JP5137432B2 - Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same - Google Patents

Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same Download PDF

Info

Publication number
JP5137432B2
JP5137432B2 JP2007077600A JP2007077600A JP5137432B2 JP 5137432 B2 JP5137432 B2 JP 5137432B2 JP 2007077600 A JP2007077600 A JP 2007077600A JP 2007077600 A JP2007077600 A JP 2007077600A JP 5137432 B2 JP5137432 B2 JP 5137432B2
Authority
JP
Japan
Prior art keywords
optical element
diffractive optical
line
order
grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007077600A
Other languages
Japanese (ja)
Other versions
JP2008241734A (en
JP2008241734A5 (en
Inventor
裕人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2007077600A priority Critical patent/JP5137432B2/en
Priority to US11/867,989 priority patent/US7710651B2/en
Priority to DE602007004710T priority patent/DE602007004710D1/en
Priority to EP07020072A priority patent/EP1972971B1/en
Priority to CN2007101624746A priority patent/CN101271168B/en
Publication of JP2008241734A publication Critical patent/JP2008241734A/en
Publication of JP2008241734A5 publication Critical patent/JP2008241734A5/ja
Application granted granted Critical
Publication of JP5137432B2 publication Critical patent/JP5137432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、光学系や光学機器に用いられる回折光学素子に関し、特に2つの材料により形成された回折格子が互いに接して構成された回折光学素子に関する。   The present invention relates to a diffractive optical element used in an optical system or an optical apparatus, and more particularly to a diffractive optical element in which diffraction gratings formed of two materials are in contact with each other.

硝材の組み合わせにより色収差を減じる方法に対して、レンズ面や光学系の一部に回折作用を有する回折光学素子(以下、回折格子ともいう)を設けることで色収差を減じる方法が、非特許文献1や特許文献1〜3に開示されている。これは、光学系中の屈折面と回折面とでは、ある基準波長の光線に対して色収差が逆方向に発現するという物理現象を利用したものである。   In contrast to the method of reducing chromatic aberration by combining glass materials, a method of reducing chromatic aberration by providing a diffractive optical element (hereinafter also referred to as a diffraction grating) having a diffractive action on a lens surface or a part of an optical system is disclosed in Non-Patent Document 1. And Patent Documents 1 to 3. This utilizes the physical phenomenon that chromatic aberration appears in the opposite direction with respect to a light beam having a certain reference wavelength at the refracting surface and the diffractive surface in the optical system.

さらに、このような回折光学素子には、その周期的構造の周期を変化させることで、非球面レンズのような効果を持たせることもでき、収差の低減に大きな効果がある。   Furthermore, such a diffractive optical element can have an effect similar to that of an aspheric lens by changing the period of the periodic structure, which has a great effect on reducing aberrations.

回折光学素子を有する光学系において、使用波長領域の光(回折光学素子への入射光)が特定の1つの次数(以下、設計次数ともいう)の回折光に集中している場合は、それ以外の回折次数の回折光の強度は低いものとなる。例えば、該強度が0の場合は、その回折光は存在しない。ただし、設計次数以外の回折光が存在し、それがある程度の強度を有する場合は、設計次数の回折光とは別の位置に結像するため、光学系でのフレア光となる。   In an optical system having a diffractive optical element, light in the wavelength range of use (incident light to the diffractive optical element) is concentrated on diffracted light of a specific one order (hereinafter also referred to as design order), otherwise The intensity of the diffracted light of the diffraction order is low. For example, when the intensity is 0, the diffracted light does not exist. However, when there is diffracted light other than the designed order and it has a certain intensity, it forms an image at a position different from the diffracted light of the designed order, so that it becomes flare light in the optical system.

したがって、回折光学素子の色収差低減作用を利用するためには、使用波長領域全域において、設計次数の回折光の回折効率が十分高いことが必要である。このため、この設計次数での回折効率の分光分布及び設計次数以外の回折光の振舞いについても十分考慮することが重要である。   Therefore, in order to utilize the chromatic aberration reducing action of the diffractive optical element, it is necessary that the diffraction efficiency of the diffracted light of the designed order is sufficiently high in the entire use wavelength region. For this reason, it is important to sufficiently consider the spectral distribution of diffraction efficiency at this design order and the behavior of diffracted light other than the design order.

ここで、ある次数の回折光の回折効率とは、回折光学素子を透過する全光束の光量に対する、その次数の回折光の光量の割合(透過率とも言える)である。   Here, the diffraction efficiency of a certain order of diffracted light is the ratio (also referred to as transmittance) of the light amount of the diffracted light of that order to the light amount of the total luminous flux transmitted through the diffractive optical element.

図13には、基板109とこの基板109上に形成された回折格子108とにより構成される回折光学素子(以下、単層型DOEという)を示している。D1は回折格子108の格子厚である。この単層型DOEをある面に形成した場合の特定次数に対する回折効率の特性を図14に示す。   FIG. 13 shows a diffractive optical element (hereinafter referred to as a single-layer DOE) including a substrate 109 and a diffraction grating 108 formed on the substrate 109. D 1 is the grating thickness of the diffraction grating 108. FIG. 14 shows the characteristics of diffraction efficiency with respect to a specific order when this single-layer DOE is formed on a certain surface.

図14において、横軸は入射光の波長を、縦軸は回折効率を示している。回折効率の値は、前述したように全透過光束の光量に対する各次数での回折光の光量の割合を表している。なお、ここでは、説明を簡単にするため、格子境界面での反射光は考慮していない。   In FIG. 14, the horizontal axis indicates the wavelength of incident light, and the vertical axis indicates the diffraction efficiency. As described above, the value of the diffraction efficiency represents the ratio of the light amount of the diffracted light at each order to the light amount of the total transmitted light beam. Here, in order to simplify the explanation, the reflected light at the lattice boundary surface is not considered.

図14に示すように、図13に示した単層型DOEは、使用波長領域において、設計次数である1次の回折次数の回折効率(図中の太実線)が最も高くなるように設計されている。この設計次数で回折効率はある波長で最も高くなり(以下、この波長を設計波長という)、それ以外の波長では徐々に低くなる。この設計次数での回折効率の低下量に相当する光は、他の次数の回折光となり、フレア光をなる。図14には、この他の次数として、設計次数近傍の次数(0次と2次)の回折効率も併せて示している。   As shown in FIG. 14, the single-layer DOE shown in FIG. 13 is designed so that the diffraction efficiency (the thick solid line in the figure) of the first order diffraction order, which is the designed order, is highest in the wavelength range of use. ing. At this design order, the diffraction efficiency is highest at a certain wavelength (hereinafter, this wavelength is referred to as a design wavelength), and gradually decreases at other wavelengths. The light corresponding to the amount of decrease in diffraction efficiency at this design order becomes diffracted light of other orders and becomes flare light. FIG. 14 also shows diffraction efficiency of orders (0th order and 2nd order) in the vicinity of the design order as other orders.

このようにして発生するフレア光の影響を低減する構成として、様々なものが提案されている。   Various configurations for reducing the influence of flare light generated in this way have been proposed.

特許文献4にて開示された回折光学素子は、図15に示すように、3種類の異なる格子材料110〜112と2種類の異なる格子厚d1,d2とを最適に選び、複数の回折格子を等しいピッチ分布で密着配置している。これにより、図16に示すように、可視波長域全域にわたって設計次数での高い回折効率を実現している。   As shown in FIG. 15, the diffractive optical element disclosed in Patent Document 4 optimally selects three kinds of different grating materials 110 to 112 and two kinds of different grating thicknesses d1 and d2, and selects a plurality of diffraction gratings. Closely arranged with equal pitch distribution. As a result, as shown in FIG. 16, high diffraction efficiency at the design order is realized over the entire visible wavelength range.

また、図17に示す特許文献5にて開示された回折光学素子113は、回折格子をそれぞれ含む素子部114,115を、空気層116を介して互いに近接させた構造を有する。以下、このような構成の回折光学素子を積層型DOEという。各回折格子を構成する材料の屈折率、分散特性及び各層の格子厚を最適化することにより、図18Aに示すように、可視波長域全域にわたって設計次数での高い回折効率を実現している。また、図18Bに示すように、0次回折光及び2次回折光である不要回折光の回折効率も概ね抑制されている。   Further, the diffractive optical element 113 disclosed in Patent Document 5 shown in FIG. 17 has a structure in which element portions 114 and 115 each including a diffraction grating are brought close to each other via an air layer 116. Hereinafter, the diffractive optical element having such a configuration is referred to as a stacked DOE. By optimizing the refractive index, dispersion characteristics, and grating thickness of each layer constituting each diffraction grating, as shown in FIG. 18A, high diffraction efficiency at the design order is realized over the entire visible wavelength range. In addition, as shown in FIG. 18B, the diffraction efficiency of unnecessary diffracted light that is zero-order diffracted light and second-order diffracted light is generally suppressed.

また、特許文献6にて開示された回折光学素子は、特許文献5にて開示された回折光学素子と同じ積層型DOEである。ただし、微粒子材料と樹脂材料を混合した材料を用いて各層の格子厚を最適化することにより、図19Aに示すように、特許文献5の回折光学素子よりもさらに高い回折効率を実現している。また、図19Bに示すように、0次回折光及び2次回折光である不要回折次数の回折効率も十分に抑制されている。 Further, the diffractive optical element disclosed in Patent Document 6 is the same stacked DOE as the diffractive optical element disclosed in Patent Document 5. However, by optimizing the grating thickness of each layer using a material in which a fine particle material and a resin material are mixed, higher diffraction efficiency is realized than the diffractive optical element of Patent Document 5, as shown in FIG. 19A. . Further, as shown in FIG. 19B, the diffraction efficiency of unnecessary diffraction order light that is 0th order diffracted light and second order diffracted light is also sufficiently suppressed.

さらに、図20に示す特許文献7にて開示された回折光学素子119は、互いに異なる2種類の樹脂材料により形成された回折格子117,118がそれらの格子面で密着する構成を有する。以下、このような構成の回折光学素子を、密着2層型DOEという。このような構成により、製造が容易で安価な回折光学素子が実現される。
SPIE Vol.1354 International Lens Design Conference(1990) 特開平4−213421号公報 特開平6−324262号公報 米国特許5044706号明細書 特開平9−127322号公報 特開2000−98118号公報 特開2004−78166号公報 特開2005−107298号公報
Furthermore, the diffractive optical element 119 disclosed in Patent Document 7 shown in FIG. 20 has a configuration in which diffraction gratings 117 and 118 formed of two different types of resin materials are in close contact with each other on their grating surfaces. Hereinafter, the diffractive optical element having such a configuration is referred to as a contact two-layer DOE. With such a configuration, a diffractive optical element that is easy to manufacture and inexpensive can be realized.
SPIE Vol.1354 International Lens Design Conference (1990) JP-A-4-213421 JP-A-6-324262 US Pat. No. 5,044,706 JP-A-9-127322 JP 2000-98118 A JP 2004-78166 A JP 2005-107298 A

特許文献4及び5にて開示された積層型DOEでは、設計次数の回折効率が使用波長領域全域で94%以上というように、単層型DOEに比べて大幅に改善されている。また、フレア光となる不要回折光も2%以下と概ね良好に抑えられている。   In the multilayer DOE disclosed in Patent Documents 4 and 5, the diffraction efficiency of the designed order is greatly improved as compared with the single-layer DOE so that it is 94% or more in the entire use wavelength region. In addition, unnecessary diffracted light that becomes flare light is also suppressed to approximately 2% or less.

しかしながら、スチルカメラやビデオカメラ等の光学機器に搭載される光学系においては、被写体として高輝度光源が存在する場合に、わずかに残存しているフレア光が問題となる懸念がある。   However, in an optical system mounted on an optical device such as a still camera or a video camera, there is a concern that slightly remaining flare light may be a problem when a high-luminance light source exists as a subject.

特許文献6にて開示された微粒子材料と樹脂材料を混合した材料を用いた積層型DOEでは、設計次数の回折効率が使用波長領域全域で99.5%以上、不要回折光が0.05%以下で、特許文献4及び5の積層型DOEよりも更に高性能が実現されている。これにより、フレア光もかなり目立たなくなることが予想される。   In the multilayer DOE using the material obtained by mixing the fine particle material and the resin material disclosed in Patent Document 6, the diffraction efficiency of the designed order is 99.5% or more in the entire use wavelength region, and the unnecessary diffracted light is 0.05%. In the following, higher performance than the stacked DOEs of Patent Documents 4 and 5 is realized. As a result, the flare light is also expected to be inconspicuous.

しかしながら、特許文献6にて開示された空気層を含んだ積層型DOEよりも、製造が容易な回折光学素子が望まれている。   However, a diffractive optical element that is easier to manufacture than the multilayer DOE including an air layer disclosed in Patent Document 6 is desired.

一方、特許文献7にて開示された密着2層型DOEでは、回折光学素子自体の性能、特に設計次数である1次回折光の回折効率が、使用波長領域全域で約95〜97%程度と十分に高いとは言えない。つまり、不要回折光によるフレアが問題となる懸念がある。また、格子厚が約20μm以上と厚いため、斜めに入射する光線に対するケラレによる回折効率の劣化も問題となる。 On the other hand, the contact 2-layer DOE disclosed in Japanese Patent Document 7, the performance of the diffractive optical element itself, especially the diffraction efficiency of first order diffracted light that is the designed order is sufficiently and about 95 to 97% by using a wavelength region entire It is not very expensive. That is, there is a concern that flare caused by unnecessary diffracted light becomes a problem. Further, since the grating thickness is as thick as about 20 μm or more, degradation of diffraction efficiency due to vignetting with respect to obliquely incident light becomes a problem.

