WO2024024701A1 - Optically anisotropic film and phase difference plate - Google Patents

Optically anisotropic film and phase difference plate Download PDF

Info

Publication number
WO2024024701A1
WO2024024701A1 PCT/JP2023/026899 JP2023026899W WO2024024701A1 WO 2024024701 A1 WO2024024701 A1 WO 2024024701A1 JP 2023026899 W JP2023026899 W JP 2023026899W WO 2024024701 A1 WO2024024701 A1 WO 2024024701A1
Authority
WO
WIPO (PCT)
Prior art keywords
optically anisotropic
anisotropic film
compound
wavelength
group
Prior art date
Application number
PCT/JP2023/026899
Other languages
French (fr)
Japanese (ja)
Inventor
奈保実 高田
佑紀 齊部
悟史 岡田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2024024701A1 publication Critical patent/WO2024024701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optically anisotropic film and a retardation plate.
  • Optically anisotropic films with refractive index anisotropy are used in various applications such as antireflection films for display devices and optical compensation filters for liquid crystal display devices.
  • Patent Document 1 describes a retardation plate that exhibits reverse wavelength dispersion.
  • a display device In a display device, if the antireflection performance is insufficient, color changes when viewed from an oblique direction and light leakage when displaying black are likely to occur. Therefore, sufficient antireflection performance is required in the visible light region, particularly in the entire wavelength region of 430 to 680 nm.
  • Patent Document 1 does not provide sufficient antireflection performance in some visible light regions.
  • the optically anisotropic film may have a single-layer structure or a structure in which a plurality of layers are laminated, but from the viewpoint of reducing the height of the display device, a single-layer structure that can be more easily reduced in height is preferable.
  • An object of the present invention is to provide a single-layer optically anisotropic film having sufficient antireflection performance over the entire wavelength range of 430 to 680 nm in the visible light region, and a retardation plate equipped with the same.
  • the present invention relates to the following optically anisotropic film.
  • the present invention also relates to a retardation plate comprising the optically anisotropic film described above.
  • the present invention it is possible to provide a single-layer optically anisotropic film having sufficient antireflection performance over the entire wavelength range of 430 to 680 nm in the visible light region, and a retardation plate equipped with the optically anisotropic film.
  • FIG. 1 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-1.
  • FIG. 2 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-2.
  • FIG. 3 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-3.
  • FIG. 4 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-4.
  • the compound represented by formula (A1) is also referred to as compound (A1), and the same applies to cases where it is represented by other formulas.
  • the dye composed of compound (A1) is also referred to as dye (A1), and the same applies to cases where it is expressed by other formulas.
  • the group represented by formula (1a) is also referred to as group (1a), and the same applies to groups represented by other formulas.
  • " ⁇ " representing a numerical range includes the upper and lower limits.
  • the alkyl group may be linear, branched, cyclic, or a combination of these structures.
  • the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, unless otherwise specified, with a fluorine atom being preferred.
  • an aryl group refers to a group bonded via a carbon atom constituting an aromatic ring of an aromatic compound, such as a benzene ring, a naphthalene ring, or a biphenyl ring.
  • heteroaryl group refers to a group bonded via a carbon atom or a heteroatom constituting an aromatic ring of an aromatic compound having a heteroatom, such as a furan ring, a thiophene ring, or a pyrrole ring.
  • a squarylium compound refers to a compound having a squarylium skeleton represented by the following formula (S1) that can have a resonance structure represented by the following formula (S2) in the structural formula.
  • the squarylium skeleton is represented by either formula (S1) or formula (S2).
  • Re represents in-plane retardation.
  • Retardation is measured using a retardation measuring device (for example, RETS-100 manufactured by Otsuka Electronics).
  • spectral characteristics can be measured using a spectrophotometer. Further, if there is no particular description regarding the measurement direction, it means the characteristics at an incident angle of 0°.
  • optically anisotropic film has an ellipticity of 0.9 or more in the entire wavelength range of 430 to 680 nm.
  • the ellipticity has a correlation with retardation (phase difference).
  • the optically anisotropic film according to the embodiment of the present invention preferably has an ellipticity of 0.92 or more in the entire wavelength range of 430 to 680 nm.
  • the optically anisotropic film may contain a specific near-infrared light absorbing dye described below.
  • the optically anisotropic film according to the embodiment of the present invention has a transmittance of 97% or more at at least one of a wavelength of 830 nm and a wavelength of 850 nm. It is more preferable that the optically anisotropic film has a transmittance of 97% or more at both wavelengths of 830 nm and 850 nm. Wavelengths around 830 nm and 850 nm are one of the wavelengths used in eye tracking in augmented reality (VR) and virtual reality (AR) and sensing in near-infrared light sensors.
  • VR augmented reality
  • AR virtual reality
  • the optically anisotropic film has a transmittance of 97% or more at at least one of wavelengths of 830 nm and 850 nm, eye tracking performance and sensing performance can be improved.
  • the transmittance of the optically anisotropic film at at least one of a wavelength of 830 nm and a wavelength of 850 nm is more preferably 98% or more.
  • the optically anisotropic film according to the embodiment of the present invention to satisfy the above-mentioned transmittance at at least one of the wavelengths of 830 nm and 850 nm, for example, the optically anisotropic film must contain a specific near-infrared light absorbing dye described below. Including.
  • the optically anisotropic film according to the embodiment of the present invention preferably has an average transmittance of 95% or more in the wavelength range of 430 to 680 nm. Since the optically anisotropic film has excellent visible light transmittance, it can improve image quality and color reproducibility when used in display devices and the like.
  • the average transmittance of the optically anisotropic film at a wavelength of 430 to 680 nm is more preferably 97% or more.
  • the optically anisotropic film according to the embodiment of the present invention preferably has a maximum absorption wavelength of less than 780 nm in the wavelength range of 650 to 1100 nm. If the maximum absorption wavelength is less than 780 nm, the transmittance of the optically anisotropic film at at least one of the wavelengths of 830 nm and 850 nm can be maintained high without decreasing.
  • the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is more preferably 770 nm or less.
  • the optically anisotropic film according to the embodiment of the present invention preferably has a maximum absorption wavelength of 750 nm or more in the wavelength range of 650 to 1100 nm. If the maximum absorption wavelength is 750 nm or more, visible light transmittance can be maintained at a high level without absorbing visible light.
  • the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is more preferably 760 nm or more.
  • the optically anisotropic film may contain a specific near-infrared light absorbing dye described below.
  • the dichroic ratio of the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is preferably 1.5 or more, more preferably 2.0 or more. If the dichroic ratio of the maximum absorption wavelength is in the range, there is no need to increase the dye content in the optically anisotropic film, and the transmittance of visible light and near-infrared light near the sensing wavelength can be maintained high, which is preferable. .
  • the optically anisotropic film according to the embodiment of the present invention preferably exhibits reverse wavelength dispersion.
  • Reverse wavelength dispersion refers to the fact that when measuring the in-plane retardation (Re) value of an optically anisotropic film at a specific wavelength (visible light range), the Re value becomes equal or higher as the measurement wavelength becomes larger. .
  • the optically anisotropic film according to the embodiment of the present invention preferably contains a near-infrared absorbing dye, particularly a near-infrared absorbing dye having a specific structure described below. This makes it possible to increase the ellipticity of the optically anisotropic film in the visible light region.
  • the near-infrared absorbing dye is preferably a dye having dichroism in the near-infrared region. Having dichroism means that the absorbance in the long axis direction of the dye is different from the absorbance in the short axis direction.
  • the absorbance in the short axis direction is greater than the absorbance in the long axis direction in the near-infrared region. Therefore, the ellipticity of the optically anisotropic film in the visible light region can be further increased.
  • the refractive index of an organic dye decreases monotonically as the wavelength increases in a wavelength region away from the intrinsic absorption wavelength. Such a phenomenon is called normal dispersion.
  • the refractive index changes rapidly as the wavelength increases, which is called anomalous dispersion.
  • the refractive index rapidly decreases on the short wavelength side of the specific absorption wavelength, and rapidly increases on the long wavelength side of the specific absorption wavelength.
  • the refractive index in the short axis direction decreases rapidly just before the characteristic absorption wavelength, so the refractive index difference increases on the long wavelength side of the visible light region.
  • the in-plane retardation of an optically anisotropic film is calculated from the product of the refractive index difference and the film thickness, so if the film thickness is constant, the retardation increases as the refractive index difference increases. It is possible to approach ⁇ /4 over the entire 680 nm range.
  • the absorbance in the long axis direction of the near-infrared absorbing dye is measured from the absorption spectrum obtained by irradiating the optically anisotropic film with polarized light parallel to the orientation direction of the near-infrared absorbing dye. is measured from the absorption spectrum obtained by irradiating the optically anisotropic film with polarized light perpendicular to the alignment direction of the near-infrared absorbing dye.
  • the near-infrared absorbing dye preferably has a dichroic ratio of 1.5 or more, more preferably 2.0 or more.
  • the larger the dichroic ratio the more easily the retardation increases in the long wavelength region, and the easier it is to approach ⁇ /4 over the entire wavelength range of 430 to 680 nm in visible light, thus obtaining an optically anisotropic film with a high ellipticity in this region. be able to. Further, since the effect of increasing retardation can be obtained even in a small amount, there is no need to increase the content in the optically anisotropic film, and the transmittance of visible light and near-infrared light near the sensing wavelength can be maintained high.
  • the near-infrared absorbing dye preferably has a maximum absorption wavelength in the wavelength range of 650 to 900 nm in dichloromethane.
  • the maximum absorption wavelength in this range the retardation in the long wavelength region increases and tends to approach ⁇ /4 over the entire wavelength range of 430 to 680 nm in visible light, resulting in optical anisotropy with high ellipticity in this region.
  • a sexual membrane can be obtained.
  • the near-infrared absorbing dye also preferably satisfies the following spectral characteristics when the transmittance at the maximum absorption wavelength is 10% in a spectral transmittance curve measured after being dissolved in dichloromethane.
  • the average transmittance at a wavelength of 400 to 500 nm is preferably 95% or more, more preferably 97% or more.
  • the minimum transmittance at a wavelength of 400 to 500 nm is preferably 85% or more, more preferably 90% or more.
  • the average transmittance at a wavelength of 500 to 600 nm is preferably 95% or more, more preferably 97% or more.
  • the minimum transmittance at a wavelength of 500 to 600 nm is preferably 90% or more, more preferably 93% or more.
  • the near-infrared absorbing dye has a squarylium skeleton. If the dye has a squarylium skeleton, its absorption in the visible light region is small, so that it is possible to suppress coloring of the resulting optically anisotropic film.
  • the near-infrared absorbing dye has a mesogenic group.
  • a mesogenic group is a functional group that is rigid and has orientation.
  • the mesogenic group preferably has a structure containing two or more cyclic structures such as an aromatic ring or an alicyclic ring, and more preferably a structure in which such cyclic structures are connected directly or via a linking group. Since the near-infrared absorbing dye has a mesogenic group, the dye is easily oriented in the optically anisotropic film, and predetermined optical properties can be easily controlled.
  • R L -D R L (3) As the near-infrared absorbing dye, a compound represented by the following formula (3) is more preferable.
  • D is a divalent group having a squarylium skeleton
  • R L is a monovalent mesogenic group.
  • Two R L may be the same or different.
  • the two mesogenic groups bond symmetrically around the squarylium skeleton, making it easier to align with the liquid crystal compound.
  • the mesogenic group R L is preferably represented by the following formula (2).
  • R L ' is a hydrogen atom, a monovalent organic group having electron-withdrawing properties, or a monovalent organic group having polymerizability.
  • Examples of the monovalent organic group having electron-withdrawing properties include CN, CF 3 , F, and the like.
  • Examples of the monovalent organic group having polymerizability include a polymerizable group capable of radical polymerization or cationic polymerization.
  • a known radically polymerizable group can be used, and an acryloyl group or a methacryloyl group is preferable.
  • a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
  • R L ' which is the terminal of the mesogenic group
  • R L ' can be selected depending on the purpose of the optically anisotropic film to be obtained.
  • a monovalent organic group with electron-withdrawing properties is preferable
  • a monovalent organic group with polymerizability is preferable, and the hydrogen atom does not depend on the purpose. preferable.
  • Cy is an arylene group that may have a substituent, a heteroarylene group that may have a substituent, or a cycloalkylene group that may have a substituent.
  • the arylene group include a phenylene group, a naphthalene group, and a tetrahydronaphthalene group.
  • the heteroarylene group include a furan ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, and a benzothiazole ring.
  • Examples of the cycloalkylene group include a cyclohexylene group, a cyclohexelene group, a decahydronaphthalene group, and a dioxane group.
  • Examples of the substituent for Cy include a methyl group and a methoxy group.
  • Sp1, Sp2, and Sp3 each independently represent one type of group or bond selected from a single bond, an alkylene group, an alkenylene group, an alkynylene group, a carbonyl group, an ester bond, an amide bond, and an ether bond. , or a combination of these.
  • the alkylene group is preferably a straight chain alkylene group having 1 to 12 carbon atoms.
