JP2013064858A - Optical system and optical element - Google Patents

Optical system and optical element Download PDF

Info

Publication number
JP2013064858A
JP2013064858A JP2011203282A JP2011203282A JP2013064858A JP 2013064858 A JP2013064858 A JP 2013064858A JP 2011203282 A JP2011203282 A JP 2011203282A JP 2011203282 A JP2011203282 A JP 2011203282A JP 2013064858 A JP2013064858 A JP 2013064858A
Authority
JP
Japan
Prior art keywords
optical
diffraction
diffractive optical
diffractive
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011203282A
Other languages
Japanese (ja)
Inventor
Hiroto Yasui
裕人 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011203282A priority Critical patent/JP2013064858A/en
Publication of JP2013064858A publication Critical patent/JP2013064858A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system and an optical element in which a refraction power in a diffraction plane of a diffraction optical part is alleviated so as to suppress a flare due to unnecessary diffraction light by making other optical elements in a diffraction optical element share an effect of reducing chromatic aberration contained in the diffraction optical element itself and an aspheric lens effect, as a further improvement of a conventional technology.SOLUTION: The optical element is formed by joining the diffraction optical section formed by laminating a plurality of diffraction gratings, and a refraction optical section comprising a solid material having an abnormal partial dispersion characteristic. The refraction optical section includes an optical plane which is not joined to the diffraction optical section, exposed to the air, and has an aspherical shape.

Description

本発明は、回折光学素子およびこれを用いた光学系に関し、例えば銀塩写真用カメラ、ビデオカメラ、デジタルスチルカメラ等の撮影光学系に好適なものである。   The present invention relates to a diffractive optical element and an optical system using the diffractive optical element, and is suitable for a photographing optical system such as a silver salt photographic camera, a video camera, and a digital still camera.

一般に、デジタルカメラやビデオカメラ等の撮像装置に用いられる光学系では、レンズ全長を短縮し光学系全体の小型軽量化を図る程、諸収差、特に軸上及び倍率色収差が劣化し、光学性能が低下する傾向にある。特にレンズ全長の短縮化を図ったテレフォトタイプの光学系では、焦点距離が長くなる程、色収差が劣化する傾向にある。   In general, in an optical system used for an imaging apparatus such as a digital camera or a video camera, as the overall length of the lens is shortened and the entire optical system is reduced in size and weight, various aberrations, in particular, on-axis and lateral chromatic aberration are deteriorated, and optical performance is improved. It tends to decrease. In particular, in a telephoto type optical system in which the total lens length is shortened, the chromatic aberration tends to deteriorate as the focal length increases.

このような色収差の発生を低減する方法として、光学材料に異常部分分散材料を用いる方法、光路中に回折光学素子を用いる方法が知られている(特許文献1)。前者の異常部分分散材料に関しては、通常の光学ガラスが、アッベ数を横軸にとる一方で、以下に示す部分分散比を縦軸にとったグラフに関して、ある直線上に乗る性質がある(正常部分分散)ところ、直線上に乗らない性質のものをいう。ここで、部分分散比とは、光学材料の基準となる2つの波長(例えばフラウンホーファー線のF線とC線)での屈折率の差(主分散)に対する、他の2つの波長の屈折率の差(部分分散)の比である。   As a method for reducing the occurrence of such chromatic aberration, a method using an abnormal partial dispersion material as an optical material and a method using a diffractive optical element in an optical path are known (Patent Document 1). Regarding the former anomalous partial dispersion material, ordinary optical glass has the property that the Abbe number is plotted on a horizontal axis while the following partial dispersion ratio is plotted on a vertical axis on a certain straight line (normal). (Partial dispersion) However, it means that it does not ride on a straight line. Here, the partial dispersion ratio is the refractive index of the other two wavelengths with respect to the difference in refractive index (main dispersion) at two wavelengths (for example, the F-line and C-line of the Fraunhofer line) serving as the reference of the optical material. Ratio (partial dispersion).

また、後者の回折光学素子に関しては、回折作用を有する回折格子による異なる波長光の出射角度関係が、屈折作用を有する光学面による出射角度関係と逆となることで色収差を減じるものである。この回折光学素子は、その周期的構造の周期を変化させることで非球面レンズ的な効果を持たせることが知られる(特許文献2)。   Further, with respect to the latter diffractive optical element, the chromatic aberration is reduced by the fact that the emission angle relationship of light of different wavelengths by the diffraction grating having the diffractive action is opposite to the emission angle relationship by the optical surface having the refracting action. This diffractive optical element is known to have an aspherical lens effect by changing the period of its periodic structure (Patent Document 2).

なお、特許文献1では、前述した異常部分分散を有する屈折光学部と、複数の回折格子を積層して成る回折光学部を接合させた光学素子および光学系が開示される。   Patent Document 1 discloses an optical element and an optical system in which the above-described refractive optical unit having abnormal partial dispersion and a diffractive optical unit formed by stacking a plurality of diffraction gratings are joined.

特開2011−2555号公報JP2011-2555A 特開2002−72082号公報JP 2002-72082 A

回折光学素子を用いた光学系において、素子自体が有する色収差を減ずる効果及び非球面レンズ的な効果を強め過ぎると、回折光学部の回折面における屈折力が強くなり過ぎ、設計回折次数以外の不要回折光によるフレアの増大が問題となる。本発明は従来技術の更なる改善として、回折光学素子の色収差を減ずる効果と非球面レンズ的な効果を、回折光学素子内の他の光学要素で夫々分担させる。これにより、不要回折光によるフレアを抑制できるように、回折光学部の回折面における屈折力を緩和させた光学系および光学素子を提供することを目的とする。   In an optical system using a diffractive optical element, if the effect of reducing the chromatic aberration of the element itself and the effect of an aspherical lens are strengthened too much, the refractive power on the diffractive surface of the diffractive optical part becomes too strong, and there is no need other than the designed diffraction order. Increased flare due to diffracted light is a problem. As a further improvement of the prior art, the present invention shares the effect of reducing the chromatic aberration of the diffractive optical element and the effect of an aspheric lens with the other optical elements in the diffractive optical element. Accordingly, an object of the present invention is to provide an optical system and an optical element in which the refractive power on the diffractive surface of the diffractive optical part is relaxed so that flare caused by unnecessary diffracted light can be suppressed.

上記目的を達成するために、本発明は、物体側から順に前群、開口絞り、後群を有し、かつ、前記前群は、物体側から順に、複数の回折格子を積層して成る回折光学部および色収差を低減するために異常部分分散特性を有する固体材料を備える屈折光学部を接合した光学素子、フォーカシング部を備える光学系であって、前記屈折光学部は、前記回折光学部と接合されていない光学面が空気に面した非球面形状であることを特徴とする。   In order to achieve the above object, the present invention has a front group, an aperture stop, and a rear group in order from the object side, and the front group has a diffraction structure in which a plurality of diffraction gratings are stacked in order from the object side. An optical element having a focusing part and an optical element joined with a refractive optical part comprising a solid material having an anomalous partial dispersion characteristic to reduce the optical part and chromatic aberration, the refractive optical part being joined to the diffractive optical part The optical surface that is not formed is an aspherical shape facing the air.

また、本発明は、複数の回折格子を積層して成る回折光学部および異常部分分散特性を有する固体材料を備える屈折光学部を接合した光学素子であって、前記屈折光学部は、前記回折光学部と接合されていない光学面が空気に面した非球面形状であることを特徴とする。   Further, the present invention is an optical element in which a diffractive optical part formed by laminating a plurality of diffraction gratings and a refractive optical part including a solid material having anomalous partial dispersion characteristics are joined, and the refractive optical part includes the diffractive optical part The optical surface which is not joined to the portion is an aspherical shape facing the air.

本発明によれば、回折光学素子の色収差を減ずる効果と非球面レンズ的な効果を、回折光学素子内の他の光学要素で夫々分担させることで、回折光学部の回折面における屈折力を緩和させ、不要回折光によるフレアを抑制できる。   According to the present invention, the effect of reducing the chromatic aberration of the diffractive optical element and the effect of an aspheric lens are shared by the other optical elements in the diffractive optical element, thereby reducing the refractive power on the diffractive surface of the diffractive optical part. Thus, flare caused by unnecessary diffracted light can be suppressed.

(a)は本発明の第1の実施形態に係る光学系の断面図、(b)は第1の実施形態に係る回折光学素子の拡大図である。(A) is sectional drawing of the optical system which concerns on the 1st Embodiment of this invention, (b) is an enlarged view of the diffractive optical element which concerns on 1st Embodiment. 第1の実施形態における物体無限遠時の収差図である。It is an aberration diagram at the time of object infinity in the first embodiment. 第1の実施形態における近軸光線追跡を説明する図である。It is a figure explaining paraxial ray tracing in a 1st embodiment. 一般的なテレフォトタイプ光学系の光学作用を説明するための近軸配置概略図である。It is a paraxial arrangement schematic diagram for explaining the optical action of a general telephoto type optical system. 第1の実施形態に係る屈折光学部を形成する固体材料の屈折率特性(θgF−νd 特性)を示すグラフ図である。It is a graph which shows the refractive index characteristic ((theta) gF- (nu) d characteristic) of the solid material which forms the refractive optical part which concerns on 1st Embodiment. 撮影画角外光による不要回折次数のフレアを説明するための簡略図である。It is a simplified diagram for explaining flare of unnecessary diffraction orders due to light outside the field of view. 回折光学素子の不要回折次数の回折効率を表すグラフ図である。It is a graph showing the diffraction efficiency of the unnecessary diffraction order of a diffractive optical element. 第1の実施形態における素子部の非球面成分量を表すグラフ図である。It is a graph showing the amount of aspherical components of an element part in a 1st embodiment. 回折光学部の設計次数±1次での回折効率特性を示すグラフ図である。It is a graph which shows the diffraction efficiency characteristic in the design order +/- 1st order of a diffraction optical part. 回折光学部を構成する材料の屈折率特性(nd−νd特性)を示すグラフ図である。It is a graph which shows the refractive index characteristic (nd- (nu) d characteristic) of the material which comprises a diffractive optical part. 回折光学部を構成する材料の屈折率特性(θgF−νd特性)を示すグラフ図である。It is a graph which shows the refractive index characteristic ((theta) gF- (nu) d characteristic) of the material which comprises a diffractive optical part. 回折光学部を構成する材料の屈折率波長依存特性を示すグラフ図である。It is a graph which shows the refractive index wavelength dependence characteristic of the material which comprises a diffractive optical part. (a)、(b)、(c)は本発明に係る回折光学素子の作製法を説明する図である。(A), (b), (c) is a figure explaining the preparation methods of the diffractive optical element based on this invention. (a)は本発明の第2の実施形態に係る光学系の断面図、(b)は第2の実施形態に係る回折光学素子の拡大図である。(A) is sectional drawing of the optical system which concerns on the 2nd Embodiment of this invention, (b) is an enlarged view of the diffractive optical element which concerns on 2nd Embodiment. 第2の実施形態における物体無限遠時の収差図である。FIG. 10 is an aberration diagram at object infinity in the second embodiment.

以下に、本発明の好ましい実施形態を、添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

《第1の実施形態》
(光学系の全体構成)
本実施形態の光学系は、超望遠レンズ(焦点距離400mm、Fno4.0)であり、図1(a)に物体距離無限遠におけるレンズ断面図を示している。図1(a)において、LFは正の屈折力の前群、LRは正の屈折力の後群、Sは開口絞りである。開口絞りSは、前群LFと後群LRの間に配置されている。またOは光軸を、IPは像面を、Gは水晶ローパスフィルタや赤外カットフィルタ等のガラスブロックを表している。本実施形態に係る回折光学素子Ldamは、物体側から数えて2番目のレンズであり、その素子構成の詳細については後述する。
<< First Embodiment >>
(Overall configuration of optical system)
The optical system of this embodiment is a super telephoto lens (focal length 400 mm, Fno 4.0), and FIG. 1A shows a lens cross-sectional view at an object distance of infinity. In FIG. 1A, LF is a front group having positive refractive power, LR is a rear group having positive refractive power, and S is an aperture stop. The aperture stop S is disposed between the front group LF and the rear group LR. O represents an optical axis, IP represents an image plane, and G represents a glass block such as a crystal low-pass filter or an infrared cut filter. The diffractive optical element Ldam according to the present embodiment is the second lens counted from the object side, and details of the element configuration will be described later.

また無限物点から至近距離物点へのフォーカシングは、フォーカシング部として前群LF中の最も像面側にある接合レンズLfoを像面側へ移動させて行っている。更に後群LR中のレンズユニット(LIS)を光軸Oと略垂直方向に移動させることにより、手ぶれ等による画像のぶれを補正することが可能である。   Further, focusing from an infinite object point to a closest object point is performed by moving the cemented lens Lfo closest to the image plane in the front group LF to the image plane side as a focusing portion. Further, by moving the lens unit (LIS) in the rear group LR in a direction substantially perpendicular to the optical axis O, it is possible to correct image blur due to camera shake or the like.

(回折光学素子の構成)
ここで、回折光学素子Ldamの素子構成について、図1(b)を用いて説明する。図1(b)は、本実施形態に係る光学系において、物体側から数えて2番目のレンズLdamを、説明し易くするため適当な縮尺で拡大した説明図である。特に、回折光学部102及び屈折光学部103の光軸上での厚さddoe、danmと回折光学部の光軸Oに対し垂直方向に形成された回折格子の形状は、かなりデフォルメされている。またΔdbは非球面成分量で、Pは回折光学部102の回折面における格子ピッチ、dhは格子厚である。
(Configuration of diffractive optical element)
Here, the element configuration of the diffractive optical element Ldam will be described with reference to FIG. FIG. 1B is an explanatory diagram in which the second lens Ldam counted from the object side in the optical system according to the present embodiment is enlarged to an appropriate scale for easy explanation. In particular, the thicknesses ddoe and danm on the optical axis of the diffractive optical unit 102 and the refractive optical unit 103 and the shape of the diffraction grating formed in the direction perpendicular to the optical axis O of the diffractive optical unit are considerably deformed. Δdb is the amount of aspherical component, P is the grating pitch on the diffraction surface of the diffractive optical section 102, and dh is the grating thickness.

図1(b)より、回折光学素子Ldam(101)の素子構成は、物体側(図1(b)の紙面左側)から順にガラス基板104、回折面を有する回折光学部102、異常部分分散を有する固体材料から成る屈折光学部103であり、各々の部分が密着接合されている。また屈折光学部103の像面側(図1(b)の紙面右側)の光学面は空気に面しているとともに、非球面形状をなしている。   As shown in FIG. 1B, the element configuration of the diffractive optical element Ldam (101) is that the glass substrate 104, the diffractive optical part 102 having the diffractive surface, and the anomalous partial dispersion are sequentially arranged from the object side (the left side of the paper in FIG. 1B). The refractive optical unit 103 is made of a solid material, and each part is tightly bonded. The optical surface of the refractive optical unit 103 on the image plane side (the right side in FIG. 1B) faces air and has an aspherical shape.

(光学系の収差図)
本実施形態に係る光学系の物体距離無限遠における収差図を図2に示す。図2の球面収差において、実線はd線、二点鎖線はg線、一点鎖線はC線、点線はF線を各々表している。また非点収差においては、実線はd線のサジタル光線(ΔS)、点線はd線のメリディオナル光線(ΔM)、一点鎖線はg線のサジタル光線(ΔSg)、二点鎖線はg線のメリディオナル光線(ΔMg)を各々表している。更に倍率色収差においては、二点鎖線はg線、一点鎖線はC線、点線はF線を各々表している。
(Aberration diagram of optical system)
FIG. 2 shows aberration diagrams of the optical system according to this embodiment at an infinite object distance. In the spherical aberration of FIG. 2, the solid line represents the d line, the two-dot chain line represents the g line, the one-dot chain line represents the C line, and the dotted line represents the F line. Astigmatism, the solid line is the d-line sagittal ray (ΔS), the dotted line is the d-line meridional ray (ΔM), the dashed-dotted line is the g-line sagittal ray (ΔSg), and the two-dot chain line is the g-line meridional ray. (ΔMg) is shown respectively. Furthermore, in lateral chromatic aberration, the two-dot chain line represents the g line, the one-dot chain line represents the C line, and the dotted line represents the F line.

(光学系のレンズ構成)
ここで、本実施形態のレンズ構成を更に詳細に説明する。本実施形態では回折光学素子101を開口絞りSより物体側で、以下の条件式(1)を満足する位置に配置している。また回折光学素子101は、以下の条件式(2)を満足するとともに、2種類の分散の異なる材料から成る2つの回折格子を互いの格子面で密着積層して成る回折光学部102を有している。
(Lens configuration of optical system)
Here, the lens configuration of the present embodiment will be described in more detail. In this embodiment, the diffractive optical element 101 is disposed on the object side from the aperture stop S at a position that satisfies the following conditional expression (1). The diffractive optical element 101 has a diffractive optical unit 102 that satisfies the following conditional expression (2) and is formed by closely laminating two diffraction gratings made of two types of materials having different dispersions on each other's grating surface. ing.

