <P>SOLUTION: The imaging lens includes: a diffractive optical element 1 in which a diffraction lattice is formed whose cross-section is made into a rectangular rugged shape by a first optical member and a second optical member alternately arranged so as to be a concentric shape with an optical axis as the center on a transparent substrate; and a refracting optical element 2. The first optical member and the second optical member are a combination in which their refractive indexes and Abbe's numbers are respectively different to incident light in a prescribed wavelength band, and also the value of ¾n<SB>1</SB>(λ)-n<SB>2</SB>(λ)¾×d/λ is made substantially equal in the above frequency band. Further, the refracting optical element 2, with diffraction light including at least a pair of one-dimensional or more of high order diffraction light which is emitted from the diffraction light element 1 as element incident light, gives refracted light obtained by refracting the refracting light serving as the element incident light in such a manner that the focal length of the +L-dimensional refraction light being the highest order diffraction light on the light condensation side is made longest and the focal length of the -L-dimensional diffraction light being the highest order diffraction light on the emission side is made shortest. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、所定の波長帯域の入射光に対して2つ以上の焦点を発現する撮像レンズ(以下、多焦点レンズという。)に関する。   The present invention relates to an imaging lens that expresses two or more focal points with respect to incident light in a predetermined wavelength band (hereinafter referred to as a multifocal lens).

CCDやCMOSセンサなどの撮像素子を使用するデジタルカメラや監視カメラをはじめとするデジタル撮像装置では、無限大もの遠方の画像から近方の画像までといった複数の距離にある物や風景を被写体にして撮像されたものに対して画像処理が行われている。   In digital imaging devices such as digital cameras and surveillance cameras that use imaging devices such as CCDs and CMOS sensors, objects and landscapes at multiple distances, such as infinitely distant images and near images, can be used as subjects. Image processing is performed on the captured image.

しかし、遠方の風景を被写体とする場合と近方の物を被写体とする場合とで単一のレンズを用いると、それぞれで高い解像度の画像を得ることは難しい。   However, if a single lens is used for a subject in a distant landscape and a subject in a near subject, it is difficult to obtain a high-resolution image for each.

しかし、例えば2つの焦点距離を持つ二焦点レンズを用いると、それぞれで高い解像度の画像を得ることが可能である。二焦点レンズの一例として、例えば、特許文献1に記載された回折作用を利用した多焦点レンズがある。   However, for example, when a bifocal lens having two focal lengths is used, it is possible to obtain high-resolution images in each. As an example of the bifocal lens, for example, there is a multifocal lens using a diffraction action described in Patent Document 1.

また、回折作用を利用する回折光学素子に関する先行技術文献として、例えば、特許文献2,特許文献3および特許文献4がある。   Further, as prior art documents related to a diffractive optical element using a diffractive action, for example, there are Patent Document 2, Patent Document 3 and Patent Document 4.

特開2006−139246号公報JP 2006-139246 A 特開平9−127321号公報JP-A-9-127321 特開平11−044808号公報Japanese Patent Laid-Open No. 11-04808 特開2002−72082号公報JP 2002-72082 A

しかし、特許文献1に記載されている多焦点レンズは、それぞれ焦点距離の異なるレンズ部が同心状に複数回繰り返して配置されて1つのレンズとして構成されているため、該レンズを用いた場合、焦点距離の異なる輪帯領域を透過する光がそれぞれ他方の焦点距離においては迷光となってしまうという問題がある。   However, since the multifocal lens described in Patent Document 1 is configured as a single lens in which lens portions having different focal lengths are arranged concentrically and repeatedly as a single lens, when the lens is used, There is a problem that light transmitted through the annular zones having different focal lengths becomes stray light at the other focal length.

また、特許文献2,特許文献3および特許文献4に記載されている回折光学素子に関する発明には、例えば、所望次数(または設計次数)の光線の回折効率を高めることを目的としている点、すなわち所望次数(または設計次数)以外の回折次数をもった光線を光学系に悪影響を与えるものとしてとらえている点からも明らかなように、回折作用を多焦点のために利用しようという思想は存在しない。   The invention relating to the diffractive optical element described in Patent Document 2, Patent Document 3 and Patent Document 4, for example, is intended to increase the diffraction efficiency of a light beam having a desired order (or design order), that is, As is clear from the fact that light beams having diffraction orders other than the desired order (or design order) are regarded as having an adverse effect on the optical system, there is no idea of utilizing the diffractive action for multiple focal points. .

とくに撮像系の多焦点レンズに要求されるものとしては、少なくとも可視光領域の光に対して一定の回折効率を有する機能が必要になる。入射する波長の光(色情報)に対して同等の光量レベルの光(画像)信号を後段の信号処理系に与える必要があるからである。   In particular, what is required for a multifocal lens of an imaging system requires a function having a certain diffraction efficiency at least for light in the visible light region. This is because a light (image) signal having an equivalent light quantity level to the incident wavelength light (color information) needs to be given to the signal processing system at the subsequent stage.

また、焦点ごとに光量のレベルが異なることは、画像処理信号を行う上で都合が悪いので、異なる焦点においても同等の光量レベルになることが好ましい。   Moreover, since it is inconvenient in performing an image processing signal that the level of the light amount differs for each focus, it is preferable that the light amount level is the same even at different focal points.

そこで、本発明は、より高性能な多焦点レンズを提供することを目的とする。具体的には、2以上の焦点を発現させる撮像レンズであって、少なくとも当該撮像レンズの有効領域を透過する光を各焦点において有効な光線として利用することができる撮像レンズを提供することを目的とする。また、少なくとも可視光領域の波長の入射光に対して各焦点で同等の光量レベルの光信号を後段の信号処理系に与えることができる撮像レンズを提供することを目的とする。さらには、回折レンズで短い焦点距離を発現させる場合に問題になる色収差についても改善することが可能な撮像レンズを提供することを目的とする。   Therefore, an object of the present invention is to provide a multi-focal lens with higher performance. Specifically, it is an imaging lens that develops two or more focal points, and an object is to provide an imaging lens that can use at least light transmitted through an effective region of the imaging lens as an effective light beam at each focal point. And It is another object of the present invention to provide an imaging lens capable of providing an optical signal having an equivalent light amount level at each focal point to incident signal having a wavelength in the visible light region to a subsequent signal processing system. It is another object of the present invention to provide an imaging lens that can also improve chromatic aberration, which is a problem when a short focal length is expressed by a diffractive lens.