  • n is an integer from 2 to 9, preferably from 2 to 6. Furthermore, in formula (2), two or more [Cy-Sp2] structures may be the same or different.
  • the mesogenic group represented by formula (2) preferably includes structures represented by the following formulas, with structures represented by formulas (2-2) and (2-4) being particularly preferred.
  • the near-infrared absorbing dye at least one selected from a compound represented by the following formula (3-1A), a compound represented by the following formula (3-1B), and a compound represented by the following formula (3-2) is used.
  • a compound represented by the following formula (3-1A) a compound represented by the following formula (3-1B), and a compound represented by the following formula (3-2) is used.
  • One type is more preferable.
  • Compounds (3-1A) to (3-2) below have mesogenic groups extending in a direction perpendicular to the squarylium skeleton at the center of the compound, so that the optically anisotropic film formed is slow.
  • the squarylium skeleton is likely to be arranged in a direction perpendicular to the phase axis.
  • absorption in the infrared region (particularly wavelengths of 700 to 900 nm) originating from the squarylium skeleton is likely to be obtained in the direction perpendicular to the slow axis of the optically anisotropic film, and an optically anisotropic film exhibiting desired characteristics can be obtained. Easy to obtain.
  • R L is the same as the definition of R L in formula (2) above, and preferred embodiments are also the same.
  • X 1 is a carbon atom or nitrogen atom that may have a monovalent substituent. From the viewpoint of improving red transmittance, carbon atoms are preferable, and from the viewpoint of improving blue transmittance, nitrogen atoms are preferable.
  • Monovalent substituents on carbon atoms include hydrogen atoms, halogen atoms, alkyl groups having 1 to 9 carbon atoms, alkenyl groups, alkynyl groups, aromatic rings that may have substituents, hydroxyl groups, carboxy groups, and sulfo groups.
  • a cyano group an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 19 carbon atoms.
  • Y 1 is an oxygen atom, a sulfur atom, or an NH group.
  • Y 1 is one of these elements or groups, the five-membered ring containing Y 1 becomes aromatic, and the blue light transmittance is improved.
  • a sulfur atom is preferable, and from the viewpoint of improving red light transmittance and steepening absorption due to hydrogen bonding, an NH group is preferable.
  • X 2 is a sulfur atom or an oxygen atom. Sulfur atoms are preferred from the viewpoint of improving red light transmittance.
  • Y 2 is a carbon atom or nitrogen atom that may have a monovalent substituent. Nitrogen atoms are preferred from the viewpoint of improving blue light transmittance.
  • Monovalent substituents on carbon atoms include hydrogen atoms, halogen atoms, alkyl groups having 1 to 9 carbon atoms, hydroxyl groups, carboxy groups, sulfo groups, cyano groups, amino groups, and N-substituted amino groups. , a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 19 carbon atoms.
  • R 11 and R 12 may each independently have a substituent, and may have an unsaturated bond between carbon atoms, an oxygen atom, or a fatty acid. It is an alkyl group having 1 to 20 carbon atoms and which may contain a ring or an aromatic ring.
  • the alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
  • the alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
  • R 11 and R 12 is a branched alkyl group having 3 to 15 carbon atoms, and both R 11 and R 12 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
  • R 11 and R 12 may be the same or different, but are preferably the same from the viewpoint of symmetry.
  • R11 and R12 have a substituent
  • the carbon number of a substituent is included in the carbon number of R11 and R12 .
  • Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
  • R 13 and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
  • R 11 and R 12 , R 11 and R 13 , R 12 and R 13 , R 13 and R 14 are bonded to each other to form a ring. Good too.
  • the number of members in the ring is preferably 4 to 6.
  • the compound represented by formula (3-1A) includes the compounds shown in the table below.
  • the case where X 1 is a nitrogen atom and Y 1 is an NH group is defined as a compound (3-1Ai)
  • the case where X 1 is a carbon atom and Y 1 is an NH group is defined as a compound (3-1Ai). It is referred to as compound (3-1Aii).
  • each symbol has the same meaning on the left and right sides of the squarylium skeleton.
  • R L is as defined above.
  • the compound represented by formula (3-1B) includes the compounds shown in the table below.
  • compound (3-1B) the case where X 2 is a sulfur atom is referred to as compound (3-1Bi), and the case where X 2 is an oxygen atom is referred to as compound (3-1Bii).
  • each symbol has the same meaning on the left and right sides of the squarylium skeleton.
  • R L is as defined above.
  • R 21 and R 22 may each independently have a substituent, or may contain an unsaturated bond, an oxygen atom, an alicyclic ring, or an aromatic ring between carbon atoms. It is a good alkyl group having 1 to 20 carbon atoms.
  • the alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
  • the alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
  • R 21 and R 22 is a branched alkyl group having 3 to 15 carbon atoms, and both R 21 and R 22 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
  • R 21 and R 22 may be the same or different, but are preferably the same from the viewpoint of symmetry.
  • R21 and R22 have a substituent
  • the carbon number of the substituent is included in the carbon number of R21 and R22 .
  • Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
  • R 23 is a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
  • R 21 and R 22 , R 21 and R 23 , and R 22 and R 23 may be bonded to each other to form a ring.
  • the number of members in the ring is preferably 4 to 6.
  • the compound represented by formula (3-2) includes the compounds shown in the table below. Furthermore, in the compounds shown in the table below, each symbol has the same meaning on the left and right sides of the squarylium skeleton. Moreover, R L is as defined above.
  • Near-infrared absorbing dyes can be produced, for example, by the synthesis method shown below.
  • R L CHO can be synthesized, for example, according to a known production method described in paragraph [0131] of Japanese Patent Application Publication No. 2011-207782.
  • R L Br can be synthesized according to the known production method described in, for example, Synlett, 2009, 20, 3279-3282.
  • R L COCl can be synthesized, for example, according to a known production method described in paragraph [0093] of Japanese Patent Application Publication No. 2014-58490.
  • the method for synthesizing the near-infrared absorbing dye (3-2) is shown below. Note that the starting material can be synthesized, for example, according to the known production method described in International Publication No. 2021/112020.
  • R L BPin is, for example, Org. Biomol. Chem. , 2016, 14, 9974-9980 and the like.
  • the optically anisotropic film according to the embodiment of the present invention may contain only one type of near-infrared absorbing dye, or may contain a combination of multiple types of near-infrared absorbing dye.
  • the content of the near-infrared absorbing dye in the optically anisotropic film is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, particularly preferably 1 to 8% by mass, and improves ellipticity.
  • visible light transmittance it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 1% by mass or more, and from the viewpoint of visible light transmittance, preferably 15% by mass or less, more preferably is 10% by mass or less, particularly preferably 8% by mass or less.
  • the optically anisotropic film according to the embodiment of the present invention preferably contains a liquid crystal compound. This makes it easy to orient the near-infrared absorbing dye within the film, resulting in an optically anisotropic film with controlled optical properties.
  • the liquid crystal compound is preferably a liquid crystal compound that transmits visible light from the viewpoint of visible light transmittance.
  • the liquid crystal compound include non-polymerizable liquid crystal compounds that exhibit a nematic phase, polymerizable liquid crystal compounds that exhibit a nematic phase, and polymerizable liquid crystal compounds that exhibit a smectic phase. From the viewpoint of orientation, non-polymerizable liquid crystal compounds exhibiting a nematic phase and polymerizable liquid crystal compounds exhibiting a nematic phase are preferred.
  • the liquid crystal compound preferably exhibits reverse wavelength dispersion.
  • a liquid crystal compound exhibiting reverse wavelength dispersion (hereinafter also referred to as a reverse wavelength dispersion liquid crystal compound) means a compound in which an optically anisotropic film produced using the compound exhibits reverse wavelength dispersion.
  • a reverse wavelength dispersion liquid crystal compound is the liquid crystal compound that is used when measuring the in-plane retardation (Re) value at a specific wavelength (visible light range) of an optically anisotropic film made using only this compound. , the Re value remains the same or increases as the measurement wavelength increases.
  • a liquid crystal compound exhibiting reverse wavelength dispersion is preferable because it improves retardation on the short wavelength side.
  • the liquid crystal compound may be synthesized by known manufacturing methods described in, for example, International Publication No. 2009/148142, Japanese Patent Application Publication No. 2011-207765, International Publication No. 2021/039625, etc., or commercially available products. May be used.
  • liquid crystal compound exhibiting reverse wavelength dispersion known compounds can be used, for example, the liquid crystal compounds shown below and those described in Japanese Patent Application Publication No. 2011-207765, International Publication No. 2021/039625, etc. Liquid crystal compounds can be used.
  • the optically anisotropic film according to the embodiment of the present invention may include a plurality of liquid crystal compounds.
  • a plurality of reverse wavelength dispersion liquid crystal compounds may be included, or a flat wavelength dispersion liquid crystal compound may be included in addition to the reverse wavelength dispersion liquid crystal compound.
  • the liquid crystal compound includes a reverse wavelength dispersion liquid crystal compound and a flat wavelength dispersion liquid crystal compound
  • the optically anisotropic film preferably exhibits reverse wavelength dispersion. By mixing a flat wavelength dispersive liquid crystal compound, reverse wavelength dispersion can be adjusted.
  • a flat dispersion liquid crystal compound means a compound in which an optically anisotropic film produced using only the compound as a liquid crystal compound exhibits flat dispersion.
  • a flat dispersion liquid crystal compound is a liquid crystal compound that, when the in-plane retardation (Re) value at a specific wavelength (visible light range) of an optically anisotropic film prepared using only the compound is measured. The in-plane retardation value hardly changes from the short wavelength side to the long wavelength side.
  • the content of the liquid crystal compound in the optically anisotropic film according to the embodiment of the present invention is preferably 50 to 99.9% by mass, more preferably 80 to 99.5% by mass, particularly preferably 90 to 99% by mass.
  • the content is preferably 50% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more from the viewpoint of developing a stable liquid crystal phase over a wide temperature range, and is also preferred from the viewpoint of achieving sufficient absorbance. is 99.9% by mass or less, more preferably 99.5% by mass or less, particularly preferably 99% by mass or less.
  • the optically anisotropic film according to the embodiment of the present invention may contain other components in addition to the above-described near-infrared absorbing dye and liquid crystal compound.
  • the optically anisotropic film may contain a polymer of polymerizable monomers as other components, for example, when the liquid crystal compound is a polymerizable liquid crystal compound.
  • the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Among these, polyfunctional radically polymerizable monomers are preferred.
  • a monomer copolymerizable with the polymerizable liquid crystal compound is preferable.
  • the content of the polymerizable monomer in the optically anisotropic film is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
  • the optically anisotropic film may contain, for example, a surfactant as other components.
  • a surfactant include conventionally known compounds.
  • the optically anisotropic film may contain, for example, an antioxidant as other components.
  • an antioxidant examples include Irganox 1010 (manufactured by BASF).
  • the optically anisotropic film may contain various alignment control agents such as a vertical alignment agent and a horizontal alignment agent as other components. These alignment control agents are compounds that can control the alignment of the liquid crystal compound horizontally or vertically on the interface side.
  • the optically anisotropic film according to the embodiment of the present invention has a single layer structure. Further, the thickness of the optically anisotropic film is preferably 0.5 to 4.0 ⁇ m, more preferably 1.5 to 3.0 ⁇ m from the viewpoint of retardation.
  • the optically anisotropic film according to the embodiment of the present invention includes, for example, a composition containing the above-mentioned near-infrared absorbing dye, the above-mentioned liquid crystal compound as necessary, other components, and optional components necessary during production. Can be manufactured by curing.
  • Optional components necessary during production include a solvent and a polymerization initiator when the liquid crystal compound is a polymerizable liquid crystal compound.
  • the polymerization initiator is selected depending on the type of polymerization reaction, and includes, for example, a thermal polymerization initiator and a photopolymerization initiator.
  • the photopolymerization initiator include ⁇ -carbonyl compounds, acyloin ethers, ⁇ -hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimer and p-aminophenyl ketone. It will be done.
  • the content of the polymerization initiator in the composition is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total solid content of the composition.
  • organic solvents are preferred.
  • Organic solvents include amides, sulfoxides, heterocyclic compounds, hydrocarbons, alkyl halides, esters, ketones, and ethers. Note that two or more types of organic solvents may be used in combination.
  • the method for curing the composition is not particularly limited, and any known method can be used. Further, in the optically anisotropic film, the near-infrared absorbing dye is preferably oriented.
  • the near-infrared absorbing dye can be oriented by, for example, producing a film from a composition containing a near-infrared absorbing dye and stretching the film.
  • the method of stretching the film is to convey it into a heating furnace while holding both ends of the film with clips, and then to stretch the film in either the length direction or the width direction with the clips holding both ends of the film in the heating furnace.
  • uniaxial stretching method in which heat stretching is carried out in one direction
  • sequential biaxial stretching method in which heat stretching is carried out in either the length or width direction, and then heat stretching in the other direction
  • a simultaneous biaxial stretching method that performs heating and stretching in two directions simultaneously can be employed.
  • the near-infrared absorbing dye can be aligned by aligning the liquid crystal compound.
  • a composition containing a near-infrared absorbing dye, a liquid crystal compound, etc. (hereinafter also referred to as "liquid crystal composition") is applied to form a coating film, and the coating film is subjected to an alignment treatment to align the liquid crystal compound.