回折光学部102の光入出射面の内いずれか一方に、回折光学部102を構成する材料とは異なる材料で且つ以下の条件式(3)、(4)を満足する固体材料から成る屈折作用を有する屈折光学部103を密着接合している。屈折光学部103の回折光学部と密着接合されていない光学面105は、空気に面しているとともに非球面形状からなっていることを特徴としている。   A refractive action made of a solid material that is different from the material constituting the diffractive optical part 102 and satisfies the following conditional expressions (3) and (4) on either one of the light incident / exit surfaces of the diffractive optical part 102 The refractive optical unit 103 having The optical surface 105 that is not tightly bonded to the diffractive optical portion of the refractive optical portion 103 is characterized in that it faces air and has an aspherical shape.

0.5 < | h | < 1.0 −−−−−−−−−−−−−−−−−(1)
0.01 < | f / fdoe | < 0.1 −−−−−−−−−(2)
ΔθgF = θgF−(−1.665×10−7×νd+5.213×10−5×νd−5.656×10−3×νd+0.7278)とした時
0.02 < ΔθgF < 0.25 −−−−−−−−−−−−−−−−−−(3)
10 < νd < 40 −−−−−−−−−−−−−−−−−−(4)
ここで、hは光学系の光軸と平行に光軸からの高さ1で入射させた軸上近軸光線の回折光学素子の回折面を通過する際の光軸からの高さである。fは光学系全系の焦点距離、fdoeは回折光学素子の回折光学部の回折面における焦点距離である。νdはνd=(nd−1)/(nF−nC)で表される固体材料のアッベ数、θgFはθgF=(ng−nF)/(nF−nC)で表される固体材料の部分分散比、ΔθgFは上式で表される異常部分分散比を各々表している。
0.5 <| h | <1.0 ----------- (1)
0.01 <| f / fdoe | <0.1 --------- (2)
When ΔθgF = θgF − (− 1.665 × 10 −7 × νd 3 + 5.213 × 10 −5 × νd 2 −5.656 × 10 −3 × νd + 0.7278) 0.02 <ΔθgF <0. 25 ----------------- (3)
10 <νd <40 ----------------- (4)
Here, h is the height from the optical axis when passing through the diffraction surface of the diffractive optical element on the axial paraxial ray incident at a height 1 from the optical axis parallel to the optical axis of the optical system. f is the focal length of the entire optical system, and fdoe is the focal length on the diffractive surface of the diffractive optical part of the diffractive optical element. νd is the Abbe number of the solid material represented by νd = (nd−1) / (nF−nC), and θgF is the partial dispersion ratio of the solid material represented by θgF = (ng−nF) / (nF−nC). , ΔθgF represents the abnormal partial dispersion ratio expressed by the above equation.

説明の都合上、先ず回折光学素子の屈折光学部103に用いた条件式(3)、(4)を満足する固体材料について説明する。条件式(3)、(4)は、回折光学素子の屈折光学部103に用いた固体材料の材料特性の範囲を規定する条件式である。その関係をグラフ化したのが、図5であり、横軸にアッベ数νd、縦軸にθgFをとってある。図5より、条件式(3)、(4)を満足する範囲にある固体材料は、一般のガラスに比べて高分散(νdの値が小)で高部分分散(θgFの値が大)であることが分かる。   For convenience of explanation, first, a solid material that satisfies the conditional expressions (3) and (4) used for the refractive optical unit 103 of the diffractive optical element will be described. Conditional expressions (3) and (4) are conditional expressions that define the range of material properties of the solid material used for the refractive optical unit 103 of the diffractive optical element. FIG. 5 is a graph showing the relationship, with the Abbe number νd on the horizontal axis and θgF on the vertical axis. From FIG. 5, the solid material within the range satisfying the conditional expressions (3) and (4) has higher dispersion (small value of νd) and high partial dispersion (large value of θgF) compared to general glass. I understand that there is.

因みに、本実施形態で用いた固体材料の材料物性値は、(nd、νd、θgF)=(1.636、22.7、0.69)であり、図5中にプロットしてある。しかし、条件式(3)、(4)の範囲にあれば、これに限るものではない。ここで、固体材料の材料特性が高分散(νdの値が小)で高部分分散(θgFの値が大)であることが好ましい理由について説明する。一般的に、屈折レンズの面の屈折力変化をΔψ、アッベ数をν、軸上近軸光線及び瞳近軸光線がレンズ面を通過する光軸からの高さをそれぞれh、hbとすると、そのレンズ面での軸上色収差係数の変化ΔLと倍率色収差係数の変化△Tは、次のように表せる。   Incidentally, the material property values of the solid material used in this embodiment are (nd, νd, θgF) = (1.636, 22.7, 0.69), and are plotted in FIG. However, as long as it is in the range of conditional expressions (3) and (4), it is not limited to this. Here, the reason why the material characteristics of the solid material are preferably highly dispersed (value of νd is small) and highly partially dispersed (value of θgF is large) will be described. In general, when the refractive power change of the surface of the refractive lens is Δψ, the Abbe number is ν, the height from the optical axis through which the axial paraxial ray and the pupil paraxial ray pass through the lens surface are h and hb, respectively. The axial chromatic aberration coefficient change ΔL and the magnification chromatic aberration coefficient change ΔT on the lens surface can be expressed as follows.

ΔL = h*Δψ/ν ―――――――――(a)
ΔT = h*hb*Δψ/ν ―――――――――(b)
式(a)及び式(b)から明らかな通り、レンズ面の屈折力変化に対する各収差係数の変化は、アッベ数の絶対値が小さい(すなわち高分散)ほど大きくなる。従って、アッベ数の絶対値が小さい高分散材料を用いれば、必要な色収差補正量を得るための屈折力変化量は小さくて済むことになる。このことは収差論上、球面収差、コマ収差や非点収差などに大きな影響を及ぼすことなく色収差をコントロールでき、色収差補正の独立性が高まることを意味する。
ΔL = h 2 * Δψ / ν ――――――――― (a)
ΔT = h * hb * Δψ / ν ――――――――― (b)
As is apparent from the equations (a) and (b), the change in each aberration coefficient with respect to the change in the refractive power of the lens surface becomes larger as the absolute value of the Abbe number is smaller (that is, higher dispersion). Therefore, if a high dispersion material having a small absolute value of the Abbe number is used, the amount of change in refractive power for obtaining a necessary chromatic aberration correction amount can be reduced. This means that chromatic aberration can be controlled without greatly affecting spherical aberration, coma aberration, astigmatism, etc. in terms of aberration theory, and the independence of chromatic aberration correction is enhanced.

逆に、低分散材料を用いると、必要な色収差補正量を得るための屈折力変化量は大きくなり、それに伴って球面収差などの諸収差が大きく変化し、色収差補正の独立性が弱まることになる。従って、光学系を構成するレンズの内、少なくとも1つのレンズは、高分散材料で形成された屈折レンズであることが収差補正上重要である。   On the other hand, when a low dispersion material is used, the amount of change in refractive power for obtaining the necessary amount of chromatic aberration correction increases, and as a result, various aberrations such as spherical aberration change greatly, reducing the independence of chromatic aberration correction. Become. Therefore, it is important for aberration correction that at least one of the lenses constituting the optical system is a refractive lens formed of a high dispersion material.

次に、高分散であることを踏まえ、高部分分散比の光学材料が、光学系の収差補正に及ぼす作用について説明する。光学材料の屈折率の波長依存特性(分散特性)において、アッベ数は分散特性曲線の全体の傾きを表し、部分分散比は分散特性曲線の曲がり具合を表すものであることは周知の通りである。一般的に光学材料は、短波長側の屈折率が長波長側の屈折率よりも高く(アッベ数が正の値)、分散特性曲線は下に凸(部分分散比が正の値)を描き、短波長側になるほど波長の変化に対する屈折率の変化は大きくなる。   Next, based on the fact that the dispersion is high, the effect of an optical material having a high partial dispersion ratio on aberration correction of the optical system will be described. As is well known, in the wavelength dependence characteristics (dispersion characteristics) of the refractive index of an optical material, the Abbe number represents the overall slope of the dispersion characteristic curve, and the partial dispersion ratio represents the degree of bending of the dispersion characteristic curve. . In general, optical materials have a refractive index on the short wavelength side higher than that on the long wavelength side (Abbe number is a positive value), and the dispersion characteristic curve is convex downward (a partial dispersion ratio is a positive value). The shorter the wavelength, the greater the change in refractive index with respect to the change in wavelength.

そして、アッベ数の小さい高分散な光学材料ほど部分分散比が大きくなり、分散特性曲線は下に凸が強まる傾向にある。部分分散比が大きな光学材料では、その材料を用いたレンズ面の色収差係数の波長依存特性曲線は、部分分散比が小さな光学材料を用いた場合に比べて短波長側でより大きな曲がりを示す。このとき、色収差をコントロールするためにレンズ面の屈折力を変化させると、色収差係数波長特性曲線は、設計基準波長の位置を回転中心として全体の傾きが変化する。   And, the higher dispersion optical material having a smaller Abbe number has a higher partial dispersion ratio, and the dispersion characteristic curve tends to be more convex downward. In an optical material with a large partial dispersion ratio, the wavelength-dependent characteristic curve of the chromatic aberration coefficient of the lens surface using the material shows a larger curve on the short wavelength side than when an optical material with a small partial dispersion ratio is used. At this time, when the refractive power of the lens surface is changed to control chromatic aberration, the overall inclination of the chromatic aberration coefficient wavelength characteristic curve changes with the position of the design reference wavelength as the rotation center.

この変化は、部分分散比が大きい材料では部分分散比が小さい材料に比べて、特に短波長側の動きが大きくなり、大きく曲がり量を変化させながら全体の傾きが変化することになる。そのため、他の屈折系部分のガラスを変更しても色収差係数波長依存特性曲線において全体の傾きと曲がりの双方でキャンセルする構成とすることが難しくなり、波長域全体で色収差を補正することができなくなってくる。そこで普通の硝材に比べて短波長側の曲がり成分を減らすことのできる低部分分散比の材料を適切に用いて色収差を補正することができる。   As for this change, the material with a large partial dispersion ratio has a particularly large movement on the short wavelength side as compared with a material with a small partial dispersion ratio, and the overall inclination changes while greatly changing the amount of bending. For this reason, even if the glass of another refractive system is changed, it becomes difficult to make a configuration that cancels both the overall inclination and the curve in the wavelength dependence characteristic curve of the chromatic aberration coefficient, and chromatic aberration can be corrected over the entire wavelength range. It will disappear. Therefore, it is possible to correct chromatic aberration by appropriately using a material having a low partial dispersion ratio that can reduce the bending component on the short wavelength side compared to ordinary glass materials.

しかし短波長側の色収差を減らすという観点では、高部分分散比の材料を低部分分散比の材料とは逆の屈折力で用いてやれば、同様なことが可能であると考えられる。即ち、高部分分散比の材料を逆の屈折力で用いることで、光学系における他の屈折光学系で発生した色収差波長依存特性曲線全体の曲がり成分と傾きを、各々独立に同時にキャンセルさせればよい。   However, from the viewpoint of reducing chromatic aberration on the short wavelength side, it is considered that the same thing can be achieved if a material with a high partial dispersion ratio is used with a refractive power opposite to that of a material with a low partial dispersion ratio. That is, by using a material with a high partial dispersion ratio with opposite refractive power, the bending component and the inclination of the entire chromatic aberration wavelength dependence characteristic curve generated in other refractive optical systems in the optical system can be canceled independently and simultaneously. Good.

以上をまとめると、光学系の色収差補正において、固体材料の材料特性が高分散(νdの値が小)で高部分分散(θgFの値が大)であることが有効であることが説明できた。   Summarizing the above, it can be explained that it is effective in correcting the chromatic aberration of the optical system that the material properties of the solid material are high dispersion (value of νd is small) and high partial dispersion (value of θgF is large). .

前記条件式(3)において、上限値を超えると、そのような特性を有する材料が存在しなくなるので、好ましくない。一方、下限値を超えると、前記固体材料の材料特性が、所望の色収差に補正するには不十分な特性になってしまうので、好ましくない。   In conditional expression (3), if the upper limit is exceeded, there will be no material having such characteristics, which is not preferable. On the other hand, if the lower limit value is exceeded, the material properties of the solid material will be insufficient for correcting the desired chromatic aberration, which is not preferable.

更に好ましくは、固体材料の材料特性の範囲を以下の通りにすれば、色収差補正及び後述する回折光学素子の回折面の屈折力を弱めることができるので好ましい。   More preferably, the range of the material characteristics of the solid material is as follows, because chromatic aberration correction and refractive power of the diffractive surface of the diffractive optical element described later can be weakened.

0.02<ΔθgF<0.15−−−−−−−−−−−−(3−a)
15<νd<30−−−−−−−−−−−−−−−−−−(4−a)
以上、光学系の回折光学素子の屈折光学部に用いる固体材料の材料特性の範囲について説明した。
0.02 <ΔθgF <0.15 ----------- (3-a)
15 <νd <30 ----------------- (4-a)
In the above, the range of the material characteristic of the solid material used for the refractive optical part of the diffractive optical element of the optical system has been described.

(回折光学素子と軸上及び倍率色収差)
次に、本発明の対象となるテレフォトタイプの光学系の色収差を補正する際に、必要となる回折光学素子に必要となる条件について、軸上及び倍率色収差係数の観点から説明する。図4は、一般的なテレフォトタイプ光学系の作用を説明する為の近軸配置概略図である。Gp、Gnは、各々テレフォトタイプ光学系を構成する正の屈折力の前群と負の屈折力の後群であり、Gdamは回折光学素子である。問題を簡単にするために、Gp、Gnを構成するレンズは全て薄肉単レンズとし、Gp、Gn内にそれぞれレンズ間隔0で光軸上に配置されているものとする。
(Diffraction optical element and axial and lateral chromatic aberration)
Next, the conditions required for the diffractive optical element required when correcting the chromatic aberration of the telephoto type optical system that is the subject of the present invention will be described from the viewpoints of axial and magnification chromatic aberration coefficients. FIG. 4 is a schematic diagram of a paraxial arrangement for explaining the operation of a general telephoto type optical system. Gp and Gn are a front group of positive refractive power and a rear group of negative refractive power, respectively, constituting the telephoto type optical system, and Gdam is a diffractive optical element. In order to simplify the problem, it is assumed that the lenses constituting Gp and Gn are all thin single lenses and are arranged on the optical axis within Gp and Gn with a lens interval of 0, respectively.

また、Gdamも薄肉単レンズとし、レンズ間隔0で光軸O上に配置されるものとする。Qは軸上近軸光線、Rは瞳近軸光線であり、Pは瞳近軸光線と光軸Oとの交点である。
まず、回折光学素子Gdamを導入する前の光学系について考える。GpとGnについて軸上色収差係数(L)及び倍率色収差係数(T)の式を立てると、
Further, Gdam is also a thin single lens and is arranged on the optical axis O with a lens interval of 0. Q is the axial paraxial ray, R is the pupil paraxial ray, and P is the intersection of the pupil paraxial ray and the optical axis O.
First, consider an optical system before introducing the diffractive optical element Gdam. Formulas of axial chromatic aberration coefficient (L) and magnification chromatic aberration coefficient (T) are established for Gp and Gn.

となる。但し、
νGpi(λ)={NGpi(λ)−1}/{NGpi(λ)−NGpi(λ)}
νGni(λ)={NGnj(λ)−1}/{NGnj(λ)−NGnj(λ)}
ここで、
φGpi: 前群Gpを構成する各薄肉単レンズの屈折力
φGni: 後群Gnを構成する各薄肉単レンズの屈折力
νGpi: 前群Gpを構成する各薄肉単レンズのアッべ数
νGni: 後群Gnを構成する各薄肉単レンズのアッべ数
Gp : 前群Gpへ入射する軸上近軸光線の高さ
Gn : 後群Gnへ入射する軸上近軸光線の高さ
Gp : 前群Gpへ入射する瞳近軸光線の高さ
Gn : 後群Gnへ入射する瞳近軸光線の高さ
Gpi: 前群Gpを構成する、各薄肉単レンズの屈折率
Gnj: 後群Gnを構成する、各薄肉単レンズの屈折率
λ: 任意波長
λ: 設計波長
である。
It becomes. However,
ν Gpi (λ) = {N Gpi0 ) −1} / {N Gpi (λ) −N Gpi0 )}
ν Gni (λ) = {N Gnj0 ) −1} / {N Gnj (λ) −N Gnj0 )}
here,
φ Gpi : refractive power of each thin single lens constituting the front group Gp φ Gni : refractive power of each thin single lens constituting the rear group Gn ν Gpi : Abbe number of each thin single lens constituting the front group Gp Gni : Abbe number h Gp of each thin single lens constituting the rear group Gn: Height of the axial paraxial ray incident on the front group Gp h Gn : Height of the axial paraxial ray incident on the rear group Gn H Gp : Height of pupil paraxial ray incident on front group Gp H Gn : Height of pupil paraxial ray incident on rear group Gn N Gpi : Refractive index N of each thin single lens constituting front group Gp Gnj : Refractive index λ of each thin single lens constituting the rear group Gn: Arbitrary wavelength λ 0 : Design wavelength.