本発明は、広い波長領域における特定次数(設計次数)の回折光に対する高い回折効率が得られるとともに、不要回折光を十分抑制でき、さらに製造が容易な回折光学素子を提供する。   The present invention provides a diffractive optical element that can obtain high diffraction efficiency with respect to diffracted light of a specific order (design order) in a wide wavelength region, can sufficiently suppress unnecessary diffracted light, and is easy to manufacture.

本発明の一側面としての回折光学素子は、第1及び第2の材料によりそれぞれ形成された回折格子が互いの格子面で接する構成を有する。そして、第2の材料は、以下の条件をすべて満足する第1の微粒子材料を樹脂材料に混合した材料であり、第1及び第2の材料は以下の条件をすべて満足することを特徴とする。 The diffractive optical element according to one aspect of the present invention has a configuration in which diffraction gratings formed of the first and second materials are in contact with each other on the grating surfaces. The second material is a material in which a first fine particle material that satisfies all of the following conditions is mixed with a resin material, and the first and second materials satisfy all of the following conditions: .

1.5218≦nd1≦1.6110 …(1)
45.4≦νd1≦57.9 …(2)
0.54≦θg,F1≦0.57 …(3)
1.23≦θg,d1≦1.27 …(4)
1.4688≦nd2≦1.5673 …(5)
12.1≦νd2≦21.7 …(6)
0.36≦θg,F2≦0.42 …(7)
0.97≦θg,d2≦1.07 …(8)
0.04≦nd1-nd2≦0.10 …(9)
1.77≦ndb2≦1.93 …(10)
6.8≦νdb2≦7.7 …(11)
6.0≦d≦13.9 …(15)
ただし、ng1, nF1, nd1, nC1はそれぞれ、第1の材料のg線, F線, d線, C線に対する屈折率、
ng2, nF2, nd2, nC2はそれぞれ、第2の材料のg線, F線, d線, C線に対する屈折率、
nFb2, ndb2, nCb2はそれぞれ、第1の微粒子材料のF線, d線, C線に対する屈折率、
νd1=(nd1-1)/(nF1-nC1)
νd2=(nd2-1)/(nF2-nC2)
θg,F1=(ng1-nF1)/(nF1-nC1)
θg,d1=(ng1-nd1)/(nF1-nC1)
θg,F2=(ng2-nF2)/(nF2-nC2)
θg,d2=(ng2-nd2)/(nF2-nC2)
νdb2=(ndb2-1)/(nFb2-nCb2)
dは、回折格子の格子厚、
である。
1.5218 ≦ nd1 ≦ 1.6110 … (1)
45.4 ≤ νd1 ≤ 57.9 (2)
0.54 ≦ θg, F1 ≦ 0.57 … (3)
1.23 ≦ θg, d1 ≦ 1.27 (4)
1.4688 ≦ nd2 ≦ 1.5673 … (5)
12.1 ≦ νd2 ≦ 21.7 (6)
0.36 ≦ θg, F2 ≦ 0.42 (7)
0.97 ≦ θg, d2 ≦ 1.07 … (8)
0.04 ≦ nd1-nd2 ≦ 0.10 … (9)
1.77 ≦ ndb2 ≦ 1.93 (10)
6.8 ≦ νdb2 ≦ 7.7 … (11)
6.0 ≦ d ≦ 13.9 (15)
Where ng1, nF1, nd1, and nC1 are the refractive indices of the first material for g-line, F-line, d-line, and C-line,
ng2, nF2, nd2, and nC2 are the refractive indices of the second material for g-line, F-line, d-line, and C-line,
nFb2, ndb2, and nCb2 are the refractive indices of the first particulate material for the F-line, d-line, and C-line,
νd1 = (nd1-1) / (nF1-nC1)
νd2 = (nd2-1) / (nF2-nC2)
θg, F1 = (ng1-nF1) / (nF1-nC1)
θg, d1 = (ng1-nd1) / (nF1-nC1)
θg, F2 = (ng2-nF2) / (nF2-nC2)
θg, d2 = (ng2-nd2) / (nF2-nC2)
νdb2 = (ndb2-1) / (nFb2-nCb2)
d is the grating thickness of the diffraction grating,
It is.

なお、上記回折光学素子を有する光学系及び光学機器も本発明の他の側面を構成する。   Note that the optical system and the optical apparatus having the diffractive optical element constitute another aspect of the present invention.

本発明によれば、広い波長領域における特定次数(設計次数)の回折光に対する高い回折効率が得られるとともに、不要回折光を十分抑制可能な回折光学素子を実現することができる。さらに、密着2層型DOEであるので、容易に製造することができる。そして、該回折光学素子を用いれば、フレア光が少ない良好な光学性能を有する光学系及び光学機器を実現することができる。   According to the present invention, it is possible to realize a diffractive optical element that can obtain high diffraction efficiency with respect to diffracted light of a specific order (design order) in a wide wavelength region and can sufficiently suppress unnecessary diffracted light. Furthermore, since it is a close-contact two-layer DOE, it can be easily manufactured. If the diffractive optical element is used, it is possible to realize an optical system and an optical apparatus having good optical performance with less flare light.

以下、本発明の好ましい実施例について図面を参照しながら説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

図1には、本発明の実施例1である回折光学素子の正面図(左図)と側面図(右図)を示している。図1中のOは、回折光学素子の中心軸を示す。また、図2には、図1に示した回折光学素子をA−A′線で切断したときの断面形状の一部を拡大して示している。但し、図2では、格子深さ方向に関してかなりデフォルメした構成を示している。   FIG. 1 shows a front view (left view) and a side view (right view) of a diffractive optical element that is Embodiment 1 of the present invention. O in FIG. 1 indicates the central axis of the diffractive optical element. FIG. 2 shows an enlarged part of a cross-sectional shape when the diffractive optical element shown in FIG. 1 is cut along the line AA ′. However, FIG. 2 shows a configuration that is considerably deformed in the lattice depth direction.

これらの図に示すように、回折光学素子10は、第1の素子部12と第2の素子部13を有する。第1の素子部12は、第1の透明基板14と、該第1の透明基板14上に設けられた格子ベース部16及び該格子ベース部16に一体形成された第1の回折格子18により構成される第1の格子形成層とを有する。また、第2の素子部13は、第2の透明基板15と、該第2の透明基板15上に設けられた格子ベース部17及び該格子ベース部17に一体形成された第2の回折格子19により構成される第2の格子形成層とを有する。   As shown in these drawings, the diffractive optical element 10 has a first element portion 12 and a second element portion 13. The first element portion 12 includes a first transparent substrate 14, a grating base portion 16 provided on the first transparent substrate 14, and a first diffraction grating 18 formed integrally with the grating base portion 16. And a first lattice forming layer configured. The second element portion 13 includes a second transparent substrate 15, a grating base portion 17 provided on the second transparent substrate 15, and a second diffraction grating formed integrally with the grating base portion 17. 19 and a second lattice forming layer.

第1及び第2の回折格子18,19は、互いに同一形状の格子形状(周期構造)、すなわち同一の格子厚dと同一の格子ピッチpの分布とを有している。言い換えれば、互いに同一のパターンの格子形状を有する。格子形状は、凸部(以下、山という)と凹部(以下、谷という)とが交互に現れる形状である。   The first and second diffraction gratings 18 and 19 have the same grating shape (periodic structure), that is, the same grating thickness d and the same grating pitch p distribution. In other words, they have lattice shapes with the same pattern. The lattice shape is a shape in which convex portions (hereinafter referred to as peaks) and concave portions (hereinafter referred to as valleys) appear alternately.

第1及び第2の素子部12,13は、第1及び第2の回折格子18,19の格子面(格子の斜面に相当する面)18a,19aと格子壁面部18b,19bが互いに隙間なく接した、すなわち空気層を介さずに密着した構成を有する。第1及び第2の素子部12,13は、全体で1つの回折光学素子として作用する。   The first and second element parts 12 and 13 are configured so that the grating surfaces (surfaces corresponding to the inclined surfaces of the gratings) 18a and 19a and the grating wall surfaces 18b and 19b of the first and second diffraction gratings 18 and 19 are not spaced from each other. It has the structure which contact | connected, ie, contact | adhered without passing through an air layer. The first and second element portions 12 and 13 function as one diffractive optical element as a whole.

第1及び第2の回折格子18,19は、同心円状の格子形状を有し、径方向における格子ピッチが変化することでレンズ作用を有する。   The first and second diffraction gratings 18 and 19 have concentric grating shapes, and have a lens function by changing the grating pitch in the radial direction.

本実施例において、回折光学素子10に入射する光の波長領域、すなわち使用波長領域は可視波長領域である。第1及び第2の回折格子18,19を構成する材料及び格子厚は、可視波長領域全域で設計次数である1次回折光の回折効率高くなるように選択される。 In this embodiment, the wavelength region of light incident on the diffractive optical element 10, that is, the used wavelength region is a visible wavelength region. Material and the grating thickness constituting the first and second diffraction gratings 18 and 19 is selected such that the diffraction efficiency of first order diffracted light that is the designed order in the visible wavelength region entire increases.

次に、本実施例の回折光学素子10の回折効率について説明する。図13に示す従来の単層型DOEにおいて、設計波長がλ0の場合に、ある次数の回折光の回折効率が最大となる条件は、以下の通りである。   Next, the diffraction efficiency of the diffractive optical element 10 of the present embodiment will be described. In the conventional single-layer DOE shown in FIG. 13, the conditions under which the diffraction efficiency of a certain order of diffracted light is maximized when the design wavelength is λ 0 are as follows.

すなわち、光束が回折格子のベース面(図13中に点線で示す面)に対して垂直に入射する場合に、回折格子の山と谷の光学光路長の差(つまり山と谷のそれぞれを通過する光線間の光路長差)が波長の整数倍になることを条件とする。これを式で表すと、以下のようになる。   That is, when the light beam enters perpendicularly to the base surface of the diffraction grating (the surface indicated by the dotted line in FIG. 13), the difference between the optical path lengths of the peaks and valleys of the diffraction grating (that is, the peaks and valleys pass through each). On the condition that the difference in the optical path length between the light rays to be an integral multiple of the wavelength. This is expressed as follows.

(n01-1)x d = mxλ0 …(20)
ここで、n01は波長λ0の光に対する回折格子を形成する材料の屈折率であり、dは格子厚、mは回折次数である。
(n01-1) xd = mxλ0 (20)
Here, n01 is the refractive index of the material that forms the diffraction grating for light of wavelength λ0, d is the grating thickness, and m is the diffraction order.

(20)式は、波長の項を含むため、同一次数では設計波長でしか等号は成り立たず、設計波長以外の波長では回折効率は最大値から低下してしまう。   Since the equation (20) includes a term of wavelength, an equal sign is established only at the design wavelength at the same order, and the diffraction efficiency is reduced from the maximum value at wavelengths other than the design wavelength.

また、任意の波長λでの回折効率η(λ)は下記の(21)式のように表すことができる。   Further, the diffraction efficiency η (λ) at an arbitrary wavelength λ can be expressed as the following equation (21).

η(λ) = sinc[π×{m−(n1(λ)−1)×d/λ}]…(21)
ここで、mは回折次数、n1(λ)は波長λの光に対する回折格子を形成する材料の屈折率である。また、sinc)は、{sin()/で表される関数である。
η (λ) = sinc 2 [π × {m− (n1 (λ) −1) × d / λ}] (21)
Here, m is the diffraction order, and n1 (λ) is the refractive index of the material forming the diffraction grating for light of wavelength λ. Also, sinc 2 ( a ) is a function represented by {sin ( a ) / a } 2 .

本実施例のように、2層以上の積層構造を持つ回折光学素子でも基本は同様であり、全層を通して1つの回折光学素子として作用させるためには、次のようにする。各層を構成する材料の境界に形成された回折格子の山と谷での光学光路長差を求め、この光学光路長差を全回折格子にわたって加算する。そして、この加算した光学光路長差が、波長の整数倍になるように格子形状の寸法を決定する。   As in this embodiment, the basics are the same for a diffractive optical element having a laminated structure of two or more layers. In order to act as one diffractive optical element through all layers, the following is performed. The optical path length difference between the peaks and valleys of the diffraction grating formed at the boundary of the material constituting each layer is obtained, and this optical path length difference is added over the entire diffraction grating. Then, the dimension of the grating shape is determined so that the added optical path length difference is an integral multiple of the wavelength.

したがって、図2に示した回折光学素子10において、設計波長がλ0の場合に、m次回折光の回折効率が最大になる条件は次のようになる。   Accordingly, in the diffractive optical element 10 shown in FIG. 2, when the design wavelength is λ 0, the conditions under which the diffraction efficiency of m-th order diffracted light is maximized are as follows.

±(n01-n02)xd = mxλ0 …(22)
ここで、n01は第1の素子部12において第1の回折格子18を形成する材料の波長λ0の光に対する屈折率であり、n02は第2の素子部13において第2の回折格子19を形成する材料の波長λ0の光に対する屈折率である。また、dは回折格子18,19の共通の格子厚である。
± (n01-n02) xd = mxλ0 (22)
Here, n01 is the refractive index of the material forming the first diffraction grating 18 in the first element unit 12 with respect to light of wavelength λ 0, and n02 forms the second diffraction grating 19 in the second element unit 13. It is a refractive index with respect to light of wavelength λ0 of the material to be processed. D is the common grating thickness of the diffraction gratings 18 and 19.