  • the liquid crystal compound is a polymerizable liquid crystal compound
  • an optically anisotropic film can be formed by subjecting the obtained coating film to a curing treatment (light irradiation treatment or heat treatment).
  • a liquid crystal composition is applied onto a support to form a coating film, and the coating film is subjected to an alignment treatment to align the polymerizable liquid crystal compound.
  • the support used is a member that functions as a base material for applying the composition.
  • the support may be a temporary support that is peeled off after the liquid crystal composition is applied and cured.
  • a plastic film or a glass substrate can be used as the support (temporary support).
  • the thickness of the support is preferably 5 to 1000 ⁇ m, more preferably 10 to 300 ⁇ m, particularly preferably 15 to 90 ⁇ m.
  • the alignment layer generally has a polymer as its main component. Polymers for alignment layers are described in many documents, and many commercially available products are available.
  • the polymer for the alignment layer is preferably polyvinyl alcohol, polyimide, or a derivative thereof. Note that the alignment layer is preferably subjected to known rubbing treatment, photo alignment treatment, or groove alignment treatment.
  • the thickness of the alignment layer is preferably 0.01 to 10 ⁇ m, more preferably 0.01 to 1 ⁇ m.
  • Methods for applying the liquid crystal composition include curtain coating method, dip coating method, spin coating method, print coating method, spray coating method, slot coating method, roll coating method, slide coating method, blade coating method, gravure coating method, and , wire bar method, etc. Regardless of which method is used, single-layer coating is preferred.
  • the coating film formed on the support is subjected to an alignment treatment to align the polymerizable liquid crystal compound in the coating film.
  • the orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film.
  • the liquid crystal phase formed by the alignment treatment can generally be transformed by changing temperature or pressure.
  • the transition can also be caused by changing the composition ratio such as the amount of solvent.
  • the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250°C, more preferably 50 to 150°C, and the heating time is preferably 10 seconds to 10 minutes.
  • the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) described below.
  • the cooling temperature is preferably 20 to 200°C, more preferably 20 to 150°C.
  • the difference between the heating temperature of the coating film described above and the cooling temperature of the coating film described above is not particularly limited, and is preferably 40 to 150°C.
  • the heating temperature TA of the coating film is 50 to 250°C
  • the cooling temperature TB is heating temperature TA ⁇ 0.1 to The range is preferably heating temperature TA x 0.7.
  • the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
  • the method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among these, from the viewpoint of manufacturing suitability, light irradiation treatment is preferred, and ultraviolet irradiation treatment is more preferred.
  • the irradiation conditions for the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 3000 mJ/cm 2 is preferable.
  • the arrangement of the near-infrared absorbing dye, etc. can be adjusted, and as a result, the optical properties of the optically anisotropic film can be adjusted.
  • the heating temperature when aligning the polymerizable liquid crystal compound after coating the liquid crystal composition on the support to form a coating film and the cooling temperature when cooling after heating, it is possible to The arrangement of the infrared absorbing dye can be adjusted, and as a result, the optical properties of the optically anisotropic film can be adjusted.
  • the optically anisotropic film according to the embodiment of the present invention can be applied to various uses, for example, by adjusting the in-plane retardation of the optically anisotropic film, it can be used as a so-called retardation plate, preferably as a ⁇ /4 plate.
  • the ⁇ /4 plate is a plate that has a function of converting linearly polarized light of a certain wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a retardation plate whose in-plane retardation Re at a predetermined wavelength ⁇ nm is 1/4 wavelength (or an odd multiple thereof).
  • the optically anisotropic film according to the embodiment of the present invention and the optical filter including this optically anisotropic film may be included in a display device.
  • the optically anisotropic film and the optical filter can be used, for example, as an optical compensation filter for optically compensating a liquid crystal cell, and as an antireflection film used in a display device such as an organic electroluminescent display device.
  • a preferable embodiment of the optical filter is a circularly polarizing plate including an optically anisotropic film and a polarizer. This circularly polarizing plate can be suitably used as the above-mentioned antireflection film.
  • a display device that includes a display element (for example, an organic electroluminescent display element) and a circularly polarizing plate disposed on the display element, reflected tint can be further suppressed.
  • the optically anisotropic film of the present invention is suitably used in an optical compensation filter of an IPS (In Plane Switching) type liquid crystal display device, and prevents color change when viewed from an oblique direction and light leakage during black display. It can be improved.
  • IPS In Plane Switching
  • examples of the optical filter including an optically anisotropic film include a circularly polarizing plate including a polarizer and an optically anisotropic film.
  • the polarizer may be any member (linear polarizer) that has the function of converting light into specific linearly polarized light, and mainly an absorption type polarizer can be used.
  • absorption polarizers include iodine polarizers, dye polarizers using dichroic dyes, and polyene polarizers.
  • Iodine-based polarizers and dye-based polarizers include coating type polarizers and stretching type polarizers, both of which can be applied, but they are produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it. Polarizers are preferred.
  • the relationship between the absorption axis of the polarizer and the slow axis of the optically anisotropic film is not particularly limited, but if the optically anisotropic film is a ⁇ /4 plate and the optical filter is used as a circularly polarizing filter, the polarization
  • the angle between the absorption axis of the child and the slow axis of the optically anisotropic film is preferably 45° ⁇ 10°.
  • the optically anisotropic film according to the embodiment of the present invention may be used in a polarization folding optical system (so-called pancake optical system) for VR or MR.
  • the polarization folding optical system corresponds to a conventional optical lens part.
  • a polarization folding optical system is an optical system that uses reflection of polarized light to obtain a longer optical path length than conventional ones by combining components such as ⁇ /4 plates, half mirrors, and reflective polarizing plates instead of conventional lenses. .
  • a polarization folding optical system can shorten the distance between the lens and display of a VR or MR headset, making it possible to reduce the weight.
  • the optically anisotropic film according to the embodiment of the present invention can preferably be used as a ⁇ /4 plate.
  • optically anisotropic film As explained above, this specification discloses the following optically anisotropic film, retardation plate, and optical filter.
  • [1] A single-layer optically anisotropic film having an ellipticity of 0.9 or more in the entire wavelength range of 430 to 680 nm.
  • a retardation plate comprising the optically anisotropic film according to any one of [1] to [6].
  • An optical filter comprising the optically anisotropic film according to any one of [1] to [6].
  • a retardation measuring device manufactured by Otsuka Electronics, RETS-100 was used to measure retardation.
  • a visible absorption spectrometer manufactured by Shimadzu Corporation, SolidSpec-3700DUV was used to measure the absorption spectrum and spectral characteristics.
  • reaction solution was added dropwise to 800 mL of ice water, and a solid precipitated, so the solution was left to stand and the solution was removed by decantation. Furthermore, 800 mL of water was added, the solution was left to stand and the solution was removed by decantation, and the precipitated solid was filtered to obtain unpurified compound (a3). This was suspended in 100 mL of a solution of hexane/ethyl acetate (1:1, volume ratio) and heated to 60° C. to dissolve the solid. This solution was returned to room temperature, and the precipitated solid was removed by filtration. The solid removed was dibromo.
  • Dye B-1 was synthesized in the same manner as dye A-3, except that compound (a5) was changed to compound (b6) in the synthesis of dye A-3.
  • 1H -NMR 400MHz, CHLOROFORM-D
  • 7.22-7.15 m, 4H
  • Dye D-1 was synthesized in the same manner as dye C-1, except that compound (c4) was changed to compound (d3).
  • 1 H-NMR 400 MHz, CHLOROFORM-D
  • Example 1-1 The following materials were mixed in the proportions shown in Table 6 below, dissolved in dichloromethane, and dried to remove dichloromethane to obtain polymerizable liquid crystal composition 1-1.
  • Liquid crystal compound L-1 was synthesized based on the method described in Japanese Patent Application Publication No. 2011-207765.
  • the liquid crystal compound L-1 is a polymerizable liquid crystal compound that exhibits inverse dispersion and exhibits a nematic phase.
  • Irganox 1010 manufactured by BASF was used as an antioxidant.
  • Irgacure 369E manufactured by BASF was used as a photopolymerization initiator.
  • the maximum absorption wavelength and dichroic ratio, the average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm), and the transmittance at near-infrared sensing wavelengths (830 nm and 850 nm) were calculated. Note that, as the dichroic ratio, a value expressed by A ⁇ /A
  • Example 1-2 and Examples 1-4 to 1-5 Polymerizable liquid crystal compositions 1-2 and 1-4 to 1-5 were prepared according to the same procedure as in Example 1-1, except that the dye and dye concentration were changed to the conditions shown in Table 7 below. An optically anisotropic film was obtained. Maximum absorption wavelength and dichroic ratio in the wavelength range of 650 to 1100 nm, average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm), near-infrared sensing wavelength (830 nm and 850 nm) at an incident angle of 0°. In addition, the retardation in the visible light region (430 to 680 nm) was measured, and the ellipticity was calculated. Furthermore, an antireflection film was prepared in the same manner as in Example 1-1, and the reflectance at an incident angle of 5° in the visible light region (430 to 680 nm) was measured.
  • Example 1-3 The dye and dye concentration were changed to the conditions shown in Table 7 below, and the liquid crystal compound was changed to a mixture of the above liquid crystal compound L-1 (88 parts by mass) and the liquid crystal compound L-2 shown below (12 parts by mass). Except for this, polymerizable liquid crystal composition 1-3 was prepared in accordance with the same procedure as in Example 1-1, and a polymer was obtained to produce an optically anisotropic film. Maximum absorption wavelength and dichroic ratio in the wavelength range of 650 to 1100 nm, average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm), near-infrared sensing wavelength (830 nm and 850 nm) at an incident angle of 0°.
  • Liquid crystal compound L-2 was synthesized based on the method described in International Publication No. 2009/148142. Note that the liquid crystal compound L-2 is a polymerizable liquid crystal compound that exhibits flat dispersibility and also exhibits a nematic phase.
  • Examples 1-1 to 1-3 are examples, and Examples 1-4 to 1-5 are comparative examples.
  • the antireflection coatings using the optically anisotropic films of Examples 1-1 to 1-3 which have an ellipticity of 0.9 or more in the visible light region (430 to 680 nm), have a wavelength of A high antireflection effect was obtained in the entire range of 430 to 680 nm.
  • the antireflection films using the optically anisotropic films of Examples 1-4 and 1-5 in which the ellipticity in a part of the wavelength range of 430 to 680 nm is less than 0.9 have a high antireflection effect in that region. I could't get it.
  • the optically anisotropic film of Example 1-1 in which the maximum absorption wavelength in the wavelength range of 650 to 1100 nm was 750 nm or more and less than 780 nm, had an average transmittance of more than 95% in the visible light region (430 to 680 nm). High visible light transmittance was observed. Furthermore, since the transmittance at near-infrared sensing wavelengths (830 nm and 850 nm) was 97% or higher, an optically anisotropic film that did not inhibit near-infrared sensing performance was obtained.
  • the optically anisotropic film of Example 1-2 in which the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is less than 750 nm, the average transmittance in the visible light region (430 to 680 nm) is less than 95%, and the visible light transmittance is low. Ta. Furthermore, in the optically anisotropic films of Examples 1-3 and 1-4, in which the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is 780 nm or more, the transmittance at the near-infrared sensing wavelengths (830 nm and 850 nm) is 97%. The result was that the sensing performance of near-infrared light could be inhibited.
  • optically anisotropic film of the present invention is useful, for example, as a retardation plate (1/4 wavelength plate) exhibiting excellent reverse wavelength dispersion.

Abstract

The present invention addresses the problem of providing an optically anisotropic film that is a single layer and has sufficient anti-reflection performance throughout the entire wavelength range of 430-680 nm in the visible light range, and a phase difference plate comprising the optically anisotropic film. The present invention relates to an optically anisotropic film that is a single layer and has an ellipticity of 0.9 or more throughout the entire wavelength range of 430-680 nm. The present invention also relates to a phase difference plate or an optical filter comprising the optically anisotropic film.

Description

光学異方性膜および位相差板Optically anisotropic film and retardation plate
 本発明は、光学異方性膜および位相差板に関する。 The present invention relates to an optically anisotropic film and a retardation plate.
 屈折率異方性を有す光学異方性膜は、表示装置の反射防止膜、および、液晶表示装置の光学補償フィルタなど種々の用途に適用されている。 Optically anisotropic films with refractive index anisotropy are used in various applications such as antireflection films for display devices and optical compensation filters for liquid crystal display devices.
 ここで、特許文献1には、逆波長分散性を示す位相差板が記載されている。 Here, Patent Document 1 describes a retardation plate that exhibits reverse wavelength dispersion.
国際公開第2018/225474号International Publication No. 2018/225474
 表示装置において、反射防止性能が不十分であると、斜め方向から視認した時の色味変化や、黒表示時の光漏れが発生しやすい。したがって可視光領域において、特に波長430~680nmの全領域において、十分な反射防止性能が要求されている。 In a display device, if the antireflection performance is insufficient, color changes when viewed from an oblique direction and light leakage when displaying black are likely to occur. Therefore, sufficient antireflection performance is required in the visible light region, particularly in the entire wavelength region of 430 to 680 nm.