通常テレフォトタイプの光学系では、式(c)の軸上色収差係数波長依存特性において、第1項の前群Gpの軸上色収差係数波長依存特性は、全体の傾きが負で、上に比較的強い凸の傾向を示す。一方、第2項の後群Gnの軸上色収差係数波長依存特性は、全体の傾きが正で、下に凸の傾向を示し、結果的に全系として前群Gpの特性がやや残り、全体の傾きが負で、上に凸の軸上色収差係数波長依存特性を示す。   In the normal telephoto type optical system, in the longitudinal chromatic aberration coefficient wavelength dependence characteristic of the equation (c), the overall inclination of the longitudinal chromatic aberration coefficient wavelength dependence characteristic of the front group Gp in the first term is negative and compared with the above. Show a strong tendency to convex. On the other hand, the longitudinal chromatic aberration coefficient wavelength dependence characteristic of the rear group Gn of the second term has a positive overall inclination and a downward convex tendency. As a result, the characteristics of the front group Gp remain a little as a whole system, The slope of the chromatic aberration coefficient is negative, and the upwardly convex axial chromatic aberration coefficient wavelength dependence characteristic is shown.

(回折光学素子の符号と導入位置)
(軸上色収差の補正)
次に、この状態から、軸上色収差を補正する為の回折光学素子Gdamの符号と導入位置について考えるにあたり、軸上色収差の補正について述べる。導入する回折光学素子Gdamは、回折面を含む回折光学部Gdoeと前記高部分分散特性を有した屈折光学部Ganmの成分で構成されているので、それらの軸上色収差係数を、
Gdam(λ)=hGdoe (λ)φGdoe(λ)/νGdoe(λ)+hGanm (λ)φGanm(λ)/νGanm(λ) −−−−−−(e)
とする。
但し、
νGdoe(λ)=−3.453
νGanm(λ)={NGanm(λ)−1}/{NGanm(λ)−NGanm(λ)}
である。
(Code of diffractive optical element and introduction position)
(Correction of longitudinal chromatic aberration)
Next, correction of axial chromatic aberration will be described when considering the sign and introduction position of the diffractive optical element Gdam for correcting axial chromatic aberration from this state. The diffractive optical element Gdam to be introduced is composed of the components of the diffractive optical part Gdoe including the diffractive surface and the refractive optical part Ganm having the high partial dispersion characteristic.
L Gdam (λ) = h Gdoe 20 ) φ Gdoe0 ) / ν Gdoe (λ) + h Ganm 20 ) φ Ganm0 ) / ν Ganm (λ) −−−−−− (E)
And
However,
ν Gdoe (λ) = − 3.453
[ nu] Ganm ([lambda]) = { NGanm ([lambda] 0 ) -1} / { NGanm ([lambda])- NGanm ([lambda] 0 )}.
It is.

(e)式において、右辺の第1項は回折光学素子の回折光学部Gdoeの軸上色収差係数を、右辺の第2項は回折光学素子の屈折光学部Ganmの軸上色収差係数を各々表している。まず、前記(e)式より、回折光学素子の回折光学部(右辺の第1項)は、νGdoe(λ)=−3.453の定数となるため波長によらない一定の直線となる。またその傾きは、通常の一般ガラスのアッベ数が正であるの対し負の値をとるため、逆となる。 In equation (e), the first term on the right side represents the axial chromatic aberration coefficient of the diffractive optical part Gdoe of the diffractive optical element, and the second term on the right side represents the axial chromatic aberration coefficient of the refractive optical part Ganm of the diffractive optical element. Yes. First, from the equation (e), the diffractive optical part (the first term on the right side) of the diffractive optical element has a constant of ν Gdoe (λ) = − 3.453, and thus becomes a constant straight line independent of the wavelength. Further, the inclination is opposite because the Abbe number of ordinary glass is positive and takes a negative value.

従って、回折光学部Gdoeの軸上色収差係数波長依存特性は、φGdoe(λ)>0で、全体の傾きが正の直線、φGdoe(λ)<0で、全体の傾きが負の直線となる。従って、(c)式の回折光学素子を除いた光学系において、軸上色収差係数波長依存特性曲線の全体の傾き成分をキャンセルする為には、φGdoe(λ)>0が必要となる。一方、回折光学素子の屈折光学部Ganm(右辺の第2項)は、1/νGanm(λ)に屈折光学部Ganmの分散特性NGanm(λ)の傾きと曲がり成分の傾向がそのまま反映される。 Therefore, the axial chromatic aberration coefficient wavelength dependence characteristic of the diffractive optical part Gdoe is φ Gdoe0 )> 0, the whole inclination is a positive straight line, φ Gdoe0 ) <0, and the whole inclination is negative. It becomes a straight line. Therefore, in the optical system excluding the diffractive optical element of the formula (c), φ Gdoe0 )> 0 is necessary to cancel the entire inclination component of the axial chromatic aberration coefficient wavelength dependence characteristic curve. On the other hand, in the refractive optical part Ganm (second term on the right side) of the diffractive optical element, the inclination of the dispersion characteristic N Ganm (λ) of the refractive optical part Ganm and the tendency of the bending component are directly reflected in 1 / ν Ganm (λ). The

従って、屈折光学部Ganmの軸上色収差係数波長依存特性は、φGanm(λ)>0で、全体の傾きが負で、下に凸の曲線となり、φGanm(λ)<0で、全体の傾きが正で、上に凸の曲線となる。従って、前記(c)式の回折光学素子を除いた光学系において、軸上色収差係数波長依存特性曲線の全体の傾き成分をキャンセルする為には、通常φGdoe(λ)<0が必要となる。このとき、曲がり成分に関しては助長する方向となるが、前群LFを構成する正レンズを高分散寄り(分散特性の曲がりが大きい)硝材、負レンズを低分散寄り(分散特性の曲がりが小さい)硝材とすればよい。 Therefore, the on-axis chromatic aberration coefficient wavelength-dependent characteristic of the refractive optical part Ganm is φ Ganm0 )> 0, the overall inclination is negative, and the curve is convex downward, and φ Ganm0 ) <0, The overall slope is positive and the curve is convex upward. Therefore, in the optical system excluding the diffractive optical element of the above formula (c), in order to cancel the entire inclination component of the axial chromatic aberration coefficient wavelength-dependent characteristic curve, it is usually necessary to have φ Gdoe0 ) <0. Become. At this time, the bending component is promoted, but the positive lens constituting the front lens group LF is close to high dispersion (dispersion curve is large) and the negative lens is low dispersion (dispersion curve is small). A glass material may be used.

これにより、回折光学素子を除いた全系の軸上色収差波長依存特性曲線を大きな負の傾きを持った下に凸の曲線とすることで解決できる。硝材の変更で大きくずれた全体の傾きは、再度回折光学素子Gdamの屈折力φGdam(λ)を負の方向へ変位させれば良い。結果的に、全体の傾き成分と曲がり成分の双方で良好に補正された軸上色収差係数波長依存特性が、得られることになる。 This can be solved by making the longitudinal chromatic aberration wavelength-dependent characteristic curve of the entire system excluding the diffractive optical element a convex curve with a large negative slope. The overall inclination greatly deviated by changing the glass material may be obtained by displacing the refractive power φ Gdam0 ) of the diffractive optical element Gdam in the negative direction again. As a result, an axial chromatic aberration coefficient wavelength-dependent characteristic that is well corrected by both the entire inclination component and the bending component is obtained.

回折光学素子Gdamの導入位置に関しては、hGp>hGnよりhGp >>hGn であるから、Gdamが比較的小さな屈折力となり、且つ色収差補正時の屈折力の変位量が比較的小さくて済む前群LF、中でもより物体側に位置する箇所が良い。それによって、色収差の独立補正性が高まると共に、Gdamに比較的線形性の高い軸上色収差係数波長依存特性曲線を与えることができる。即ち、色収差補正時を含めGdamが助長する軸上色収差係数波長依存特性曲線の上に凸の曲がり成分を減らすことが可能となる。 Regarding the introduction position of the diffractive optical element Gdam, since h Gp 2 >> h Gn 2 than h Gp > h Gn , Gdam has a relatively small refractive power, and the displacement amount of the refractive power when correcting chromatic aberration is relatively small. The front group LF that can be small, especially the part located on the object side is better. As a result, the independent correction of chromatic aberration is enhanced, and an axial chromatic aberration coefficient wavelength-dependent characteristic curve having relatively high linearity can be given to Gdam. That is, it is possible to reduce the curved component of the convex on the axial chromatic aberration coefficient wavelength-dependent characteristic curve promoted by Gdam including the time of chromatic aberration correction.

またGdamを除いた全系の軸上色収差波長依存特性曲線に大きな負の傾きを与えることなく、比較的容易に下に凸の曲線とすることができる。以上、軸上色収差の補正について説明した。   Further, it is possible to relatively easily make a downward convex curve without giving a large negative slope to the axial chromatic aberration wavelength dependence characteristic curve of the entire system excluding Gdam. The correction of axial chromatic aberration has been described above.

(倍率色収差の補正)
次に倍率色収差の補正について説明する。通常テレフォトタイプの光学系では、式(d)の倍率色収差係数波長依存特性において、第1項の前群LFの倍率色収差係数波長依存特性は、全体の傾きが正で、下に比較的強い凸の傾向を示す。一方、第2項の後群LRの倍率色収差係数波長依存特性は、全体の傾きが負で、上に凸の傾向を示し、結果的に全系として前群LFの特性がやや残り、全体の傾きが正で、下に凸の倍率色収差係数波長依存特性を示す。前述の軸上色収差補正のために前群LFに導入されたGdamの倍率色収差係数は、
Gdam(λ)=hGp(λ) HGp(λ)*{φGdoe(λ)/νGdoe(λ) + φGanm(λ)/νGanm(λ)}−−−−−−−−(f)
である。(f)式において、右辺の第1項は回折光学素子の回折光学部102の倍率色収差係数を、右辺の第2項は回折光学素子の屈折光学部103の倍率色収差係数を各々表している。軸上色収差係数に関する説明部分より、hGp(λ)>0、HGp(λ)<0で、回折光学部のφGdoe(λ)/νGdoe(λ)<0、φGanm(λ)/νGanm(λ)<0となので、全体の傾きが負で、下に凸の曲線となる。これによって、(d)式の倍率色収差係数波長依存特性曲線の全体の傾き成分をキャンセルすることができる。
(Correction of lateral chromatic aberration)
Next, correction of lateral chromatic aberration will be described. In the normal telephoto type optical system, in the magnification chromatic aberration coefficient wavelength dependence characteristic of the equation (d), the overall chromatic aberration coefficient wavelength dependence characteristic of the front group LF in the first term has a positive overall inclination and is relatively strong below. Shows a convex tendency. On the other hand, the chromatic aberration coefficient wavelength dependence characteristic of the rear group LR of the second term has a negative overall inclination and a tendency of upward convexity. As a result, the characteristics of the front group LF remain slightly in the entire system, It shows positive wavelength chromatic aberration coefficient wavelength dependence with a positive slope. The magnification chromatic aberration coefficient of Gdam introduced to the front lens group LF for the above-mentioned axial chromatic aberration correction is
T Gdam (λ) = h Gp0 ) H Gp0 ) * {φ Gdoe0 ) / ν Gdoe (λ) + φ Ganm0 ) / ν Ganm (λ)} −−−− ---- (f)
It is. In the formula (f), the first term on the right side represents the lateral chromatic aberration coefficient of the diffractive optical unit 102 of the diffractive optical element, and the second term on the right side represents the lateral chromatic aberration coefficient of the refractive optical unit 103 of the diffractive optical element. From the explanation about the axial chromatic aberration coefficient, h Gp0 )> 0, H Gp0 ) <0, and φ Gdoe0 ) / ν Gdoe (λ) <0, φ Ganm (0 Since [lambda] 0 ) / [ nu] Ganm ([lambda]) <0, the overall inclination is negative and the curve is convex downward. As a result, the entire inclination component of the magnification chromatic aberration coefficient wavelength-dependent characteristic curve of equation (d) can be canceled.

このとき、曲がり成分に関しては助長する方向となるが、前述した軸上色収差の補正に際し、前群LFを構成する正レンズを高分散寄り(分散特性の曲がりが大きい)硝材、負レンズを低分散寄り(分散特性の曲がりが小さい)硝材にすればよい。それにより回折光学素子Gdamを除いた全系の倍率色収差波長依存特性曲線は、大きな正の傾きを持った上に凸の曲線となり、曲がり成分も同時にキャンセルされることになる。硝材の変更で大きくずれた全体の傾きも、前述した軸上色収差の補正に際し、再度Gdamの屈折力φGIdam(λ)を負の方向へ変位させたことで補正される。 At this time, the bending component is promoted, but when correcting the above-mentioned axial chromatic aberration, the positive lens constituting the front lens group LF is close to high dispersion (a large curve of dispersion characteristics), and the negative lens is low dispersion. What is necessary is just to use a glass material that is close (small bend in dispersion characteristics). As a result, the chromatic aberration wavelength-dependent characteristic curve of the entire system excluding the diffractive optical element Gdam has a large positive slope and is a convex curve, and the bending component is canceled at the same time. The overall inclination greatly deviated by changing the glass material is also corrected by displacing the refractive power φ GIdam0 ) of Gdam in the negative direction again when correcting the above-described axial chromatic aberration.

以上、回折光学素子Gdamに適切な屈折力を与え、前群Gpに導入することで、軸上色収差と倍率色収差を同時に補正できることを説明した。   As described above, it has been described that the axial chromatic aberration and the lateral chromatic aberration can be corrected simultaneously by giving an appropriate refractive power to the diffractive optical element Gdam and introducing it into the front group Gp.

(回折光学部の必要条件)
以上の説明を踏まえて、残りの条件式(1)、(2)について説明する。前記条件式(1)は、回折光学素子Ldamの配置箇所を規定する条件式である。ここで、条件式(1)の説明を分かり易くする為に、図3を用いて説明する。図3において、横軸はレンズ面番号、縦軸は近軸追跡値であり、軸上近軸光線hと瞳近軸光線hbが併記してある。前記図3より、本実施形態の超望遠レンズは、軸上近軸光線hはレンズ面番号が増す(光線が物体側から像面側に向かう)に連れて、徐々に低くなっていくことが分かる。
(Requirements for diffraction optics)
Based on the above description, the remaining conditional expressions (1) and (2) will be described. The conditional expression (1) is a conditional expression that defines the location of the diffractive optical element Ldam. Here, in order to make the explanation of the conditional expression (1) easy to understand, it will be explained with reference to FIG. In FIG. 3, the horizontal axis is the lens surface number, the vertical axis is the paraxial tracking value, and the on-axis paraxial ray h and the pupil paraxial ray hb are shown together. As shown in FIG. 3, in the super telephoto lens of this embodiment, the axial paraxial ray h gradually decreases as the lens surface number increases (the ray goes from the object side to the image plane side). I understand.

一方、瞳近軸光線は入射瞳位置(図中のレンズ面番号15の開口絞り位置)で0になリ、レンズ面番号が増す(光線が物体側から像面側に向かう)に連れて、負の値から正の値に変化している。上記説明より、本実施形態では、軸上近軸光線hと瞳近軸光線hbの通過する位置が比較的高い物体側から数えて2番目のレンズ位置(レンズ面番号4)に、回折光学素子Ldamを配置することで、軸上及び倍率色収差の補正を同時に行っている。   On the other hand, as the pupil paraxial ray becomes 0 at the entrance pupil position (the aperture stop position of lens surface number 15 in the figure), the lens surface number increases (the light ray moves from the object side to the image surface side), It changes from a negative value to a positive value. From the above description, in the present embodiment, the diffractive optical element is located at the second lens position (lens surface number 4) counted from the object side where the axial paraxial ray h and the pupil paraxial ray hb pass are relatively high. By arranging Ldam, axial and lateral chromatic aberration are simultaneously corrected.