図2中の0次回折光に対して斜め下向きに回折する光の回折次数を正の回折次数とし、0次回折光に対して斜め上向きに回折する光の回折次数を負の回折次数とする。この場合、(22)式での加減の符号は次のようになる。図中の上から下に格子厚が増加する格子形状を持つ回折格子の場合は正となり、逆に上から下に格子厚が減少する格子形状を持つ回折格子の場合は負となる。 The diffraction order of the light diffracted obliquely downward with respect to the 0th-order diffracted light in FIG. 2 is defined as a positive diffraction order, and the diffraction order of light diffracted obliquely upward with respect to the 0th-order diffracted light is defined as a negative diffraction order. In this case, the sign of addition / subtraction in the equation (22) is as follows. In the figure, a diffraction grating having a grating shape with a grating thickness increasing from the top to the bottom is positive, and conversely, a diffraction grating having a grating shape with a grating thickness decreasing from the top to the bottom is negative.

図2に示す構成において、設計次数λ0以外の波長λでの回折効率η(λ)は次式で表すことができる。   In the configuration shown in FIG. 2, the diffraction efficiency η (λ) at a wavelength λ other than the design order λ0 can be expressed by the following equation.

η(λ)= sinc (π×[m−{±(n1(λ)−n2(λ))×d/λ}])
= sinc (π×(m−φ(λ)/λ)) …(23)
φ(λ)= ±(n1(λ)−n2(λ))×d …(24)
ここで、mは回折次数、n1(λ)は第1の回折格子18を形成する材料の波長λでの屈折率、n2(λ)は第2の回折格子19を形成する材料の波長λでの屈折率である。また、dは第1及び第2の回折格子18,19の共通の格子厚である。また、sinc)={sin()/で表される関数である。
η (λ) = sinc 2 (π × [m− {± (n1 (λ) −n2 (λ)) × d / λ}])
= Sinc 2 (π × (m−φ (λ) / λ)) (23)
φ (λ) = ± (n1 (λ) −n2 (λ)) × d (24)
Here, m is the diffraction order, n1 (λ) is the refractive index at the wavelength λ of the material forming the first diffraction grating 18, and n2 (λ) is the wavelength λ of the material forming the second diffraction grating 19. Is the refractive index. D is a common grating thickness of the first and second diffraction gratings 18 and 19. Moreover, it is a function represented by sinc 2 ( a ) = {sin ( a ) / a } 2 .

次に、本実施例の回折光学素子10において、高い回折効率を得るための条件について説明する。   Next, conditions for obtaining high diffraction efficiency in the diffractive optical element 10 of the present embodiment will be described.

使用波長領域の全域にわたって高い回折効率を得るためには、(23)式で表される値η(λ)が全ての使用波長に対して、1に近づけばよい。言い換えれば、設計次数mでの回折効率を高めるには、上記(23)式中のφ(λ) /λがmに近づけばよい。例えば、設計次数mを1次とした場合、φ(λ)/λが1に近づけばよい。   In order to obtain high diffraction efficiency over the entire use wavelength region, the value η (λ) expressed by the equation (23) should be close to 1 for all use wavelengths. In other words, in order to increase the diffraction efficiency at the design order m, φ (λ) / λ in the above equation (23) should be close to m. For example, when the design order m is primary, φ (λ) / λ may be close to 1.

さらに、格子形状から得られる光学光路長差φ(λ)は、上記関係から波長λに比例して線形に変化する、すなわち(24)式の右辺の項が線形性を有することが必要となる。つまり、第1の回折格子18を形成する材料の波長による屈折率の変化に対する第2の回折格子19を形成する材料の波長による屈折率の変化が、使用波長領域全域で一定の比率であることが必要である。   Furthermore, the optical optical path length difference φ (λ) obtained from the grating shape changes linearly in proportion to the wavelength λ from the above relationship, that is, the right side term of the equation (24) needs to have linearity. . That is, the change in the refractive index due to the wavelength of the material forming the second diffraction grating 19 with respect to the change in the refractive index due to the wavelength of the material forming the first diffraction grating 18 is a constant ratio throughout the wavelength region used. is necessary.

上記で示した関係を満足する構成として、より具体的な実施例を説明する。   A more specific embodiment will be described as a configuration satisfying the relationship shown above.

図2に示した回折光学素子10において、第1の回折格子18には、アクリル系樹脂にAl微粒子(第2の微粒子材料)を混合した材料(nd=1.542,νd=53.2)を用いる。また、第2の回折格子19には、フッ素系樹脂にITO微粒子(第1の微粒子材料)を混合した材料(nd=1.491,νd=19.8)を用いている。このとき、第1及び第2の回折格子18,19の共通の格子厚は11.4μmである。 In the diffractive optical element 10 shown in FIG. 2, the first diffraction grating 18 has a material (nd = 1.542, νd = 53) in which Al 2 O 3 fine particles ( second fine particle material) are mixed with acrylic resin. .2) is used. The second diffraction grating 19 is made of a material (nd = 1.491, νd = 19.8) in which ITO fine particles ( first fine particle material) are mixed with fluorine resin. At this time, the common grating thickness d of the first and second diffraction gratings 18 and 19 is 11.4 μm.

図3Aには、本実施例の回折光学素子10の1次回折光の回折効率を示している。回折光学素子10の設計次数は1次である。また、図3Bには、設計次数±1次(0次と2次)の回折光の回折効率を示している。   FIG. 3A shows the diffraction efficiency of the first-order diffracted light of the diffractive optical element 10 of this embodiment. The design order of the diffractive optical element 10 is first order. FIG. 3B shows the diffraction efficiency of the diffracted light of the designed order ± 1st order (0th order and 2nd order).

これらの図から分かるように、本実施例の回折光学素子10は、特許文献4,5,7にて開示された回折光学素子に比べて、設計次数回折光である1次回折光の回折効率が改善している。しかも、本実施例の回折光学素子10では、不要回折次数光である0次回折光と2次回折光の回折効率はより低減されており、フレア光がより発生しにくくなっている。   As can be seen from these drawings, the diffractive optical element 10 of the present example has a diffraction efficiency of the first-order diffracted light that is the designed order diffracted light as compared with the diffractive optical elements disclosed in Patent Documents 4, 5, and 7. It has improved. In addition, in the diffractive optical element 10 of this embodiment, the diffraction efficiencies of the zero-order diffracted light and the second-order diffracted light that are unnecessary diffraction orders are further reduced, and flare light is less likely to be generated.

また、本実施例の回折光学素子10は、特許文献6にて開示された回折光学素子と比べて、総格子厚(積層型DOEでは、2つの回折格子層と空気層の厚さの総和)が小さい。しかし、設計次数回折光(1次回折光)及び不要回折次数光(0次回折光及び2次回折光)に関して同等以上の性能を達成している。さらに、本実施例の回折光学素子10では、1次回折光の回折効率は、可視波長領域全域で99.9%以上得られ、不要回折次数光(0次回折光及び2次回折光)の回折効率も0.02%以下と十分に抑制されている。   In addition, the diffractive optical element 10 of the present example has a total grating thickness (the sum of the thicknesses of two diffraction grating layers and an air layer in the stacked DOE) as compared with the diffractive optical element disclosed in Patent Document 6. Is small. However, the same or better performance is achieved with respect to the designed order diffracted light (first order diffracted light) and unnecessary diffraction order light (0th order diffracted light and second order diffracted light). Furthermore, in the diffractive optical element 10 of this embodiment, the diffraction efficiency of the first-order diffracted light is 99.9% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is also improved. It is sufficiently suppressed to 0.02% or less.

ここで、不要次数回折光の回折効率については、設計次数±1次の0次回折光と2次回折光についてのみ対象としているが、これは設計次数から離れた回折次数ほどフレアに寄与する割合が少ないためである。つまり、0次と2次の回折光であるフレア光が低減されれば、それ以外の回折次数光によるフレア光も同様に低減できる。このことは、設計次数の回折光が主に回折するように設計された回折光学素子では、設計次数から離れた次数の回折光ほど回折効率が低下し、設計次数から離れた次数の回折光により形成される像ほど結像面で大きくぼけ、フレアとして目立たないことに起因する。   Here, the diffraction efficiency of unnecessary-order diffracted light is targeted only for the design order ± first-order 0th-order diffracted light and second-order diffracted light, but this has a smaller proportion of contribution to flare as the diffraction order is farther from the design order. Because. That is, if flare light that is 0th-order and second-order diffracted light is reduced, flare light by other diffracted order light can be similarly reduced. This is because, in a diffractive optical element designed so that the diffracted light of the designed order is mainly diffracted, the diffraction efficiency of the diffracted light far from the designed order decreases, and the diffracted light of the order far from the designed order This is due to the fact that the formed image is greatly blurred on the imaging surface and is not noticeable as a flare.

次に、特許文献5にて開示された材料と本実施例にて用いられるアクリル系樹脂にAl2O3微粒子を混合した材料(材料1)及びフッ素系樹脂にITO微粒子を混合した材料(材料2)の可視波長領域での屈折率特性を図4に示す。ここで、特許文献5にて開示されている材料としては、アクリル系樹脂1(nd=1.523,νd=51.1)及びアクリル系樹脂2(nd=1.636,νd=23.0)である。 Next, a material (material 1) obtained by mixing the material disclosed in Patent Document 5 and the acrylic resin used in this embodiment with Al 2 O 3 fine particles (material 1) and a material obtained by mixing ITO fine particles with a fluororesin (material) The refractive index characteristic in the visible wavelength region of 2) is shown in FIG. The materials disclosed in Patent Document 5 are acrylic resin 1 (nd = 1.523, νd = 51.1) and acrylic resin 2 (nd = 1.636, νd = 23.0).

図4において、本実施例の材料1及び材料2の屈折率特性グラフはその傾きが異なっているように見えるが、波長の変化に対する屈折率の変化はほぼ一定である。一方、特許文献5のアクリル系樹脂1,2では、波長の変化に対する屈折率の変化がアクリル系樹脂2ではほぼ一定であるのに対し、アクリル系樹脂1では短波長側の変化の度合いが大きい特性となっている。   In FIG. 4, the refractive index characteristic graphs of the material 1 and the material 2 of this example seem to have different slopes, but the change in the refractive index with respect to the change in wavelength is almost constant. On the other hand, in the acrylic resins 1 and 2 of Patent Document 5, the change in the refractive index with respect to the change in the wavelength is almost constant in the acrylic resin 2, whereas in the acrylic resin 1, the degree of change on the short wavelength side is large. It is a characteristic.

これは、特許文献5では、材料の特性について、F線, d線, C線に対する屈折率をnF, nd, nCとして、νd=(nd-1)/(nF-nC)についてしか言及しておらず、νdはd線付近の屈折率変化の平均的な傾きを定義した値に過ぎないためである。このνd特性は、積層構造の回折光学素子においては格子厚を薄く保ちつつ回折効率を単層型DOEに比べて改善するのに適した評価特性である。   In Patent Document 5, only νd = (nd-1) / (nF-nC) is mentioned with respect to the characteristics of the material, where the refractive indexes for the F-line, d-line, and C-line are nF, nd, and nC. This is because νd is only a value defining an average inclination of the refractive index change near the d line. This νd characteristic is an evaluation characteristic suitable for improving the diffraction efficiency as compared with a single-layer DOE while keeping the grating thickness thin in a diffractive optical element having a laminated structure.

しかし、本実施例は、特許文献5の回折光学素子よりもさらなる回折効率の改善を目的としている。このためには、平均的な屈折率変化を表したνd特性を評価尺度とするだけでは不十分である。   However, the present embodiment aims to further improve the diffraction efficiency as compared with the diffractive optical element of Patent Document 5. For this purpose, it is not sufficient to use the νd characteristic representing the average refractive index change as an evaluation scale.

そこで、g線及びF線に対する部分分散比θg,Fとg線及びd線に対する部分分散比θg,dを新たな評価尺度として用いる。部分分散比θg,Fは、nF, nC, ngをそれぞれF線, C線, g線に対する屈折率とした場合に、θg,F=(ng-nF)/(nF-nC)で表される。部分分散比θg,dは、nF, nd, nC, ngをそれぞれF線, d線, C線, g線に対する屈折率とした場合に、θg,d=(ng-nd)/(nF-nC)で表される。それぞれの式は、短波長側の屈折率変化と長波長側の屈折率変化の比を表している。   Therefore, the partial dispersion ratio θg, F for the g line and the F line and the partial dispersion ratio θg, d for the g line and the d line are used as new evaluation measures. Partial dispersion ratio θg, F is expressed as θg, F = (ng-nF) / (nF-nC), where nF, nC, and ng are the refractive indices for F-line, C-line, and g-line, respectively. . Partial dispersion ratio θg, d is θg, d = (ng-nd) / (nF-nC, where nF, nd, nC, ng is the refractive index for F-line, d-line, C-line, and g-line, respectively. ). Each expression represents a ratio between a change in refractive index on the short wavelength side and a change in refractive index on the long wavelength side.