本発明による撮像レンズは、所定の波長帯域の入射光に対して2つ以上の焦点を発現させる撮像レンズであって、回折光を発現させる回折光学素子と、屈折光を発現させる屈折光学素子とを備え、前記回折光学素子は、透明基板上に光軸を中心とした同心円状に交互に配置される第1の光学部材と第2の光学部材とにより、断面が矩形状の凹凸形状となる回折格子が形成されて、前記第1の光学部材と前記第2の光学部材とは、前記波長帯域の入射光に対してそれぞれ異なる屈折率およびアッベ数をもち、かつ当該第1の光学部材の前記波長帯域に含まれる任意の波長λに対する屈折率をn(λ)とし、当該第2の光学部材の前記波長帯域に含まれる任意の波長λに対する屈折率をn(λ)とし、かつ前記回折格子の厚さをdとするとき、|n(λ)−n(λ)|・d/λの値が前記波長帯域において実質的に等しく、前記屈折光学素子は、前記回折光学素子から出射される少なくとも1組の1次以上の高次回折光を含む回折光を素子入射光とし、前記回折光のうち最も高次の回折光を±L次回折光とすると、集光する側の+L次回折光の焦点距離が最も長く、発散する側の−L次回折光の焦点距離が最も短くなるように前記素子入射光である回折光を屈折させた屈折光を発現させることを特徴とする。 An imaging lens according to the present invention is an imaging lens that develops two or more focal points with respect to incident light in a predetermined wavelength band, a diffractive optical element that expresses diffracted light, and a refractive optical element that expresses refracted light. The diffractive optical element has a concavo-convex shape with a rectangular cross section by a first optical member and a second optical member that are alternately arranged concentrically around the optical axis on a transparent substrate. A diffraction grating is formed, and the first optical member and the second optical member have different refractive indexes and Abbe numbers with respect to incident light in the wavelength band, and the first optical member has a different refractive index. The refractive index for an arbitrary wavelength λ included in the wavelength band is n 1 (λ), the refractive index for the arbitrary wavelength λ included in the wavelength band of the second optical member is n 2 (λ), and When the thickness of the diffraction grating is d | N 1 (λ) -n 2 (λ) | · the value of d / lambda is substantially equal in the wavelength range, the refractive optical element is at least one set of primary or emitted from the diffractive optical element When the diffracted light including higher-order diffracted light is element incident light and the highest-order diffracted light among the diffracted lights is ± L-order diffracted light, the + L-order diffracted light on the collecting side has the longest focal length and diverges. Refracted light obtained by refracting the diffracted light as the element incident light is expressed so that the focal length of the -L order diffracted light on the side becomes the shortest.

また、前記回折光学素子は、所定の前記波長帯域の入射光に対して、直進透過する0次回折光と1組の1次以上の高次回折光とを発現させる回折格子であって、各次の回折効率が所定の前記波長帯域において実質的に等しい回折格子が形成されていてもよい。   The diffractive optical element is a diffraction grating that expresses 0th-order diffracted light that is transmitted in a straight line and a set of first-order or higher-order diffracted light with respect to incident light in a predetermined wavelength band. A diffraction grating having substantially the same diffraction efficiency in the predetermined wavelength band may be formed.

また、前記回折光学素子は、所定の前記波長帯域の入射光に対して、±1次回折光を発現させる回折格子であって、前記±1次回折光の回折効率が所定の前記波長帯域において実質的に等しい回折格子が形成されていてもよい。   The diffractive optical element is a diffraction grating that expresses ± first-order diffracted light with respect to incident light in a predetermined wavelength band, and the diffraction efficiency of the ± first-order diffracted light is substantially in the predetermined wavelength band. A diffraction grating equal to may be formed.

また、前記回折光学素子は、所定の前記波長帯域の入射光に対して、直進透過する0次回折光と±1次回折光とを発現させる回折格子であって、前記0次回折光と前記±1次回折光の回折効率が所定の前記波長帯域において実質的に等しい回折格子が形成されていてもよい。   The diffractive optical element is a diffraction grating that expresses 0th-order diffracted light and ± 1st-order diffracted light that are transmitted in a straight line with respect to incident light in the predetermined wavelength band, and includes the 0th-order diffracted light and the ± 1st order diffracted light. A diffraction grating in which the diffraction efficiency of the folded light is substantially equal in the predetermined wavelength band may be formed.

また、所定の前記波長帯域が、430〜660nmの範囲であってもよい。   The predetermined wavelength band may be in a range of 430 to 660 nm.

また、前記第1の光学部材または前記第2の光学部材のいずれか一方が、2種類以上の材料が透明基板に平行に積層される光学多層膜によって構成されていてもよい。   Further, either one of the first optical member or the second optical member may be constituted by an optical multilayer film in which two or more kinds of materials are laminated in parallel on a transparent substrate.

また、前記光学多層膜は、Si0膜とTa膜とが交互に積層されていてもよい。 Also, the optical multilayer film includes a Si0 2 film and the Ta 2 O 5 film may be stacked alternately.

また、前記第1の光学部材または前記第2の光学部材のいずれか一方が、ナフタレン系化合物またはフルオレン系化合物によって構成されていてもよい。   In addition, either the first optical member or the second optical member may be composed of a naphthalene compound or a fluorene compound.

本発明によれば、断面が矩形状をした回折格子を備えたバイナリ型回折レンズの特性を活かして、少なくとも1組の1次以上の高次回折光を含む回折光であって各回折光の回折効率が実質的に等しい回折光を回折光学素子から発現させ、その発現させた回折光を屈折光学素子で屈折させる構成になっているので、レンズの有効領域を透過する光を各焦点において有効な光線として利用することができる上に、色収差を低減させつつ各焦点を結ぶ回折された光の光量が実質的に等しい多焦点を発現する撮像レンズを提供することができる。なお、光量に関し実質的に等しいとは、任意の波長λにおける各回折光の回折効率または回折光の光量の差が20%以内となる場合をいうものとする。   According to the present invention, diffracted light including at least one set of first-order or higher-order diffracted light using the characteristics of a binary type diffractive lens including a diffraction grating having a rectangular cross section, and diffracting each diffracted light Since the diffracted light having substantially the same efficiency is generated from the diffractive optical element and the generated diffracted light is refracted by the refractive optical element, the light transmitted through the effective region of the lens is effective at each focal point. In addition to being able to be used as a light beam, it is possible to provide an imaging lens that exhibits multifocality in which the amount of diffracted light connecting each focal point is substantially equal while reducing chromatic aberration. Note that “substantially equal in terms of light quantity” means a case where the diffraction efficiency of each diffracted light or the difference in light quantity of diffracted light at an arbitrary wavelength λ is within 20%.

図1は、本発明による多焦点レンズの例を示す説明図である。図1に示す多焦点レンズ100は、回折光を発現させる回折光学素子1と、屈折光を発現させる屈折光学素子2とが組み合わされて構成されている。   FIG. 1 is an explanatory view showing an example of a multifocal lens according to the present invention. The multifocal lens 100 shown in FIG. 1 is configured by combining a diffractive optical element 1 that expresses diffracted light and a refractive optical element 2 that expresses refracted light.

また、図2に、回折光学素子1の構成例が示されている。なお、図2(a)は、回折光学素子1の模式的平面図である。また、図2(b)は、回折光学素子1の模式的断面図(A−A’断面図)である。図2に示す回折光学素子1は、少なくとも透明基板13上に第1の光学部材11と第2の光学部材12とを光軸を中心とした同心円状に交互に配置させることにより形成されている。   Further, FIG. 2 shows a configuration example of the diffractive optical element 1. FIG. 2A is a schematic plan view of the diffractive optical element 1. FIG. 2B is a schematic cross-sectional view (A-A ′ cross-sectional view) of the diffractive optical element 1. The diffractive optical element 1 shown in FIG. 2 is formed by disposing at least a first optical member 11 and a second optical member 12 on a transparent substrate 13 alternately in a concentric manner with the optical axis as a center. .

透明基板13として、例えばガラス、プラスチック製などの表面がフラットな基板を用いる。   As the transparent substrate 13, a substrate having a flat surface such as glass or plastic is used.