前記条件式(1)において、上限値を超えると、前記回折光学素子Ldamを配置する箇所が最も物体側のレンズ面となり、埃や外部の熱等の影響を受け易くなり、耐環境性上好ましくない。また回折光学素子の配置が物体側に近づく程、撮影画角外にある太陽光等の強い光が直接回折光学素子に当たり易くなる為、それによって発生するフレアが画質劣化につながるので、好ましくない(これについては後述する)。一方、下限値を超えると、回折光学素子Ldamの配置箇所が開口絞り近傍に近くなり過ぎるため、色収差の補正効果が薄れてしまうので、好ましくない。   In the conditional expression (1), if the upper limit value is exceeded, the position where the diffractive optical element Ldam is arranged becomes the lens surface closest to the object side, which is easily affected by dust, external heat, etc., which is preferable in terms of environmental resistance. Absent. Further, as the arrangement of the diffractive optical element is closer to the object side, strong light such as sunlight outside the shooting angle of view is likely to directly hit the diffractive optical element, and flare generated thereby leads to image quality deterioration, which is not preferable ( This will be described later). On the other hand, if the lower limit value is exceeded, the location of the diffractive optical element Ldam is too close to the vicinity of the aperture stop.

更に好ましくは、以下の条件式の範囲にあると、色収差の補正効果がより得られるので望ましい。   More preferably, it is within the range of the following conditional expression because a chromatic aberration correction effect can be obtained more.

0.6<|h|<1.0 −−−−−−−−−−−−−−−−−−(1−a)
次に、前記条件式(2)は、回折光学素子の回折光学部の回折面における焦点距離と光学系全系の焦点距離の関係を規定する条件式である。ここで、回折光学部の回折面における焦点距離fdoeとは、光学系における位相係数C1、設計回折次数m、設計波長λ0、任意の波長λとした際、fdoe = −1/(2*m*C1*λ/λ0)を満足する値である。条件式(2)の上限値を超えると、前記回折面の屈折力が強くなり過ぎ、格子ピッチが細かくなり、後述するように不要回折光によるフレアがより劣化する方向にあるので好ましくない。
0.6 <| h | <1.0 ----------------- (1-a)
Next, the conditional expression (2) is a conditional expression that defines the relationship between the focal length of the diffraction surface of the diffractive optical part of the diffractive optical element and the focal length of the entire optical system. Here, the focal length fdoe on the diffractive surface of the diffractive optical unit is the phase coefficient C1, the design diffraction order m, the design wavelength λ0, and the arbitrary wavelength λ in the optical system, and fdoe = −1 / (2 * m *). C1 * λ / λ0). Exceeding the upper limit value of conditional expression (2) is not preferable because the refractive power of the diffractive surface becomes too strong, the grating pitch becomes fine, and flare due to unnecessary diffracted light tends to deteriorate as described later.

一方、下限値を超えると、前記回折面の屈折力が弱くなり過ぎ、所望の色収差の効果が得られなくなるので好ましくない。また本実施形態の回折光学素子は、回折面を有した回折光学部と異常部分分散特性を有した固体材料から成る屈折光学部で構成されているので、回折面の屈折力が弱くなり過ぎると、屈折光学部の厚さが厚くなるので好ましくない。   On the other hand, if the lower limit is exceeded, the refractive power of the diffractive surface becomes too weak, and the desired effect of chromatic aberration cannot be obtained. The diffractive optical element of the present embodiment is composed of a diffractive optical part having a diffractive surface and a refracting optical part made of a solid material having anomalous partial dispersion characteristics, so that the refractive power of the diffractive surface becomes too weak. This is not preferable because the refractive optical portion becomes thick.

(回折光学部の屈折力とフレア)
ここで、回折光学部の回折面の屈折力とフレア、特に撮影画角外にある太陽光等の強い光が直接回折光学素子に当たることによって発生するフレアとの関係について説明する。上述したように、回折面の屈折力(焦点距離)はfdoe=−1/(2*m*C1*λ/λ0)より、位相係数C1により算出される。また回折面の位相形状ψは、回折光の回折次数をm、設計波長をλ0、光軸に対して垂直方向の高さをr、位相係数をCi(i=1,2,3…)としたとき、次式(g)によって表される。
(Refractive power and flare of diffractive optics)
Here, the relationship between the refractive power of the diffractive surface of the diffractive optical unit and the flare, particularly the flare generated when strong light such as sunlight outside the shooting angle of view directly strikes the diffractive optical element will be described. As described above, the refractive power (focal length) of the diffractive surface is calculated by the phase coefficient C1 from fdoe = −1 / (2 * m * C1 * λ / λ0). The phase shape ψ of the diffractive surface has a diffraction order m of the diffracted light, a design wavelength λ 0, a height perpendicular to the optical axis r, and a phase coefficient Ci (i = 1, 2, 3...). Is expressed by the following equation (g).

ψ(r、 m) = (2π/mλ0)*(C1*r^2+C2*r^4+C3*r^6+…) −−−−−−−(g)
(g)式より、回折面における光軸に対して垂直方向で位相が設計波長の整数倍になる位置、つまり各回折格子の格子ピッチが算出される。一般的に、回折面の屈折力が強くなる程、回折格子の格子ピッチが細かくなる傾向にある。
ψ (r, m) = (2π / mλ0) * (C1 * r ^ 2 + C2 * r ^ 4 + C3 * r ^ 6 +...) −−−−−−− (g)
From the equation (g), the position where the phase is an integral multiple of the design wavelength in the direction perpendicular to the optical axis on the diffraction surface, that is, the grating pitch of each diffraction grating is calculated. Generally, as the refractive power of the diffraction surface increases, the grating pitch of the diffraction grating tends to become finer.

次に、撮影画角外にある太陽光等の強い光が直接回折光学素子に当たることによって発生するフレアについて、図6を用いて説明する。図6は、本実施形態と同仕様の光学系におけるフレアの発生の具合を説明する模式図である。図6において、最も物体側にある接合レンズが回折光学素子であり、Sが開口絞り、IPが像面である。撮影画角外から太陽光等の強い光が回折光学素子に角度ωで入射すると、前記回折光学素子の回折面で設計次数以外の回折次数の光(不要回折次数光)が発生し、その不要回折次数光がその後のレンズ群や開口絞りSを通過し、最終的には像面IPに到達する。   Next, flare generated when strong light such as sunlight outside the shooting angle of view directly strikes the diffractive optical element will be described with reference to FIG. FIG. 6 is a schematic diagram for explaining how flare occurs in the optical system having the same specifications as the present embodiment. In FIG. 6, the cemented lens closest to the object is a diffractive optical element, S is an aperture stop, and IP is an image plane. When strong light such as sunlight enters the diffractive optical element at an angle ω from outside the field of view, light with a diffraction order other than the designed order (unnecessary diffraction order light) is generated on the diffractive surface of the diffractive optical element. The diffraction order light passes through the subsequent lens group and the aperture stop S, and finally reaches the image plane IP.

この像面IPに到達する不要回折次数光がフレアとなる。この不要回折次数光は、各回折次数によってエネルギーが異なる。このエネルギーの割合を示すのが回折効率であり、全透過光束の光量に対する各次数での回折光の光量の割合で規定される。通常撮影光に使用されるのは1次光であり、1次光の回折効率が100%に近づくことが、不要な回折次数光が低減されることを意味するので望ましい。   Unnecessary diffraction order light reaching the image plane IP becomes flare. The unnecessary diffraction order light has different energy depending on each diffraction order. The ratio of this energy is the diffraction efficiency, which is defined by the ratio of the amount of diffracted light at each order with respect to the total amount of transmitted light. Usually, the primary light is used for the photographing light, and it is desirable that the diffraction efficiency of the primary light approaches 100% because unnecessary diffraction order light is reduced.

(フレアと回折効率)
次に、図6のフレア発生状況を想定した回折効率について、図7を用いて説明する。まず想定する回折光学素子の構成として、異なる材料から成る2つの回折格子が互いの回折面で密着接合した回折光学素子(密着2層DOE)を前提としている。この回折光学素子の構成については、後程説明する。ここでは、第1の回折格子にアクリル系樹脂材料(nd=1.522、νd=51.3)を、第2の回折格子にはフッ素系樹脂にITO微粒子を混合した材料(nd=1.480、νd=21.3)を用いている。
(Flare and diffraction efficiency)
Next, the diffraction efficiency assuming the flare occurrence state of FIG. 6 will be described with reference to FIG. First, the assumed configuration of the diffractive optical element is premised on a diffractive optical element (a close-contact two-layer DOE) in which two diffraction gratings made of different materials are in close contact with each other on their diffractive surfaces. The configuration of this diffractive optical element will be described later. Here, an acrylic resin material (nd = 1.522, νd = 51.3) is used for the first diffraction grating, and a material obtained by mixing ITO fine particles with fluorine resin for the second diffraction grating (nd = 1. 480, νd = 21.3).

この時、第1及び第2の回折格子にて共通の格子厚は13.9μmである。この回折光学素子に、図6のような撮影画角外光を想定し、入射角度ω=10degで入射させた場合の回折効率を考える。尚、回折効率効率の計算には厳密結合波解析(RCWA:Regorous Coupled Wave Analysis)を用いた。図7は、例として挙げた密着2層DOEの回折効率の格子ピッチ依存を示している。   At this time, the common grating thickness of the first and second diffraction gratings is 13.9 μm. Considering the diffraction efficiency when the diffractive optical element is incident at an incident angle ω = 10 deg, assuming light outside the field of view as shown in FIG. Note that strict coupled wave analysis (RCWA: Regulated Coupled Wave Analysis) was used for the calculation of the diffraction efficiency efficiency. FIG. 7 shows the grating pitch dependence of the diffraction efficiency of the close-contact two-layer DOE mentioned as an example.

図7において、横軸は回折光学素子より射出する回折次数光に相当する回折角度(deg)を、縦軸は回折効率(%)を各々表しており、格子ピッチを80、100、150μmと変化させた場合の結果を示している。図6のような超望遠光学系を想定した場合、射出回折角が0deg付近の不要回折光が像面に到達することが分かっているので、その部分の回折効率を比較する。図7より、格子ピッチが細かくなる程、0deg付近の不要回折光の回折効率が上昇していることが分かる。   In FIG. 7, the horizontal axis represents the diffraction angle (deg) corresponding to the diffraction order light emitted from the diffractive optical element, the vertical axis represents the diffraction efficiency (%), and the grating pitch is changed to 80, 100, and 150 μm. The result is shown. Assuming a super-telephoto optical system as shown in FIG. 6, since it is known that unnecessary diffracted light having an exit diffraction angle near 0 deg reaches the image plane, the diffraction efficiencies of the portions are compared. FIG. 7 shows that the diffraction efficiency of unnecessary diffracted light near 0 deg increases as the grating pitch becomes finer.

図7で、他の格子ピッチの結果を掲載していないが、格子ピッチを細かくすればする程、像面に到達する射出回折角0deg付近の不要回折光が多くなる傾向にある。即ち、回折光学部の回折面の屈折力を強める程、特に撮影画角外にある太陽光等の強い光が直接回折光学素子に当たることによって発生する不要回折光がフレアとなって像面に到達することを意味している。   Although the results of other grating pitches are not shown in FIG. 7, the finer the grating pitch, the more unnecessary diffraction light in the vicinity of the exit diffraction angle 0 deg that reaches the image plane tends to increase. That is, as the refractive power of the diffractive surface of the diffractive optical unit is increased, unnecessary diffracted light generated by the strong light such as sunlight outside the shooting angle of view directly hits the diffractive optical element flare and reaches the image surface. Is meant to do.

よって、回折面を有した回折光学部と、異常部分分散特性を有した固体材料から成る屈折光学部を備える回折光学素子において、フレアが低減できるように回折光学部の回折面の屈折力を緩和させることが好ましい。好ましくは、前記条件式(2)は以下の範囲にあると、フレアの抑制上より効果がある。   Therefore, in the diffractive optical element having a diffractive optical part having a diffractive surface and a refractive optical part made of a solid material having anomalous partial dispersion characteristics, the refractive power of the diffractive optical part of the diffractive optical part is reduced so that flare can be reduced. It is preferable to make it. Preferably, the conditional expression (2) is more effective in suppressing flare when it is in the following range.

0.015<|f/fdoe|<0.05−−−−−−−−−−−−(2−a)
(屈折光学部の非球面形状)
本実施形態では、回折光学素子が元来有する色収差を減ずる効果と非球面レンズ的な効果を、本発明の回折光学素子内の他の光学要素で夫々分担させることで、回折光学部の屈折力を緩和させ、不要回折光によるフレアを抑制する。前者については、上述した異常部分分散特性を有した固体材料から成る屈折光学部で分担させる。また後者については、以下に述べる所定光学面の非球面形状で分担させる。
0.015 <| f / fdoe | <0.05 ------------ (2-a)
(Aspherical shape of refractive optical part)
In this embodiment, the refractive power of the diffractive optical unit is reduced by sharing the effect of reducing the chromatic aberration inherent in the diffractive optical element and the effect of an aspheric lens with the other optical elements in the diffractive optical element of the present invention. To suppress flare caused by unnecessary diffracted light. The former is shared by a refractive optical unit made of a solid material having the above-described anomalous partial dispersion characteristics. The latter is shared by the aspherical shape of the predetermined optical surface described below.

即ち、本実施形態では、前述した条件式(1)乃至(4)を満足した上で、以下の条件式(5)以降も満足することを特徴としている。先ず条件式(5)は、回折光学素子の屈折光学部の空気と面している光学面105の非球面形状を規定する条件式である。Rを近軸曲率半径、rを光軸と垂直な方向の光軸からの高さ、kを円錐定数、B、C、D、E…を各次数の非球面係数とする。   That is, the present embodiment is characterized in that, after satisfying the conditional expressions (1) to (4) described above, the following conditional expression (5) is also satisfied. First, conditional expression (5) is a conditional expression that defines the aspherical shape of the optical surface 105 facing the air of the refractive optical portion of the diffractive optical element. R is a paraxial radius of curvature, r is a height from the optical axis in a direction perpendicular to the optical axis, k is a conic constant, B, C, D, E... Are aspherical coefficients of respective orders.

Δdb=((1/R)*r/(1+√(1−(1+k)*(r/R)))+B*r+C*r+D*r+E*r10+…)-((1/R)*r/(1+√(1−(r/R)))とした時、以下の式(5)を満足するようにする。 Δdb = ((1 / R) * r 2 / (1 + √ (1− (1 + k) * (r / R) 2 )) + B * r 4 + C * r 6 + D * r 8 + E * r 10 +. When ((1 / R) * r 2 / (1 + √ (1− (r / R) 2 ))), the following expression (5) is satisfied.

0.01<|Δdb_max/danm|<0.50−−−−−−−−−−(5)
ここで、Δdbは上式で定義される非球面成分量を、Δdb_maxはΔdbで定義される非球面形状を設けた光学面において、その光学面を通過する光線の有効半径内での最大非球面成分量を表している。また、danmは回折光学素子の屈折光学部の光軸上での厚さを各々表している。この関係を視覚化及びグラフ化したのが、図1(b)及び図8である。図1(b)より、本実施形態では、最も像面側(図中紙面右側)の光学面105に、より曲率がきつくなる方向に非球面成分Δdbが付加されている。
0.01 <| Δdb_max / danm | <0.50 ---------- (5)
Here, Δdb is the amount of the aspherical component defined by the above equation, and Δdb_max is the maximum aspherical surface within the effective radius of the light beam passing through the optical surface in the optical surface provided with the aspherical shape defined by Δdb. Indicates the amount of ingredients. Further, danm represents the thickness on the optical axis of the refractive optical part of the diffractive optical element. This relationship is visualized and graphed in FIG. 1 (b) and FIG. As shown in FIG. 1B, in the present embodiment, an aspherical component Δdb is added to the optical surface 105 closest to the image plane (right side in the drawing) in a direction in which the curvature becomes tighter.

図8は、その関係をグラフ化したものであり、横軸に径方向の高さ(光軸に対して垂直方向の半径(mm))を、縦軸に非球面成分量(mm)を表している。尚、縦軸の非球面成分量はΔdbの式で定義される量であり、符号が+で非球面成分が基準となる曲率に対し付加される方向で、符号が―で非球面成分が除去される方向である。図8から分かるように、本実施形態では、基準となる曲率に対し非球面成分が付加される方向で、且つ径方向の高さが増すにつれて非球面成分量も増加している。その値の光線有効径内での最大値Δdb_maxは、径方向の高さ約40mmでΔdb_max=+0.248(mm)である。   FIG. 8 is a graph showing the relationship, where the horizontal axis represents the height in the radial direction (radius (mm) perpendicular to the optical axis), and the vertical axis represents the amount of aspheric component (mm). ing. The amount of aspherical component on the vertical axis is the amount defined by the expression Δdb. The sign is + and the aspherical component is added to the standard curvature, and the sign is – and the aspherical component is removed. Direction. As can be seen from FIG. 8, in the present embodiment, the amount of the aspherical component increases in the direction in which the aspherical component is added to the reference curvature and as the radial height increases. The maximum value Δdb_max within the effective beam diameter of the value is Δdb_max = 0.248 (mm) at a radial height of about 40 mm.