本実施例の材料1はθg,F=0.55, θg,d = 1.25であり、材料2はθg,F=0.41,θg,d=1.04とそれぞれ小さいθg,Fとθg,dを有する。一方、特許文献5のアクリル系樹脂1はθg,F=0.58, θg,d =1.28であり、アクリル系樹脂2はθg,F=0.68, θg,d= 1.40である。アクリル系樹脂1のθg,Fとθg,dは、本実施例の材料1と大きな差はないが、アクリル系樹脂2のθg,Fとθg,dは、本実施例の材料2に比べて大きな値になっている。したがって、本実施例の方が使用波長領域全域において、各材料の波長の変化に対する屈折率の変化が一定に保たれ、より高い回折効率が得られる材料の組合せになっていると言える。   The material 1 of this example is θg, F = 0.55, θg, d = 1.25, and the material 2 has θg, F = 0.41, θg, d = 1.04, which are small θg, F and θg, d, respectively. On the other hand, the acrylic resin 1 of Patent Document 5 is θg, F = 0.58, θg, d = 1.28, and the acrylic resin 2 is θg, F = 0.68, θg, d = 1.40. Θg, F and θg, d of the acrylic resin 1 are not significantly different from the material 1 of this embodiment, but θg, F and θg, d of the acrylic resin 2 are compared with the material 2 of this embodiment. It is a big value. Therefore, it can be said that the present embodiment is a combination of materials in which the change in refractive index with respect to the change in the wavelength of each material is kept constant and the higher diffraction efficiency is obtained in the entire use wavelength region.

また、本実施例は、特許文献4〜7とは異なり、上記材料1,2を使用することにより、高い回折効率を維持しながら第1及び第2の回折格子18,19が同一の格子パターンを有する格子面で接した密着2層型DOEとして実現できる。これにより、第1及び第2の回折格子18,19を高い精度で位置合せする必要がなくなり、製造が容易になる。   Also, in this embodiment, unlike Patent Documents 4 to 7, by using the above materials 1 and 2, the first and second diffraction gratings 18 and 19 have the same grating pattern while maintaining high diffraction efficiency. It can be realized as a close-contact two-layer DOE in contact with a lattice plane having As a result, it is not necessary to align the first and second diffraction gratings 18 and 19 with high accuracy, and manufacturing is facilitated.

以上説明した本実施例では、図1及び図2に示すように、平板としての透明基板14,15上に回折格子18,19を設けた回折光学素子について説明した。しかし、平板透明基板に代えてレンズを用い、該レンズの凸面や凹面といった曲面に回折格子を設けても、本実施例と同様の効果を得ることができる。   In the present embodiment described above, the diffractive optical element in which the diffraction gratings 18 and 19 are provided on the transparent substrates 14 and 15 as flat plates has been described as shown in FIGS. However, even if a lens is used instead of the flat transparent substrate and a diffraction grating is provided on a curved surface such as a convex surface or a concave surface of the lens, the same effect as in this embodiment can be obtained.

また、本実施例では、設計次数が1次である回折光学素子について説明したが、設計次数は1に限定されない。2次や3次等、1次とは異なる次数の回折光であっても、各回折格子における光学光路長差の合成値を、所望の設計次数で所望の設計波長となるように設定すれば、本実施例と同様な効果が得られる。   Further, in the present embodiment, the diffractive optical element whose design order is the first order has been described, but the design order is not limited to 1. Even if the diffracted light has a different order from the first order, such as the second order or the third order, the composite value of the optical optical path length difference in each diffraction grating is set so that the desired design wavelength is obtained at the desired design order. The same effects as in this embodiment can be obtained.

本発明の実施例2について説明する。本実施例の回折光学素子は、形状的には実施例1と基本的に同じである。すなわち、図1及び図2に示した素子構成を有する。このため、実施例1と同じ構成要素には実施例1と同符号を付してそれらの詳細な説明は省略し、異なる部分についてのみ詳しく説明する。   A second embodiment of the present invention will be described. The diffractive optical element of the present embodiment is basically the same as the first embodiment in shape. That is, it has the element configuration shown in FIGS. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted, and only different portions will be described in detail.

本実施例の回折光学素子10において、図2に示す第1の回折格子18には、アクリル系樹脂にZrO微粒子を混合した材料(nd=1.611,νd=45.5)を使用する。また、第2の回折格子19には、アクリル系樹脂にITO微粒子を混合した材料(nd=1.567,νd=21.7)を使用する。第1及び第2の回折格子18,19の共通の格子厚は13.3μmである。 In the diffractive optical element 10 of the present embodiment, a material (nd = 1.611, νd = 45.5) in which ZrO 2 fine particles are mixed with an acrylic resin is used for the first diffraction grating 18 shown in FIG. . For the second diffraction grating 19, a material (nd = 1.567, νd = 21.7) in which ITO fine particles are mixed with acrylic resin is used. The common grating thickness d of the first and second diffraction gratings 18 and 19 is 13.3 μm.

図5Aには、本実施例の回折光学素子10における1次回折光の回折効率を示す。設計次数は1次である。また、図5Bには、設計次数±1次の回折光(0次回折光と2次回折光)の回折効率を示している。本実施例の回折光学素子10は、実施例1の回折光学素子10と同様に、設計次数回折光である1次光回折光の回折効率が改善されているとともに、不要回折光である0次回折光及び2次回折光の回折効率も低減され、よりフレア光が発生しにくくなっている。   FIG. 5A shows the diffraction efficiency of the first-order diffracted light in the diffractive optical element 10 of the present embodiment. The design order is first order. FIG. 5B shows the diffraction efficiency of the designed order ± first order diffracted light (0th order diffracted light and second order diffracted light). Similar to the diffractive optical element 10 of the first embodiment, the diffractive optical element 10 of the present embodiment is improved in the diffraction efficiency of the first-order diffracted light that is the designed order diffracted light, and the zero-order that is unnecessary diffracted light. The diffraction efficiency of the folded light and second-order diffracted light is also reduced, and flare light is less likely to be generated.

具体的には、1次回折光の回折効率は可視波長領域全域で99.8%以上であり、不要回折次数光(0次回折光及び2次回折光)の回折効率は0.04%以下と十分に抑制されている。   Specifically, the diffraction efficiency of the first-order diffracted light is 99.8% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is 0.04% or less. It is suppressed.

本発明の実施例3について説明する。本実施例の回折光学素子は、形状的には実施例1と基本的に同じである。すなわち、図1及び図2に示した素子構成を有する。このため、実施例1と同じ構成要素には実施例1と同符号を付してそれらの詳細な説明は省略し、異なる部分についてのみ詳しく説明する。   A third embodiment of the present invention will be described. The diffractive optical element of the present embodiment is basically the same as the first embodiment in shape. That is, it has the element configuration shown in FIGS. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed descriptions thereof are omitted, and only different portions will be described in detail.

本実施例の回折光学素子10において、図2に示す第1の回折格子18には、アクリル系樹脂にAl微粒子を混合した材料(nd=1.594,νd=58.0)を使用する。また、第2の回折格子19には、フッ素系樹脂にITO微粒子を混合した材料(nd=1.519,νd=16.5)を使用する。第1及び第2の回折格子18,19の共通の格子厚は7.8μmである。 In the diffractive optical element 10 of the present embodiment, a material (nd = 1.594, νd = 58.0) in which Al 2 O 3 fine particles are mixed in an acrylic resin is used for the first diffraction grating 18 shown in FIG. use. The second diffraction grating 19 is made of a material (nd = 1.519, νd = 16.5) in which ITO fine particles are mixed with fluorine resin. The common grating thickness d of the first and second diffraction gratings 18 and 19 is 7.8 μm.

図6Aには、本実施例の回折光学素子10における1次回折光の回折効率を示す。設計次数は1次である。また、図6Bには、設計次数±1次の回折光(0次回折光と2次回折光)の回折効率を示している。本実施例の回折光学素子10は、実施例1,2の回折光学素子10と同様に、設計次数回折光である1次光回折光の回折効率が改善されているとともに、不要回折光である0次回折光及び2次回折光の回折効率も低減され、よりフレア光が発生しにくくなっている。   FIG. 6A shows the diffraction efficiency of the first-order diffracted light in the diffractive optical element 10 of this embodiment. The design order is first order. FIG. 6B shows the diffraction efficiency of the designed order ± first order diffracted light (0th order diffracted light and second order diffracted light). Similar to the diffractive optical elements 10 of the first and second embodiments, the diffractive optical element 10 of the present embodiment is improved in the diffraction efficiency of the first-order diffracted light that is the designed order diffracted light and is unnecessary diffracted light. The diffraction efficiency of the 0th order diffracted light and the 2nd order diffracted light is also reduced, and flare light is less likely to be generated.

具体的には、1次回折光の回折効率は可視波長領域全域で99.8%以上であり、不要回折次数光(0次回折光及び2次回折光)の回折効率は0.04%以下と十分に抑制されている。   Specifically, the diffraction efficiency of the first-order diffracted light is 99.8% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is 0.04% or less. It is suppressed.

本発明の実施例4について説明する。本実施例の回折光学素子は、形状的には実施例1と基本的に同じである。すなわち、図1及び図2に示した素子構成を有する。このため、実施例1と同じ構成要素には実施例1と同符号を付してそれらの詳細な説明は省略し、異なる部分についてのみ詳しく説明する。   Embodiment 4 of the present invention will be described. The diffractive optical element of the present embodiment is basically the same as the first embodiment in shape. That is, it has the element configuration shown in FIGS. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed descriptions thereof are omitted, and only different portions will be described in detail.

本実施例の回折光学素子10において、図2に示す第1の回折格子18には、アクリル系樹脂にAl微粒子を混合した材料(nd=1.566,νd=55.4)を使用する。また、第2の回折格子19には、光学材料にITO微粒子を混合した材料(nd=1.469,νd=12.1)を使用する。第1及び第2の回折格子18,19の共通の格子厚は6.0μmである。 In the diffractive optical element 10 of this embodiment, the first diffraction grating 18 shown in FIG. 2 is made of a material (nd = 1.566, νd = 55.4) in which Al 2 O 3 fine particles are mixed with acrylic resin. use. For the second diffraction grating 19, a material (nd = 1.469, νd = 12.1) in which ITO fine particles are mixed with an optical material is used. The common grating thickness d of the first and second diffraction gratings 18 and 19 is 6.0 μm.

図7Aには、本実施例の回折光学素子10における1次回折光の回折効率を示す。設計次数は1次である。また、図7Bには、設計次数±1次の回折光(0次回折光と2次回折光)の回折効率を示している。本実施例の回折光学素子10は、実施例1〜3の回折光学素子10と同様に、設計次数回折光である1次光回折光の回折効率が改善されているとともに、不要回折光である0次回折光及び2次回折光の回折効率も低減され、よりフレア光が発生しにくくなっている。   FIG. 7A shows the diffraction efficiency of the first-order diffracted light in the diffractive optical element 10 of the present embodiment. The design order is first order. FIG. 7B shows the diffraction efficiency of the designed order ± first order diffracted light (0th order diffracted light and second order diffracted light). The diffractive optical element 10 of the present embodiment is an unnecessary diffracted light as well as the diffraction efficiency of the first-order diffracted light that is the designed order diffracted light is improved as in the diffractive optical elements 10 of the first to third embodiments. The diffraction efficiency of the 0th order diffracted light and the 2nd order diffracted light is also reduced, and flare light is less likely to be generated.

具体的には、1次回折光の回折効率は可視波長領域全域で99.9%以上であり、不要回折次数光(0次回折光及び2次回折光)の回折効率は0.02%以下と十分に抑制されている。   Specifically, the diffraction efficiency of the first-order diffracted light is 99.9% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is 0.02% or less. It is suppressed.

本発明の実施例5について説明する。本実施例の回折光学素子は、形状的には実施例1と基本的に同じである。すなわち、図1及び図2に示した素子構成を有する。このため、実施例1と同じ構成要素には実施例1と同符号を付してそれらの詳細な説明は省略し、異なる部分についてのみ詳しく説明する。   A fifth embodiment of the present invention will be described. The diffractive optical element of the present embodiment is basically the same as the first embodiment in shape. That is, it has the element configuration shown in FIGS. For this reason, the same components as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and detailed description thereof will be omitted, and only different portions will be described in detail.

本実施例の回折光学素子10において、図2に示す第1の回折格子18には、アクリル系樹脂材料(nd=1.522,νd=51.3)を使用する。ここで、本実施例の第1の回折格子18の材料は、実施例1〜4と異なり、微粒子材料が混合されていない単にアクリル系樹脂からなる材料である。一方、第2の回折格子19には、フッ素系樹脂にITO微粒子を混合した材料(nd=1.480,νd=21.3)を使用する。第1及び第2の回折格子18,19の共通の格子厚は13.9μmである。 In the diffractive optical element 10 of this embodiment, an acrylic resin material (nd = 1.522, νd = 51.3) is used for the first diffraction grating 18 shown in FIG. Here, unlike the first to fourth embodiments, the material of the first diffraction grating 18 of the present embodiment is simply a material made of an acrylic resin that is not mixed with a fine particle material. On the other hand, the second diffraction grating 19 is made of a material (nd = 1.480, νd = 21.3) in which ITO fine particles are mixed with fluorine resin. The common grating thickness d of the first and second diffraction gratings 18 and 19 is 13.9 μm.