 しかしながら、特許文献1に記載の技術では、可視光の一部の領域において十分な反射防止性能が得られていない。 However, the technique described in Patent Document 1 does not provide sufficient antireflection performance in some visible light regions.
 また、光学異方性膜は、単層構造でも複数の層が積層された構造でもよいが、表示装置の低背化の観点からは、より低背化しやすい単層構造が好ましい。 Further, the optically anisotropic film may have a single-layer structure or a structure in which a plurality of layers are laminated, but from the viewpoint of reducing the height of the display device, a single-layer structure that can be more easily reduced in height is preferable.
 本発明は、可視光領域のうち波長430~680nmの全域において十分な反射防止性能を有する単層の光学異方性膜およびこれを備えた位相差板を提供することを目的とする。 An object of the present invention is to provide a single-layer optically anisotropic film having sufficient antireflection performance over the entire wavelength range of 430 to 680 nm in the visible light region, and a retardation plate equipped with the same.
 本発明は、下記の光学異方性膜に関する。
 波長430~680nmの全領域において、楕円率が0.9以上である、単層の光学異方性膜。
The present invention relates to the following optically anisotropic film.
A single-layer optically anisotropic film having an ellipticity of 0.9 or more in the entire wavelength range of 430 to 680 nm.
 本発明はまた、上記の光学異方性膜を備える位相差板に関する。 The present invention also relates to a retardation plate comprising the optically anisotropic film described above.
 本発明によれば、可視光領域のうち波長430~680nmの全域において十分な反射防止性能を有する単層の光学異方性膜および当該光学異方性膜を備えた位相差板を提供できる。 According to the present invention, it is possible to provide a single-layer optically anisotropic film having sufficient antireflection performance over the entire wavelength range of 430 to 680 nm in the visible light region, and a retardation plate equipped with the optically anisotropic film.
図1は、例1-1の光学異方性膜における、主に可視光の波長領域における楕円率を示すグラフである。FIG. 1 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-1. 図2は、例1-2の光学異方性膜における、主に可視光の波長領域における楕円率を示すグラフである。FIG. 2 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-2. 図3は、例1-3の光学異方性膜における、主に可視光の波長領域における楕円率を示すグラフである。FIG. 3 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-3. 図4は、例1-4の光学異方性膜における、主に可視光の波長領域における楕円率を示すグラフである。FIG. 4 is a graph showing the ellipticity mainly in the wavelength region of visible light in the optically anisotropic film of Example 1-4.
 以下、本発明の実施の形態について説明する。
 本明細書において、式(A1)で示される化合物を化合物(A1)とも記し、他の式で表される場合も同様である。化合物(A1)からなる色素を色素(A1)とも記し、他の式で表される場合も同様である。また、例えば、式(1a)で表される基を基(1a)とも記し、他の式で表される基も同様である。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
Embodiments of the present invention will be described below.
In this specification, the compound represented by formula (A1) is also referred to as compound (A1), and the same applies to cases where it is represented by other formulas. The dye composed of compound (A1) is also referred to as dye (A1), and the same applies to cases where it is expressed by other formulas. For example, the group represented by formula (1a) is also referred to as group (1a), and the same applies to groups represented by other formulas.
In this specification, "~" representing a numerical range includes the upper and lower limits.
 本明細書において、特に断りのない限り、アルキル基は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。
 ハロゲン原子としては、特に断りのない限り、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子が好ましい。
 本明細書において、特に断りのない限り、アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル等を構成する炭素原子を介して結合する基をいう。また、ヘテロアリール基は、ヘテロ原子を有する芳香族化合物が有する芳香環、例えば、フラン環、チオフェン環、ピロール環等を構成する炭素原子あるいはヘテロ原子を介して結合する基をいう。
In this specification, unless otherwise specified, the alkyl group may be linear, branched, cyclic, or a combination of these structures.
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like, unless otherwise specified, with a fluorine atom being preferred.
In this specification, unless otherwise specified, an aryl group refers to a group bonded via a carbon atom constituting an aromatic ring of an aromatic compound, such as a benzene ring, a naphthalene ring, or a biphenyl ring. Further, the heteroaryl group refers to a group bonded via a carbon atom or a heteroatom constituting an aromatic ring of an aromatic compound having a heteroatom, such as a furan ring, a thiophene ring, or a pyrrole ring.
 本明細書において、スクアリリウム化合物とは、構造式において下記式(S2)で表す共鳴構造をとり得る下記式(S1)で表されるスクアリリウム骨格を有する化合物をいう。本明細書において、スクアリリウム骨格は式(S1)または式(S2)のいずれかで示される。 As used herein, a squarylium compound refers to a compound having a squarylium skeleton represented by the following formula (S1) that can have a resonance structure represented by the following formula (S2) in the structural formula. In this specification, the squarylium skeleton is represented by either formula (S1) or formula (S2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本明細書において、Reは、面内のリタデーションを表す。
 リタデーションはリタデーション測定装置(例えば、大塚電子製、RETS-100)を用いて測定する。
In this specification, Re represents in-plane retardation.
Retardation is measured using a retardation measuring device (for example, RETS-100 manufactured by Otsuka Electronics).
 本明細書において、楕円率はリタデーションから以下の式(1)および(2)を用いて換算できる。楕円率角をθ、リタデーションをRe、波長をλとする。
  楕円率X=tanθ   (1)
  sin2θ=sin(Re/λ×360°)   (2)
 楕円率はまた、楕円率測定装置(例えば、大塚電子製、RETS-100)を用いて測定できる。
In this specification, ellipticity can be converted from retardation using the following equations (1) and (2). Let θ be the ellipticity angle, Re be the retardation, and λ be the wavelength.
Ellipticity X=tanθ (1)
sin2θ=sin(Re/λ×360°) (2)
The ellipticity can also be measured using an ellipticity measuring device (for example, RETS-100 manufactured by Otsuka Electronics).
 本明細書において、分光特性は分光光度計を用いて測定できる。また測定方向について特に記載が無い場合は入射角0°における特性を意味する。 In this specification, spectral characteristics can be measured using a spectrophotometer. Further, if there is no particular description regarding the measurement direction, it means the characteristics at an incident angle of 0°.
<光学異方性膜>
 本発明の実施形態に係る光学異方性膜は、波長430~680nmの全領域において、楕円率が0.9以上である。ここで、楕円率は、リタデーション(位相差)と相関関係にある。光学異方性膜を1/4波長板として利用したときに、Re=λ/4(楕円率=1)では直線偏光が完全な円偏光に変換され、理想的な光学特性が得られる。すなわち、可視光である430~680nmの全波長領域において楕円率が上記範囲以上であると、リタデーション(位相差)が当該領域において理想直線λ/4に沿い、反射防止性能や色抜け防止性能に優れた光学異方性膜が得られる。
 本発明の実施形態に係る光学異方性膜は、波長430~680nmの全領域において、楕円率が好ましくは0.92以上である。
 本発明の実施形態に係る光学異方性膜が上記楕円率を満たすためには、たとえば、光学異方性膜が後述する特定の近赤外光吸収色素を含むことが挙げられる。
<Optically anisotropic film>
The optically anisotropic film according to the embodiment of the present invention has an ellipticity of 0.9 or more in the entire wavelength range of 430 to 680 nm. Here, the ellipticity has a correlation with retardation (phase difference). When an optically anisotropic film is used as a 1/4 wavelength plate, linearly polarized light is converted to completely circularly polarized light when Re=λ/4 (ellipticity=1), and ideal optical characteristics are obtained. In other words, if the ellipticity is above the above range in the entire visible light wavelength range of 430 to 680 nm, the retardation (phase difference) will follow the ideal straight line λ/4 in that region, resulting in poor anti-reflection performance and color fading prevention performance. An excellent optically anisotropic film can be obtained.
The optically anisotropic film according to the embodiment of the present invention preferably has an ellipticity of 0.92 or more in the entire wavelength range of 430 to 680 nm.
In order for the optically anisotropic film according to the embodiment of the present invention to satisfy the above-mentioned ellipticity, for example, the optically anisotropic film may contain a specific near-infrared light absorbing dye described below.
 本発明の実施形態に係る光学異方性膜は、波長830nmおよび波長850nmの少なくとも一方における透過率が97%以上であることが好ましい。光学異方性膜は、波長830nmおよび波長850nmの両方における透過率が97%以上であることがより好ましい。波長830nmおよび波長850nm付近は、拡張現実(VR)や仮想現実(AR)におけるアイトラッキングや、近赤外光センサにおけるセンシングで用いられる波長の一つである。光学異方性膜の波長830nmおよび波長850nmの少なくとも一方における透過率が97%以上であることで、アイトラッキング性能やセンシング性能を高めることができる。光学異方性膜の波長830nmおよび波長850nmの少なくとも一方における透過率はより好ましくは98%以上である。
 本発明の実施形態に係る光学異方性膜が上記波長830nmおよび波長850nmの少なくとも一方における透過率を満たすためには、たとえば、光学異方性膜が後述する特定の近赤外光吸収色素を含むことが挙げられる。
It is preferable that the optically anisotropic film according to the embodiment of the present invention has a transmittance of 97% or more at at least one of a wavelength of 830 nm and a wavelength of 850 nm. It is more preferable that the optically anisotropic film has a transmittance of 97% or more at both wavelengths of 830 nm and 850 nm. Wavelengths around 830 nm and 850 nm are one of the wavelengths used in eye tracking in augmented reality (VR) and virtual reality (AR) and sensing in near-infrared light sensors. When the optically anisotropic film has a transmittance of 97% or more at at least one of wavelengths of 830 nm and 850 nm, eye tracking performance and sensing performance can be improved. The transmittance of the optically anisotropic film at at least one of a wavelength of 830 nm and a wavelength of 850 nm is more preferably 98% or more.
In order for the optically anisotropic film according to the embodiment of the present invention to satisfy the above-mentioned transmittance at at least one of the wavelengths of 830 nm and 850 nm, for example, the optically anisotropic film must contain a specific near-infrared light absorbing dye described below. Including.
 本発明の実施形態に係る光学異方性膜は、波長430~680nmの領域における平均透過率が95%以上であることが好ましい。光学異方性膜が可視光の透過性に優れることで、表示装置等に用いた場合に画像品質や色再現性を向上できる。光学異方性膜の波長430~680nmにおける平均透過率はより好ましくは97%以上である。 The optically anisotropic film according to the embodiment of the present invention preferably has an average transmittance of 95% or more in the wavelength range of 430 to 680 nm. Since the optically anisotropic film has excellent visible light transmittance, it can improve image quality and color reproducibility when used in display devices and the like. The average transmittance of the optically anisotropic film at a wavelength of 430 to 680 nm is more preferably 97% or more.
 本発明の実施形態に係る光学異方性膜は、波長650~1100nmにおける極大吸収波長が780nm未満であることが好ましい。極大吸収波長が780nm未満であれば、光学異方性膜の波長830nmおよび波長850nmの少なくとも一方における透過率が低下せず高く維持できる。波長650~1100nmにおける極大吸収波長はより好ましくは770nm以下である。 The optically anisotropic film according to the embodiment of the present invention preferably has a maximum absorption wavelength of less than 780 nm in the wavelength range of 650 to 1100 nm. If the maximum absorption wavelength is less than 780 nm, the transmittance of the optically anisotropic film at at least one of the wavelengths of 830 nm and 850 nm can be maintained high without decreasing. The maximum absorption wavelength in the wavelength range of 650 to 1100 nm is more preferably 770 nm or less.
 本発明の実施形態に係る光学異方性膜は、波長650~1100nmにおける極大吸収波長が750nm以上であることが好ましい。極大吸収波長が750nm以上であれば、可視光領域を吸収せず可視光透過率を高く維持できる。波長650~1100nmにおける極大吸収波長はより好ましくは760nm以上である。 The optically anisotropic film according to the embodiment of the present invention preferably has a maximum absorption wavelength of 750 nm or more in the wavelength range of 650 to 1100 nm. If the maximum absorption wavelength is 750 nm or more, visible light transmittance can be maintained at a high level without absorbing visible light. The maximum absorption wavelength in the wavelength range of 650 to 1100 nm is more preferably 760 nm or more.
 光学異方性膜の波長650~1100nmにおける極大吸収波長を上記範囲とするためには、たとえば、光学異方性膜が後述する特定の近赤外光吸収色素を含むことが挙げられる。 In order to make the maximum absorption wavelength of the optically anisotropic film in the wavelength range of 650 to 1100 nm within the above range, for example, the optically anisotropic film may contain a specific near-infrared light absorbing dye described below.
 本発明の実施形態に係る光学異方性膜は、波長650~1100nmにおける極大吸収波長の二色比が好ましくは1.5以上、より好ましくは2.0以上である。極大吸収波長の二色比がかかる範囲であれば、光学異方性膜中の色素含有量を増やす必要がなく、可視光やセンシング波長付近の近赤外光の透過率を高く維持できるため好ましい。
 本発明の実施形態に係る光学異方性膜は、逆波長分散性を示すことが好ましい。逆波長分散性とは、光学異方性膜の特定波長(可視光範囲)における面内リタデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
In the optically anisotropic film according to the embodiment of the present invention, the dichroic ratio of the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is preferably 1.5 or more, more preferably 2.0 or more. If the dichroic ratio of the maximum absorption wavelength is in the range, there is no need to increase the dye content in the optically anisotropic film, and the transmittance of visible light and near-infrared light near the sensing wavelength can be maintained high, which is preferable. .