第1の光学部材11は、図2(b)に示すように、断面形状が矩形状であって、透明基板13上において凸部を構成する。以下、第1の光学部材11によって形成される凸部を凸部11と呼ぶ場合がある。図2に示す例では、平面形状が円状の凸部11Aを中心に、平面形状が輪帯状の凸部11B,12C,12Eが同心円状に配置されている。第1の光学部材11は、例えば、透明基板13の基板面に平行に形成される複数の層によって構成される光学多層膜であってもよい。なお、膜の材料、種類および層数は、所望の回折効率が得られるように選定される。   As shown in FIG. 2B, the first optical member 11 has a rectangular cross-sectional shape, and forms a convex portion on the transparent substrate 13. Hereinafter, the convex portion formed by the first optical member 11 may be referred to as the convex portion 11. In the example shown in FIG. 2, the convex portions 11B, 12C, and 12E whose planar shapes are ring-shaped are arranged concentrically around the convex portion 11A having a circular planar shape. The first optical member 11 may be, for example, an optical multilayer film composed of a plurality of layers formed in parallel with the substrate surface of the transparent substrate 13. The material, type, and number of layers of the film are selected so as to obtain a desired diffraction efficiency.

第2の光学部材12は、第1の光学部材11とは異なるアッベ数および屈折率(ここでは所望の波長帯域で入射される光に対する屈折率に限る。)を有する充填材によって、少なくとも透明基板13上の第1の光学部材11による凸部の間すなわち凹部を充填するように形成されることにより、透明基板13上において凹部を構成する。以下、第2の光学部材12によって形成される凹部を凹部12と呼ぶ場合がある。なお、図2には、凸部の間の凹部のみならず凸部の上の部分も含めて充填する例が示されている。充填材として、例えば、エンチオール系の材料を用いる。また、第1の光学部材11と第2の光学部材12とを同じ厚さで形成する場合には、どちらを凸部または凹部といってもよく、どちらか一方を凸部とし他方を凹部とすればよい。すなわち、凸部の厚さと凹部の厚さを同じくする場合には、第1の光学部材11が凹部を構成し、第2の光学部材12が凸部を構成することも可能である。   The second optical member 12 is at least a transparent substrate by a filler having an Abbe number and a refractive index different from those of the first optical member 11 (here, limited to a refractive index for light incident in a desired wavelength band). The first optical member 11 on the first optical member 11 is formed so as to fill the concave portion, that is, the concave portion, thereby forming the concave portion on the transparent substrate 13. Hereinafter, the recess formed by the second optical member 12 may be referred to as the recess 12. FIG. 2 shows an example in which not only the concave portions between the convex portions but also the portions above the convex portions are filled. For example, an enethiol-based material is used as the filler. Further, when the first optical member 11 and the second optical member 12 are formed with the same thickness, either may be referred to as a convex portion or a concave portion, and either one is a convex portion and the other is a concave portion. do it. That is, when the thickness of the convex portion is the same as the thickness of the concave portion, the first optical member 11 can constitute a concave portion, and the second optical member 12 can constitute the convex portion.

また、図2に示す例では省略しているが、第1の光学部材11および第2の光学部材12によって形成される凹凸層の透明基板13がある面とは反対の面(充填材側の面)に、ガラスや樹脂製の表面がフラットなカバーを設けてもよい。   Although omitted in the example shown in FIG. 2, the surface opposite to the surface on which the transparent substrate 13 of the uneven layer formed by the first optical member 11 and the second optical member 12 is located (on the filler side). A cover having a flat surface made of glass or resin may be provided on the surface).

回折光学素子1は、第1の光学部材11と第2の光学部材12とによって形成される凹凸層を回折格子として作用させることにより、回折光を発現させる。本実施形態のように、断面形状が矩形となる凹凸状の回折格子を備える回折光学素子1は、一般にはバイナリ型回折レンズと呼ばれている。   The diffractive optical element 1 expresses diffracted light by causing the concavo-convex layer formed by the first optical member 11 and the second optical member 12 to act as a diffraction grating. As in this embodiment, the diffractive optical element 1 including an uneven diffraction grating having a rectangular cross-sectional shape is generally called a binary diffractive lens.

バイナリ型回折レンズの一方向(例えば、+1次回折光)の回折効率は、フレネル型回折レンズの回折効率と比べて小さいという特性があるが、これは回折光が他方向(例えば、−1次回折光)にも一定の光量で出射されることによる。本発明は、この複数方向に出射する回折光を利用することで、多焦点レンズを実現させている。   The diffraction efficiency in one direction (for example, + 1st order diffracted light) of the binary type diffractive lens has a characteristic that it is smaller than the diffraction efficiency of the Fresnel type diffractive lens. This is because the diffracted light is in the other direction (for example, -1st order diffracted light). ) Is also emitted by a constant light quantity. The present invention realizes a multifocal lens by using the diffracted light emitted in a plurality of directions.

回折レンズでは、回折格子である凹凸により生じる光の位相差やピッチ間隔(格子周期)によって回折効率および回折角度が変化する。バイナリ型であれば、少なくとも高次回折光(±k次回折光(kは1以上の自然数)))における+k次回折光と−k次回折光の回折効率は同じになる。   In the diffractive lens, the diffraction efficiency and the diffraction angle change depending on the phase difference and pitch interval (grating period) of light generated by the unevenness which is a diffraction grating. In the binary type, the diffraction efficiencies of the + k order diffracted light and the −k order diffracted light at least in the high order diffracted light (± k order diffracted light (k is a natural number of 1 or more)) are the same.

本発明の多焦点レンズは、回折光学素子1をバイナリ型回折レンズとして具備することにより、光量が実質的にゼロではない少なくとも1組の回折光(±n次回折光(nは1以上の整数))を発現させる。バイナリ型回折レンズでは、各波長における回折効率は凸部と凹部の実効的な屈折率nの差(Δn)によって決まる。本発明では、回折光学素子1の凸部と凹部の屈折率に関し、次のような条件を定める。すなわち、所望の波長帯域に含まれる任意の波長λに対して、回折格子の厚さ(ここでは、凸部11の厚さ(厳密には、凹凸の突起部分の高さをいう。))をdとするとき、|n(λ)−n(λ)|・d/λの値が実質的に等しいことを条件とする。ここで、n(λ)は波長λに対する凸部の屈折率を示し、n(λ)は波長λに対する凹部の屈折率を示している。また、ここでいう実質的に等しいとは、この値の変動が0.2以内である場合をいうものとする。また、光量に関し実質的にゼロとは、回折効率が5%以下の範囲をいう。なお、凸部と凹部とを構成する光学部材の組み合わせに関し、一方の光学部材のアッベ数および屈折率(ここでは所望の波長帯域で入射される光に対する屈折率に限る。)が他方の光学部材よりも高い値となっていることを前提とする。 The multifocal lens of the present invention includes the diffractive optical element 1 as a binary type diffractive lens, so that at least one set of diffracted light (± n-order diffracted light (n is an integer of 1 or more)) whose light amount is not substantially zero. ) Is expressed. In the binary type diffractive lens, the diffraction efficiency at each wavelength is determined by the difference (Δn) between the effective refractive index n of the convex portion and the concave portion. In the present invention, the following conditions are determined with respect to the refractive indexes of the convex portions and concave portions of the diffractive optical element 1. That is, with respect to an arbitrary wavelength λ included in a desired wavelength band, the thickness of the diffraction grating (here, the thickness of the convex portion 11 (strictly speaking, the height of the convex portion of the concave and convex portions)). When d, the condition is that | n 1 (λ) −n 2 (λ) | · d / λ is substantially equal. Here, n 1 (λ) represents the refractive index of the convex portion with respect to the wavelength λ, and n 2 (λ) represents the refractive index of the concave portion with respect to the wavelength λ. Further, the term “substantially equal” as used herein refers to a case where the variation of this value is within 0.2. Further, “substantially zero” regarding the amount of light means a range where the diffraction efficiency is 5% or less. In addition, regarding the combination of the optical members constituting the convex portion and the concave portion, the Abbe number and the refractive index of one optical member (here, limited to the refractive index with respect to light incident in a desired wavelength band) are the other optical member. It is assumed that the value is higher than that.