図8Aには、本実施例の回折光学素子10における1次回折光の回折効率を示す。設計次数は1次である。また、図8Bには、設計次数±1次の回折光(0次回折光と2次回折光)の回折効率を示している。本実施例の回折光学素子10は、実施例1〜4の回折光学素子10と同様に、設計次数回折光である1次光回折光の回折効率が改善されているとともに、不要回折光である0次回折光及び2次回折光の回折効率も低減され、よりフレア光が発生しにくくなっている。   FIG. 8A shows the diffraction efficiency of the first-order diffracted light in the diffractive optical element 10 of the present embodiment. The design order is first order. FIG. 8B shows the diffraction efficiency of the designed order ± first order diffracted light (0th order diffracted light and second order diffracted light). The diffractive optical element 10 of the present embodiment is an unnecessary diffracted light as well as the diffraction efficiency of the first-order diffracted light that is the designed order diffracted light is improved as in the diffractive optical elements 10 of the first to fourth embodiments. The diffraction efficiency of the 0th order diffracted light and the 2nd order diffracted light is also reduced, and flare light is less likely to be generated.

具体的には、1次回折光の回折効率は可視波長領域全域で99.9%以上であり、不要回折次数光(0次回折光及び2次回折光)の回折効率は0.02%以下と十分に抑制されている。   Specifically, the diffraction efficiency of the first-order diffracted light is 99.9% or more in the entire visible wavelength region, and the diffraction efficiency of unnecessary diffraction order light (0th-order diffracted light and second-order diffracted light) is 0.02% or less. It is suppressed.

次に、上記各実施例において、第1及び第2の回折格子18,19が満たすべき条件について説明する。   Next, conditions to be satisfied by the first and second diffraction gratings 18 and 19 in each of the above embodiments will be described.

実施例1〜5の回折光学素子10において、第1及び第2の回折格子のそれぞれを形成する第1の材料及び第2の材料(以下、それぞれ材料1,材料2という)は、以下の条件を満足する。材料2は、以下の条件を満足する微粒子材料を樹脂材料に混合した材料である。   In the diffractive optical element 10 of Examples 1 to 5, the first material and the second material (hereinafter referred to as the material 1 and the material 2, respectively) forming the first and second diffraction gratings are as follows. Satisfied. The material 2 is a material in which a fine particle material satisfying the following conditions is mixed with a resin material.

ng1,nF1,nd1,nC1はそれぞれ、第1の材料のg線,F線,d線,C線に対する屈折率である。ng2,nF2,nd2,nC2はそれぞれ、第2の材料のg線,F線,d線,C線に対する屈折率である。また、nFb2,ndb2,nCb2はそれぞれ、微粒子材料のF線,d線,C線に対する屈折率である。なお、「E−b」は、「×10 −b 」を示す。
ng1, nF1, nd1, and nC1 are refractive indexes of the first material with respect to g-line, F-line, d-line, and C-line, respectively. ng2, nF2, nd2, and nC2 are refractive indexes of the second material with respect to g-line, F-line, d-line, and C-line, respectively. NFb2, ndb2, and nCb2 are refractive indexes of the fine particle material with respect to the F-line, d-line, and C-line, respectively. “Eb” represents “× 10 −b ”.

さらに、
νd1=(nd1-1)/(nF1-nC1)
νd2=(nd2-1)/(nF2-nC2)
θg,F1=(ng1-nF1)/(nF1-nC1)
θg,d1=(ng1-nd1)/(nF1-nC1)
θg,F2=(ng2-nF2)/(nF2-nC2)
θg,d2=(ng2-nd2)/(nF2-nC2)
νdb2=(ndb2-1)/(nFb2-nCb2)
である。
further,
νd1 = (nd1-1) / (nF1-nC1)
νd2 = (nd2-1) / (nF2-nC2)
θg, F1 = (ng1-nF1) / (nF1-nC1)
θg, d1 = (ng1-nd1) / (nF1-nC1)
θg, F2 = (ng2-nF2) / (nF2-nC2)
θg, d2 = (ng2-nd2) / (nF2-nC2)
νdb2 = (ndb2-1) / (nFb2-nCb2)
It is.

材料1:
nd1≧1.5 …(1)
νd1≧40 …(2)
(-1.665E-07×νd13+5.213E-05xνd12‐5.656E-03xνd1+0.675)≦θg,F1
≦(‐1.665E-07xνd13+5.213E-05xνd12‐5.656E-03xνd1+0.825)
…(3)
(‐1.687E-07xνd13+5.702E-05xνd12‐6.603E-03xνd1+1.400)≦θg,d1
≦(‐1.687E-07xνd13+5.702E-05xνd12‐6.603E-03xνd1+1.580)
…(4)
Material 1:
nd1 ≧ 1.5 (1)
νd1 ≧ 40 (2)
(-1.665E-07 × νd1 3 + 5.213E-05xνd1 2 ‐5.656E-03xνd1 + 0.675) ≦ θg, F1
≦ (‐1.665E-07xνd1 3 + 5.213E-05xνd1 2 ‐5.656E-03xνd1 + 0.825)
… (3)
(‐1.687E-07xνd1 3 + 5.702E-05xνd1 2 ‐6.603E-03xνd1 + 1.400) ≦ θg, d1
≦ (‐1.687E-07xνd1 3 + 5.702E-05xνd1 2 ‐6.603E-03xνd1 + 1.580)
…(Four)

材料2:
nd2≦1.6 …(5)
νd2≦30 …(6)
θg,F2≦(-1.665E-07xνd23+5.213E-05xνd22‐5.656E-03xνd2+0.675) …(7)
θg,d2≦(-1.687E-07xνd23+5.702E-05xνd22‐6.603E-03xνd2+1.400) …(8)
Material 2:
nd2 ≦ 1.6 (5)
νd2 ≦ 30 (6)
θg, F2 ≦ (-1.665E-07xνd2 3 + 5.213E-05xνd2 2 ‐5.656E-03xνd2 + 0.675)… (7)
θg, d2 ≦ (-1.687E-07xνd2 3 + 5.702E-05xνd2 2 ‐6.603E-03xνd2 + 1.400)… (8)

材料1と材料2:
nd1-nd2>0 …(9)
Material 1 and Material 2:
nd1-nd2> 0 ... (9)

微粒子材料:
ndb2≧1.70 …(10)
νdb2≦20 …(11)
Particulate material:
ndb2 ≧ 1.70… (10)
νdb2 ≦ 20 (11)

条件式(1) 〜(4)は、材料1の特性を規定する。また、材料1は条件式(1)〜(4)をすべて満足する必要がある。ここで、各条件の関係をイメージし易くするため、図10〜12を用いて説明する。図10はndとνdの関係を、図11はθg,Fとνdの関係を、図12はθg,dとνdの関係をそれぞれ示す。これらの図において、縦軸はそれぞれnd, θg,F, θg,dを示し、横軸は全てνdを示す。なお、図10〜12では、条件式の番号を丸囲み数字で示している。   Conditional expressions (1) to (4) define the characteristics of the material 1. Further, the material 1 needs to satisfy all the conditional expressions (1) to (4). Here, in order to make it easy to imagine the relationship between the conditions, a description will be given with reference to FIGS. 10 shows the relationship between nd and νd, FIG. 11 shows the relationship between θg, F and νd, and FIG. 12 shows the relationship between θg, d and νd. In these figures, the vertical axis represents nd, θg, F, θg, d, respectively, and the horizontal axis represents νd. 10 to 12, the conditional expression numbers are indicated by encircled numerals.

条件式(1), (2)は、図10に示すように、実施例の回折光学素子が成立するための材料1のndとνdの範囲を規定する。条件式(1)及び (2)の下限値を下回ると、実施例の回折光学素子の構成(密着2層型)を実現できる材料2、すなわち条件式((5)〜(8))を満足する材料2が存在しなくなる。   Conditional expressions (1) and (2) define the range of nd and νd of the material 1 for realizing the diffractive optical element of the embodiment, as shown in FIG. If the lower limit of conditional expressions (1) and (2) is not reached, material 2 that can realize the configuration of the diffractive optical element of the embodiment (adherent two-layer type), that is, conditional expressions ((5) to (8)) is satisfied. There is no material 2 to do.

条件式(3)は、図11に示すように、実施例の回折光学素子が成立するための材料1のθg,Fとνdの範囲を規定する。前述したように、この条件式は、条件式(1)及び (2)が満たされた上で満たされなければならない。条件式(3)の下限値を下回ると、実施例の回折光学素子の格子厚が厚くなり、該回折光学素子に斜めから入射する光線(以下、斜入射光という)に対する回折効率の劣化につながる。また、条件式(3)の上限値を上回ると、実施例の回折光学素子の構成(密着2層型)で高い回折効率を得るための材料2、すなわち条件式((5)〜(8))を満足する材料2が存在しなくなる。   Conditional expression (3) defines the range of θg, F and νd of the material 1 for forming the diffractive optical element of the embodiment, as shown in FIG. As described above, this conditional expression must be satisfied after conditional expressions (1) and (2) are satisfied. If the lower limit of conditional expression (3) is not reached, the grating thickness of the diffractive optical element of the embodiment becomes thick, leading to deterioration of diffraction efficiency with respect to light incident on the diffractive optical element obliquely (hereinafter referred to as oblique incident light). . If the upper limit of conditional expression (3) is exceeded, material 2 for obtaining high diffraction efficiency with the configuration of the diffractive optical element of the embodiment (adherent two-layer type), that is, conditional expressions ((5) to (8) There is no material 2 that satisfies (2).

条件式(4)は、図12に示すように、実施例の回折光学素子が成立するための材料1のθg,dとνdの範囲を規定する。この関係も、条件式(1)〜(3)が満たされた上で満たされなければならない。条件式(4)の下限値を下回ると、実施例の回折光学素子の格子厚が厚くなり、斜入射光に対する回折効率の劣化につながる。また、条件式(4)の上限値を上回ると、実施例の回折光学素子の構成(密着2層型)で高い回折効率を得るための材料2、すなわち条件式((5)〜(8))を満足する材料2が存在しなくなる。   Conditional expression (4) defines the range of θg, d and νd of the material 1 for realizing the diffractive optical element of the embodiment, as shown in FIG. This relationship must also be satisfied after conditional expressions (1) to (3) are satisfied. If the lower limit of conditional expression (4) is not reached, the grating thickness of the diffractive optical element of the embodiment becomes thick, leading to deterioration of diffraction efficiency for obliquely incident light. If the upper limit of conditional expression (4) is exceeded, material 2 for obtaining high diffraction efficiency with the configuration of the diffractive optical element of the embodiment (adherent two-layer type), that is, conditional expressions ((5) to (8) There is no material 2 that satisfies (2).

材料1は、より高い回折効率を実現しつつ格子厚をより薄くするために、材料2の存在条件との関係上、以下の条件式を満たすことが好ましい。以下の条件式の番号に付されたaは、その条件式がもとの条件式よりも満たすことが好ましい条件であることを示す。bはaが付された条件式よりもさらに満たすことが好ましい条件であることを示す。このことは、後述する他の条件式についても同じである。   In order to make the grating thickness thinner while realizing higher diffraction efficiency, the material 1 preferably satisfies the following conditional expression in relation to the existence condition of the material 2. The a attached to the number of the following conditional expression indicates that the conditional expression is preferably satisfied more than the original conditional expression. “b” indicates that it is preferable to satisfy the conditional expression with “a”. The same applies to other conditional expressions described later.

1.50≦nd1≦1.75 …(1a)
1.50≦nd1≦1.70 …(1b)
40≦νd1≦80 …(2a)
40≦νd1≦70 …(2b)
(‐1.665E-07xνd1+5.213E-05xνd1‐5.656E-03xνd1+0.700) ≦θg,F1
≦(‐1.665E-07xνd1+5.213E-05xνd1‐5.656E-03xνd1+0.662)
…(3a)
(‐1.687E-07xνd1+5.702E-05xνd1‐6.603E-03xνd1+1.425) ≦θg,d1
≦(-1.687E-07xνd1+5.702E-05xνd1‐6.603E-03xνd1+1.513)
…(4a)
1.50 ≦ nd1 ≦ 1.75… (1a)
1.50 ≦ nd1 ≦ 1.70… (1b)
40 ≦ νd1 ≦ 80 (2a)
40 ≦ νd1 ≦ 70… (2b)
(-1.665E-07xνd1 3 + 5.213E-05xνd1 2 -5.656E-03xνd1 + 0.700) ≦ θg, F1
≦ (−1.665E-07xνd1 3 + 5.213E-05xνd1 2 −5.656E-03xνd1 + 0.662)
… (3a)
(-1.687E-07xνd1 3 + 5.702E-05xνd1 2 -6.603E-03xνd1 + 1.425) ≦ θg, d1
≦ (-1.687E-07xνd1 3 + 5.702E-05xνd1 2 -6.603E-03xνd1 + 1.513)
… (4a)

条件式(5) 〜(8)は、材料2の特性を規定する。また、材料2は、材料1が条件式(1)〜(4)をすべて満足した上で、条件式(5) 〜(8)をすべて満足する必要がある。ここでも、各条件の関係をイメージし易くするため、図10〜12を用いて説明する。   Conditional expressions (5) to (8) define the characteristics of the material 2. The material 2 needs to satisfy all of the conditional expressions (5) to (8) after the material 1 satisfies all of the conditional expressions (1) to (4). Here, in order to make it easy to imagine the relationship between the conditions, description will be made with reference to FIGS.