条件式(5)において、上限値を超えると、径方向の非球面成分量が更に増す方向にあるので、吸水等の耐環境性の観点から好ましくない。一方、条件式(5)の下限値を超えると、所望とする球面収差をはじめとする諸収差の光学性能が得られず、光学系全系の小型軽量化が達成できなくなるので好ましくない。光学系全系の小型軽量化と素子成形の両立の観点から、更に以下の条件式の範囲にあることが望ましい。   In conditional expression (5), if the upper limit is exceeded, the amount of aspherical components in the radial direction tends to increase further, which is not preferable from the viewpoint of environmental resistance such as water absorption. On the other hand, if the lower limit of conditional expression (5) is exceeded, the optical performance of various aberrations including the desired spherical aberration cannot be obtained, and it is not preferable because the entire optical system cannot be reduced in size and weight. From the viewpoint of achieving both compactness and light weight of the entire optical system and element molding, it is desirable that the range of the following conditional expressions be satisfied.

0.05<|Δdb_max/danm|<0.20−−−−−−−−−(5−a)
次に条件式(6)は、回折光学素子の屈折光学部の焦点距離と光学系全系の焦点距離の関係を規定する条件式である。本実施形態に係る光学系において、回折光学素子の屈折光学部103の焦点距離をfanmとした際、以下の条件式(6)を満足している。
0.05 <| Δdb_max / danm | <0.20 --------- (5-a)
Conditional expression (6) is a conditional expression that defines the relationship between the focal length of the refractive optical section of the diffractive optical element and the focal length of the entire optical system. In the optical system according to this embodiment, when the focal length of the refractive optical unit 103 of the diffractive optical element is set to fanm, the following conditional expression (6) is satisfied.

0.2<|fanm/f|<5.0 −−−−−−−−−−−−−−− (6)
条件式(6)の上限値を超えると、屈折光学部103の屈折力が弱くなり過ぎ、所望の光学性能、特に色収差補正効果が得られなくなり、好ましくない。また回折光学素子全体で考えた場合、回折光学部102の屈折力も弱めることができなくなるので、フレア低減の観点からも好ましくない。一方、条件式(6)の下限値を超えると、屈折光学部103の屈折力が強くなり過ぎ、屈折光学部103の厚さ自体も厚くする方向にあり、成形上及び透過率低下の懸念があるので好ましくない。光学系全系での光学性能向上と素子部分の成形性向上の両立の観点から、更にに好ましくは、以下の条件式の範囲内にあることである。
0.2 <| fanm / f | <5.0 --------------- (6)
Exceeding the upper limit value of conditional expression (6) is not preferable because the refractive power of the refractive optical unit 103 becomes too weak and the desired optical performance, particularly the chromatic aberration correction effect cannot be obtained. Further, considering the entire diffractive optical element, the refractive power of the diffractive optical unit 102 cannot be weakened, which is not preferable from the viewpoint of reducing flare. On the other hand, when the lower limit of conditional expression (6) is exceeded, the refractive power of the refractive optical unit 103 becomes too strong, and the thickness of the refractive optical unit 103 itself tends to increase. This is not preferable. From the viewpoint of achieving both improvement in optical performance in the entire optical system and improvement in moldability of the element portion, it is more preferably within the range of the following conditional expression.

0.4<|fanm/f|<4.0 −−−−−−−−−−−−−− (6−a)
以上述べた通り、条件式(1)乃至(6)を満足した回折光学素子を用いた光学系にすることで、光学系全系が小型軽量でありながら、色収差をはじめとした諸収差が良好に補正された光学系を達成できる。
0.4 <| fanm / f | <4.0 -------------- (6-a)
As described above, by making the optical system using the diffractive optical element that satisfies the conditional expressions (1) to (6), the entire optical system is small and light, but various aberrations including chromatic aberration are good. An optical system corrected to be able to be achieved.

(使用波長全域における回折光学部の回折効率)
次に、回折光学素子の回折光学部について、条件式(7)から(15)を用いながら説明する。本実施形態で、回折光学素子の回折光学部102に入射させる光の波長領域、即ち使用波長領域は可視領域であり、第1及び第2の回折格子1、2を構成する材料及び格子厚は、可視領域全域で設計次数である1次回折光の回折効率を高くするように選択される。ここで、本実施形態に係る回折光学素子の回折光学部102の回折効率について説明する。
(Diffraction efficiency of diffractive optics in the entire wavelength range)
Next, the diffractive optical part of the diffractive optical element will be described using conditional expressions (7) to (15). In this embodiment, the wavelength region of light incident on the diffractive optical part 102 of the diffractive optical element, that is, the used wavelength region is the visible region, and the materials and the grating thicknesses constituting the first and second diffraction gratings 1 and 2 are as follows. The diffraction efficiency of the first-order diffracted light, which is the designed order, is selected to be high throughout the visible region. Here, the diffraction efficiency of the diffractive optical unit 102 of the diffractive optical element according to the present embodiment will be described.

その原理は、基本的には複数の回折格子が1つの層の上に並んだ単層型DOE(単層型回折光学素子)の原理と同じであり、全層を通して1つの回折光学素子として作用させることを考える。各層を構成する材料の境界に形成された回折格子の山と谷での光学光路長差を求め、この光学光路長差を全回折格子にわたって加算する。そして、この加算した光学光路長差が、波長の整数倍になるように格子形状の寸法を決定する。したがって、図1(b)に示した回折光学素子の回折光学部102において、設計波長がλ0の場合に、m次回折光の回折効率が最大になる条件は次のようになる。   The principle is basically the same as that of a single-layer DOE (single-layer diffractive optical element) in which a plurality of diffraction gratings are arranged on one layer, and it functions as a single diffractive optical element through all layers. Think about it. The optical path length difference between the peaks and valleys of the diffraction grating formed at the boundary of the material constituting each layer is obtained, and this optical path length difference is added over the entire diffraction grating. Then, the dimension of the grating shape is determined so that the added optical path length difference is an integral multiple of the wavelength. Therefore, in the diffractive optical part 102 of the diffractive optical element shown in FIG. 1B, when the design wavelength is λ0, the conditions under which the diffraction efficiency of m-th order diffracted light is maximized are as follows.

±(n01 - n02)*dh = m*λ0 −−−−−(h)
ここで、n01は第1の回折格子1を形成する材料の波長λ0の光に対する屈折率であり、n02は第2の回折格子2を形成する材料の波長λ0の光に対する屈折率である。また、dhは回折格子1(=2)の格子厚である。
± (n01−n02) * dh = m * λ0 −−−−− (h)
Here, n01 is a refractive index with respect to light having a wavelength λ0 of the material forming the first diffraction grating 1, and n02 is a refractive index with respect to light having a wavelength λ0 of the material forming the second diffraction grating 2. Further, dh is the grating thickness of the diffraction grating 1 (= 2).

図1(b)の0次回折光から下向き(光軸Oに向かう向き)に回折する光の回折次数を正の回折次数、0次回折光から上向きに回折する光の回折次数を負の回折次数とすると、上記(h)式での左辺の括弧前の加減の符号は次のようになる。図中の第1の回折格子1に着目して、上から下に格子厚が増加する格子形状を持つ回折格子の場合は正となり、逆に上から下に格子厚が減少する格子形状を持つ回折格子の場合は負となる。図1(b)に示す構成において、設計波長λ0以外の波長λでの回折効率η(λ)は下記の式で表すことができる。   In FIG. 1B, the diffraction order of light diffracted downward from the 0th-order diffracted light (direction toward the optical axis O) is a positive diffraction order, and the diffraction order of light diffracted upward from the 0th-order diffracted light is a negative diffraction order. Then, the sign of addition / subtraction before the parenthesis on the left side in the above formula (h) is as follows. Focusing on the first diffraction grating 1 in the figure, a diffraction grating having a grating shape in which the grating thickness increases from top to bottom is positive, and conversely has a grating shape in which the grating thickness decreases from top to bottom. In the case of a diffraction grating, it is negative. In the configuration shown in FIG. 1B, the diffraction efficiency η (λ) at a wavelength λ other than the design wavelength λ0 can be expressed by the following equation.

η(λ)=sinc(π*(m-(±(n1(λ)- n2(λ))*dh/λ)))
=sinc(π*(m*φ(λ)/λ))−−−−−−−−−(i)
φ(λ)=±(n1(λ)- n2(λ))*dh−−−−−−−(j)
ここで、mは回折次数、n1(λ)は第1の回折格子1を形成する材料の波長λでの屈折率、n2(λ)は第2の回折格子2を形成する材料の波長λでの屈折率、dhは第1及び第2の回折格子1、2の共通の格子厚である。また、sinc(x)=(sin(x)/x)で表される関数である。
η (λ) = sinc 2 (π * (m− (± (n1 (λ) −n2 (λ)) * dh / λ)))
= Sinc 2 (π * (m * φ (λ) / λ)) --------- (i)
φ (λ) = ± (n1 (λ) −n2 (λ)) * dh −−−−−−− (j)
Here, m is the diffraction order, n1 (λ) is the refractive index at the wavelength λ of the material forming the first diffraction grating 1, and n2 (λ) is the wavelength λ of the material forming the second diffraction grating 2. The refractive index dh is the common grating thickness of the first and second diffraction gratings 1 and 2. Moreover, it is a function represented by sinc 2 (x) = (sin (x) / x) 2 .

次に、本実施形態の回折光学素子の回折光学部102において、高い回折効率を得るための条件について説明する。使用波長全域に渡って高い回折効率を得るためには、上記(i)式で表される値η(λ)が全ての使用波長に対して、1に近づけばよい。言い換えれば、設計次数mでの回折効率を高めるには、上記(i)式中のφ(λ)/λがmに近づけばよいことになる。例えば、設計次数mを1次とした際、φ(λ)/λが1に近づけばよいわけである。   Next, conditions for obtaining high diffraction efficiency in the diffractive optical part 102 of the diffractive optical element of this embodiment will be described. In order to obtain high diffraction efficiency over the entire use wavelength range, the value η (λ) expressed by the above equation (i) should be close to 1 for all use wavelengths. In other words, in order to increase the diffraction efficiency at the design order m, φ (λ) / λ in the above equation (i) should be close to m. For example, when the design order m is set to primary, φ (λ) / λ should be close to 1.

更に、格子形状から得られる光学光路長差φ(λ)は、上記関係から波長λに比例して線形に変化していく、すなわち上記(j)式の右辺の項が線形性を有することが必要となってくる。即ち、第1の回折格子1を形成する材料の波長による屈折率の変化に対する第2の回折格子2を形成する材料の波長による屈折率の変化率が、全使用波長域で一定の比率であることが必要となってくる。上述した関係を満足する構成として、本実施形態を例に挙げ説明する。   Further, the optical optical path length difference φ (λ) obtained from the grating shape changes linearly in proportion to the wavelength λ from the above relationship, that is, the term on the right side of the above equation (j) has linearity. It becomes necessary. That is, the rate of change in the refractive index due to the wavelength of the material forming the second diffraction grating 2 with respect to the change in the refractive index due to the wavelength of the material forming the first diffraction grating 1 is a constant ratio in the entire used wavelength region. It will be necessary. This embodiment will be described as an example of a configuration that satisfies the above-described relationship.

図1(b)に示した回折光学部102において、本実施形態では第1の回折格子1にはアクリル系樹脂にZrO2微粒子を混合した材料(nd=1.552、νd=49.1、θgF=0.578)を用いる。また、第2の回折格子2にはフッ素系樹脂にITO微粒子を混合した材料(nd=1.495、νd=18.7、θgF=0.401)を用いる。この時、第1及び第2の回折格子にて共通の格子厚は10.2μmである。本実施形態では、このような材料の組合せを用いたが、以下で説明する条件式(7)から(15)を満足すれば、これに限るものではない。   In the diffractive optical unit 102 shown in FIG. 1B, in the present embodiment, the first diffraction grating 1 is made of a material in which ZrO2 fine particles are mixed with acrylic resin (nd = 1.552, νd = 49.1, θgF). = 0.578). The second diffraction grating 2 is made of a material (nd = 1.495, νd = 18.7, θgF = 0.401) in which ITO fine particles are mixed with a fluorine resin. At this time, the common grating thickness of the first and second diffraction gratings is 10.2 μm. In the present embodiment, such a combination of materials is used. However, the present invention is not limited to this as long as conditional expressions (7) to (15) described below are satisfied.

図9に、本実施形態での回折光学部102の設計次数である1次回折光と設計次数±1次光(0次光と2次光)の回折効率の波長特性を併せて示している。尚、図9にて、横軸は波長(nm)、縦軸は回折効率(%)であり、1次光については左縦軸のスケールを、0、2次光については右縦軸のスケールを参照する。図9より、1次光の回折効率は可視域全域で99%以上得られ、それに伴い不要回折次数(0次光及び2次光)の回折効率も0.2%以下と、十分に抑制されていることが分かる。   FIG. 9 also shows the wavelength characteristics of the diffraction efficiency of the first-order diffracted light, which is the designed order of the diffractive optical unit 102 in this embodiment, and the designed orders ± first-order light (zero-order light and second-order light). In FIG. 9, the horizontal axis represents wavelength (nm), the vertical axis represents diffraction efficiency (%), the left vertical scale for primary light, and the right vertical scale for 0 secondary light. Refer to As shown in FIG. 9, the diffraction efficiency of the first-order light is 99% or more in the entire visible range, and accordingly, the diffraction efficiency of the unnecessary diffraction orders (0th-order light and second-order light) is sufficiently suppressed to 0.2% or less. I understand that

またここでは、不要次数光の回折効率のついては、設計次数±1次である0次光と2次光についてのみ対象としているが、これは設計次数から離れた回折次数ほどフレアに寄与する割合が少ないためである。つまり、0次と2次の回折次数のフレア光が低減されれば、それ以外の回折次数によるフレア光も同様に影響を低減できるからである。   In addition, here, the diffraction efficiency of unnecessary-order light is targeted only for the 0th-order light and the second-order light that are the designed orders ± 1st. However, the diffraction order that is far from the design order has a ratio that contributes to flare. This is because there are few. That is, if the flare light of the 0th and 2nd diffraction orders is reduced, the influence of the flare light of the other diffraction orders can be similarly reduced.

このことは、一つには特定の設計次数の光が主に回折するように設計された回折光学素子は、設計次数から離れた次数にいくに従って、回折効率は低下している傾向にあることに起因する。更には、及び設計次数から離れた回折次数ほど、結像面でのボケが大きくフレアとして目立たなくなってくることに起因している。   This is because, in part, the diffraction efficiency of a diffractive optical element designed to diffract light of a specific design order tends to decrease as it goes away from the design order. caused by. Furthermore, the diffraction order farther from the design order and the blur on the image plane become larger and become less noticeable as flare.

次に、本実施形態に係る回折光学部102の1次回折効率が99%以上と高くなる理由について、条件式(7)から(15)を用いて説明する。回折光学部102において、フラウンホーファー線のg線、F線、d線、C線の波長をλg、λF、λd、λC、回折格子1、2のg線、F線、d線、C線の波長における屈折率をn1g、n2g、n1F、n2F、n1d、n2d、n1C、n2Cとする。回折格子の格子厚をdh、回折格子の格子ピッチをPとする。   Next, the reason why the first-order diffraction efficiency of the diffractive optical unit 102 according to this embodiment is as high as 99% or more will be described using conditional expressions (7) to (15). In the diffractive optical section 102, the wavelengths of the Fraunhofer line g-line, F-line, d-line, and C-line are λg, λF, λd, λC, and the g-line of the diffraction gratings 1 and 2, F-line, d-line, and C-line. The refractive indexes at the wavelengths are assumed to be n1g, n2g, n1F, n2F, n1d, n2d, n1C, and n2C. The grating thickness of the diffraction grating is dh, and the grating pitch of the diffraction grating is P.

更に、設計次数近傍のM次の回折光に対する回折格子の凸部と凹部での光路長の差を各波長で除した値を、各々以下のようにする。即ち、M(λg)={dh×(n1g−n2g)}/λg、M(λF)={dh×(n1F−n2F)}/λF、M(λd)={dh×(n1d−n2d)}/λd、M(λC)={dh×(n1C−n2C)}/λCとする際、条件式(7)乃至(15)を満足する。   Further, the values obtained by dividing the difference in optical path length between the convex and concave portions of the diffraction grating by the respective wavelengths with respect to the M-th order diffracted light near the design order are as follows. That is, M (λg) = {dh × (n1g−n2g)} / λg, M (λF) = {dh × (n1F−n2F)} / λF, M (λd) = {dh × (n1d−n2d)} When satisfying / λd, M (λC) = {dh × (n1C−n2C)} / λC, the conditional expressions (7) to (15) are satisfied.