ところで、屈折率nは波長λによって変化する性質(波長分散特性)をもっている。このため、所望の波長帯域において凸部と凹部の屈折率の差(Δn)に対する波長の割合が一定となるように、回折光学素子1の材料等を工夫することが好ましい。可視光波長帯域440nmから670nmにおいてその差(Δn)に対する波長の割合が一定になるように調整した回折光学素子1が、後述する実施例で提示される(実施例1〜3参照。)。   By the way, the refractive index n has a property (wavelength dispersion characteristic) that varies depending on the wavelength λ. For this reason, it is preferable to devise the material or the like of the diffractive optical element 1 so that the ratio of the wavelength to the difference in refractive index (Δn) between the convex portion and the concave portion is constant in a desired wavelength band. The diffractive optical element 1 adjusted so that the ratio of the wavelength with respect to the difference (Δn) in the visible light wavelength band 440 nm to 670 nm is constant is presented in the examples described later (see Examples 1 to 3).

なお、屈折光学素子2は、凸レンズ(屈折レンズ)として機能すればよい。より具体的には、回折光学素子1から出射される回折光に対して、光軸上に2以上の焦点を結ぶよう屈折させた屈折光を出射できればよい。すなわち、回折光学素子1から出射される回折光のうち最も高次の回折光を±L次回折光とすると、屈折光学素子2は、−L次回折光の焦点距離が最も長く、+L次回折光の焦点距離が最も短くなるように、それぞれの回折光を屈折させればよい。なお、本発明では、1組の高次回折光(±k次回折光(kは1以上の自然数))のうち光軸に向かって集光する方を+k次回折光といい、他方(発散する方)を−k次回折光という。   The refractive optical element 2 may function as a convex lens (refractive lens). More specifically, it is only necessary to be able to emit refracted light that is refracted so that the diffracted light emitted from the diffractive optical element 1 has two or more focal points on the optical axis. That is, if the highest order diffracted light emitted from the diffractive optical element 1 is ± L order diffracted light, the refractive optical element 2 has the longest focal length of −L order diffracted light and the focus of + L order diffracted light. Each diffracted light may be refracted so that the distance becomes the shortest. In the present invention, one set of high-order diffracted light (± k-order diffracted light (k is a natural number of 1 or more)) that is collected toward the optical axis is called + k-order diffracted light, and the other (divergent one). Is called -k order diffracted light.

図3に、回折光学素子1と屈折光学素子2とを組み合わせた多焦点レンズ100による結像の例を示す。図3には、平行光が入射されると回折光学素子1が±1次回折光を発現させ、屈折光学素子2がその±1次回折光を屈折させて、光軸上に2つの焦点が結ばれる様が示されている。図3に示す例では、1次の回折光のみを発現させているので、−1次回折光の焦点距離が最も長く、+1次回折光の焦点距離が最も短くなる。   FIG. 3 shows an example of image formation by the multifocal lens 100 in which the diffractive optical element 1 and the refractive optical element 2 are combined. In FIG. 3, when collimated light is incident, the diffractive optical element 1 develops ± first-order diffracted light, and the refractive optical element 2 refracts the ± first-order diffracted light so that two focal points are formed on the optical axis. Is shown. In the example shown in FIG. 3, since only the first-order diffracted light is expressed, the focal length of the −1st-order diffracted light is the longest, and the focal length of the + 1st-order diffracted light is the shortest.

なお、多焦点レンズ100としては、回折光学素子1と屈折光学素子2とが、予め定めておいた位置関係を保つように撮像システム内で組み立てられればよい。また、図4に示すように、多焦点レンズ100は、さらに絞り3を備えていてもよい。なお、図4に示す例では、回折光学素子1と屈折光学素子2との間に絞り3を設ける例を示しているが、これに限定されるものではない。例えば、回折光学素子1と屈折光学素子2とで、光が入射する順番が逆になるように構成することも可能である。また、多焦点レンズ100として、さらに回折光学素子1と屈折光学素子2とを所定の位置関係で固定させる固定部材(図示省略)を備えていてもよい。   The multifocal lens 100 may be assembled in the imaging system so that the diffractive optical element 1 and the refractive optical element 2 maintain a predetermined positional relationship. Further, as shown in FIG. 4, the multifocal lens 100 may further include an aperture 3. In the example shown in FIG. 4, an example in which the diaphragm 3 is provided between the diffractive optical element 1 and the refractive optical element 2 is shown, but the present invention is not limited to this. For example, the diffractive optical element 1 and the refractive optical element 2 can be configured such that the order in which light is incident is reversed. The multifocal lens 100 may further include a fixing member (not shown) that fixes the diffractive optical element 1 and the refractive optical element 2 in a predetermined positional relationship.

以下、本発明の多焦点レンズ100における回折光学素子1のより具体的な構成例について実施例を用いて説明する。以下では、図2に示す例と同様に、第1の光学部材11がが凸部を構成し、第2の光学部材12が凹部を構成するものとして説明する。   Hereinafter, a more specific configuration example of the diffractive optical element 1 in the multifocal lens 100 of the present invention will be described using examples. Hereinafter, as in the example shown in FIG. 2, the first optical member 11 will be described as a convex portion, and the second optical member 12 will be described as a concave portion.

実施例1.
第1の実施例は、二焦点用回折光学素子1を実現する例である。図5は、本実施例の回折光学素子1から出射される回折光の例を示す説明図である。図5に示す例では、回折光学素子1が、入射される光(平行光)に対してほぼ同じ回折効率で+1次回折光と−1次回折光とを発現させることが示されている。なお、0次回折光(直進透過光)は発現させていない。
Example 1.
The first embodiment is an example in which the bifocal diffractive optical element 1 is realized. FIG. 5 is an explanatory diagram showing an example of diffracted light emitted from the diffractive optical element 1 of the present embodiment. In the example shown in FIG. 5, it is shown that the diffractive optical element 1 expresses + 1st order diffracted light and −1st order diffracted light with substantially the same diffraction efficiency with respect to incident light (parallel light). Note that 0th-order diffracted light (straight forward transmitted light) is not expressed.

図5に示すように、+1次回折光と−1次回折光とをほぼ同じ回折効率で発現させたい場合には、以下に示す式(1)を満たすように凹凸層(凸部11および凹部12)を形成すればよい。式(1)において、n(λ)は上記と同様に波長λに対する凸部11の屈折率を示す。n(λ)は上記と同様に波長λに対する凹部12の屈折率を示している。dは凸部11の厚さを示す(図6参照。)。なお、mは0以上の整数であればよい。 As shown in FIG. 5, when the + 1st order diffracted light and the −1st order diffracted light are to be expressed with substantially the same diffraction efficiency, the concavo-convex layer (the convex portion 11 and the concave portion 12) so as to satisfy the following expression (1). May be formed. In the formula (1), n 1 (λ) represents the refractive index of the convex portion 11 with respect to the wavelength λ as described above. n 2 (λ) indicates the refractive index of the concave portion 12 with respect to the wavelength λ as described above. d shows the thickness of the convex part 11 (refer FIG. 6). In addition, m should just be an integer greater than or equal to 0.