条件式(5), (6)は、図10に示すように、実施例の回折光学素子が成立するための材料2のndとνdの範囲を規定する。条件式(5)及び (6)の上限値を上回ると、実施例の回折光学素子の構成(密着2層型)を実現できる材料1、すなわち条件式((1)〜(4))を満足する材料1が存在しなくなる。   Conditional expressions (5) and (6) define the range of nd and νd of the material 2 for forming the diffractive optical element of the embodiment, as shown in FIG. If the upper limit value of conditional expressions (5) and (6) is exceeded, material 1 that can realize the configuration of the diffractive optical element of the embodiment (adherent two-layer type), that is, conditional expressions ((1) to (4)) are satisfied. There is no material 1 to perform.

条件式(7)は、図11に示すように、実施例の回折光学素子が成立するための材料2のθg,Fとνdの範囲を規定する。前述したように、この条件式は、条件式(5)及び (6)が満たされた上で満たされなければならない。条件式(7)の上限値を上回ると、実施例の回折光学素子の構成(密着2層型)で高い回折効率を得るための材料1、すなわち条件式((1)〜(4))を満足する材料1が存在しなくなる。   Conditional expression (7) defines the range of θg, F and νd of the material 2 for forming the diffractive optical element of the embodiment, as shown in FIG. As described above, this conditional expression must be satisfied after conditional expressions (5) and (6) are satisfied. If the upper limit of conditional expression (7) is exceeded, the material 1 for obtaining high diffraction efficiency in the configuration of the diffractive optical element of the embodiment (adherent two-layer type), that is, conditional expressions ((1) to (4)) There is no satisfactory material 1 present.

条件式(8)は、図12に示すように、実施例の回折光学素子が成立するための材料2のθg,dとνdの範囲を規定する。この関係も、条件式(1)〜(4)が満たされた上で満たされなければならない。条件式(8)の上限値を上回ると、実施例の回折光学素子の構成(密着2層型)で高い回折効率を得るための材料1、すなわち条件式((1)〜(4))を満足する材料1が存在しなくなる。   Conditional expression (8) defines the range of θg, d and νd of the material 2 for forming the diffractive optical element of the embodiment, as shown in FIG. This relationship must also be satisfied after conditional expressions (1) to (4) are satisfied. If the upper limit of conditional expression (8) is exceeded, the material 1 for obtaining high diffraction efficiency with the configuration of the diffractive optical element of the embodiment (adherent two-layer type), that is, conditional expressions ((1) to (4)) There is no satisfactory material 1 present.

材料2は、より高い回折効率を実現しつつ格子厚をより薄くするために、材料1の存在条件との関係上、以下の条件式を満たすことが好ましい。   The material 2 preferably satisfies the following conditional expression in relation to the existence condition of the material 1 in order to make the grating thickness thinner while realizing higher diffraction efficiency.

1.4≦nd2≦1.6 …(5a)
νd2≦25 …(6a)
θg,F2≦‐1.665E-07xνd2+5.213E-05xνd2‐5.656E-03xνd2+0.600)
…(7a)
θg,d2≦(‐1.687E-07xνd2+5.702E-05xνd2‐6.603E-03xνd2+1.300)
…(8a)
1.4 ≦ nd2 ≦ 1.6 (5a)
νd2 ≦ 25 (6a)
θg, F2 ≦ −1.665E-07xνd2 3 + 5.213E-05xνd2 2 −5.656E-03xνd2 +0.600)
… (7a)
θg, d2≤ (-1.687E-07xνd2 3 + 5.702E-05xνd2 2 -6.603E-03xνd2 ++ 1.300)
… (8a)

条件式(9)は、実施例の回折光学素子において、材料1と材料2の屈折率の大小関係を示す。この条件式を満足しないと、所望の回折効率が得られなくなる。   Conditional expression (9) shows the magnitude relationship between the refractive indexes of the material 1 and the material 2 in the diffractive optical element of the example. If this conditional expression is not satisfied, the desired diffraction efficiency cannot be obtained.

条件式(10), (11)は、実施例の回折光学素子において、材料2が上記条件式(5)〜(8)を満足するために用いる微粒子材料の材料特性の範囲を規定する。条件式(10)及び (11)を満足する微粒子材料としては、ITO, Ti, Nr, Cr及びその酸化物、複合物、混合物のいずれかの無機微粒子材料が挙げられる。実施例では、ITO(ndb2=1.77, νd=6.8)を例として使用した。条件式(10)の下限値を下回るか条件式(11)の上限値を上回ると、材料2が条件式(5)〜(8)を満足することができなくなる。   Conditional expressions (10) and (11) define the range of material characteristics of the particulate material used for the material 2 to satisfy the conditional expressions (5) to (8) in the diffractive optical element of the embodiment. Examples of the fine particle material satisfying the conditional expressions (10) and (11) include any inorganic fine particle material of ITO, Ti, Nr, Cr and oxides, composites, and mixtures thereof. In the examples, ITO (ndb2 = 1.77, νd = 6.8) was used as an example. If the lower limit value of conditional expression (10) is exceeded or the upper limit value of conditional expression (11) is exceeded, the material 2 cannot satisfy the conditional expressions (5) to (8).

ここで、微粒子材料は、条件式(10), (11)を満足する材料であれば上記例として使用したものに限られない。   Here, the fine particle material is not limited to the one used in the above example as long as it satisfies the conditional expressions (10) and (11).

また、微粒子材料は、さらに以下の条件を満足することが好ましい。   Moreover, it is preferable that the particulate material further satisfies the following conditions.

ndb2≧1.75 …(10a)
νdb2≦18 …(11a)
ndb2 ≧ 1.75… (10a)
νdb2 ≦ 18 (11a)

また、実施例の回折光学素子10は、上記条件式(1)〜(11)に加えて、以下の条件を満足するとより好ましい。λF, λd, λCはそれぞれ、F線, d線, C線の波長である。m(λF), m(λd), m(λC)はそれぞれ、F線, d線, C線の波長におけるm次(設計次数)の回折光に対する各回折格子の凸部と凹部での光学光路長の差をその波長で除した値である。dは回折格子の格子厚である。   In addition to the conditional expressions (1) to (11), it is more preferable that the diffractive optical element 10 of the example satisfies the following conditions. λF, λd, and λC are the wavelengths of the F-line, d-line, and C-line, respectively. m (λF), m (λd), and m (λC) are the optical optical paths at the convex and concave parts of each diffraction grating for the m-th order (design order) diffracted light at the wavelengths of F-line, d-line, and C-line, respectively. It is a value obtained by dividing the difference in length by the wavelength. d is the grating thickness of the diffraction grating.

m(λF)={dx(nF1-nF2)}/λF …(12)
m(λd)={dx(nd1-nd2)}/λd …(13)
m(λC)={dx(nC1-nC2)}/λC …(14)
d≦20 …(15)
0.92≦{m(λF)+m(λd)+m(λC)}/3≦1.08 …(16)
m (λF) = {dx (nF1-nF2)} / λF (12)
m (λd) = {dx (nd1-nd2)} / λd (13)
m (λC) = {dx (nC1-nC2)} / λC (14)
d ≦ 20 (15)
0.92 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.08 (16)

これらの条件式(12)〜(16)は、材料1及び材料2により形成される実施例の密着2層型DOEの回折効率を規定する。条件式(15)の上限値を上回ると、斜入射光に対する回折効率の劣化が大きくなる可能性が生ずる。また、条件式(16)の範囲を外れると、所望の回折効率が得られなくなる可能性が生ずる。   These conditional expressions (12) to (16) define the diffraction efficiency of the contact two-layer DOE of the embodiment formed by the material 1 and the material 2. If the upper limit value of conditional expression (15) is exceeded, there is a possibility that the degradation of diffraction efficiency for obliquely incident light will increase. Further, if the conditional expression (16) is outside the range, there is a possibility that a desired diffraction efficiency cannot be obtained.

さらに高回折効率を実現するためには、以下の条件式を満足するとよりよい。以下の条件式の番号に付されたcは、その条件式にbと付された条件式よりもさらに満たすことが好ましい条件であることを示す。   In order to achieve higher diffraction efficiency, it is better to satisfy the following conditional expression. “C” attached to the number of the following conditional expression indicates that the conditional expression is more preferably satisfied than the conditional expression attached with “b”.

d≦15 …(15a)
0.93≦{m(λF)+m(λd)+m(λC)}/3≦1.07 …(16a)
0.94≦{m(λF)+m(λd)+m(λC)}/3≦1.06 …(16b)
0.96≦{m(λF)+m(λd)+m(λC)}/3≦1.04 …(16c)
d ≦ 15 (15a)
0.93 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.07 (16a)
0.94 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.06 (16b)
0.96 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.04 (16c)

材料1に微粒子材料が混合されている実施例1〜4においては、該微粒子材料は以下の条件をすべて満足することが好ましい。nFb1, ndb1, nCb1はそれぞれ、該粒子材料のF線, d線, C線に対する屈折率である。また、νdb1=(ndb1-1)/(nFb1-nCb1)である。   In Examples 1 to 4 in which the material 1 is mixed with the particulate material, the particulate material preferably satisfies all the following conditions. nFb1, ndb1, and nCb1 are refractive indexes of the particle material with respect to the F-line, d-line, and C-line, respectively. Further, νdb1 = (ndb1-1) / (nFb1-nCb1).

ndb1≧1.65 …(17)
νdb1≧35 …(18)
条件式(17), (18)は、材料1に混合される微粒子材料の特性を規定する。条件式(17)及び(18)を満足する微粒子材料としては、Al, Zr, Y及びその酸化物、複合物、混合物のいずれかの無機微粒子材料が挙げられる。本実施例では、Al2O3(ndb1=1.71, νd=68.0)やZrO2(ndb1=1.87, νd=39.4)を例として使用した。条件式(17)及び(18)の下限値を上回ると、条件式(1)〜(4)を満足する材料1を実現できなくなる可能性が生ずる。
ndb1 ≧ 1.65… (17)
νdb1 ≧ 35 (18)
Conditional expressions (17) and (18) define the characteristics of the particulate material mixed with the material 1. Examples of the fine particle material satisfying the conditional expressions (17) and (18) include inorganic fine particle materials of any one of Al, Zr, Y and oxides, composites, and mixtures thereof. In this example, Al 2 O 3 (ndb1 = 1.71, νd = 68.0) and ZrO 2 (ndb1 = 1.87, νd = 39.4) were used as examples. If the lower limit value of conditional expressions (17) and (18) is exceeded, the material 1 that satisfies the conditional expressions (1) to (4) may not be realized.

ここで、微粒子材料としては、条件式(17)及び(18)を満足する材料であれば上記例として使用したものに限られない。   Here, the fine particle material is not limited to that used in the above example as long as it satisfies the conditional expressions (17) and (18).

また、必ずしも微粒子が混合された材料を用いなくても、一般的な紫外線硬化樹脂等を用いてもよい。但し、実施例1〜4にて説明したように、材料1及び材料2ともに微粒子が混合(分散)した材料を用いると、格子厚をより低くできるので、斜入射光に対する回折効率の劣化対策としては好ましい。   Further, a general ultraviolet curable resin or the like may be used without necessarily using a material in which fine particles are mixed. However, as described in Examples 1 to 4, the use of a material in which fine particles are mixed (dispersed) in both the material 1 and the material 2 can reduce the grating thickness. Is preferred.

微粒子材料は、さらに以下の条件を満足するとよい。   The fine particle material may further satisfy the following conditions.

ndb1≧1.70 …(17a)
νdb1≧38 …(18a)
ndb1 ≧ 1.70… (17a)
νdb1 ≧ 38 (18a)

また、微粒子材料の平均粒子径は、回折光学素子への入射光の波長(使用波長又は設計波長)の1/4以下であることが好ましい。これよりも粒子径が大きくなると、微粒子材料を樹脂材料に混合した際に、光の散乱が大きくなる可能性が生じる。   Moreover, it is preferable that the average particle diameter of particulate material is 1/4 or less of the wavelength (use wavelength or design wavelength) of the incident light to a diffractive optical element. When the particle diameter is larger than this, there is a possibility that light scattering will increase when the fine particle material is mixed with the resin material.

上記微粒子材料を混合する樹脂材料としては、紫外線硬化樹脂であって、アクリル系、フッ素系、ビニル系、エポキシ系のいずれかの有機樹脂が挙げられる。本実施例では、アクリル系樹脂及びフッ素系樹脂を例として使用した。   The resin material to which the fine particle material is mixed is an ultraviolet curable resin, and examples thereof include acrylic, fluorine, vinyl, and epoxy organic resins. In this example, acrylic resin and fluorine resin were used as examples.

最後の条件として、実施例の回折光学素子は、図2に示す回折格子の格子ピッチをPとし、格子厚をdとしたときに、次の条件式を満足するのが好ましい。   As the last condition, the diffractive optical element of the embodiment preferably satisfies the following conditional expression when the grating pitch of the diffraction grating shown in FIG. 2 is P and the grating thickness is d.

d/P<1/7 …(19)    d / P <1/7… (19)

条件式(19)は、回折光学素子を構成する回折格子の形状(格子ピッチ及び格子厚)を規定する。条件式(19)の上限値を上回ると、格子ピッチが細かくなり過ぎて、斜入射光に対する回折効率の低下を招く可能性が生ずる。また、条件式(19)を満足することで、回折光学素子を製造(樹脂成形)するための型に対して、格子形状を機械加工し易いというメリットがある。   Conditional expression (19) defines the shape (grating pitch and grating thickness) of the diffraction grating constituting the diffractive optical element. If the upper limit value of conditional expression (19) is exceeded, the grating pitch becomes too fine, which may lead to a decrease in diffraction efficiency for obliquely incident light. Further, satisfying conditional expression (19) has an advantage that the grating shape can be easily machined with respect to a mold for manufacturing (resin molding) a diffractive optical element.