1.5≦n1d≦1.8−−−−−−−−−−−−−−−−−−−−−−(7)
40≦νd1=(n1d*1)/(n1F*n1C)≦80−−−−−−−(8)
θ1gF=(n1g*n1F)/(n1F*n1C)とし、Δθ1gF=θ1gF−(−1.665×10−7×νd1+5.213×10−5×νd1−5.656×10−3×νd1+0.7278)とした時、以下の式を満足する。
−0.05<Δθ1gF<0.05−−−−−−−−−−−−−−−−−(9)
1.3≦n2d≦1.6−−−−−−−−−−−−−−−−−−−−−−(10)
5≦νd2=(n2d*1)/(n2F*n2C)≦30−−−−−−−−(11)
θ2gF=(n2g*n2F)/(n2F*n2C)とし、Δθ2gF=θ2gF−(−1.665×10−7×νd2+5.213×10−5×νd2−5.656×10−3×νd2+0.7278)とした時、以下の式を満足する。
1.5 ≦ n1d ≦ 1.8 --------------------- (7)
40 ≦ νd1 = (n1d * 1) / (n1F * n1C) ≦ 80 ------- (8)
θ1gF = (n1g * n1F) / (n1F * n1C), and Δθ1gF = θ1gF − (− 1.665 × 10 −7 × νd1 3 + 5.213 × 10 −5 × νd1 2 −5.656 × 10 −3 × When νd1 + 0.7278), the following expression is satisfied.
-0.05 <Δθ1gF <0.05 ----------------- (9)
1.3 ≦ n2d ≦ 1.6 -------------------- (10)
5 ≦ νd2 = (n2d * 1) / (n2F * n2C) ≦ 30 ------- (11)
θ2gF = (n2g * n2F) / (n2F * n2C), and Δθ2gF = θ2gF − (− 1.665 × 10 −7 × νd2 3 + 5.213 × 10 −5 × νd2 2 −5.656 × 10 −3 × νd2 + 0.7278), the following expression is satisfied.

−0.50<Δθ2gF<−0.02−−−−−−−−−−−−−−−−(12)
0.01<n1d*n2d<0.5−−−−−−−−−−−−−−−−−−(13)
0.01<dh/p≦0.1−−−−−−−−−−−−−−−−−−−−−(14)
0.92≦{M(λg)+M(λF)+M(λd)+M(λC)}/(4*M)≦1.08 −−−−−−−−−−−−−− (15)
上記条件式(7)から(15)は、本実施形態の回折光学素子の回折光学部102において、設計次数の回折効率を高くするための、回折格子1、2の材料範囲とその条件を規定した条件式である。
-0.50 <[Delta] [theta] 2gF <-0.02 --------------- (12)
0.01 <n1d * n2d <0.5 ------------------ (13)
0.01 <dh / p ≦ 0.1 -------------------- (14)
0.92 ≦ {M (λg) + M (λF) + M (λd) + M (λC)} / (4 * M) ≦ 1.08 −−−−−−−−−−−−−−− (15)
The conditional expressions (7) to (15) define the material range and conditions of the diffraction gratings 1 and 2 for increasing the diffraction efficiency of the designed order in the diffractive optical part 102 of the diffractive optical element of the present embodiment. This is the conditional expression.

ここで、各条件式の関係をイメージし易くするため、図10、図11を用いて説明することにする。図10はndとνdの関係を、図11はθgFとνdの関係を各々表しており、縦軸は各々nd、θgFであり、横軸は全てνdである。   Here, in order to make it easy to imagine the relationship between the conditional expressions, description will be made with reference to FIGS. FIG. 10 shows the relationship between nd and νd, and FIG. 11 shows the relationship between θgF and νd. The vertical axes are nd and θgF, respectively, and the horizontal axes are all νd.

まず図10と前記条件式(7)、(8)、(10)、(11)については、本実施形態の回折光学部が成立するための各回折格子1、2の材料のnd及びνdの範囲を規定している。図10から分かるように、第1の回折格子1の存在範囲は一般の硝子と変わらないが、第2の回折格子2の存在範囲がかなりνdの値が小、つまり高分散であることが分かる。条件式(7)、(8)、(10)、(11)の範囲内を超えると、本実施形態の回折光学部の構成(密着2層型)で所望の性能が得られなくなるので、好ましくない。   First, with respect to FIG. 10 and the conditional expressions (7), (8), (10), and (11), the nd and νd of the materials of the diffraction gratings 1 and 2 for forming the diffractive optical part of this embodiment are shown. Defines the range. As can be seen from FIG. 10, the existence range of the first diffraction grating 1 is not different from that of ordinary glass, but the existence range of the second diffraction grating 2 is considerably small, that is, the dispersion is high. . If it exceeds the range of conditional expressions (7), (8), (10) and (11), the desired performance cannot be obtained with the configuration of the diffractive optical part of the present embodiment (adherent two-layer type). Absent.

次に図11と前記条件式(8)、(9)、(11)、(12)については、図10に関する上述したものと同様に、本実施形態の回折光学部を達成するための各回折格子1、2の材料のθgFとνdの範囲を規定している。この関係は前記条件式(7)、(8)、(10)、(11)を満足した上で成り立たなくてはならない。図11から分かるように、第1の回折格子1の存在範囲は一般の硝子より少し上側にずれ、第2の回折格子2の存在範囲は一般の硝子よりかなり下側にずれていることが分かる。即ち、回折格子1の材料は一般の硝材よりやや高部分分散比で、回折格子2の材料は一般の硝材よりかなり低部分分散比であることを意味している。   Next, with respect to FIG. 11 and the conditional expressions (8), (9), (11), and (12), each diffraction for achieving the diffractive optical part of this embodiment is the same as that described above with reference to FIG. The range of θgF and νd of the materials of the lattices 1 and 2 is defined. This relationship must be satisfied after satisfying the conditional expressions (7), (8), (10), and (11). As can be seen from FIG. 11, the existence range of the first diffraction grating 1 is slightly shifted upward from the ordinary glass, and the existence range of the second diffraction grating 2 is significantly displaced downward from the ordinary glass. . That is, it means that the material of the diffraction grating 1 has a slightly higher partial dispersion ratio than a general glass material, and the material of the diffraction grating 2 has a considerably lower partial dispersion ratio than a general glass material.

条件式(8)、(9)、(11)、(12)の範囲内を超えると、特に短波長側の回折効率が劣化するので、好ましくない。また回折光学部の格子厚が厚くなり、特に斜入射時の回折効率劣化につながるので、好ましくない。   Exceeding the range of conditional expressions (8), (9), (11), and (12) is not preferable because the diffraction efficiency particularly on the short wavelength side deteriorates. Further, the grating thickness of the diffractive optical part is increased, which leads to deterioration of diffraction efficiency particularly at oblique incidence, which is not preferable.

次に、本実施形態の回折光学部で用いた各回折格子1、2の材料の屈折率波長特性を図12に示す。尚、図12において、横軸は波長(nm)、縦軸は屈折率を各々表している。図12より、回折格子1の材料特性は短波長になる程曲線の傾きがきつくなるのに対し、回折格子2の材料特性は波長の変化に対する屈折率の変化がほぼ一定であることが分かる。これは図12の前記条件式(8)、(9)、(11)、(12)の関係を如実に表しており、回折格子1の材料はやや高部分分散比で、回折格子2の材料はかなり低部分分散比であることを示している。   Next, the refractive index wavelength characteristics of the materials of the diffraction gratings 1 and 2 used in the diffractive optical part of this embodiment are shown in FIG. In FIG. 12, the horizontal axis represents wavelength (nm) and the vertical axis represents refractive index. From FIG. 12, it can be seen that the material characteristic of the diffraction grating 1 is such that the slope of the curve becomes tighter as the wavelength is shorter, whereas the material characteristic of the diffraction grating 2 is that the change in refractive index with respect to the change in wavelength is almost constant. This clearly represents the relationship of the conditional expressions (8), (9), (11), and (12) in FIG. 12. The material of the diffraction grating 1 is a slightly high partial dispersion ratio, and the material of the diffraction grating 2 Indicates a fairly low partial dispersion ratio.

前記(j)式の部分の説明で、設計次数の回折効率を100%にする条件として、第1の回折格子1を形成する材料の波長による屈折率の変化に対する第2の回折格子2を形成する材料の波長による屈折率の変化率が、全使用波長域で一定の比率であると述べた。これの条件を本実施形態はほぼ満足しているので、可視波長で高い回折効率を実現可能である。更に、前記回折光学部の高い回折効率を維持するためには、以下の条件式の範囲であることが望ましい。   In the description of the part of the expression (j), the second diffraction grating 2 is formed with respect to the change in the refractive index depending on the wavelength of the material forming the first diffraction grating 1 as a condition for setting the diffraction efficiency of the designed order to 100%. He stated that the rate of change of the refractive index with the wavelength of the material to be used is a constant ratio in the entire wavelength range. Since this embodiment substantially satisfies these conditions, high diffraction efficiency can be realized at a visible wavelength. Furthermore, in order to maintain the high diffraction efficiency of the diffractive optical part, it is desirable that the range is in the following conditional expression.

1.5≦n1d≦1.7−−−−−−−−−−−−−−−−−−−−(7−a)
40≦νd1=(n1d*1)/(n1F*n1C)≦65−−−−−(8−a)
−0.03<Δθ1gF<0.03−−−−−−−−−−−−−−−(9−a)
1.4≦n2d≦1.55−−−−−−−−−−−−−−−−−−−(10−a)
10≦νd2=(n2d*1)/(n2F*n2C)≦25−−−−−(11−a)
−0.30<Δθ2gF<−0.05−−−−−−−−−−−−−−(12−a)
0.01<n1d*n2d<0.2−−−−−−−−−−−−−−−−(13−a)
上記条件式(7)から(13)を満足した上で、以下の条件式(14)、(15)を満足しなければならない。
1.5 ≦ n1d ≦ 1.7 ------------------- (7-a)
40 ≦ νd1 = (n1d * 1) / (n1F * n1C) ≦ 65 −−−−− (8−a)
-0.03 <Δθ1gF <0.03 -------------- (9-a)
1.4 ≦ n2d ≦ 1.55 ------------------ (10-a)
10 ≦ νd2 = (n2d * 1) / (n2F * n2C) ≦ 25 −−−−− (11−a)
-0.30 <Δθ2gF <-0.05 ------------- (12-a)
0.01 <n1d * n2d <0.2 ---------------- (13-a)
In addition to satisfying the conditional expressions (7) to (13), the following conditional expressions (14) and (15) must be satisfied.

0.01<dh/p≦0.1−−−−−−−−−−−−−−−−−−−(14)
0.92≦{M(λg)+M(λF)+M(λd)+M(λC)}/(4*M)≦1.08 −−−−−−−−−−−−−−−−−−−−−−−−−−−−(15)
条件式(14)は、本実施形態に係る回折光学部の回折格子の格子ピッチpに対する格子厚の範囲を規定する条件式である。一方、条件式(15)は、本実施形態に係る回折光学部の回折効率波長特性の範囲を規定する条件式である。条件式(14)において、上限値を超えると、回折格子の格子ピッチに対する格子厚が高くなりすぎ、所望の回折効率、特に斜入射時の回折効率の劣化が増すので、好ましくない。
0.01 <dh / p ≦ 0.1 ------------------ (14)
0.92 ≦ {M (λg) + M (λF) + M (λd) + M (λC)} / (4 * M) ≦ 1.08 ----------------- ---------- (15)
Conditional expression (14) is a conditional expression that defines the range of the grating thickness with respect to the grating pitch p of the diffraction grating of the diffractive optical section according to the present embodiment. On the other hand, the conditional expression (15) is a conditional expression that defines the range of the diffraction efficiency wavelength characteristic of the diffractive optical part according to this embodiment. In conditional expression (14), if the upper limit value is exceeded, the grating thickness with respect to the grating pitch of the diffraction grating becomes too high, and deterioration of the desired diffraction efficiency, particularly diffraction efficiency at oblique incidence, is not preferable.

また回折格子の格子ピッチが細かくなりすぎ作製も困難になるので、好ましくない。一方、下限値を超えると、回折格子の格子ピッチが広くなり過ぎ、回折作用の効果が薄れ、所望の光学性能が得られなくなるので、好ましくない。また条件式(15)において、条件式の範囲外になると、可視波長全域で所望な回折効率が得られず、不要な回折次数のフレアが発生してしまうため好ましくない。更に、回折光学部の高い回折効率を維持するためには、以下の条件式の範囲であることが望ましい。   Also, the grating pitch of the diffraction grating becomes too fine, making it difficult to manufacture. On the other hand, if the lower limit is exceeded, the grating pitch of the diffraction grating becomes too wide, the effect of diffraction action is diminished, and the desired optical performance cannot be obtained. Further, if the conditional expression (15) is outside the range of the conditional expression, it is not preferable because desired diffraction efficiency cannot be obtained in the entire visible wavelength range, and flare of unnecessary diffraction orders is generated. Furthermore, in order to maintain the high diffraction efficiency of the diffractive optical part, it is desirable that the range is in the following conditional expression.

0.01<dh/p≦0.08−−−−−−−−−−−−−−−−−−(14−a)
0.95≦{M(λg)+M(λF)+M(λd)+M(λC)}/(4*M)≦1.05 −−−−−−−−−−−−−−−−−−−−−−−−−−−−(15−a)
回折光学部の回折格子1、2の材料特性を得るためには、次のようにする。回折格子1の材料はAl、Zr、Y及びその酸化物、複合物、混合物のいずれかの無機微粒子をアクリル系の樹脂材料に、所望の材料特性になるように混合調整する。一方、回折格子2の材料はITOやTi、Nr、Cr及びその酸化物、複合物、混合物のいずれかの無機微粒子をフッ素系樹脂材料に、所望の材料特性になるように混合調整することによって実現できる。
0.01 <dh / p ≦ 0.08 ----------------- (14-a)
0.95 ≦ {M (λg) + M (λF) + M (λd) + M (λC)} / (4 * M) ≦ 1.05 ----------------- ---------- (15-a)
In order to obtain the material characteristics of the diffraction gratings 1 and 2 of the diffractive optical part, the following is performed. The material of the diffraction grating 1 is prepared by mixing and mixing inorganic fine particles of any one of Al, Zr, Y and their oxides, composites, and mixtures with an acrylic resin material so as to have desired material characteristics. On the other hand, the material of the diffraction grating 2 is adjusted by mixing inorganic fine particles of any one of ITO, Ti, Nr, Cr and their oxides, composites, and mixtures into a fluorine-based resin material so as to have desired material characteristics. realizable.

(回折光学素子の作製方法)
最後に、本実施形態の回折光学素子101の作製方法について、図13を用いてその一例を簡単に示す。まず、ガラス基板上に第1の回折格子1を型202を用いて照射成形する(図13(a))。この時、型202の回折格子1との境界面には、所望の回折格子形状が形成されている(図中不図示)。次に、型202を回折格子1から離型して、回折格子1上に回折格子2の材料を滴下して、型203を用いて回折光学部102を作製する(図13(b))。この時、型203の境界面の曲率は、回折格子2の回折面の曲率と略同じにしておく。
(Diffraction optical element manufacturing method)
Finally, an example of a method for manufacturing the diffractive optical element 101 of the present embodiment will be briefly described with reference to FIGS. First, the first diffraction grating 1 is formed by irradiation using a mold 202 on a glass substrate (FIG. 13A). At this time, a desired diffraction grating shape is formed on the interface between the mold 202 and the diffraction grating 1 (not shown in the figure). Next, the mold 202 is released from the diffraction grating 1 and the material of the diffraction grating 2 is dropped onto the diffraction grating 1 to produce the diffractive optical unit 102 using the mold 203 (FIG. 13B). At this time, the curvature of the boundary surface of the mold 203 is made substantially the same as the curvature of the diffraction surface of the diffraction grating 2.

最後に、型203を離型し、回折光学部102のガラス基板側でない光学面に、所望の材料特性と有した固体材料から成る屈折光学部103を、型204を用いて照射成形する(図13(c))。この時、型204の屈折光学部103の境界面は、所望な非球面形状が形成されている。最後に型204を離型して、本実施形態の回折光学素子が完成する。   Finally, the mold 203 is released, and the refractive optical section 103 made of a solid material having desired material properties is irradiated and molded on the optical surface of the diffractive optical section 102 that is not on the glass substrate side using the mold 204 (FIG. 13 (c)). At this time, a desired aspheric shape is formed on the boundary surface of the refractive optical unit 103 of the mold 204. Finally, the mold 204 is released to complete the diffractive optical element of this embodiment.

以上のように述べてきたが、本発明はこの作製法によって作製されるものに限られない。本実施形態における回折光学素子の他の製法としては、バイナリオプティクス形状をフォトレジストにより直接レンズ表面に成形する方法等がある。これまで説明した実施形態では、図1(b)のように、レンズの凸面や凹面等の曲面表面に回折部を設けた形状で説明したが、平面形状であっても本実施形態で説明したのと同様の効果を得ることができる。また本実施形態では、設計次数が1である所謂1次回折光を用いた回折光学素子について説明したが、設計次数は1に限定されるものではない。   As described above, the present invention is not limited to those manufactured by this manufacturing method. As another manufacturing method of the diffractive optical element in the present embodiment, there is a method of directly forming a binary optics shape on the lens surface with a photoresist. In the embodiment described so far, as illustrated in FIG. 1B, the description has been made with the shape in which the diffractive portion is provided on the curved surface such as the convex surface or the concave surface of the lens. The same effect as can be obtained. In this embodiment, a diffractive optical element using so-called first-order diffracted light having a design order of 1 has been described. However, the design order is not limited to 1.