The optically anisotropic film according to the embodiment of the present invention preferably exhibits reverse wavelength dispersion. Reverse wavelength dispersion refers to the fact that when measuring the in-plane retardation (Re) value of an optically anisotropic film at a specific wavelength (visible light range), the Re value becomes equal or higher as the measurement wavelength becomes larger. .
<近赤外線吸収色素>
 本発明の実施形態に係る光学異方性膜は、近赤外線吸収色素を含むこと、特に後述する特定構造の近赤外線吸収色素を含むことが好ましい。これにより光学異方性膜の可視光領域における楕円率を高めることができる。
 近赤外線吸収色素は、近赤外領域において二色性を有する色素であることが好ましい。
 二色性を有するとは、色素の長軸方向の吸光度と、短軸方向の吸光度とが異なることを意味する。さらに、近赤外領域において短軸方向の吸光度の方が長軸方向の吸光度よりも大きいことがより好ましい。これにより光学異方性膜の可視光領域における楕円率をさらに高めることができる。
<Near infrared absorbing dye>
The optically anisotropic film according to the embodiment of the present invention preferably contains a near-infrared absorbing dye, particularly a near-infrared absorbing dye having a specific structure described below. This makes it possible to increase the ellipticity of the optically anisotropic film in the visible light region.
The near-infrared absorbing dye is preferably a dye having dichroism in the near-infrared region.
Having dichroism means that the absorbance in the long axis direction of the dye is different from the absorbance in the short axis direction. Furthermore, it is more preferable that the absorbance in the short axis direction is greater than the absorbance in the long axis direction in the near-infrared region. Thereby, the ellipticity of the optically anisotropic film in the visible light region can be further increased.
 有機色素は、一般的に、固有の吸収波長から離れた波長領域においては、屈折率は波長が増すに連れて単調に減少する。このような現象は正常分散と称される。これに対し、固有の吸収波長を含む波長領域においては、屈折率は波長増加に連れ急激に変化し、異常分散と称される。具体的には、固有の吸収波長の短波長側で屈折率が急激に下がり、固有の吸収波長の長波長側で急激に増加する挙動がみられる。
 上記したように、光学異方性膜を1/4波長板として利用したときに、Re=λ/4では直線偏光が完全な円偏光に変換され、理想的な光学特性が得られる。
 近赤外線吸収色素では、固有吸収波長の直前で短軸方向の屈折率が急激に低下するので、可視光領域の長波長側で屈折率差が増大する。光学異方性膜の面内リタデーションは屈折率差と膜厚の積から算出されるため、膜厚が一定であれば屈折率差が増大するほどリタデーションが上昇し、可視光のうち波長430~680nmの全域に渡りλ/4に近づけることができる。
Generally, the refractive index of an organic dye decreases monotonically as the wavelength increases in a wavelength region away from the intrinsic absorption wavelength. Such a phenomenon is called normal dispersion. On the other hand, in a wavelength region that includes a unique absorption wavelength, the refractive index changes rapidly as the wavelength increases, which is called anomalous dispersion. Specifically, there is a behavior in which the refractive index rapidly decreases on the short wavelength side of the specific absorption wavelength, and rapidly increases on the long wavelength side of the specific absorption wavelength.
As described above, when an optically anisotropic film is used as a quarter-wave plate, linearly polarized light is converted to completely circularly polarized light when Re=λ/4, and ideal optical characteristics are obtained.
In near-infrared absorbing dyes, the refractive index in the short axis direction decreases rapidly just before the characteristic absorption wavelength, so the refractive index difference increases on the long wavelength side of the visible light region. The in-plane retardation of an optically anisotropic film is calculated from the product of the refractive index difference and the film thickness, so if the film thickness is constant, the retardation increases as the refractive index difference increases. It is possible to approach λ/4 over the entire 680 nm range.
 なお、近赤外線吸収色素の長軸方向の吸光度は、光学異方性膜に対し、近赤外線吸収色素の配向方向と平行な偏光を照射して得られる吸収スペクトルから測定し、短軸方向の吸光度は、光学異方性膜に対し、近赤外線吸収色素の配向方向と垂直な偏光を照射して得られる吸収スペクトルから測定する。 The absorbance in the long axis direction of the near-infrared absorbing dye is measured from the absorption spectrum obtained by irradiating the optically anisotropic film with polarized light parallel to the orientation direction of the near-infrared absorbing dye. is measured from the absorption spectrum obtained by irradiating the optically anisotropic film with polarized light perpendicular to the alignment direction of the near-infrared absorbing dye.
 近赤外線吸収色素は、二色比が1.5以上であることが好ましく、より好ましくは2.0以上である。二色比が大きいほど長波長領域においてリタデーションが上昇しやすく、可視光のうち波長430~680nmの全域に渡りλ/4に近づきやすいため、当該領域において楕円率が高い光学異方性膜を得ることができる。また、少量でもリタデーション上昇効果が得られるため光学異方性膜中の含有量を増やす必要がなく、可視光やセンシング波長付近の近赤外光の透過率を高く維持できる。 The near-infrared absorbing dye preferably has a dichroic ratio of 1.5 or more, more preferably 2.0 or more. The larger the dichroic ratio, the more easily the retardation increases in the long wavelength region, and the easier it is to approach λ/4 over the entire wavelength range of 430 to 680 nm in visible light, thus obtaining an optically anisotropic film with a high ellipticity in this region. be able to. Further, since the effect of increasing retardation can be obtained even in a small amount, there is no need to increase the content in the optically anisotropic film, and the transmittance of visible light and near-infrared light near the sensing wavelength can be maintained high.
 近赤外線吸収色素は、ジクロロメタン中で波長650~900nmに最大吸収波長を有することが好ましい。最大吸収波長をかかる範囲に有することで、長波長領域におけるリタデーションが上昇し、可視光のうち波長430~680nmの全域に渡りλ/4に近づきやすいため、当該領域において楕円率が高い光学異方性膜を得ることができる。さらに、アイトラッキング性能やセンシング性能を高める観点から、最大吸収波長を700~800nmに有することがより好ましい。 The near-infrared absorbing dye preferably has a maximum absorption wavelength in the wavelength range of 650 to 900 nm in dichloromethane. By having the maximum absorption wavelength in this range, the retardation in the long wavelength region increases and tends to approach λ/4 over the entire wavelength range of 430 to 680 nm in visible light, resulting in optical anisotropy with high ellipticity in this region. A sexual membrane can be obtained. Furthermore, from the viewpoint of improving eye tracking performance and sensing performance, it is more preferable to have a maximum absorption wavelength of 700 to 800 nm.
 近赤外線吸収色素はまた、ジクロロメタンに溶解して測定した分光透過率曲線において、最大吸収波長における透過率を10%とした場合に、下記の分光特性を満たすことが好ましい。
 波長400~500nmの平均透過率が好ましくは95%以上、より好ましくは97%以上である。
 波長400~500nmの最小透過率が好ましくは85%以上、より好ましくは90%以上である。
 波長500~600nmの平均透過率が好ましくは95%以上、より好ましくは97%以上である。
 波長500~600nmの最小透過率が好ましくは90%以上、より好ましくは93%以上である。
 上記分光特性を満たすことにより、可視光透過性に優れた光学異方性膜が得られる点から好ましい。
The near-infrared absorbing dye also preferably satisfies the following spectral characteristics when the transmittance at the maximum absorption wavelength is 10% in a spectral transmittance curve measured after being dissolved in dichloromethane.
The average transmittance at a wavelength of 400 to 500 nm is preferably 95% or more, more preferably 97% or more.
The minimum transmittance at a wavelength of 400 to 500 nm is preferably 85% or more, more preferably 90% or more.
The average transmittance at a wavelength of 500 to 600 nm is preferably 95% or more, more preferably 97% or more.
The minimum transmittance at a wavelength of 500 to 600 nm is preferably 90% or more, more preferably 93% or more.
By satisfying the above spectral characteristics, an optically anisotropic film with excellent visible light transmittance can be obtained, which is preferable.
 近赤外線吸収色素はスクアリリウム骨格を有することが好ましい。スクアリリウム骨格を有する色素であれば、可視光領域の吸収が小さいため、得られる光学異方性膜の着色を抑制できる。 It is preferable that the near-infrared absorbing dye has a squarylium skeleton. If the dye has a squarylium skeleton, its absorption in the visible light region is small, so that it is possible to suppress coloring of the resulting optically anisotropic film.
 近赤外線吸収色素はメソゲン基を有することが好ましい。メソゲン基とは、剛直かつ配向性を有する官能基である。メソゲン基としては、例えば、芳香環や脂環等の環状構造を2以上含む構造が好ましく、好ましくは、かかる環状構造が直接または連結基を介して連なった構造がより好ましい。近赤外線吸収色素がメソゲン基を有することにより、光学異方性膜において色素が配向しやすく、所定の光学特性の制御がしやすい。 It is preferable that the near-infrared absorbing dye has a mesogenic group. A mesogenic group is a functional group that is rigid and has orientation. The mesogenic group preferably has a structure containing two or more cyclic structures such as an aromatic ring or an alicyclic ring, and more preferably a structure in which such cyclic structures are connected directly or via a linking group. Since the near-infrared absorbing dye has a mesogenic group, the dye is easily oriented in the optically anisotropic film, and predetermined optical properties can be easily controlled.
 近赤外線吸収色素としては、下記式(3)で表される化合物がより好ましい。
   R-D-R    (3)
 式(3)において、Dはスクアリリウム骨格を有する2価の基であり、Rは1価のメソゲン基である。2つのRは同一でも異なっていてもよい。
 上記の近赤外線吸収色素(3)であれば、スクアリリウム骨格を中心に2つのメソゲン基が対称に結合することで、液晶化合物と共により配向しやすい。
As the near-infrared absorbing dye, a compound represented by the following formula (3) is more preferable.
R L -D R L (3)
In formula (3), D is a divalent group having a squarylium skeleton, and R L is a monovalent mesogenic group. Two R L may be the same or different.
In the case of the above-mentioned near-infrared absorbing dye (3), the two mesogenic groups bond symmetrically around the squarylium skeleton, making it easier to align with the liquid crystal compound.
 メソゲン基Rは好ましくは下記式(2)で表される。
   R’-Sp1-〔Cy-Sp2〕-Sp3-    (2)
 式(2)において、R’は水素原子、電子求引性を有する1価有機基、または重合性を有する1価有機基である。
 電子求引性を有する1価有機基としては、例えば、CN、CF、F等が挙げられる。
 重合性を有する1価有機基としては、例えば、ラジカル重合またはカチオン重合が可能な重合性基等が挙げられる。
 ラジカル重合性基としては、公知のラジカル重合性基を用いることができ、アクリロイル基またはメタアクリロイル基が好ましい。
 カチオン重合性基としては、公知のカチオン重合性基を用いることができ、具体的には、脂環式エーテル基、環状アセタール基、環状ラクトン基、環状チオエーテル基、スピロオルソエステル基、および、ビニルオキシ基などが挙げられる。なかでも、脂環式エーテル基またはビニルオキシ基が好ましく、エポキシ基、オキセタニル基、または、ビニルオキシ基がより好ましい。
The mesogenic group R L is preferably represented by the following formula (2).
R L '-Sp1-[Cy-Sp2] n -Sp3- (2)
In formula (2), R L ' is a hydrogen atom, a monovalent organic group having electron-withdrawing properties, or a monovalent organic group having polymerizability.
Examples of the monovalent organic group having electron-withdrawing properties include CN, CF 3 , F, and the like.
Examples of the monovalent organic group having polymerizability include a polymerizable group capable of radical polymerization or cationic polymerization.
As the radically polymerizable group, a known radically polymerizable group can be used, and an acryloyl group or a methacryloyl group is preferable.
As the cationic polymerizable group, a known cationic polymerizable group can be used, and specifically, an alicyclic ether group, a cyclic acetal group, a cyclic lactone group, a cyclic thioether group, a spiro-orthoester group, and a vinyloxy Examples include groups. Among these, an alicyclic ether group or a vinyloxy group is preferred, and an epoxy group, an oxetanyl group, or a vinyloxy group is more preferred.
 メソゲン基の末端であるR’の構造は得られる光学異方性膜の目的に応じて選択できる。例えば、電圧駆動型液晶である場合は電子求引性を有する1価有機基が好ましく、液晶に重合性基がある場合は重合性を有する1価有機基が好ましく、水素原子は目的によらず好ましい。 The structure of R L ', which is the terminal of the mesogenic group, can be selected depending on the purpose of the optically anisotropic film to be obtained. For example, in the case of a voltage-driven liquid crystal, a monovalent organic group with electron-withdrawing properties is preferable, and in the case of a liquid crystal with a polymerizable group, a monovalent organic group with polymerizability is preferable, and the hydrogen atom does not depend on the purpose. preferable.