表1には、実施例1〜5にて説明した回折光学素子の条件式(1)〜(19)の数値を示している。   Table 1 shows numerical values of conditional expressions (1) to (19) of the diffractive optical elements described in Examples 1 to 5.

以上説明したように、上記各実施例では、g線及びF線に対する部分分散比θg,Fとg線及びd線に対する部分分散比θg,dを適切に設定した材料1及び材料2を用いて、密着2層型の回折光学素子を構成している。これにより、入射光の波長(使用波長)領域の全域において、特定次数(設計次数)の回折光に対する回折効率を高くしつつ、フレア光となり得る不要回折光を十分に抑制することが可能な回折光学素子を実現ができる。また、密着2層型の回折光学素子とすることで、製造が容易で、比較的安価に製造が可能である。   As described above, in each of the above embodiments, the material 1 and the material 2 in which the partial dispersion ratio θg, F for the g line and the F line and the partial dispersion ratio θg, d for the g line and the d line are appropriately set are used. A close-contact two-layer type diffractive optical element is formed. This makes it possible to sufficiently suppress unwanted diffracted light that can be flare light, while increasing the diffraction efficiency for diffracted light of a specific order (design order) throughout the wavelength (use wavelength) region of incident light. An optical element can be realized. Further, by using a close-contact two-layer type diffractive optical element, it is easy to manufacture and can be manufactured at a relatively low cost.

なお、図1及び図2に示した回折光学素子の形状、特に格子部の形状は例に過ぎず、他の形状を採用することも可能である。   Note that the shape of the diffractive optical element shown in FIGS. 1 and 2, particularly the shape of the grating portion, is merely an example, and other shapes can be employed.

実施例1〜5にて説明した回折光学素子は、以下のような用途に用いることができる。   The diffractive optical elements described in Examples 1 to 5 can be used for the following applications.

図9Aには、実施例1〜5の回折光学素子を含み、スチルカメラやビデオカメラ等の撮影装置(光学機器)200において撮像光学系として用いられる光学系の構成を示している。   FIG. 9A shows a configuration of an optical system that includes the diffractive optical elements of Embodiments 1 to 5 and that is used as an imaging optical system in an imaging apparatus (optical apparatus) 200 such as a still camera or a video camera.

図9Aにおいて、101は主として屈折光学素子(例えば、通常のレンズ素子)で構成された撮像光学系である。撮像光学系101の内部には、開口絞り102と実施例1〜5にて説明した回折光学素子10が設けられている。103は撮像光学系101の結像面に配置されたフィルムや撮像素子等の感光部材である。撮像素子としては、CCDセンサやCMOSセンサ等の光電変換素子が用いられる。   In FIG. 9A, reference numeral 101 denotes an imaging optical system mainly composed of refractive optical elements (for example, ordinary lens elements). In the imaging optical system 101, an aperture stop 102 and the diffractive optical element 10 described in Examples 1 to 5 are provided. Reference numeral 103 denotes a photosensitive member such as a film or an imaging element disposed on the imaging surface of the imaging optical system 101. As the image sensor, a photoelectric conversion element such as a CCD sensor or a CMOS sensor is used.

回折光学素子10は前述したようにレンズ機能を有する素子であり、撮像光学系101中の屈折光学素子で発生する色収差を補正する役割を果たす。そして、回折光学素子10は、実施例1〜5で説明したように、その回折効率特性が従来のものに比べて大幅に改善されている。このため、フレア光が少なく、低周波数での解像力も高い良好な光学性能を有した撮像光学系及び撮像装置が実現される。   The diffractive optical element 10 is an element having a lens function as described above, and plays a role of correcting chromatic aberration generated by the refractive optical element in the imaging optical system 101. And as demonstrated in Examples 1-5, the diffraction efficiency characteristic of the diffractive optical element 10 is greatly improved compared with the conventional one. For this reason, an imaging optical system and an imaging apparatus having good optical performance with less flare light and high resolving power at low frequencies are realized.

また、実施例1〜5にて説明した回折光学素子10は、空気層を有さない密着2層型DOEであるので、製造が容易で、撮像光学系の量産性を高めることにも有効である。   Moreover, since the diffractive optical element 10 described in Examples 1 to 5 is a close-contact two-layer DOE that does not have an air layer, it is easy to manufacture and effective in increasing the mass productivity of the imaging optical system. is there.

図9Aでは、絞り102の近傍に配置された平板ガラス面に回折光学素子10を設けた例を示すが、回折光学素子10の配置形態はこれに限られない。前述したように、回折光学素子10をレンズ素子の凹面や凸面上に設けてもよい。また、撮像光学系内に回折光学素子10を複数個配置してもよい。   Although FIG. 9A shows an example in which the diffractive optical element 10 is provided on a flat glass surface arranged in the vicinity of the stop 102, the arrangement form of the diffractive optical element 10 is not limited to this. As described above, the diffractive optical element 10 may be provided on the concave or convex surface of the lens element. A plurality of diffractive optical elements 10 may be arranged in the imaging optical system.

図9Aでは、撮像装置の撮影光学系に実施例1〜5の回折光学素子10を用いた場合について説明した。しかし、該回折光学素子10を、事務機(光学機器)であるイメージスキャナやデジタル複写機のリーダレンズ等、広い波長領域で使用される結像光学系に用いてもよい。この場合も、フレア光が少なく、低周波数での解像力も高い良好な光学性能を有する結像光学系及び事務機を実現することができる。   In FIG. 9A, the case where the diffractive optical element 10 of Examples 1 to 5 is used in the imaging optical system of the imaging apparatus has been described. However, the diffractive optical element 10 may be used in an imaging optical system that is used in a wide wavelength region, such as an image scanner that is an office machine (optical device) or a reader lens of a digital copying machine. Also in this case, it is possible to realize an imaging optical system and an office machine that have good optical performance with little flare light and high resolving power at low frequencies.

図9Bには、実施例1〜5で説明した回折光学素子を含み、双眼鏡等の観察装置(光学機器)300に搭載される観察光学系の構成を示している。   FIG. 9B shows a configuration of an observation optical system that includes the diffractive optical elements described in Examples 1 to 5 and is mounted on an observation apparatus (optical apparatus) 300 such as binoculars.

図9Bにおいて、104は対物レンズ、105は対物レンズ104により形成された倒立像を正立させるためのプリズムである。106は接眼レンズであり、107の評価面(瞳面)に眼を配置することで、観察者は接眼レンズ106を通して対象物を観察することができる。   In FIG. 9B, reference numeral 104 denotes an objective lens, and 105 denotes a prism for erecting an inverted image formed by the objective lens 104. Reference numeral 106 denotes an eyepiece lens. By placing an eye on the evaluation surface 107 (pupil surface), the observer can observe the object through the eyepiece lens 106.

対物レンズ104は、実施例1〜5で説明した回折光学素子10を有する。該回折光学素子10は、対物レンズ104の結像面103での色収差その他の収差を補正する目的で設けられている。   The objective lens 104 includes the diffractive optical element 10 described in the first to fifth embodiments. The diffractive optical element 10 is provided for the purpose of correcting chromatic aberration and other aberrations on the imaging surface 103 of the objective lens 104.

回折光学素子10は、実施例1〜5で説明したように、その回折効率特性が従来のものに比べて大幅に改善されている。このため、フレア光が少なく、低周波数での解像力も高い良好な光学性能を有した観察光学系及び観察装置が実現される。   As described in Examples 1 to 5, the diffractive optical element 10 has greatly improved diffraction efficiency characteristics compared to the conventional one. For this reason, an observation optical system and an observation apparatus having good optical performance with little flare light and high resolving power at a low frequency are realized.

また、実施例1〜5にて説明した回折光学素子10は、空気層を有さない密着2層型DOEであるので、製造が容易で、結像光学系の量産性を高めることにも有効である。   Moreover, since the diffractive optical element 10 described in Examples 1 to 5 is a close-contact two-layer DOE that does not have an air layer, it is easy to manufacture and effective in increasing the mass productivity of the imaging optical system. It is.

図9Bでは、対物レンズ104を構成するレンズ素子の近くに配置された平板ガラス面に回折光学素子10を設けた例を示すが、回折光学素子10の配置形態はこれに限られない。前述したように、回折光学素子10をレンズ素子の凹面や凸面上に設けてもよい。また、結像光学系内に回折光学素子10を複数個配置してもよい。   Although FIG. 9B shows an example in which the diffractive optical element 10 is provided on a flat glass surface arranged near the lens element constituting the objective lens 104, the arrangement form of the diffractive optical element 10 is not limited to this. As described above, the diffractive optical element 10 may be provided on the concave or convex surface of the lens element. A plurality of diffractive optical elements 10 may be arranged in the imaging optical system.

また、図9Bでは、対物レンズ104内に回折光学素子10を設けた場合を示したが、プリズム105の光学面や接眼レンズ106内に設けることもでき、この場合も先に説明したのと同様の効果が得られる。   9B shows the case where the diffractive optical element 10 is provided in the objective lens 104, it can also be provided in the optical surface of the prism 105 or in the eyepiece lens 106. In this case as well, as described above. The effect is obtained.

但し、回折光学素子10を結像面103よりも物体側に設けることで、対物レンズ104で発生する色収差の低減効果があるため、肉眼の観察系の場合は、少なくとも対物レンズ104内に設けることが望ましい。   However, providing the diffractive optical element 10 closer to the object side than the imaging surface 103 has an effect of reducing chromatic aberration generated in the objective lens 104. Therefore, in the case of a naked eye observation system, the diffractive optical element 10 is provided at least in the objective lens 104. Is desirable.

さらに、図9Bに示した双眼鏡の観察光学系以外に、望遠鏡やカメラの光学ファインダといった観察光学系にも実施例1〜5にて説明した回折光学素子10を設けることができる。この場合も、先に説明したのと同様の効果が得られる。   Furthermore, in addition to the binocular viewing optical system shown in FIG. 9B, the diffractive optical element 10 described in the first to fifth embodiments can be provided in an observation optical system such as a telescope or a camera optical finder. In this case, the same effect as described above can be obtained.

本発明の実施例1〜5である回折光学素子の正面図及び側面図。The front view and side view of the diffractive optical element which are Examples 1-5 of this invention. 実施例1〜5の回折光学素子の部分断面図。FIG. 6 is a partial cross-sectional view of the diffractive optical elements of Examples 1 to 5. 実施例1の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 3 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 1. 実施例1の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 3 is a graph showing diffraction efficiency characteristics in the design order ± first order of the diffractive optical element of Example 1. 実施例1の回折光学素子を構成する材料の屈折率特性(n−λ特性)を示すグラフ図。FIG. 3 is a graph showing the refractive index characteristic (n-λ characteristic) of the material constituting the diffractive optical element of Example 1. 実施例2の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 6 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 2. 実施例2の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 6 is a graph showing diffraction efficiency characteristics in the design order ± 1st order of the diffractive optical element of Example 2. 実施例3の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 6 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 3. 実施例3の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 6 is a graph showing diffraction efficiency characteristics at the design order ± 1st order of the diffractive optical element of Example 3. 実施例4の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 6 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 4. 実施例4の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 10 is a graph showing diffraction efficiency characteristics in the design order ± first order of the diffractive optical element of Example 4. 実施例5の回折光学素子の設計次数での回折効率特性を示すグラフ図。FIG. 9 is a graph showing diffraction efficiency characteristics at the design order of the diffractive optical element of Example 5. 実施例5の回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。FIG. 6 is a graph showing diffraction efficiency characteristics in the design order ± first order of the diffractive optical element of Example 5. 実施例1〜5の回折光学素子を用いた撮影光学系とこれを備えた撮像装置の構成を示す図。FIG. 6 is a diagram illustrating a configuration of a photographing optical system using the diffractive optical elements of Examples 1 to 5 and an imaging apparatus including the photographing optical system. 実施例1〜5の回折光学素子を用いた観察光学系とこれを備えた観察装置の構成を示す図。The figure which shows the structure of the observation optical system using the diffractive optical element of Examples 1-5, and an observation apparatus provided with the same. 実施例1〜5の回折光学素子を構成する材料の屈折率特性(nd-νd特性)を示すグラフ図。The graph which shows the refractive index characteristic (nd-νd characteristic) of the material which comprises the diffractive optical element of Examples 1-5. 実施例1〜5の回折光学素子を構成する材料の屈折率特性(θg,F-νd特性)を示すグラフ図。The graph which shows the refractive index characteristic ((theta) g, F- (nu) d characteristic) of the material which comprises the diffractive optical element of Examples 1-5. 実施例1〜5の回折光学素子を構成する材料の屈折率特性(θg,d-νd特性)を示すグラフ図。The graph which shows the refractive index characteristic ((theta) g, d- (nu) d characteristic) of the material which comprises the diffractive optical element of Examples 1-5. 従来の単層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional single layer type diffractive optical element. 従来の単層型回折光学素子の設計次数及び設計次数±1次の回折効率特性を示すグラフ図。The graph which shows the design efficiency of the conventional single layer type | mold diffractive optical element, and the diffraction efficiency characteristic of a design order +/- 1st order. 従来の積層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional laminated type diffractive optical element. 従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional laminated type diffractive optical element. 従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order +/- 1st order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の設計次数での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の設計次数±1次での回折効率特性を示すグラフ図。The graph which shows the diffraction efficiency characteristic in the design order +/- 1st order of the conventional lamination type diffractive optical element. 従来の密着2層型回折光学素子の部分断面図。The fragmentary sectional view of the conventional adhesion two-layer type diffractive optical element.