2次や3次等の1次の回折次数とは異なる回折光であっても、各回折格子1、2における光学光路長差の合成値を、所望の設計次数で所望の設計波長となるように設定すれば、本実施形態と同様な効果が得られる。   Even if the diffracted light is different from the first order diffraction order such as the second order or the third order, the combined value of the optical path length differences in the diffraction gratings 1 and 2 is set to the desired design wavelength at the desired design order. If this is set, effects similar to those of the present embodiment can be obtained.

以上のように、図1(a)、(b)に示したようなレンズ構成及び回折光学素子の素子形態にし、前記各条件式(1)から(15)を満足するようにする。これにより、光学系自体が小型軽量化でありながら、色収差をはじめとした諸収差も補正された撮影光学系が実現できる。またその際、撮影光以外の不要回折光によるフレアを低減できる。   As described above, the lens configuration and the element form of the diffractive optical element as shown in FIGS. 1A and 1B are satisfied so that the conditional expressions (1) to (15) are satisfied. Accordingly, it is possible to realize a photographing optical system in which various aberrations including chromatic aberration are corrected while the optical system itself is small and light. At that time, flare caused by unnecessary diffracted light other than the photographing light can be reduced.

本実施形態によれば、光学系中の開口絞りより物体側に、異常部分分散特性を有する固体材料から成る屈折光学部を密着配置した回折光学素子を適切な屈折力で配置することによって、光学系自体が小型軽量で諸収差も補正された光学系を提供することができる。またその際、撮影光以外の不要回折光によるフレアを低減できる。   According to the present embodiment, the diffractive optical element in which the refractive optical unit made of a solid material having anomalous partial dispersion characteristics is disposed close to the object side from the aperture stop in the optical system is arranged with an appropriate refractive power to An optical system in which the system itself is small and light and various aberrations are corrected can be provided. At that time, flare caused by unnecessary diffracted light other than the photographing light can be reduced.

《第2の実施形態》
本実施形態も、超望遠レンズ(焦点距離400mm、Fno4.0)であり、図14(a)に物体距離無限遠におけるレンズ断面図を示している。また回折光学素子Ldamの素子構成を図14(b)に示した。基本的な構成及び発明の思想は、第1の実施形態と同じため、異なる部分についてのみ以下に説明する。
<< Second Embodiment >>
This embodiment is also a super telephoto lens (focal length 400 mm, Fno 4.0), and FIG. 14A shows a lens cross-sectional view at an infinite object distance. The element configuration of the diffractive optical element Ldam is shown in FIG. Since the basic configuration and the idea of the invention are the same as those of the first embodiment, only different portions will be described below.

本実施形態に係る回折光学素子Ldamは最も物体側にあるレンズであり、これは第1の実施形態で説明した、テレフォトタイプ光学系の軸上及び倍率色収差の連立解より、他の例を示している。両色収差の補正上は最も効果のある位置である。また図14(b)より、前記回折光学素子Ldamの素子構成において異なる部分は、径方向の非球面成分量であり、光線有効径内での最大値Δdb_maxが、径方向の高さ約47mmでΔdb_max=+0.221(mm)である点である。また本実施形態の収差図を図15に示した。図15より、各収差とも良好に補正されていることが分かる。   The diffractive optical element Ldam according to the present embodiment is a lens closest to the object side, and this is another example based on the simultaneous solution of the on-axis and lateral chromatic aberration of the telephoto type optical system described in the first embodiment. Show. This is the most effective position for correcting both chromatic aberrations. Also, from FIG. 14B, the different part in the element configuration of the diffractive optical element Ldam is the aspherical component amount in the radial direction, and the maximum value Δdb_max within the effective ray diameter is about 47 mm in the radial direction. Δdb_max = + 0.221 (mm). An aberration diagram of this embodiment is shown in FIG. FIG. 15 shows that each aberration is well corrected.

以上のように、図14、図15に示したようなレンズ構成及び回折光学素子の素子形態にし、各条件式(1)乃至(15)を満足するようにすれば、光学系自体が小型軽量化でありながら、色収差をはじめとした諸収差も補正された撮影光学系が実現できる。またその際、撮影光以外の不要回折光によるフレアを低減できる。   As described above, if the lens configuration and the element form of the diffractive optical element as shown in FIGS. 14 and 15 are satisfied and the conditional expressions (1) to (15) are satisfied, the optical system itself is small and lightweight. However, it is possible to realize a photographing optical system in which various aberrations including chromatic aberration are corrected. At that time, flare caused by unnecessary diffracted light other than the photographing light can be reduced.

(数値実施形態)
次に数値実施形態について説明する。各数値実施形態において、riは物体側より第i番目のレンズ面の曲率半径、diは物体側より第i番目の基準状態の軸上面間隔、ndiとνdiは第i番目の光学部材のd線における屈折率とアッべ数を各々表している。また、BFはバックフォーカスである。また各実施形態の回折光学面の位相形状ψは、回折光の回折次数をm、設計波長をλ0、光軸に対して垂直方向の高さをr、位相係数をCi(i=1、2、3…)としたとき、次式によって表される。
(Numerical embodiment)
Next, numerical embodiments will be described. In each numerical embodiment, ri is the radius of curvature of the i-th lens surface from the object side, di is the distance between the upper surfaces of the axes in the i-th reference state from the object side, and ndi and νdi are d-lines of the i-th optical member. Represents the refractive index and the Abbe number, respectively. BF is back focus. Further, the phase shape ψ of the diffractive optical surface of each embodiment is that the diffraction order of the diffracted light is m, the design wavelength is λ0, the height in the direction perpendicular to the optical axis is r, and the phase coefficient is Ci (i = 1, 2). 3)), it is expressed by the following equation.

ψ(r、m)=(2π/mλ0)*(C1*r^2+C2*r^4+C3*r^6+…)
更に、非球面形状は、Xを光軸方向の面頂点からの変位量、rを光軸と垂直な方向の光軸からの高さ、Rを近軸曲率半径、kを円錐定数、B、C、D、E…を各次数の非球面係数とした時、次式によって表される。
ψ (r, m) = (2π / mλ0) * (C1 * r ^ 2 + C2 * r ^ 4 + C3 * r ^ 6 +...)
Further, in the aspherical shape, X is the amount of displacement from the surface vertex in the optical axis direction, r is the height from the optical axis in the direction perpendicular to the optical axis, R is the paraxial radius of curvature, k is the conic constant, B, When C, D, E... Are the aspheric coefficients of the respective orders, they are expressed by the following equations.

(数値実施例1)
単位 mm
面データ
面番号 r d nd vd 有効径
1 103.443 12.58 1.48749 70.2 95.25
2 682.412 15.00 94.39
3 64.475 9.01 1.48749 70.2 82.35
4 107.769 0.03 1.55184 49.1 80.78
5(回折) 107.739 0.03 1.49515 18.7 80.75
6 107.709 2.20 1.63555 22.7 80.73
7* 127.969 7.00 79.94
8 42.722 9.03 1.43387 95.1 66.26
9 63.502 0.15 63.89
10 47.420 5.00 1.84666 23.8 60.69
11 30.914 (可変) 50.56
12 108.606 1.80 1.80000 29.8 35.18
13 24.091 4.96 1.80809 22.8 31.93
14 42.619 (可変) 30.99
15(絞り) ∞ 0.15 23.04
16 44.998 4.37 1.43387 95.1 23.32
17 -65.820 2.08 1.84666 23.8 23.23
18 -153.409 1.92 23.35
19 -89.454 1.80 1.88300 40.8 26.28
20 33.693 13.00 1.68893 31.1 26.91
21 -33.565 0.50 28.53
22 -40.429 1.80 1.88300 40.8 28.24
23 71.528 1.74 29.50
24 52.398 8.51 1.72151 29.2 28.40
25 -24.165 1.40 1.80809 22.8 28.77
26 89.223 4.05 30.75
27 -48.755 1.80 1.59282 68.6 30.92
28 63.474 8.86 1.67270 32.1 36.35
29 -42.321 0.15 37.60
30 127.241 4.55 1.65412 39.7 40.75
31 -191.324 2.42 41.05
32 ∞ 2.20 1.51633 64.1 41.52
33 ∞ (可変) 41.71
像面 ∞

非球面データ
第5面(回折面)
C1=-3.69695e-005 C2=-3.94430e-009 C3= 3.48364e-012 C4=-2.04075e-015
C5= 4.29802e-019

第7面
K = 1.65526e+000 A4=-6.03995e-009 A6=-1.25921e-011 A8= 2.88737e-015 A10=-9.96150e-019

各種データ
焦点距離 392.12
Fナンバー 4.12
画角 3.16
像高 21.64
レンズ全長 262.14
BF 69.97
(Numerical example 1)
Unit mm
Surface data surface number rd nd vd Effective diameter
1 103.443 12.58 1.48749 70.2 95.25
2 682.412 15.00 94.39
3 64.475 9.01 1.48749 70.2 82.35
4 107.769 0.03 1.55184 49.1 80.78
5 (Diffraction) 107.739 0.03 1.49515 18.7 80.75
6 107.709 2.20 1.63555 22.7 80.73
7 * 127.969 7.00 79.94
8 42.722 9.03 1.43387 95.1 66.26
9 63.502 0.15 63.89
10 47.420 5.00 1.84666 23.8 60.69
11 30.914 (variable) 50.56
12 108.606 1.80 1.80000 29.8 35.18
13 24.091 4.96 1.80809 22.8 31.93
14 42.619 (variable) 30.99
15 (Aperture) ∞ 0.15 23.04
16 44.998 4.37 1.43387 95.1 23.32
17 -65.820 2.08 1.84666 23.8 23.23
18 -153.409 1.92 23.35
19 -89.454 1.80 1.88300 40.8 26.28
20 33.693 13.00 1.68893 31.1 26.91
21 -33.565 0.50 28.53
22 -40.429 1.80 1.88300 40.8 28.24
23 71.528 1.74 29.50
24 52.398 8.51 1.72151 29.2 28.40
25 -24.165 1.40 1.80809 22.8 28.77
26 89.223 4.05 30.75
27 -48.755 1.80 1.59282 68.6 30.92
28 63.474 8.86 1.67270 32.1 36.35
29 -42.321 0.15 37.60
30 127.241 4.55 1.65412 39.7 40.75
31 -191.324 2.42 41.05
32 ∞ 2.20 1.51633 64.1 41.52
33 ∞ (variable) 41.71
Image plane ∞

Aspheric data 5th surface (diffractive surface)
C1 = -3.69695e-005 C2 = -3.94430e-009 C3 = 3.48364e-012 C4 = -2.04075e-015
C5 = 4.29802e-019

7th page
K = 1.65526e + 000 A4 = -6.03995e-009 A6 = -1.25921e-011 A8 = 2.88737e-015 A10 = -9.96150e-019

Various data focal length 392.12
F number 4.12
Angle of View 3.16
Statue height 21.64
Total lens length 262.14
BF 69.97

(数値実施例2)
単位 mm
面データ
面番号 r d nd vd 有効径
1 92.617 12.53 1.48749 70.2 95.25
2 343.518 0.03 1.55184 49.1 94.27
3(回折) 343.489 0.03 1.49515 18.7 94.26
4 343.461 3.11 1.63555 22.7 94.25
5* 635.945 0.15 93.57
6 69.921 9.63 1.48749 70.2 86.95
7 124.613 5.42 85.31
8 45.567 9.69 1.43387 95.1 71.95
9 60.992 0.15 68.58
10 49.537 5.00 1.84666 23.8 65.91
11 33.274 (可変) 55.30
12 114.393 1.80 1.80000 29.8 35.11
13 24.277 9.00 1.80809 22.8 31.99
14 40.933 (可変) 29.23
15(絞り) ∞ 0.15 23.04
16 41.402 4.72 1.43387 95.1 23.40
17 -55.816 3.24 1.84666 23.8 23.33
18 -140.266 1.49 23.58
19 -76.632 1.80 1.88300 40.8 26.55
20 36.677 10.99 1.68893 31.1 27.40
21 -33.346 0.50 28.75
22 -42.027 1.80 1.88300 40.8 28.49
23 77.260 1.65 29.80
24 53.240 8.03 1.69895 30.1 28.70
25 -26.966 1.40 1.80809 22.8 29.09
26 77.864 3.67 31.12
27 -65.464 1.80 1.59282 68.6 31.31
28 57.369 9.29 1.68893 31.1 36.48
29 -41.570 0.15 37.68
30 79.585 4.10 1.65412 39.7 40.97
31 545.403 2.50 41.05
32 ∞ 2.20 1.51633 64.1 41.31
33 ∞ (可変) 41.49
像面 ∞

非球面データ
第3面(回折面)
C1=-2.70457e-005 C2=-2.93455e-010 C3=-3.61642e-013 C4= 2.34170e-016
C5=-5.55157e-020

第5面
K = 4.48297e+001 A4= 2.36168e-008 A6=-5.72910e-013 A8=-4.43608e-016 A10= 7.12124e-020

各種データ

焦点距離 392.13
Fナンバー 4.12
画角 3.16
像高 21.64
レンズ全長 262.14
BF 74.92

下記に、各実施形態における各条件式の値を表1に示す。
(Numerical example 2)
Unit mm
Surface data surface number rd nd vd Effective diameter
1 92.617 12.53 1.48749 70.2 95.25
2 343.518 0.03 1.55184 49.1 94.27
3 (Diffraction) 343.489 0.03 1.49515 18.7 94.26
4 343.461 3.11 1.63555 22.7 94.25
5 * 635.945 0.15 93.57
6 69.921 9.63 1.48749 70.2 86.95
7 124.613 5.42 85.31
8 45.567 9.69 1.43387 95.1 71.95
9 60.992 0.15 68.58
10 49.537 5.00 1.84666 23.8 65.91
11 33.274 (variable) 55.30
12 114.393 1.80 1.80000 29.8 35.11
13 24.277 9.00 1.80809 22.8 31.99
14 40.933 (variable) 29.23
15 (Aperture) ∞ 0.15 23.04
16 41.402 4.72 1.43387 95.1 23.40
17 -55.816 3.24 1.84666 23.8 23.33
18 -140.266 1.49 23.58
19 -76.632 1.80 1.88300 40.8 26.55
20 36.677 10.99 1.68893 31.1 27.40
21 -33.346 0.50 28.75
22 -42.027 1.80 1.88300 40.8 28.49
23 77.260 1.65 29.80
24 53.240 8.03 1.69895 30.1 28.70
25 -26.966 1.40 1.80809 22.8 29.09
26 77.864 3.67 31.12
27 -65.464 1.80 1.59282 68.6 31.31
28 57.369 9.29 1.68893 31.1 36.48
29 -41.570 0.15 37.68
30 79.585 4.10 1.65412 39.7 40.97
31 545.403 2.50 41.05
32 ∞ 2.20 1.51633 64.1 41.31
33 ∞ (variable) 41.49
Image plane ∞

Aspheric data 3rd surface (diffractive surface)
C1 = -2.70457e-005 C2 = -2.93455e-010 C3 = -3.61642e-013 C4 = 2.34170e-016
C5 = -5.55157e-020

5th page
K = 4.48297e + 001 A4 = 2.36168e-008 A6 = -5.72910e-013 A8 = -4.43608e-016 A10 = 7.12124e-020

Various data

Focal length 392.13
F number 4.12
Angle of View 3.16
Statue height 21.64
Total lens length 262.14
BF 74.92

The values of the conditional expressions in each embodiment are shown in Table 1 below.