 式(2)において、Cyは、置換基を有してもよいアリーレン基、置換基を有してもよいヘテロアリーレン基、または置換基を有してもよいシクロアルキレン基である。
 アリーレン基としては、フェニレン基、ナフタレン基、テトラヒドロナフタレン基が挙げられる。
 ヘテロアリーレン基としては、フラン環、ピロール環、チオフェン環、ピリジン環、チアゾール環、ベンゾチアゾール環が挙げられる。
 シクロアルキレン基としては、シクロへキシレン基、シクロヘキセレン基、デカヒドロナフタレン基、ジオキサン基が挙げられる。
 Cyにおける置換基としてはメチル基、メトキシ基が挙げられる。
In formula (2), Cy is an arylene group that may have a substituent, a heteroarylene group that may have a substituent, or a cycloalkylene group that may have a substituent.
Examples of the arylene group include a phenylene group, a naphthalene group, and a tetrahydronaphthalene group.
Examples of the heteroarylene group include a furan ring, a pyrrole ring, a thiophene ring, a pyridine ring, a thiazole ring, and a benzothiazole ring.
Examples of the cycloalkylene group include a cyclohexylene group, a cyclohexelene group, a decahydronaphthalene group, and a dioxane group.
Examples of the substituent for Cy include a methyl group and a methoxy group.
 式(2)において、Sp1、Sp2、Sp3は、それぞれ独立に、単結合、アルキレン基、アルケニレン基、アルキニレン基、カルボニル基、エステル結合、アミド結合、およびエーテル結合から選ばれる1種の基もしくは結合、またはこれらの組み合わせである。
 アルキレン基としては、炭素数1~12の直鎖アルキレン基が好ましい。
In formula (2), Sp1, Sp2, and Sp3 each independently represent one type of group or bond selected from a single bond, an alkylene group, an alkenylene group, an alkynylene group, a carbonyl group, an ester bond, an amide bond, and an ether bond. , or a combination of these.
The alkylene group is preferably a straight chain alkylene group having 1 to 12 carbon atoms.
 nは2~9の整数であり、好ましくは2~6の整数である。
 また、式(2)において、2以上の〔Cy-Sp2〕構造は、同一でも異なっていてもよい。
n is an integer from 2 to 9, preferably from 2 to 6.
Furthermore, in formula (2), two or more [Cy-Sp2] structures may be the same or different.
 式(2)で表されるメソゲン基としては、好ましくは下記式で表される構造が挙げられ、特に、式(2-2)、(2-4)で表される構造がより好ましい。 The mesogenic group represented by formula (2) preferably includes structures represented by the following formulas, with structures represented by formulas (2-2) and (2-4) being particularly preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 近赤外線吸収色素としては、下記式(3-1A)で表される化合物、下記式(3-1B)で表される化合物、および下記式(3-2)で表される化合物から選ばれる少なくとも一種がより好ましい。
 下記化合物(3-1A)~化合物(3-2)は、化合物の中心にあるスクアリリウム骨格と直交する方向に延びる形でメソゲン基が配置されているため、形成される光学異方性膜の遅相軸に対して、上記スクアリリウム骨格が直交する方向に配列しやすい。つまり、光学異方性膜の遅相軸に直交する方向に、スクアリリウム骨格に由来する赤外線領域(特に、波長700~900nm)における吸収が得られやすく、所望の特性を示す光学異方性膜が得られやすい。
As the near-infrared absorbing dye, at least one selected from a compound represented by the following formula (3-1A), a compound represented by the following formula (3-1B), and a compound represented by the following formula (3-2) is used. One type is more preferable.
Compounds (3-1A) to (3-2) below have mesogenic groups extending in a direction perpendicular to the squarylium skeleton at the center of the compound, so that the optically anisotropic film formed is slow. The squarylium skeleton is likely to be arranged in a direction perpendicular to the phase axis. In other words, absorption in the infrared region (particularly wavelengths of 700 to 900 nm) originating from the squarylium skeleton is likely to be obtained in the direction perpendicular to the slow axis of the optically anisotropic film, and an optically anisotropic film exhibiting desired characteristics can be obtained. Easy to obtain.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(3-1A)、式(3-1B)、式(3-2)において、Rは前記式(2)におけるRの定義と同様であり、好ましい態様も同様である。 In formula (3-1A), formula (3-1B), and formula (3-2), R L is the same as the definition of R L in formula (2) above, and preferred embodiments are also the same.
 式(3-1A)において、Xは一価の置換基を有してもよい炭素原子または窒素原子である。赤色透過率向上の観点からは炭素原子が好ましく、青色透過率向上の観点からは窒素原子が好ましい。炭素原子における一価の置換基としては、水素原子、ハロゲン原子、炭素数1~9のアルキル基、アルケニル基、アルキニル基、置換基を有してもよい芳香環、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。 In formula (3-1A), X 1 is a carbon atom or nitrogen atom that may have a monovalent substituent. From the viewpoint of improving red transmittance, carbon atoms are preferable, and from the viewpoint of improving blue transmittance, nitrogen atoms are preferable. Monovalent substituents on carbon atoms include hydrogen atoms, halogen atoms, alkyl groups having 1 to 9 carbon atoms, alkenyl groups, alkynyl groups, aromatic rings that may have substituents, hydroxyl groups, carboxy groups, and sulfo groups. , a cyano group, an amino group, an N-substituted amino group, a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 19 carbon atoms.
 式(3-1A)において、Yは酸素原子、硫黄原子またはNH基である。Yがこれらの元素または基の場合、Yを含む5員環が芳香族性となり、青色光透過率が向上する。赤色光透過率向上の観点からは硫黄原子が好ましく、赤色光透過率向上および水素結合による吸収の急峻化の観点からはNH基が好ましい。 In formula (3-1A), Y 1 is an oxygen atom, a sulfur atom, or an NH group. When Y 1 is one of these elements or groups, the five-membered ring containing Y 1 becomes aromatic, and the blue light transmittance is improved. From the viewpoint of improving red light transmittance, a sulfur atom is preferable, and from the viewpoint of improving red light transmittance and steepening absorption due to hydrogen bonding, an NH group is preferable.
 式(3-1B)において、Xは硫黄原子または酸素原子である。赤色光透過率向上の観点から硫黄原子が好ましい。
 式(3-1B)において、Yは一価の置換基を有してもよい炭素原子または窒素原子である。青色光透過率向上の観点から窒素原子が好ましい。炭素原子における一価の置換基としては、置換基としては、水素原子、ハロゲン原子、炭素数1~9のアルキル基、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。
In formula (3-1B), X 2 is a sulfur atom or an oxygen atom. Sulfur atoms are preferred from the viewpoint of improving red light transmittance.
In formula (3-1B), Y 2 is a carbon atom or nitrogen atom that may have a monovalent substituent. Nitrogen atoms are preferred from the viewpoint of improving blue light transmittance. Monovalent substituents on carbon atoms include hydrogen atoms, halogen atoms, alkyl groups having 1 to 9 carbon atoms, hydroxyl groups, carboxy groups, sulfo groups, cyano groups, amino groups, and N-substituted amino groups. , a nitro group, an alkoxycarbonyl group, a carbamoyl group, an N-substituted carbamoyl group, an imide group, and an alkoxy group having 1 to 19 carbon atoms.
 式(3-1A)および式(3-1B)において、R11、R12は、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基である。
 アルキル基としては、直鎖状でも分岐状でもよく、配向性の観点からは直鎖状が好ましく、溶解性の観点からは分岐状が好ましい。
In formula (3-1A) and formula (3-1B), R 11 and R 12 may each independently have a substituent, and may have an unsaturated bond between carbon atoms, an oxygen atom, or a fatty acid. It is an alkyl group having 1 to 20 carbon atoms and which may contain a ring or an aromatic ring.
The alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
 炭素数1~20のアルキル基としては、直鎖状であれば炭素数1~15の直鎖状アルキル基が好ましく、炭素数1~10の直鎖状アルキル基がより好ましい。分岐状であれば炭素数3~15の分岐状アルキル基が好ましく、炭素数3~8の分岐状アルキル基がより好ましい。 The alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
 また、R11、R12の少なくとも一方が、炭素数3~15の分岐状アルキル基であることがさらに好ましく、R11、R12の両方が炭素数3~8の分岐状アルキル基であることが特に好ましい。
 R11、R12は、同一でも異なっていてもよいが、対称性の観点から同一であることが好ましい。
Furthermore, it is more preferable that at least one of R 11 and R 12 is a branched alkyl group having 3 to 15 carbon atoms, and both R 11 and R 12 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
R 11 and R 12 may be the same or different, but are preferably the same from the viewpoint of symmetry.
 なお、R11、R12が置換基を有する場合、置換基の炭素数はR11、R12の炭素数に含まれる。置換基としてはハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。 In addition, when R11 and R12 have a substituent, the carbon number of a substituent is included in the carbon number of R11 and R12 . Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
 式(3-1A)および式(3-1B)において、R13、R14は、それぞれ独立して、水素原子、または炭素数1~12のアルキル基である。配向性の観点から水素原子が好ましい。 In formula (3-1A) and formula (3-1B), R 13 and R 14 are each independently a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
 式(3-1A)および式(3-1B)において、R11とR12、R11とR13、R12とR13、R13とR14は、それぞれ互いに結合して環を形成してもよい。環の員数は4~6が好ましい。 In formula (3-1A) and formula (3-1B), R 11 and R 12 , R 11 and R 13 , R 12 and R 13 , R 13 and R 14 are bonded to each other to form a ring. Good too. The number of members in the ring is preferably 4 to 6.
 式(3-1A)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。化合物(3-1A)において、Xが窒素原子であり、YがNH基である場合を化合物(3-1Ai)とし、Xが炭素原子であり、YがNH基である場合を化合物(3-1Aii)とする。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
More specifically, the compound represented by formula (3-1A) includes the compounds shown in the table below. In the compound (3-1A), the case where X 1 is a nitrogen atom and Y 1 is an NH group is defined as a compound (3-1Ai), and the case where X 1 is a carbon atom and Y 1 is an NH group is defined as a compound (3-1Ai). It is referred to as compound (3-1Aii). Furthermore, in the compounds shown in the table below, each symbol has the same meaning on the left and right sides of the squarylium skeleton.
Moreover, R L is as defined above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 式(3-1B)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。化合物(3-1B)において、Xが硫黄原子である場合を化合物(3-1Bi)とし、Xが酸素原子である場合を化合物(3-1Bii)とする。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
More specifically, the compound represented by formula (3-1B) includes the compounds shown in the table below. In compound (3-1B), the case where X 2 is a sulfur atom is referred to as compound (3-1Bi), and the case where X 2 is an oxygen atom is referred to as compound (3-1Bii). Furthermore, in the compounds shown in the table below, each symbol has the same meaning on the left and right sides of the squarylium skeleton.
Moreover, R L is as defined above.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 式(3-2)において、R21、R22は、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでもよい、炭素数1~20のアルキル基である。
 アルキル基としては、直鎖状でも分岐状でもよく、配向性の観点からは直鎖状が好ましく、溶解性の観点からは分岐状が好ましい。
In formula (3-2), R 21 and R 22 may each independently have a substituent, or may contain an unsaturated bond, an oxygen atom, an alicyclic ring, or an aromatic ring between carbon atoms. It is a good alkyl group having 1 to 20 carbon atoms.
The alkyl group may be linear or branched, preferably linear from the viewpoint of orientation, and preferably branched from the viewpoint of solubility.
 炭素数1~20のアルキル基としては、直鎖状であれば炭素数1~15の直鎖状アルキル基が好ましく、炭素数1~10の直鎖状アルキル基がより好ましい。分岐状であれば炭素数3~15の分岐状アルキル基が好ましく、炭素数3~8の分岐状アルキル基がより好ましい。 The alkyl group having 1 to 20 carbon atoms is preferably a linear alkyl group having 1 to 15 carbon atoms, more preferably a linear alkyl group having 1 to 10 carbon atoms. If it is branched, a branched alkyl group having 3 to 15 carbon atoms is preferred, and a branched alkyl group having 3 to 8 carbon atoms is more preferred.
 また、R21、R22の少なくとも一方が、炭素数3~15の分岐状アルキル基であることがさらに好ましく、R21、R22の両方が炭素数3~8の分岐状アルキル基であることが特に好ましい。
 R21、R22は、同一でも異なっていてもよいが、対称性の観点から同一であることが好ましい。
Furthermore, it is more preferable that at least one of R 21 and R 22 is a branched alkyl group having 3 to 15 carbon atoms, and both R 21 and R 22 are branched alkyl groups having 3 to 8 carbon atoms. is particularly preferred.
R 21 and R 22 may be the same or different, but are preferably the same from the viewpoint of symmetry.
 なお、R21、R22が置換基を有する場合、置換基の炭素数はR21、R22の炭素数に含まれる。置換基としてはハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~19のアルコキシ基が挙げられる。 In addition, when R21 and R22 have a substituent, the carbon number of the substituent is included in the carbon number of R21 and R22 . Substituents include halogen atom, hydroxyl group, carboxy group, sulfo group, cyano group, amino group, N-substituted amino group, nitro group, alkoxycarbonyl group, carbamoyl group, N-substituted carbamoyl group, imide group, and carbon number 1 to 19 alkoxy groups are mentioned.