符号の説明Explanation of symbols

10 回折光学素子
12 第1の素子部
13 第2の素子部
14 第1の透明基板
15 第2の透明基板
16 第1の格子ベース部
17 第2の格子ベース部
18 第1の回折格子
19 第2の回折格子
101 撮像光学系
104 観察光学系
DESCRIPTION OF SYMBOLS 10 Diffractive optical element 12 1st element part 13 2nd element part 14 1st transparent substrate 15 2nd transparent substrate 16 1st grating | lattice base part 17 2nd grating | lattice base part 18 1st diffraction grating 19 1st Two diffraction gratings 101 Imaging optical system 104 Observation optical system

Claims (8)

第1及び第2の材料によりそれぞれ形成された回折格子が互いの格子面で接する構成を有する回折光学素子であって、
前記第2の材料は、以下の条件をすべて満足する第1の微粒子材料を樹脂材料に混合した材料であり、
前記第1及び第2の材料はそれぞれ、以下の条件をすべて満足することを特徴とする回折光学素子。
1.5218≦nd1≦1.6110
45.4≦νd1≦57.9
0.54≦θg,F1≦0.57
1.23≦θg,d1≦1.27
1.4688≦nd2≦1.5673
12.1≦νd2≦21.7
0.36≦θg,F2≦0.42
0.97≦θg,d2≦1.07
0.04≦nd1-nd2≦0.10
1.77≦ndb2≦1.93
6.8≦νdb2≦7.7
6.0≦d≦13.9
ただし、ng1, nF1, nd1, nC1はそれぞれ、前記第1の材料のg線, F線, d線, C線に対する屈折率、
ng2, nF2, nd2, nC2はそれぞれ、前記第2の材料のg線, F線, d線, C線に対する屈折率、
nFb2, ndb2, nCb2はそれぞれ、前記第1の微粒子材料のF線, d線, C線に対する屈折率、
νd1=(nd1-1)/(nF1-nC1)
νd2=(nd2-1)/(nF2-nC2)
θg,F1=(ng1-nF1)/(nF1-nC1)
θg,d1=(ng1-nd1)/(nF1-nC1)
θg,F2=(ng2-nF2)/(nF2-nC2)
θg,d2=(ng2-nd2)/(nF2-nC2)
νdb2=(ndb2-1)/(nFb2-nCb2)
dは、前記回折格子の格子厚、
である。
A diffractive optical element having a configuration in which diffraction gratings respectively formed of a first material and a second material are in contact with each other on a grating surface,
The second material is a material in which a first fine particle material that satisfies all of the following conditions is mixed with a resin material,
The diffractive optical element according to claim 1, wherein each of the first and second materials satisfies all of the following conditions.
1.5218 ≤ nd1 ≤ 1.6110
45.4 ≦ νd1 ≦ 57.9
0.54 ≤ θg, F1 ≤ 0.57
1.23 ≤ θg, d1 ≤ 1.27
1.4688 ≦ nd2 ≦ 1.5673
12.1 ≦ νd2 ≦ 21.7
0.36 ≦ θg, F2 ≦ 0.42
0.97 ≦ θg, d2 ≦ 1.07
0.04 ≦ nd1-nd2 ≦ 0.10
1.77 ≦ ndb2 ≦ 1.93
6.8 ≦ νdb2 ≦ 7.7
6.0 ≦ d ≦ 13.9
Where ng1, nF1, nd1, and nC1 are the refractive indices of the first material for the g-line, F-line, d-line, and C-line,
ng2, nF2, nd2, and nC2 are the refractive indices of the second material for g-line, F-line, d-line, and C-line,
nFb2, ndb2, and nCb2 are refractive indexes of the first fine particle material with respect to F-line, d-line, and C-line,
νd1 = (nd1-1) / (nF1-nC1)
νd2 = (nd2-1) / (nF2-nC2)
θg, F1 = (ng1-nF1) / (nF1-nC1)
θg, d1 = (ng1-nd1) / (nF1-nC1)
θg, F2 = (ng2-nF2) / (nF2-nC2)
θg, d2 = (ng2-nd2) / (nF2-nC2)
νdb2 = (ndb2-1) / (nFb2-nCb2)
d is the grating thickness of the diffraction grating,
It is.
前記第1及び第2の材料は、さらに以下の条件をすべて満足することを特徴とする請求項1に記載の回折光学素子。
m(λF)={dx(nF1-nF2)}/λF
m(λd)={dx(nd1-nd2)}/λd
m(λC)={dx(nC1-nC2)}/λC
0.998≦{m(λF)+m(λd)+m(λC)}/3≦1.001
ただし、λF, λd, λCはそれぞれ、F線, d線, C線の波長、
m(λF), m(λd), m(λC)はそれぞれ、F線, d線, C線の波長における設計次数であるm次の回折光に対する前記各回折格子の凸部と凹部での光学光路長の差をその波長で除した値、
である。
The diffractive optical element according to claim 1, wherein the first and second materials further satisfy all of the following conditions.
m (λF) = {dx (nF1-nF2)} / λF
m (λd) = {dx (nd1-nd2)} / λd
m (λC) = {dx (nC1-nC2)} / λC
0.998 ≦ {m (λF) + m (λd) + m (λC)} / 3 ≦ 1.001
Where λF, λd and λC are the wavelengths of the F-line, d-line and C-line
m (λF), m (λd), and m (λC) are optical values at the convex and concave portions of the diffraction gratings with respect to the mth-order diffracted light, which is the designed order at the wavelengths of the F-line, d-line, and C-line, respectively. The value obtained by dividing the difference in optical path length by the wavelength,
It is.
前記第1の材料は、以下の条件をすべて満足する第2の微粒子材料を樹脂材料に混合した材料であることを特徴とする請求項1に記載の回折光学素子。
1.71≦ndb1≦1.87
39.4≦νdb1≦68.0
ただし、nFb1, ndb1, nCb1はそれぞれ、前記第2の微粒子材料のF線, d線, C線に対する屈折率、
νdb1=(ndb1-1)/(nFb1-nCb1)
である。
2. The diffractive optical element according to claim 1, wherein the first material is a material in which a second fine particle material that satisfies all of the following conditions is mixed with a resin material.
1.71 ≤ ndb1 ≤ 1.87
39.4 ≦ νdb1 ≦ 68.0
Where nFb1, ndb1, and nCb1 are the refractive indices of the second fine particle material with respect to the F-line, d-line, and C-line,
νdb1 = (ndb1-1) / (nFb1-nCb1)
It is.
前記第1及び第2の微粒子材料の平均粒子径は、該回折光学素子への入射光の波長の1/4以下であることを特徴とする請求項3に記載の回折光学素子。   4. The diffractive optical element according to claim 3, wherein an average particle diameter of the first and second fine particle materials is ¼ or less of a wavelength of incident light to the diffractive optical element. 前記第1の材料は、微粒子材料が混合されていない樹脂材料であることを特徴とする請求項1又は2に記載の回折光学素子。   The diffractive optical element according to claim 1, wherein the first material is a resin material in which a particulate material is not mixed. さらに以下の条件を満足することを特徴とする請求項1から5のいずれか1つに記載の回折光学素子。
0.03≦d/P≦0.07
ただし、P及びdはそれぞれ、前記回折格子の格子ピッチ及び格子厚である。
The diffractive optical element according to claim 1, further satisfying the following condition.
0.03 ≤ d / P ≤ 0.07
Here, P and d are the grating pitch and grating thickness of the diffraction grating, respectively.
請求項1から6のいずれか1つに記載の回折光学素子を有することを特徴する光学系。   An optical system comprising the diffractive optical element according to claim 1. 請求項7に記載の光学系を有することを特徴とする光学機器。   An optical apparatus comprising the optical system according to claim 7.
JP2007077600A 2007-03-23 2007-03-23 Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same Active JP5137432B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007077600A JP5137432B2 (en) 2007-03-23 2007-03-23 Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
US11/867,989 US7710651B2 (en) 2007-03-23 2007-10-05 Contacting two-layer diffractive optical element
DE602007004710T DE602007004710D1 (en) 2007-03-23 2007-10-12 Two-layer on periodic contact optical refractive element (DOE)
EP07020072A EP1972971B1 (en) 2007-03-23 2007-10-12 Contacting two-layer diffractive optical element (DOE)
CN2007101624746A CN101271168B (en) 2007-03-23 2007-10-15 Diffractive optical element, optical system and optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077600A JP5137432B2 (en) 2007-03-23 2007-03-23 Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same

Publications (3)

Publication Number Publication Date
JP2008241734A JP2008241734A (en) 2008-10-09
JP2008241734A5 JP2008241734A5 (en) 2010-05-06
JP5137432B2 true JP5137432B2 (en) 2013-02-06

Family

ID=39913224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077600A Active JP5137432B2 (en) 2007-03-23 2007-03-23 Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same

Country Status (2)

Country Link
JP (1) JP5137432B2 (en)
CN (1) CN101271168B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5258204B2 (en) * 2007-03-29 2013-08-07 キヤノン株式会社 Diffractive optical element, optical system using the same, and optical instrument
JP5366673B2 (en) * 2009-06-17 2013-12-11 キヤノン株式会社 Optical system and optical apparatus having the same
JP2011022255A (en) 2009-07-14 2011-02-03 Canon Inc Diffraction optical element and optical system having the same
JP5479022B2 (en) * 2009-10-19 2014-04-23 キヤノン株式会社 Optical material and multilayer diffractive optical element
EP2579081B1 (en) * 2010-05-24 2019-08-07 Nikon Corporation Telescope optical system and optical device provided therewith
JP5676930B2 (en) * 2010-06-11 2015-02-25 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
JP5676929B2 (en) * 2010-06-11 2015-02-25 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
JP5615065B2 (en) * 2010-07-07 2014-10-29 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
CN102782535A (en) * 2011-02-22 2012-11-14 松下电器产业株式会社 Diffraction optical element and imaging device provided with same
WO2012127929A1 (en) * 2011-03-18 2012-09-27 オリンパスメディカルシステムズ株式会社 Optical diffraction element and endoscope
JP5765998B2 (en) 2011-04-14 2015-08-19 キヤノン株式会社 Diffractive optical element, optical system and optical instrument
JP2013125259A (en) 2011-12-16 2013-06-24 Canon Inc Diffractive optical element, optical system, and optical apparatus
CN102637439B (en) * 2012-05-07 2014-10-29 清华大学深圳研究生院 Light path system applicable to three-dimensional two-photon fluorescence storage
JP7023598B2 (en) * 2016-08-09 2022-02-22 キヤノン株式会社 Diffractive optical element, optical system having it, image pickup device
EP3447862A1 (en) * 2017-08-23 2019-02-27 Koninklijke Philips N.V. Vcsel array with common wafer level integrated optical device
US11231531B2 (en) 2018-02-20 2022-01-25 Fujifilm Corporation Finder optical system and imaging device
WO2019177075A1 (en) 2018-03-15 2019-09-19 富士フイルム株式会社 Curable resin composition, cured material, diffractive optical element, multilayer diffractive optical element, and method for manufacturing curable resin composition
CN112188062B (en) * 2020-09-30 2022-04-26 维沃移动通信有限公司 Electronic device
CN112188065B (en) * 2020-09-30 2022-02-15 维沃移动通信有限公司 Imaging device and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864427B2 (en) * 2005-08-29 2011-01-04 Panasonic Corporation Diffractive optical element and method for manufacturing the same, and imaging apparatus using the diffractive optical element

Also Published As

Publication number Publication date
JP2008241734A (en) 2008-10-09
CN101271168A (en) 2008-09-24
CN101271168B (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5137432B2 (en) Adherent two-layer type diffractive optical element and optical system and optical apparatus using the same
US7710651B2 (en) Contacting two-layer diffractive optical element
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JP4587418B2 (en) Diffractive optical element and optical system having the diffractive optical element
JP4336412B2 (en) Diffractive optical element and optical system using the same
JPH09127322A (en) Diffraction optical element
JP5546217B2 (en) Diffractive optical element, optical system having the same, and imaging apparatus
JP2009217139A (en) Diffraction optical element, optical system and optical apparatus
JP3495884B2 (en) Diffractive optical element and optical system using the same
JP4006362B2 (en) Diffractive optical element and optical system having the same
JP2009025573A (en) Diffractive optical system
JP3472154B2 (en) Diffractive optical element and optical system having the same
US6930833B2 (en) Diffractive optical element, and optical system and optical apparatus provide with the same
JP2002082214A (en) Diffractive optical element and optical system using the same
JP7071085B2 (en) Diffractive optical element, optical system, and image pickup device
JP2012247450A (en) Optical system
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP5615065B2 (en) Diffractive optical element, optical system and optical instrument
JP2018146879A (en) Optical system and imaging apparatus having the same
JP2015203790A (en) Optical system and optical device having the same
JP2018072623A (en) Diffraction optical element and optical system and imaging apparatus having the same
JPH09325203A (en) Diffraction optical element
JP4088283B2 (en) Diffractive optical element, optical system including the same, and optical apparatus
JP2002071925A (en) Diffractive optical element and optical system using the same
JP2013064858A (en) Optical system and optical element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R151 Written notification of patent or utility model registration

Ref document number: 5137432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3