{n(λ)−n(λ)}×d=(2m+1)λ/2 ・・・式(1) {N 1 (λ) −n 2 (λ)} × d = (2m + 1) λ / 2 Formula (1)

すなわち、凸部11と凹部12とで出射光の波長が半波長ずれるように、凸部11と凹部12の屈折率および凸部11の厚さを設計すればよい。しかし、前述したように屈折率nは波長λによって変化する性質(波長分散特性)をもつため、本実施例では、用いる充填材の屈折率n(λ)に対して、凸部11の屈折率n(λ)およびアッベ数を調整して、屈折率の差(Δn)に対する波長の割合が所望の波長帯域において一定となるようにしている。 That is, what is necessary is just to design the refractive index of the convex part 11 and the recessed part 12, and the thickness of the convex part 11 so that the wavelength of emitted light may shift | deviate a half wavelength with the convex part 11 and the recessed part 12. FIG. However, as described above, the refractive index n has a property (wavelength dispersion characteristic) that varies depending on the wavelength λ. Therefore, in this embodiment, the refractive index n 2 (λ) of the filler used is refracted. The ratio n 1 (λ) and the Abbe number are adjusted so that the ratio of the wavelength to the refractive index difference (Δn) is constant in the desired wavelength band.

図7は、本実施例の凸部11(光学多層膜)を構成する各層の材料の設計例を示す説明図である。図7に示す設計例は、石英ガラス基板11の一方の面に、膜厚41nmのSi0膜と、膜厚198nmのTa膜とを交互に20層重ねた光学多層膜を形成する場合の例である。例えば、図7で示される材料および膜厚で各層を順番に成膜していき、光学多層膜を形成する。そして、形成された光学多層膜を図1に示すような同心円状に広がる凹凸状に加工して、凸部11を形成する。各層の成膜は、例えば、真空蒸着法やスパッタリング法を用いて行えばよい。光学多層膜の凹凸形状への加工は、例えば、フォトリソグラフィおよびエッティングにより行えばよい。なお、本実施例におけるレンズ径は約10mmである。また、石英ガラス基板11の板厚は0.5mmである。また、Si0層とTa層の波長589nmにおける屈折率はそれぞれ1.47と2.19であり、アッベ数はそれぞれ58と21である。 FIG. 7 is an explanatory view showing a design example of the material of each layer constituting the convex portion 11 (optical multilayer film) of this embodiment. In the design example shown in FIG. 7, an optical multilayer film in which 20 layers of 41 nm thick SiO 2 films and 198 nm thick Ta 2 O 5 films are alternately stacked on one surface of a quartz glass substrate 11 is formed. This is an example. For example, each layer is sequentially formed with the material and film thickness shown in FIG. 7 to form an optical multilayer film. Then, the formed optical multilayer film is processed into an uneven shape spreading concentrically as shown in FIG. Each layer may be formed using, for example, a vacuum deposition method or a sputtering method. The processing of the optical multilayer film into the concavo-convex shape may be performed, for example, by photolithography and etching. The lens diameter in this embodiment is about 10 mm. The plate thickness of the quartz glass substrate 11 is 0.5 mm. The refractive index at a wavelength of 589nm of Si0 2 layers and Ta 2 O 5 layer is 1.47 and 2.19 respectively, the Abbe number is respectively 58 and 21.

この凸部11に対して、充填材として、波長586nmにおける屈折率が1.71であり、アッベ数が34であるエンチオール系の材料を用い、少なくとも凸部11の間を埋めるように充填する。そして、該充填材を接着剤にしてもう一方の石英ガラス基板(カバー)と接着させて、二焦点用回折光学素子1を作製する。このようにして作製される二焦点用回折光学素子1では、入射される平行光に対して+1次回折光と−1次回折光とを発現し、それぞれの回折光の焦点距離は約+1000mmと−1000mmとなる。この+1次回折光は凸レンズの出射光として機能し、−1次回折光は凹レンズの出射光として機能する。   The convex portion 11 is filled with an enthiol-based material having a refractive index of 1.71 at a wavelength of 586 nm and an Abbe number of 34 as a filler so as to fill at least the space between the convex portions 11. Then, the bifocal diffractive optical element 1 is manufactured by bonding the filler to the other quartz glass substrate (cover) using the filler as an adhesive. In the bifocal diffractive optical element 1 manufactured in this way, the + 1st order diffracted light and the −1st order diffracted light are expressed with respect to the incident parallel light, and the focal lengths of the diffracted lights are about +1000 mm and −1000 mm, respectively. It becomes. The + 1st order diffracted light functions as the output light of the convex lens, and the −1st order diffracted light functions as the output light of the concave lens.

図8に、本実施例の回折光学素子1(二焦点用回折光学素子1)における凸部11と凹部12の各波長に対する実効的な屈折率の計算値を示す。図8に示すように、本実施例の回折光学素子1では、可視光波長帯域440nmから670nmにおいて凸部11(多層光学膜)と凹部12(充填材)の屈折率の差が波長に対して比例していることがわかる。   In FIG. 8, the calculated value of the effective refractive index with respect to each wavelength of the convex part 11 and the concave part 12 in the diffractive optical element 1 (bifocal diffractive optical element 1) of a present Example is shown. As shown in FIG. 8, in the diffractive optical element 1 of the present example, the difference in refractive index between the convex part 11 (multilayer optical film) and the concave part 12 (filler) in the visible light wavelength band 440 nm to 670 nm is relative to the wavelength. You can see that they are proportional.

また、図9に、本実施例の回折光学素子1(二焦点用回折光学素子1)の各波長に対する回折効率の計算値を示す。図9に示すように、本実施例の回折光学素子1では、可視光波長帯域440nmから670nmにおいて、発現する+1次回折光と−1次回折光の回折効率が実質的に等しくなっていることがわかる。また、集光する+1次回折光と発散する−1次回折光のそれぞれの回折効率が約40%となるとともに、直進する0次回折光はほとんど光量を発現しない(0次回折効率が実質的にゼロになっている)ことがわかる。   FIG. 9 shows the calculated values of diffraction efficiency for each wavelength of the diffractive optical element 1 (bifocal diffractive optical element 1) of this example. As shown in FIG. 9, in the diffractive optical element 1 of the present embodiment, it can be seen that the diffraction efficiencies of the + 1st order diffracted light and the −1st order diffracted light are substantially equal in the visible light wavelength band of 440 nm to 670 nm. . Further, the diffraction efficiency of each of the converging + 1st order diffracted light and the divergent −1st order diffracted light is about 40%, and the 0th order diffracted light that travels straight does not express almost any amount of light (the 0th order diffractive efficiency is substantially zero I understand).

このような回折光学素子1から発現される回折光(+1次回折光と−1次回折光)を図3に示すように屈折光学素子2で屈折させることにより、光量が実質的に等しい二焦点をもつ多焦点レンズを実現することができる。   The diffracted light (+ 1st order diffracted light and −1st order diffracted light) expressed from such a diffractive optical element 1 is refracted by the refractive optical element 2 as shown in FIG. A multifocal lens can be realized.

実施例2.
次に、本発明の第2の実施例について説明する。本実施例は、三焦点用回折光学素子1を実現する例である。図10は、本実施例の回折光学素子1から出射される回折光の例を示す説明図である。図10に示す例では、回折光学素子1が、入射される光(平行光)に対して実質的に等しい回折効率で+1次回折光と−1次回折光と0次回折光とを発現させることが示されている。
Example 2
Next, a second embodiment of the present invention will be described. The present embodiment is an example for realizing the trifocal diffractive optical element 1. FIG. 10 is an explanatory diagram showing an example of diffracted light emitted from the diffractive optical element 1 of the present embodiment. In the example shown in FIG. 10, it is shown that the diffractive optical element 1 expresses + 1st order diffracted light, −1st order diffracted light, and 0th order diffracted light with substantially the same diffraction efficiency with respect to incident light (parallel light). Has been.