 式(3-2)において、R23は、水素原子、または炭素数1~12のアルキル基である。配向性の観点から水素原子が好ましい。 In formula (3-2), R 23 is a hydrogen atom or an alkyl group having 1 to 12 carbon atoms. Hydrogen atoms are preferred from the viewpoint of orientation.
 式(3-2)において、R21とR22、R21とR23、R22とR23は、それぞれ互いに結合して環を形成してもよい。環の員数は4~6が好ましい。 In formula (3-2), R 21 and R 22 , R 21 and R 23 , and R 22 and R 23 may be bonded to each other to form a ring. The number of members in the ring is preferably 4 to 6.
 式(3-2)で表される化合物としては、より具体的には以下の表に示す化合物が挙げられる。また、以下の表に示す化合物は、スクアリリウム骨格の左右において各記号の意味は同一である。
 また、Rは上記の定義のとおりである。
More specifically, the compound represented by formula (3-2) includes the compounds shown in the table below. Furthermore, in the compounds shown in the table below, each symbol has the same meaning on the left and right sides of the squarylium skeleton.
Moreover, R L is as defined above.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<近赤外線吸収色素の製造方法>
 近赤外線吸収色素は、例えば下記に示す合成方法により製造できる。
<Method for producing near-infrared absorbing dye>
Near-infrared absorbing dyes can be produced, for example, by the synthesis method shown below.
 近赤外線吸収色素(3-1Ai)の合成方法を下記に示す。なお出発物質は市販品から入手可能である。RCHOは例えば日本国特開2011-207782号公報の段落[0131]等に記載される公知の製法に従って合成できる。 The method for synthesizing the near-infrared absorbing dye (3-1Ai) is shown below. Note that the starting materials are commercially available. R L CHO can be synthesized, for example, according to a known production method described in paragraph [0131] of Japanese Patent Application Publication No. 2011-207782.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 近赤外線吸収色素(3-1Aii)の合成方法を下記に示す。なお出発物質は市販品から入手可能である。RBrは例えばSynlett,2009,20,3279-3282等に記載される公知の製法に従って合成できる。 The method for synthesizing the near-infrared absorbing dye (3-1Aii) is shown below. Note that the starting materials are commercially available. R L Br can be synthesized according to the known production method described in, for example, Synlett, 2009, 20, 3279-3282.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 近赤外線吸収色素(3-1Bi)および(3-1Bii)の合成方法を下記に示す。なお出発物質は市販品から入手可能である。RCOClは例えば日本国特開2014-58490号公報の段落〔0093〕等に記載される公知の製法に従って合成できる。 The method for synthesizing near-infrared absorbing dyes (3-1Bi) and (3-1Bii) is shown below. Note that the starting materials are commercially available. R L COCl can be synthesized, for example, according to a known production method described in paragraph [0093] of Japanese Patent Application Publication No. 2014-58490.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 近赤外線吸収色素(3-2)の合成方法を下記に示す。なお出発物質は例えば国際公開第2021/112020号に記載される公知の製法に従って合成できる。RBPinは例えばOrg.Biomol.Chem.,2016,14,9974-9980等に記載される公知の製法に従って合成できる。 The method for synthesizing the near-infrared absorbing dye (3-2) is shown below. Note that the starting material can be synthesized, for example, according to the known production method described in International Publication No. 2021/112020. R L BPin is, for example, Org. Biomol. Chem. , 2016, 14, 9974-9980 and the like.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明の実施形態に係る光学異方性膜は、1種の近赤外線吸収色素のみを含んでもよく、複数種の近赤外線吸収色素を組み合わせて含んでもよい。
 光学異方性膜における近赤外線吸収色素の含有量は、好ましくは0.1~15質量%、より好ましくは0.5~10質量%、特に好ましくは1~8質量%であり、楕円率向上の観点から好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは1質量%以上であり、また、可視光透過率の観点から好ましくは15質量%以下、より好ましくは10質量%以下、特に好ましくは8質量%以下である。
The optically anisotropic film according to the embodiment of the present invention may contain only one type of near-infrared absorbing dye, or may contain a combination of multiple types of near-infrared absorbing dye.
The content of the near-infrared absorbing dye in the optically anisotropic film is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass, particularly preferably 1 to 8% by mass, and improves ellipticity. From the viewpoint of visible light transmittance, it is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 1% by mass or more, and from the viewpoint of visible light transmittance, preferably 15% by mass or less, more preferably is 10% by mass or less, particularly preferably 8% by mass or less.
<液晶化合物>
 本発明の実施形態に係る光学異方性膜は、液晶化合物を含むことが好ましい。これにより近赤外線吸収色素を膜内で配向させやすいため、光学特性が制御された光学異方性膜が得られる。
<Liquid crystal compound>
The optically anisotropic film according to the embodiment of the present invention preferably contains a liquid crystal compound. This makes it easy to orient the near-infrared absorbing dye within the film, resulting in an optically anisotropic film with controlled optical properties.
 液晶化合物は、可視光透過率の観点から可視光を透過する液晶化合物であることが好ましい。
 液晶化合物の種類としては、ネマチック相を示す非重合性液晶化合物、ネマチック相を示す重合性液晶化合物、スメクチック相を示す重合性液晶化合物等が挙げられる。配向性の観点からはネマチック相を示す非重合性液晶化合物およびネマチック相を示す重合性液晶化合物が好ましい。
The liquid crystal compound is preferably a liquid crystal compound that transmits visible light from the viewpoint of visible light transmittance.
Examples of the liquid crystal compound include non-polymerizable liquid crystal compounds that exhibit a nematic phase, polymerizable liquid crystal compounds that exhibit a nematic phase, and polymerizable liquid crystal compounds that exhibit a smectic phase. From the viewpoint of orientation, non-polymerizable liquid crystal compounds exhibiting a nematic phase and polymerizable liquid crystal compounds exhibiting a nematic phase are preferred.
 また、液晶化合物は、逆波長分散性を示すことが好ましい。逆波長分散性を示す液晶化合物(以下、逆波長分散性液晶化合物ともいう)とは、その化合物を用い作製される光学異方性膜が逆波長分散性を示す化合物を意味する。つまり、逆波長分散性液晶化合物とは、液晶化合物としてはこの化合物のみを用いて作製された光学異方性膜の特定波長(可視光範囲)における面内リタデーション(Re)値を測定した際に、測定波長が大きくなるにつれてRe値が同等または高くなるものをいう。
 逆波長分散性を示す液晶化合物であれば短波長側でリタデーションが改善する点で好ましい。
Further, the liquid crystal compound preferably exhibits reverse wavelength dispersion. A liquid crystal compound exhibiting reverse wavelength dispersion (hereinafter also referred to as a reverse wavelength dispersion liquid crystal compound) means a compound in which an optically anisotropic film produced using the compound exhibits reverse wavelength dispersion. In other words, a reverse wavelength dispersion liquid crystal compound is the liquid crystal compound that is used when measuring the in-plane retardation (Re) value at a specific wavelength (visible light range) of an optically anisotropic film made using only this compound. , the Re value remains the same or increases as the measurement wavelength increases.
A liquid crystal compound exhibiting reverse wavelength dispersion is preferable because it improves retardation on the short wavelength side.
 液晶化合物は、例えば国際公開第2009/148142号、日本国特開2011-207765号公報、国際公開第2021/039625号等に記載される公知の製法により合成してもよく、また、市販品を用いてもよい。 The liquid crystal compound may be synthesized by known manufacturing methods described in, for example, International Publication No. 2009/148142, Japanese Patent Application Publication No. 2011-207765, International Publication No. 2021/039625, etc., or commercially available products. May be used.
 逆波長分散性を示す液晶化合物としては、公知の化合物を用いることができ、例えば下記に示す液晶化合物や、日本国特開2011-207765号公報、国際公開第2021/039625号等に記載される液晶化合物を用いることができる。 As the liquid crystal compound exhibiting reverse wavelength dispersion, known compounds can be used, for example, the liquid crystal compounds shown below and those described in Japanese Patent Application Publication No. 2011-207765, International Publication No. 2021/039625, etc. Liquid crystal compounds can be used.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 本発明の実施形態に係る光学異方性膜は、複数の液晶化合物を含んでもよい。複数の液晶化合物を用いる場合、複数の逆波長分散性液晶化合物を含んでもよく、逆波長分散性液晶化合物に加えてフラット波長分散性液晶化合物を含んでもよい。液晶化合物として、逆波長分散性液晶化合物とフラット波長分散性液晶化合物を含む場合、光学異方性膜としては逆波長分散性を示すことが好ましい。フラット波長分散性液晶化合物を混合することで、逆波長分散性を調整することができる。 The optically anisotropic film according to the embodiment of the present invention may include a plurality of liquid crystal compounds. When using a plurality of liquid crystal compounds, a plurality of reverse wavelength dispersion liquid crystal compounds may be included, or a flat wavelength dispersion liquid crystal compound may be included in addition to the reverse wavelength dispersion liquid crystal compound. When the liquid crystal compound includes a reverse wavelength dispersion liquid crystal compound and a flat wavelength dispersion liquid crystal compound, the optically anisotropic film preferably exhibits reverse wavelength dispersion. By mixing a flat wavelength dispersive liquid crystal compound, reverse wavelength dispersion can be adjusted.
 フラット分散性液晶化合物とは、液晶化合物としてはその化合物のみを用いて作製される光学異方性膜がフラット分散性を示す化合物を意味する。つまり、フラット分散性液晶化合物とは、液晶化合物としては当該化合物のみを用いて作製された光学異方性膜の特定波長(可視光範囲)における面内リタデーション(Re)値を測定した際に、面内リタデーション値が、短波長側から長波長側に向かってほとんど変わらないものをいう。  A flat dispersion liquid crystal compound means a compound in which an optically anisotropic film produced using only the compound as a liquid crystal compound exhibits flat dispersion. In other words, a flat dispersion liquid crystal compound is a liquid crystal compound that, when the in-plane retardation (Re) value at a specific wavelength (visible light range) of an optically anisotropic film prepared using only the compound is measured. The in-plane retardation value hardly changes from the short wavelength side to the long wavelength side. 
 本発明の実施形態に係る光学異方性膜における液晶化合物の含有量は、好ましくは50~99.9質量%、より好ましくは80~99.5質量%、特に好ましくは90~99質量%であり、安定な液晶相を広い温度範囲で発現させる観点から好ましくは50質量%以上、より好ましくは80質量%以上、特に好ましくは90質量%以上であり、また、十分な吸光度とする観点から好ましくは99.9質量%以下、より好ましくは99.5質量%以下、特に好ましくは99質量%以下である。 The content of the liquid crystal compound in the optically anisotropic film according to the embodiment of the present invention is preferably 50 to 99.9% by mass, more preferably 80 to 99.5% by mass, particularly preferably 90 to 99% by mass. The content is preferably 50% by mass or more, more preferably 80% by mass or more, particularly preferably 90% by mass or more from the viewpoint of developing a stable liquid crystal phase over a wide temperature range, and is also preferred from the viewpoint of achieving sufficient absorbance. is 99.9% by mass or less, more preferably 99.5% by mass or less, particularly preferably 99% by mass or less.
 本発明の実施形態に係る光学異方性膜は、上記した近赤外線吸収色素および液晶化合物以外に、その他の成分を含んでもよい。
 光学異方性膜はその他の成分として、たとえば、液晶化合物が重合性液晶化合物である場合に、たとえば、重合性モノマーの重合体を含んでもよい。
 重合性モノマーとしては、ラジカル重合性またはカチオン重合性の化合物が挙げられる。なかでも、多官能性ラジカル重合性モノマーが好ましい。また、重合性モノマーとしては、重合性液晶化合物と共重合性のモノマーが好ましい。
 光学異方性膜中における重合性モノマーの含有量は、液晶化合物の全質量に対して、1~50質量%が好ましく、2~30質量%がより好ましい。
The optically anisotropic film according to the embodiment of the present invention may contain other components in addition to the above-described near-infrared absorbing dye and liquid crystal compound.
The optically anisotropic film may contain a polymer of polymerizable monomers as other components, for example, when the liquid crystal compound is a polymerizable liquid crystal compound.
Examples of the polymerizable monomer include radically polymerizable or cationically polymerizable compounds. Among these, polyfunctional radically polymerizable monomers are preferred. Moreover, as the polymerizable monomer, a monomer copolymerizable with the polymerizable liquid crystal compound is preferable.
The content of the polymerizable monomer in the optically anisotropic film is preferably 1 to 50% by mass, more preferably 2 to 30% by mass, based on the total mass of the liquid crystal compound.
 光学異方性膜はその他の成分として、たとえば、界面活性剤を含んでもよい。
 界面活性剤としては、従来公知の化合物が挙げられる。
The optically anisotropic film may contain, for example, a surfactant as other components.
Examples of the surfactant include conventionally known compounds.