以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

LF・・前群、LR・・後群、Ldam・・回折光学素子、S・・開口絞り、1・・第1の回折格子、2・・第2の回折格子、102・・回折光学部、103・・屈折光学部、104・・ガラス基板、105・・非球面形状 LF ... front group, LR ... rear group, Ldam ... diffraction optical element, S ... aperture stop, 1st diffraction grating, 2nd diffraction grating, 102 ... diffraction optical part, 103 .. Refraction optical part, 104 .. Glass substrate, 105 .. Aspherical shape

Claims (10)

物体側から順に前群、開口絞り、後群を有し、かつ、前記前群は、物体側から順に、複数の回折格子を積層して成る回折光学部および色収差を低減するために異常部分分散特性を有する固体材料を備える屈折光学部を接合した光学素子、フォーカシング部を備える光学系であって、
前記屈折光学部は、前記回折光学部と接合されていない光学面が空気に面した非球面形状であることを特徴とする光学系。
The front group has a front group, an aperture stop, and a rear group in order from the object side, and the front group has a diffractive optical unit formed by stacking a plurality of diffraction gratings in order from the object side, and abnormal partial dispersion to reduce chromatic aberration. An optical element having a refractive optical part including a solid material having characteristics, and an optical system having a focusing part,
The optical system, wherein the refractive optical part has an aspherical shape in which an optical surface not joined to the diffractive optical part faces air.
前記回折光学部は、以下の条件式(1)を満足する位置に配置され、かつ以下の条件式(2)を満足する屈折力を備え、
前記屈折光学部は、以下の条件式(3)および(4)を満足する前記固体材料から成ることを特徴とする請求項1に記載の光学系。
0.5<|h|<1.0−−−−−−−−−−−−−−−−−−−−−(1)
0.01<|f/fdoe|<0.1−−−−−−−−−−−−−−−(2)
ΔθgF=θgF−(−1.665×10−7×νd+5.213×10−5×νd−5.656×10−3×νd+0.7278)とした時
0.02<ΔθgF<0.25−−−−−−−−−−−−−−−−−−(3)
10<νd<40−−−−−−−−−−−−−−−−−−−−−−−−(4)
ここで、hは光学系の光軸と平行に光軸からの高さ1で入射させた軸上近軸光線の回折光学素子の回折光学部における回折面を通過する際の光軸からの高さ、fは光学系全系の焦点距離、fdoeは回折光学素子の回折光学部の回折面における焦点距離、νdはνd=(nd−1)/(nF−nC)で表される固体材料のアッベ数、θgFはθgF=(ng−nF)/(nF−nC)で表される固体材料の部分分散比、ΔθgFは上式で表される異常部分分散比を各々表している。
The diffractive optical part is disposed at a position that satisfies the following conditional expression (1), and has a refractive power that satisfies the following conditional expression (2):
The optical system according to claim 1, wherein the refractive optical unit is made of the solid material that satisfies the following conditional expressions (3) and (4).
0.5 <| h | <1.0 -------------------- (1)
0.01 <| f / fdoe | <0.1 --------------- (2)
When ΔθgF = θgF − (− 1.665 × 10 −7 × νd 3 + 5.213 × 10 −5 × νd 2 −5.656 × 10 −3 × νd + 0.7278) 0.02 <ΔθgF <0. 25 ----------------- (3)
10 <νd <40 ----------------------- (4)
Here, h is the height from the optical axis when passing through the diffractive surface of the diffractive optical part of the diffractive optical element of the on-axis paraxial light beam incident at a height 1 from the optical axis parallel to the optical axis of the optical system. F is the focal length of the entire optical system, fdoe is the focal length of the diffraction surface of the diffractive optical element of the diffractive optical element, and νd is a solid material represented by νd = (nd-1) / (nF-nC). Abbe number, θgF represents the partial dispersion ratio of the solid material represented by θgF = (ng−nF) / (nF−nC), and ΔθgF represents the abnormal partial dispersion ratio represented by the above equation.
前記非球面形状は、以下の条件式(5)を満足していることを特徴とする請求項1または2に記載の光学系。
Δdb=((1/R)*r/(1+√(1−(1+k)*(r/R)))+B*r+C*r+D*r+E*r10+…)-((1/R)*r/(1+√(1−(r/R)))とした時

0.03<|Δdb_max/danm|<0.30−−−−−−−−(5)
ここで、Rは近軸曲率半径、rは光軸と垂直な方向の光軸からの高さ、kは円錐定数、B、C、D、E…は各次数の非球面係数とした際、Δdbは上式で定義される非球面成分量を、Δdb_maxはΔdbで定義される非球面形状を設けた光学面において、その光学面を通過する光線の有効半径内での最大非球面成分量を、danmは回折光学素子の屈折光学部の光軸上での厚さを各々表している。
The optical system according to claim 1 or 2, wherein the aspherical shape satisfies the following conditional expression (5).
Δdb = ((1 / R) * r 2 / (1 + √ (1− (1 + k) * (r / R) 2 )) + B * r 4 + C * r 6 + D * r 8 + E * r 10 +. When ((1 / R) * r 2 / (1 + √ (1- (r / R) 2 )))

0.03 <| Δdb_max / danm | <0.30 -------- (5)
Here, R is a paraxial radius of curvature, r is a height from the optical axis in a direction perpendicular to the optical axis, k is a conic constant, B, C, D, E. Δdb is the amount of aspherical component defined by the above equation, and Δdb_max is the maximum amount of aspherical component within the effective radius of the light beam passing through the optical surface on the optical surface provided with the aspherical surface defined by Δdb. , Danm represents the thickness of the refractive optical part of the diffractive optical element on the optical axis.
前記屈折光学部の焦点距離をfanmとした際、以下の条件式(6)を満足することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
0.2<|fanm/f|<5.0−−−−−−−−−−−−−−− (6)
The optical system according to any one of claims 1 to 3, wherein the following conditional expression (6) is satisfied when a focal length of the refractive optical unit is set to fanm.
0.2 <| fanm / f | <5.0 --------------- (6)
前記回折光学部は、2種類の分散の異なる材料から成る回折格子1、2を互いの格子面で密着接合しているとともに、フラウンホーファー線のg線、F線、d線、C線の波長をλg、λF、λd、λC、回折格子1、2のg線、F線、d線、C線の波長における屈折率をn1g、n2g、n1F、n2F、n1d、n2d、n1C、n2C、回折格子の格子厚をdh、回折格子の格子ピッチをP、設計次数近傍のM次の回折光に対する回折格子の凸部と凹部での光路長の差を各波長で除した値を、各々M(λg)={dh×(n1g−n2g)}/λg、M(λF)={dh×(n1F−n2F)}/λF、M(λd)={dh×(n1d−n2d)}/λd、M(λC)={dh×(n1C−n2C)}/λCとした際、以下の条件式(7)乃至(15)を満足することを特徴とする請求項1乃至4のいずれか1項に記載の光学系。
1.5≦n1d≦1.8−−−−−−−−−−−−−−−−−−−−−(7)
40≦νd1=(n1d*1)/(n1F*n1C)≦80−−−−−−(8)
θ1gF=(n1g*n1F)/(n1F*n1C)とし、Δθ1gF=θ1gF−(−1.665×10−7×νd1+5.213×10−5×νd1−5.656×10−3×νd1+0.7278)とした時

−0.05<Δθ1gF<0.05−−−−−−−−−−−−−−−−(9)
1.3≦n2d≦1.6−−−−−−−−−−−−−−−−−−−−−(10)
5≦νd2=(n2d*1)/(n2F*n2C)≦30−−−−−−−(11)
θ2gF=(n2g*n2F)/(n2F*n2C)とし、Δθ2gF=θ2gF−(−1.665×10−7×νd2+5.213×10−5×νd2−5.656×10−3×νd2+0.7278)とした時

−0.50<Δθ2gF<−0.02−−−−−−−−−−−−−−−(12)
0.01<n1d*n2d<0.5−−−−−−−−−−−−−−−−−(13)
0.01<dh/p≦0.1−−−−−−−−−−−−−−−−−−−−(14)
0.92≦{M(λg)+M(λF)+M(λd)+M(λC)}/(4*M)≦1.08 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−(15)
The diffractive optical section is formed by closely bonding two diffraction gratings 1 and 2 made of materials with different dispersions at the grating surfaces of each other, and the wavelengths of the Fraunhofer line g-line, F-line, d-line, and C-line. Λg, λF, λd, λC, refractive indexes of the diffraction gratings 1 and 2 at the wavelengths of g-line, F-line, d-line, and C-line are n1g, n2g, n1F, n2F, n1d, n2d, n1C, n2C, and diffraction grating Is obtained by dividing the difference in optical path length between the convex and concave portions of the diffraction grating by the respective wavelengths with respect to the M-th order diffracted light in the vicinity of the design order, by M (λg ) = {Dh × (n1g−n2g)} / λg, M (λF) = {dh × (n1F−n2F)} / λF, M (λd) = {dh × (n1d−n2d)} / λd, M ( When λC) = {dh × (n1C−n2C)} / λC, the following conditional expressions (7) to (1 ) Optical system according to any one of claims 1 to 4, characterized by satisfying the.
1.5 ≦ n1d ≦ 1.8 -------------------- (7)
40 ≦ νd1 = (n1d * 1) / (n1F * n1C) ≦ 80 ------ (8)
θ1gF = (n1g * n1F) / (n1F * n1C), and Δθ1gF = θ1gF − (− 1.665 × 10 −7 × νd1 3 + 5.213 × 10 −5 × νd1 2 −5.656 × 10 −3 × When νd1 + 0.7278)

-0.05 <Δθ1gF <0.05 ---------------- (9)
1.3 ≦ n2d ≦ 1.6 -------------------- (10)
5 ≦ νd2 = (n2d * 1) / (n2F * n2C) ≦ 30 ------- (11)
θ2gF = (n2g * n2F) / (n2F * n2C), and Δθ2gF = θ2gF − (− 1.665 × 10 −7 × νd2 3 + 5.213 × 10 −5 × νd2 2 −5.656 × 10 −3 × νd2 + 0.7278)

-0.50 <[Delta] [theta] 2gF <-0.02 -------------- (12)
0.01 <n1d * n2d <0.5 ----------------- (13)
0.01 <dh / p ≦ 0.1 ------------------- (14)
0.92 ≦ {M (λg) + M (λF) + M (λd) + M (λC)} / (4 * M) ≦ 1.08 ----------------- ----------- (15)
前記回折光学部において、回折格子1は樹脂材料又はAl、Zr、Y及びその酸化物、複合物、混合物のいずれかの無機微粒子を含んだ樹脂材料から成り、回折格子2は樹脂材料又はITOやTi、Nr、Cr及びその酸化物、複合物、混合物のいずれかの無機微粒子を含んだ樹脂材料で構成されていることを特徴とする請求項5に記載の光学系。   In the diffractive optical part, the diffraction grating 1 is made of a resin material or a resin material containing inorganic fine particles of any one of Al, Zr, Y and oxides, composites, and mixtures thereof, and the diffraction grating 2 is made of resin material or ITO or 6. The optical system according to claim 5, wherein the optical system is made of a resin material containing inorganic fine particles of any one of Ti, Nr, Cr and oxides, composites, and mixtures thereof. 前記光学素子は、型を用いて成形されており、ガラス基板上に回折格子1を成形し、前記成形された回折格子1を覆うように回折格子2を成形することにより前記回折光学部を形成し、前記回折光学部のガラス基板側ではない光学面に屈折光学部を成形することを特徴とする請求項5に記載の光学系。   The optical element is formed using a mold, and the diffraction grating 1 is formed on a glass substrate, and the diffraction grating 2 is formed so as to cover the formed diffraction grating 1 to form the diffraction optical unit. The optical system according to claim 5, wherein a refractive optical part is formed on an optical surface that is not on the glass substrate side of the diffractive optical part. 複数の回折格子を積層して成る回折光学部および異常部分分散特性を有する固体材料を備える屈折光学部を接合した光学素子であって、
前記屈折光学部は、前記回折光学部と接合されていない光学面が空気に面した非球面形状であることを特徴とする光学素子。
An optical element obtained by bonding a diffractive optical part formed by laminating a plurality of diffraction gratings and a refractive optical part including a solid material having anomalous partial dispersion characteristics,
The optical element, wherein the refractive optical part has an aspherical shape in which an optical surface not joined to the diffractive optical part faces air.
前記屈折光学部は、以下の条件式(3)および(4)を満足する前記固体材料から成ることを特徴とする請求項8に記載の光学素子。
ΔθgF=θgF−(−1.665×10−7×νd+5.213×10−5×νd−5.656×10−3×νd+0.7278)とした時
0.02<ΔθgF<0.25−−−−−−−−−−−−−−−−−−(3)
10<νd<40−−−−−−−−−−−−−−−−−−−−−−−−(4)
ここで、νdはνd=(nd−1)/(nF−nC)で表される固体材料のアッベ数、θgFはθgF=(ng−nF)/(nF−nC)で表される固体材料の部分分散比、ΔθgFは上式で表される異常部分分散比を各々表している。
9. The optical element according to claim 8, wherein the refractive optical part is made of the solid material that satisfies the following conditional expressions (3) and (4).
When ΔθgF = θgF − (− 1.665 × 10 −7 × νd 3 + 5.213 × 10 −5 × νd 2 −5.656 × 10 −3 × νd + 0.7278) 0.02 <ΔθgF <0. 25 ----------------- (3)
10 <νd <40 ----------------------- (4)
Here, νd is the Abbe number of the solid material represented by νd = (nd-1) / (nF-nC), and θgF is the solid material represented by θgF = (ng-nF) / (nF-nC). The partial dispersion ratio, ΔθgF, represents the abnormal partial dispersion ratio represented by the above equation.
前記非球面形状は、以下の条件式(5)を満足していることを特徴とする請求項8または9に記載の光学素子。
Δdb=((1/R)*r/(1+√(1−(1+k)*(r/R)))+B*r+C*r+D*r+E*r10+…)-(1/R)*r/(1+√(1−(r/R)))とした時
0.03<|Δdb_max/danm|<0.30−−−−−−−−(5)
ここで、Rは近軸曲率半径、rは光軸と垂直な方向の光軸からの高さ、kは円錐定数、B、C、D、E…は各次数の非球面係数とした際、Δdbは上式で定義される非球面成分量を、Δdb_maxはΔdbで定義される非球面形状を設けた光学面において、その光学面を通過する光線の有効半径内での最大非球面成分量を、danmは回折光学素子の屈折光学部の光軸上での厚さを各々表している。
The optical element according to claim 8, wherein the aspherical shape satisfies the following conditional expression (5).
Δdb = ((1 / R) * r 2 / (1 + √ (1− (1 + k) * (r / R) 2 )) + B * r 4 + C * r 6 + D * r 8 + E * r 10 +. (1 / R) * r 2 / (1 + √ (1- (r / R) 2 )) 0.03 <| Δdb_max / danm | <0.30 −−−−−−−−−− (5)
Here, R is a paraxial radius of curvature, r is a height from the optical axis in a direction perpendicular to the optical axis, k is a conic constant, B, C, D, E. Δdb is the amount of aspherical component defined by the above equation, and Δdb_max is the maximum amount of aspherical component within the effective radius of the light beam passing through the optical surface on the optical surface provided with the aspherical surface defined by Δdb. , Danm represents the thickness of the refractive optical part of the diffractive optical element on the optical axis.
JP2011203282A 2011-09-16 2011-09-16 Optical system and optical element Withdrawn JP2013064858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203282A JP2013064858A (en) 2011-09-16 2011-09-16 Optical system and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203282A JP2013064858A (en) 2011-09-16 2011-09-16 Optical system and optical element

Publications (1)

Publication Number Publication Date
JP2013064858A true JP2013064858A (en) 2013-04-11

Family

ID=48188423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203282A Withdrawn JP2013064858A (en) 2011-09-16 2011-09-16 Optical system and optical element

Country Status (1)

Country Link
JP (1) JP2013064858A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111263A (en) * 2015-12-15 2017-06-22 キヤノン株式会社 Imaging optical system using diffraction optical element, and optical device
US11249321B2 (en) 2016-10-31 2022-02-15 Canon Kabushiki Kaisha Diffractive optical element, optical system having the same, and imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111263A (en) * 2015-12-15 2017-06-22 キヤノン株式会社 Imaging optical system using diffraction optical element, and optical device
US11249321B2 (en) 2016-10-31 2022-02-15 Canon Kabushiki Kaisha Diffractive optical element, optical system having the same, and imaging apparatus

Similar Documents

Publication Publication Date Title
US8542447B2 (en) Photographic optical system and image pickup apparatus having the same
JP5366673B2 (en) Optical system and optical apparatus having the same
JP4898307B2 (en) Optical system and optical apparatus having the same
JP2000258685A (en) Photographing optical system
JP5202014B2 (en) Optical system and optical instrument using the same
JP5258204B2 (en) Diffractive optical element, optical system using the same, and optical instrument
JP6304954B2 (en) Optical system and optical apparatus using diffractive optical element
JP2019008047A (en) Optical system and imaging apparatus having the same
JP5039393B2 (en) Optical system and optical apparatus having the same
JP3792846B2 (en) Zoom lens
JP6661363B2 (en) Optical system and optical device using diffractive optical element
JP2014109700A (en) Image capturing optical system and image capturing device having the same
JP2016173439A (en) Telephoto lens
JP5317553B2 (en) OPTICAL SYSTEM AND OPTICAL DEVICE USING SAME, IMAGING DEVICE, AND PROJECTION DEVICE
JP2005215387A (en) Optical system
JP4817705B2 (en) Optical system
JP6961366B2 (en) Optical system and imaging device with it
JP2013064858A (en) Optical system and optical element
JP2008122592A (en) Microscope objective lens
JP2012247450A (en) Optical system
JP2018072623A (en) Diffraction optical element and optical system and imaging apparatus having the same
JP5459966B2 (en) Diffractive optical element, optical system having the same, and optical instrument
JP4650715B2 (en) Front teleconverter lens
JP6192325B2 (en) Imaging optical system and imaging apparatus having the same
JP2015203790A (en) Optical system and optical device having the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202