図10に示すように、+1次回折光と−1次回折光と0次回折光とを実質的に等しい回折効率で発現させたい場合には、例えば、図11に示す設計例のように凸部11(光学多層膜)を構成すればよい。図11は、本実施例の凸部11(光学多層膜)を構成する各層の材料の設計例を示す説明図である。なお、図11に示す設計例は、充填材として波長589nmにおける屈折率が1.65、アッベ数が31のエンチオール系の材料を用いる場合の例である。   As shown in FIG. 10, in order to express the + 1st order diffracted light, the −1st order diffracted light, and the 0th order diffracted light with substantially the same diffraction efficiency, for example, as shown in the design example shown in FIG. An optical multilayer film) may be configured. FIG. 11 is an explanatory view showing a design example of the material of each layer constituting the convex portion 11 (optical multilayer film) of the present embodiment. The design example shown in FIG. 11 is an example in the case of using an enethiol-based material having a refractive index of 1.65 at a wavelength of 589 nm and an Abbe number of 31 as a filler.

図11に示す設計例は、石英ガラス基板11の一方の面に、膜厚34nmのTa膜と、膜厚205nmのSi0膜とを交互に20層重ねた光学多層膜を形成する場合の例である。 In the design example shown in FIG. 11, an optical multilayer film in which 20 layers of a Ta 2 O 5 film having a thickness of 34 nm and a SiO 2 film having a thickness of 205 nm are alternately stacked is formed on one surface of the quartz glass substrate 11. This is an example.

図12に、図11に示す設計例に従って作製される回折光学素子1(三焦点用回折光学素子1)の各波長に対する回折効率の計算値を示す。図12に示すように、本実施例の回折光学素子1では、可視光波長帯域440nmから670nmにおいて、発現する+1次回折光と−1次回折光と0次回折光の回折効率が実質的に等しくなっていることがわかる。また、集光する+1次回折光と発散する−1次回折光と直進する0次回折光のそれぞれの回折効率が約30%となることがわかる。   FIG. 12 shows the calculated values of diffraction efficiency for each wavelength of the diffractive optical element 1 (trifocal diffractive optical element 1) manufactured according to the design example shown in FIG. As shown in FIG. 12, in the diffractive optical element 1 of the present embodiment, the diffraction efficiencies of the + 1st order diffracted light, the −1st order diffracted light, and the 0th order diffracted light that appear in the visible light wavelength band of 440 nm to 670 nm are substantially equal. I understand that. Also, it can be seen that the diffraction efficiencies of the converging + 1st order diffracted light, the diverging -1st order diffracted light, and the straight forward 0th order diffracted light are about 30%.

図13に、本実施例の回折光学素子1と屈折光学素子2とを組み合わせた多焦点レンズ100による結像の例を示す。図13に示すように、本実施例の回折光学素子1から発現される回折光(+1次回折光と−1次回折光と0次回折光)を屈折光学素子2で屈折させているので、実質的に等しい回折効率を得ることにより、回折された光の光量が実質的に等しい三焦点をもつ多焦点レンズを実現することができる。   FIG. 13 shows an example of image formation by the multifocal lens 100 in which the diffractive optical element 1 and the refractive optical element 2 of this embodiment are combined. As shown in FIG. 13, since the diffracted light (+ 1st order diffracted light, −1st order diffracted light, and 0th order diffracted light) expressed from the diffractive optical element 1 of the present embodiment is refracted by the refractive optical element 2, substantially. By obtaining equal diffraction efficiency, it is possible to realize a multifocal lens having three focal points with substantially equal amounts of diffracted light.

実施例3.
次に、本発明の第3の実施例について説明する。本実施例は、三焦点用回折光学素子1を、光学多層膜ではない凸部によって実現する例である。本実施例では、凸部11の部材(第1の光学部材11)として、ナフタレン系またはフルオレン系の材料を用いる。より具体的には、板厚0.5mmの石英ガラス基板11の一方の面に、ナフタレンにアクリルをつけた材料(naphthalen−6−yl acrylate)をスピンコート法を用いて6.3μmの膜厚で成膜する。この材料の波長589nmにおける屈折率は1.56、アッベ数は49である。また、充填材は、波長589nmにおける屈折率が1.53、アッベ数が29のエンチオール系の材料を用いればよい。
Example 3 FIG.
Next, a third embodiment of the present invention will be described. In this embodiment, the trifocal diffractive optical element 1 is realized by a convex portion that is not an optical multilayer film. In this embodiment, a naphthalene-based or fluorene-based material is used as the member of the convex portion 11 (first optical member 11). More specifically, a material obtained by adding acrylic (naphthalene-6-yl acrylate) to naphthalene on one surface of a quartz glass substrate 11 having a thickness of 0.5 mm is spin-coated to a thickness of 6.3 μm. The film is formed. This material has a refractive index of 1.56 and an Abbe number of 49 at a wavelength of 589 nm. As the filler, an enthiol-based material having a refractive index of 1.53 at a wavelength of 589 nm and an Abbe number of 29 may be used.

図14に、本実施例の回折光学素子1(三焦点用回折光学素子1)の各波長に対する回折効率の計算値を示す。図14に示すように、本実施例の回折光学素子1では、各波長における凸部11と凹部12の実効屈折の差が波長に対して比例するため、発現する+1次回折光と−1次回折光と0次回折光の回折効率が、可視光波長帯域440nmから670nmにおいて実質的に等しくなっていることがわかる。また、集光する+1次回折光と発散する−1次回折光と直進する0次回折光のそれぞれの回折効率が約30%となることがわかる。   In FIG. 14, the calculated value of the diffraction efficiency with respect to each wavelength of the diffractive optical element 1 (trifocal diffractive optical element 1) of the present embodiment is shown. As shown in FIG. 14, in the diffractive optical element 1 of the present embodiment, the difference in effective refraction between the convex portion 11 and the concave portion 12 at each wavelength is proportional to the wavelength. It can be seen that the diffraction efficiencies of the zero-order diffracted light and the zero-order diffracted light are substantially equal in the visible light wavelength band of 440 nm to 670 nm. Also, it can be seen that the diffraction efficiencies of the converging + 1st order diffracted light, the diverging -1st order diffracted light, and the straight forward 0th order diffracted light are about 30%.

このように、充填材と組み合わせる光学部材として多層光学膜を用いなくても、光量が実質的に等しい三焦点をもつ多焦点レンズを実現することができる。   Thus, a multifocal lens having three focal points with substantially the same amount of light can be realized without using a multilayer optical film as an optical member combined with a filler.

なお、回折格子として機能する凸部11と凹部12により生じる光の位相差やピッチ間隔(格子周期)を調整することにより、複数組の回折光を発現させることが可能である。複数組の回折光を発現させることで、三焦点以上の多焦点レンズを実現できる。   Note that a plurality of sets of diffracted light can be expressed by adjusting the phase difference and pitch interval (grating period) of light generated by the convex portion 11 and the concave portion 12 functioning as a diffraction grating. By expressing a plurality of sets of diffracted light, a multifocal lens with three or more focal points can be realized.

ところで、上記各実施例では、バイナリ型回折レンズの特性を活かして多焦点レンズを実現するために、所望の波長の範囲内で回折効率を一定とする回折光学素子1の例を示したが、回折レンズに見られる波長分散特性は、波長により焦点距離を変化させ、色収差としても現れる。特に、近距離の焦点を実現しようとすると色収差は顕著になる。   By the way, in each said Example, in order to implement | achieve a multifocal lens using the characteristic of a binary type diffractive lens, the example of the diffractive optical element 1 which makes diffraction efficiency constant within the range of a desired wavelength was shown, The chromatic dispersion characteristic seen in a diffractive lens changes the focal length depending on the wavelength, and also appears as chromatic aberration. In particular, chromatic aberration becomes noticeable when trying to achieve a short distance focus.

本発明は、この色収差を低減させるためにも、回折レンズと屈折レンズとの組み合わせによる多焦点化を推奨している。回折レンズと屈折レンズとを組み合わせて多焦点化を実現させれば、回折レンズだけを用いて多焦点化を実現する場合と比べて、色収差の面で優位性をもたせることが可能だからである。   In order to reduce this chromatic aberration, the present invention recommends multifocalization by a combination of a diffractive lens and a refractive lens. This is because, if a diffractive lens and a refractive lens are combined to realize multifocalization, it is possible to give superiority in terms of chromatic aberration as compared with the case where multifocalization is realized using only a diffractive lens.

例えば、撮像レンズの焦点距離としてf=100cmを実現しようとした場合に、焦点距離f=200cmをもつ回折光学素子1と、焦点距離f=200cmをもつ屈折光学素子2とを組み合わせることにより実現可能である。これは、本発明の構成のように、回折光学素子1と屈折光学素子2とを組み合わせて用いれば、焦点距離f=100cmをもつ回折レンズ単体で実現するよりも、色収差を少なく実現することができることを意味している。 For example, when an attempt realize f = 100 cm as the focal length of the imaging lens, and the diffractive optical element 1 having a focal distance f 1 = 200 cm, by combining the refractive optical element 2 having a focal length f 2 = 200 cm It is feasible. If the diffractive optical element 1 and the refracting optical element 2 are used in combination as in the configuration of the present invention, the chromatic aberration can be realized less than when a diffractive lens having a focal length f = 100 cm is used. It means you can do it.

本発明は、例えば、標準的な距離にある通常の被写体を撮影するとともに、通常の被写体よりも近い距離にある近接被写体を撮影するようなデジタルカメラ装置や情報処理端末等に装着する光学レンズおよび撮像システムに適用可能である。   The present invention provides, for example, an optical lens mounted on a digital camera device, an information processing terminal, or the like that captures a normal subject at a standard distance and also captures a close subject at a distance closer to the normal subject. It can be applied to an imaging system.

本発明による多焦点レンズ100の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the multifocal lens 100 by this invention. 回折光学素子1の構成例を示す説明図である。2 is an explanatory diagram illustrating a configuration example of a diffractive optical element 1. FIG. 回折光学素子1と屈折光学素子2とを組み合わせた多焦点レンズ100による結像の例を示す説明図である。It is explanatory drawing which shows the example of the image formation by the multifocal lens 100 which combined the diffractive optical element 1 and the refractive optical element 2. FIG. 多焦点レンズ100の他の構成例を示す説明図である。It is explanatory drawing which shows the other structural example of the multifocal lens. 第1の実施例の回折光学素子1から出射される回折光の例を示す説明図である。It is explanatory drawing which shows the example of the diffracted light radiate | emitted from the diffractive optical element 1 of a 1st Example. 第1の実施例の回折光学素子1における凸部11と凹部12の屈折率および凸部11の高さの関係を示す説明図である。It is explanatory drawing which shows the relationship between the refractive index of the convex part 11 and the recessed part 12, and the height of the convex part 11 in the diffractive optical element 1 of a 1st Example. 第1の実施例の回折光学素子1における凸部11(光学多層膜)を構成する各層の材料の設計例を示す説明図である。It is explanatory drawing which shows the example of a design of the material of each layer which comprises the convex part 11 (optical multilayer film) in the diffractive optical element 1 of a 1st Example. 第1の実施例の回折光学素子1における凸部11と凹部12の屈折率の波長分散特性を示すグラフである。It is a graph which shows the wavelength dispersion characteristic of the refractive index of the convex part 11 and the recessed part 12 in the diffractive optical element 1 of a 1st Example. 第1の実施例の回折光学素子1の各波長に対する回折効率を示すグラフである。It is a graph which shows the diffraction efficiency with respect to each wavelength of the diffractive optical element 1 of a 1st Example. 第2の実施例の回折光学素子1から出射される回折光の例を示す説明図である。It is explanatory drawing which shows the example of the diffracted light radiate | emitted from the diffractive optical element 1 of a 2nd Example. 第2の実施例の回折光学素子1における凸部11(光学多層膜)を構成する各層の材料の設計例を示す説明図である。It is explanatory drawing which shows the example of a design of the material of each layer which comprises the convex part 11 (optical multilayer film) in the diffractive optical element 1 of a 2nd Example. 第2の実施例の回折光学素子1の各波長に対する回折効率を示すグラフである。It is a graph which shows the diffraction efficiency with respect to each wavelength of the diffractive optical element 1 of a 2nd Example. 第2の実施例の回折光学素子1と屈折光学素子2とを組み合わせた多焦点レンズ100による結像の例を示す。The example of the image formation by the multifocal lens 100 which combined the diffractive optical element 1 and the refractive optical element 2 of a 2nd Example is shown. 第3の実施例の回折光学素子1の各波長に対する回折効率を示すグラフである。It is a graph which shows the diffraction efficiency with respect to each wavelength of the diffractive optical element 1 of a 3rd Example.

符号の説明Explanation of symbols

100 撮像レンズ
1 回折光学素子
11 第1の光学部材(凸部)
12 第2の光学部材(凹部)
13 透明基板
2 屈折光学素子
3 絞り
DESCRIPTION OF SYMBOLS 100 Imaging lens 1 Diffractive optical element 11 1st optical member (convex part)
12 Second optical member (concave)
13 Transparent substrate 2 Refractive optical element 3 Aperture

Claims (8)

所定の波長帯域の入射光に対して2つ以上の焦点を発現させる撮像レンズであって、
回折光を発現させる回折光学素子と、屈折光を発現させる屈折光学素子とを備え、
前記回折光学素子は、
透明基板上に光軸を中心とした同心円状に交互に配置される第1の光学部材と第2の光学部材とにより、断面が矩形状の凹凸形状となる回折格子が形成されて、
前記第1の光学部材と前記第2の光学部材とは、前記波長帯域の入射光に対してそれぞれ異なる屈折率およびアッベ数をもち、かつ当該第1の光学部材の前記波長帯域に含まれる任意の波長λに対する屈折率をn(λ)とし、当該第2の光学部材の前記波長帯域に含まれる任意の波長λに対する屈折率をn(λ)とし、かつ前記回折格子の厚さをdとするとき、|n(λ)−n(λ)|・d/λの値が前記波長帯域において実質的に等しく、
前記屈折光学素子は、前記回折光学素子から出射される少なくとも1組の1次以上の高次回折光を含む回折光を素子入射光とし、前記回折光のうち最も高次の回折光を±L次回折光とすると、集光する側の+L次回折光の焦点距離が最も長く、発散する側の−L次回折光の焦点距離が最も短くなるように前記素子入射光である回折光を屈折させた屈折光を発現させる
ことを特徴とする撮像レンズ。
An imaging lens that develops two or more focal points for incident light in a predetermined wavelength band,
A diffractive optical element that expresses diffracted light; and a refractive optical element that expresses refracted light;
The diffractive optical element is
A diffraction grating having a concavo-convex shape with a rectangular cross section is formed by the first optical member and the second optical member alternately arranged concentrically around the optical axis on the transparent substrate,
The first optical member and the second optical member have different refractive indices and Abbe numbers for incident light in the wavelength band, and are included in the wavelength band of the first optical member. N 1 (λ), the refractive index for any wavelength λ included in the wavelength band of the second optical member is n 2 (λ), and the thickness of the diffraction grating is When d, the value of | n 1 (λ) −n 2 (λ) | · d / λ is substantially equal in the wavelength band,
The refractive optical element uses at least one set of first-order or higher-order diffracted light emitted from the diffractive optical element as element incident light, and the highest-order diffracted light among the diffracted lights is ± L next time. If it is a folded light, the refracted light that refracts the diffracted light as the element incident light so that the focal length of the + L order diffracted light on the collecting side is the longest and the focal length of the −L order diffracted light on the diverging side is the shortest. An imaging lens characterized by that.
前記回折光学素子は、所定の前記波長帯域の入射光に対して、直進透過する0次回折光と1組の1次以上の高次回折光とを発現させる回折格子であって、各次の回折効率が所定の前記波長帯域において実質的に等しい回折格子が形成されている
請求項1に記載の撮像レンズ。
The diffractive optical element is a diffraction grating that expresses zero-order diffracted light that is transmitted in a straight line and a set of first-order or higher-order diffracted light with respect to incident light in a predetermined wavelength band, and each diffraction efficiency is The imaging lens according to claim 1, wherein substantially equal diffraction gratings are formed in the predetermined wavelength band.
前記回折光学素子は、所定の前記波長帯域の入射光に対して、±1次回折光を発現させる回折格子であって、前記±1次回折光の回折効率が所定の前記波長帯域において実質的に等しい回折格子が形成されている
請求項1に記載の撮像レンズ。
The diffractive optical element is a diffraction grating that expresses ± first-order diffracted light with respect to incident light in a predetermined wavelength band, and diffraction efficiency of the ± first-order diffracted light is substantially equal in the predetermined wavelength band. The imaging lens according to claim 1, wherein a diffraction grating is formed.
前記回折光学素子は、所定の前記波長帯域の入射光に対して、直進透過する0次回折光と±1次回折光とを発現させる回折格子であって、前記0次回折光と前記±1次回折光の回折効率が所定の前記波長帯域において実質的に等しい回折格子が形成されている
請求項2に記載の撮像レンズ。
The diffractive optical element is a diffraction grating that expresses 0th-order diffracted light and ± 1st-order diffracted light that are transmitted in a straight line with respect to incident light in a predetermined wavelength band, and includes the 0th-order diffracted light and the ± 1st-order diffracted light. The imaging lens according to claim 2, wherein diffraction gratings having diffraction efficiency substantially equal in the predetermined wavelength band are formed.
所定の前記波長帯域が、430〜660nmの範囲である
請求項1から請求項4のうちのいずれか1項に記載の撮像レンズ。
The imaging lens according to any one of claims 1 to 4, wherein the predetermined wavelength band is in a range of 430 to 660 nm.
前記第1の光学部材または前記第2の光学部材のいずれか一方が、2種類以上の材料が透明基板に平行に積層される光学多層膜によって構成されている
請求項1から請求項5のうちのいずれか1項に記載の撮像レンズ。
Either one of said 1st optical member or said 2nd optical member is comprised by the optical multilayer film by which two or more types of materials are laminated | stacked in parallel with a transparent substrate. The imaging lens according to any one of the above.
前記光学多層膜は、Si0膜とTa膜とが交互に積層されている
請求項6に記載の撮像レンズ。
The optical multilayer film, Si0 2 film and the Ta 2 O 5 film and the imaging lens according to claim 6 which are alternately laminated.
前記第1の光学部材または前記第2の光学部材のいずれか一方が、ナフタレン系化合物またはフルオレン系化合物によって構成されている
請求項1から請求項5のうちのいずれか1項に記載の撮像レンズ。
6. The imaging lens according to claim 1, wherein either the first optical member or the second optical member is made of a naphthalene compound or a fluorene compound. .
JP2008212673A 2008-08-21 2008-08-21 Imaging lens Pending JP2010048997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212673A JP2010048997A (en) 2008-08-21 2008-08-21 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212673A JP2010048997A (en) 2008-08-21 2008-08-21 Imaging lens

Publications (1)

Publication Number Publication Date
JP2010048997A true JP2010048997A (en) 2010-03-04

Family

ID=42066133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212673A Pending JP2010048997A (en) 2008-08-21 2008-08-21 Imaging lens

Country Status (1)

Country Link
JP (1) JP2010048997A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009428A1 (en) * 2020-07-10 2022-01-13 住友電工ハードメタル株式会社 Diffractive optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643301A (en) * 1992-07-23 1994-02-18 Kuraray Co Ltd Optical parts
JPH09146007A (en) * 1995-11-17 1997-06-06 Olympus Optical Co Ltd Optical system
JPH09325203A (en) * 1996-05-31 1997-12-16 Olympus Optical Co Ltd Diffraction optical element
JP2004348165A (en) * 1995-08-29 2004-12-09 Olympus Corp Diffraction optical element, and optical system and optical apparatus equipped with same
JP2006236549A (en) * 2005-01-31 2006-09-07 Asahi Glass Co Ltd Optical head apparatus, wide band phase plate, and polarization diffraction element
JP2006232907A (en) * 2005-02-23 2006-09-07 Canon Inc Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643301A (en) * 1992-07-23 1994-02-18 Kuraray Co Ltd Optical parts
JP2004348165A (en) * 1995-08-29 2004-12-09 Olympus Corp Diffraction optical element, and optical system and optical apparatus equipped with same
JPH09146007A (en) * 1995-11-17 1997-06-06 Olympus Optical Co Ltd Optical system
JPH09325203A (en) * 1996-05-31 1997-12-16 Olympus Optical Co Ltd Diffraction optical element
JP2006236549A (en) * 2005-01-31 2006-09-07 Asahi Glass Co Ltd Optical head apparatus, wide band phase plate, and polarization diffraction element
JP2006232907A (en) * 2005-02-23 2006-09-07 Canon Inc Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009428A1 (en) * 2020-07-10 2022-01-13 住友電工ハードメタル株式会社 Diffractive optical device

Similar Documents

Publication Publication Date Title
JP4310080B2 (en) Diffractive optical element and optical system and optical apparatus provided with the same
JP3472097B2 (en) Diffractive optical element and optical system using the same
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
JP3530776B2 (en) Diffractive optical element and optical system using the same
JP5132284B2 (en) Diffractive optical element, optical system having the same, and optical instrument
US8336333B2 (en) Diffractive optical element and optical system using the same
JP2009217139A (en) Diffraction optical element, optical system and optical apparatus
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JPH1144810A (en) Diffractive optics and optical system using the same
JP4006362B2 (en) Diffractive optical element and optical system having the same
JP4387855B2 (en) Optical system
JP2008242390A (en) Diffraction optical element and optical system having the same
JP3472154B2 (en) Diffractive optical element and optical system having the same
KR20020071752A (en) Diffracting optical element, and optical system and optical apparatus having the same
EP1376161A2 (en) Diffractive optical element and optical system provided with the same
JP2007171547A (en) Fresnel lens and liquid crystal projector using the same
JP5765998B2 (en) Diffractive optical element, optical system and optical instrument
JP2002082214A (en) Diffractive optical element and optical system using the same
JP2010048997A (en) Imaging lens
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JPH09325203A (en) Diffraction optical element
JP2015203790A (en) Optical system and optical device having the same
JP4088283B2 (en) Diffractive optical element, optical system including the same, and optical apparatus
JP2011154362A (en) Diffractive optical element and optical device
JP2017215478A (en) Diffraction optical element and optical system, imaging device and lens device having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110308

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120830

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129