 光学異方性膜はその他の成分として、たとえば、酸化防止剤を含んでもよい。酸化防止剤としては例えばIrganox1010(BASF社製)が挙げられる。 The optically anisotropic film may contain, for example, an antioxidant as other components. Examples of the antioxidant include Irganox 1010 (manufactured by BASF).
 光学異方性膜はその他の成分として、たとえば、垂直配向剤、および、水平配向剤などの各種配向制御剤を含んでもよい。これらの配向制御剤は、界面側において液晶化合物を水平または垂直に配向制御可能な化合物である。 The optically anisotropic film may contain various alignment control agents such as a vertical alignment agent and a horizontal alignment agent as other components. These alignment control agents are compounds that can control the alignment of the liquid crystal compound horizontally or vertically on the interface side.
 本発明の実施形態に係る光学異方性膜は、単層構造である。また光学異方性膜の膜厚としては、リタデーションの観点から0.5~4.0μmが好ましく、1.5~3.0μmがより好ましい。 The optically anisotropic film according to the embodiment of the present invention has a single layer structure. Further, the thickness of the optically anisotropic film is preferably 0.5 to 4.0 μm, more preferably 1.5 to 3.0 μm from the viewpoint of retardation.
<光学異方性膜の製造方法>
 本発明の実施形態に係る光学異方性膜は、たとえば、上記の近赤外線吸収色素と、必要に応じて上記の液晶化合物、その他の成分と、さらに製造時に必要な任意成分を含む組成物を硬化して製造できる。
<Method for manufacturing optically anisotropic film>
The optically anisotropic film according to the embodiment of the present invention includes, for example, a composition containing the above-mentioned near-infrared absorbing dye, the above-mentioned liquid crystal compound as necessary, other components, and optional components necessary during production. Can be manufactured by curing.
 製造時に必要な任意成分としては、溶媒、液晶化合物が重合性液晶化合物である場合には重合開始剤が挙げられる。
 重合開始剤は、重合反応の形式に応じて選択され、例えば、熱重合開始剤、および、光重合開始剤が挙げられる。例えば、光重合開始剤としては、α-カルボニル化合物、アシロインエーテル、α-炭化水素置換芳香族アシロイン化合物、多核キノン化合物、および、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせなどが挙げられる。
 組成物中における重合開始剤の含有量は、組成物の全固形分に対して、0.01~20質量%が好ましく、0.5~10質量%がより好ましい。
 溶媒としては、有機溶媒が好ましい。有機溶媒としては、アミド、スルホキシド、ヘテロ環化合物、炭化水素、アルキルハライド、エステル、ケトン、および、エーテルが挙げられる。なお、2種類以上の有機溶媒を併用してもよい。
Optional components necessary during production include a solvent and a polymerization initiator when the liquid crystal compound is a polymerizable liquid crystal compound.
The polymerization initiator is selected depending on the type of polymerization reaction, and includes, for example, a thermal polymerization initiator and a photopolymerization initiator. Examples of the photopolymerization initiator include α-carbonyl compounds, acyloin ethers, α-hydrocarbon-substituted aromatic acyloin compounds, polynuclear quinone compounds, and combinations of triarylimidazole dimer and p-aminophenyl ketone. It will be done.
The content of the polymerization initiator in the composition is preferably 0.01 to 20% by mass, more preferably 0.5 to 10% by mass, based on the total solid content of the composition.
As the solvent, organic solvents are preferred. Organic solvents include amides, sulfoxides, heterocyclic compounds, hydrocarbons, alkyl halides, esters, ketones, and ethers. Note that two or more types of organic solvents may be used in combination.
 組成物の硬化方法としては特に制限されず、公知の方法を用いることができる。また光学異方性膜において、近赤外線吸収色素は配向していることが好ましい。 The method for curing the composition is not particularly limited, and any known method can be used. Further, in the optically anisotropic film, the near-infrared absorbing dye is preferably oriented.
 光学異方性膜が液晶化合物を含まない場合は、例えば、近赤外線吸収色素を含む組成物からフィルムを製造し、フィルムを延伸することで近赤外線吸収色素を配向させることができる。フィルムを延伸する方法としては、フィルムの両端部をクリップで把持しながら加熱炉内に搬送し、加熱炉内にて、フィルムの両端部を把持しているクリップにより長さ方向または幅方向のいずれか一方向に加熱延伸を行う一軸延伸法や、長さ方向または幅方向のいずれか一方向に加熱延伸を行い次いで他方向に加熱延伸を行う逐次二軸延伸法、長さ方向および幅方向の二方向に同時に加熱延伸を行う同時二軸延伸法などを採用できる。 When the optically anisotropic film does not contain a liquid crystal compound, the near-infrared absorbing dye can be oriented by, for example, producing a film from a composition containing a near-infrared absorbing dye and stretching the film. The method of stretching the film is to convey it into a heating furnace while holding both ends of the film with clips, and then to stretch the film in either the length direction or the width direction with the clips holding both ends of the film in the heating furnace. uniaxial stretching method in which heat stretching is carried out in one direction, sequential biaxial stretching method in which heat stretching is carried out in either the length or width direction, and then heat stretching in the other direction; A simultaneous biaxial stretching method that performs heating and stretching in two directions simultaneously can be employed.
 光学異方性膜が液晶化合物を含む場合は、液晶化合物を配向させることで近赤外線吸収色素を配向させることができる。たとえば、近赤外線吸収色素および液晶化合物等を含む組成物(以下「液晶組成物」とも記載する。)を塗布して塗膜を形成し、塗膜に配向処理を施して液晶化合物を配向させる。さらに液晶化合物が重合性液晶化合物であれば、得られた塗膜に対して硬化処理(光照射処理または加熱処理)を施して、光学異方性膜を形成できる。 When the optically anisotropic film contains a liquid crystal compound, the near-infrared absorbing dye can be aligned by aligning the liquid crystal compound. For example, a composition containing a near-infrared absorbing dye, a liquid crystal compound, etc. (hereinafter also referred to as "liquid crystal composition") is applied to form a coating film, and the coating film is subjected to an alignment treatment to align the liquid crystal compound. Further, if the liquid crystal compound is a polymerizable liquid crystal compound, an optically anisotropic film can be formed by subjecting the obtained coating film to a curing treatment (light irradiation treatment or heat treatment).
 以下、重合性液晶化合物を配向させて光学異方性膜を形成する方法の手順について詳述する。 Hereinafter, the procedure for forming an optically anisotropic film by aligning a polymerizable liquid crystal compound will be described in detail.
 まず、支持体上に、液晶組成物を塗布して塗膜を形成し、塗膜に配向処理を施して重合性液晶化合物を配向させる。 First, a liquid crystal composition is applied onto a support to form a coating film, and the coating film is subjected to an alignment treatment to align the polymerizable liquid crystal compound.
 使用される支持体は、組成物を塗布するための基材として機能を有する部材である。支持体は、液晶組成物を塗布および硬化させた後に剥離される仮支持体であってもよい。
 支持体(仮支持体)としては、プラスチックフィルムや、ガラス基板を用いることができる。
 支持体の厚みは、好ましくは5~1000μm、より好ましくは10~300μm、特に好ましくは15~90μmである。
The support used is a member that functions as a base material for applying the composition. The support may be a temporary support that is peeled off after the liquid crystal composition is applied and cured.
As the support (temporary support), a plastic film or a glass substrate can be used.
The thickness of the support is preferably 5 to 1000 μm, more preferably 10 to 300 μm, particularly preferably 15 to 90 μm.
 なお、必要に応じて、支持体上には、配向層を配置してもよい。
 配向層は、一般的には、ポリマーを主成分とする。配向層用ポリマーとしては、多数の文献に記載があり、多数の市販品を入手できる。配向層用ポリマーとしては、ポリビニルアルコール、ポリイミド、または、その誘導体が好ましい。
 なお、配向層には、公知のラビング処理、光配向処理、または溝配向処理が施されることが好ましい。
 配向層の厚みは、0.01~10μmが好ましく、0.01~1μmがより好ましい。
Note that an alignment layer may be placed on the support, if necessary.
The alignment layer generally has a polymer as its main component. Polymers for alignment layers are described in many documents, and many commercially available products are available. The polymer for the alignment layer is preferably polyvinyl alcohol, polyimide, or a derivative thereof.
Note that the alignment layer is preferably subjected to known rubbing treatment, photo alignment treatment, or groove alignment treatment.
The thickness of the alignment layer is preferably 0.01 to 10 μm, more preferably 0.01 to 1 μm.
 液晶組成物の塗布方法としては、カーテンコーティング法、ディップコーティング法、スピンコーティング法、印刷コーティング法、スプレーコーティング法、スロットコーティング法、ロールコーティング法、スライドコーティング法、ブレードコーティング法、グラビアコーティング法、および、ワイヤーバー法などが挙げられる。いずれの方法で塗布する場合においても、単層塗布が好ましい。 Methods for applying the liquid crystal composition include curtain coating method, dip coating method, spin coating method, print coating method, spray coating method, slot coating method, roll coating method, slide coating method, blade coating method, gravure coating method, and , wire bar method, etc. Regardless of which method is used, single-layer coating is preferred.
 支持体上に形成された塗膜に、配向処理を施して、塗膜中の重合性液晶化合物を配向させる。
 配向処理は、室温により塗膜を乾燥させる、または、塗膜を加熱することにより行うことができる。配向処理で形成される液晶相は、サーモトロピック性液晶化合物の場合、一般に温度または圧力の変化により転移させることができる。リオトロピック性液晶化合物の場合には、溶媒量などの組成比によっても転移させることができる。
The coating film formed on the support is subjected to an alignment treatment to align the polymerizable liquid crystal compound in the coating film.
The orientation treatment can be performed by drying the coating film at room temperature or by heating the coating film. In the case of a thermotropic liquid crystal compound, the liquid crystal phase formed by the alignment treatment can generally be transformed by changing temperature or pressure. In the case of a lyotropic liquid crystal compound, the transition can also be caused by changing the composition ratio such as the amount of solvent.
 なお、塗膜を加熱する場合の条件は特に制限されないが、加熱温度としては50~250℃が好ましく、50~150℃がより好ましく、加熱時間としては10秒間~10分間が好ましい。
 また、塗膜を加熱した後、後述する硬化処理(光照射処理)の前に、必要に応じて、塗膜を冷却してもよい。冷却温度としては20~200℃が好ましく、20~150℃がより好ましい。
 なお、上述した塗膜の加熱温度と、上述した塗膜の冷却温度との差は特に制限されず、40~150℃が好ましい。
 なかでも、硬化処理を施す前に、塗膜を加熱して冷却する際には、塗膜の加熱温度TAが50~250℃であり、かつ、冷却温度TBが加熱温度TA×0.1~加熱温度TA×0.7の範囲であることが好ましい。
Note that the conditions for heating the coating film are not particularly limited, but the heating temperature is preferably 50 to 250°C, more preferably 50 to 150°C, and the heating time is preferably 10 seconds to 10 minutes.
Moreover, after the coating film is heated, the coating film may be cooled, if necessary, before the curing treatment (light irradiation treatment) described below. The cooling temperature is preferably 20 to 200°C, more preferably 20 to 150°C.
Note that the difference between the heating temperature of the coating film described above and the cooling temperature of the coating film described above is not particularly limited, and is preferably 40 to 150°C.
In particular, when heating and cooling the coating film before curing treatment, the heating temperature TA of the coating film is 50 to 250°C, and the cooling temperature TB is heating temperature TA × 0.1 to The range is preferably heating temperature TA x 0.7.
 次に、重合性液晶化合物が配向された塗膜に対して硬化処理を施す。
 重合性液晶化合物が配向された塗膜に対して実施される硬化処理の方法は特に制限されず、例えば、光照射処理および加熱処理が挙げられる。なかでも、製造適性の点から、光照射処理が好ましく、紫外線照射処理がより好ましい。
 光照射処理の照射条件は特に制限されないが、50~3000mJ/cmの照射量が好ましい。
Next, the coating film in which the polymerizable liquid crystal compound is oriented is subjected to a curing treatment.
The method of curing treatment performed on the coating film in which the polymerizable liquid crystal compound is oriented is not particularly limited, and examples thereof include light irradiation treatment and heat treatment. Among these, from the viewpoint of manufacturing suitability, light irradiation treatment is preferred, and ultraviolet irradiation treatment is more preferred.
The irradiation conditions for the light irradiation treatment are not particularly limited, but an irradiation amount of 50 to 3000 mJ/cm 2 is preferable.
 上記製造方法において、各種条件を調整することにより、近赤外線吸収色素の配置状態などを調整でき、結果として光学異方性膜の光学特性を調整できる。
 例えば、支持体上に液晶組成物を塗布して塗膜を形成した後の重合性液晶化合物を配向させる際の加熱温度、および、加熱した後に冷却する際の冷却温度を調整することにより、近赤外線吸収色素の配置状態などを調整でき、結果として光学異方性膜の光学特性を調整できる。
In the above manufacturing method, by adjusting various conditions, the arrangement of the near-infrared absorbing dye, etc. can be adjusted, and as a result, the optical properties of the optically anisotropic film can be adjusted.
For example, by adjusting the heating temperature when aligning the polymerizable liquid crystal compound after coating the liquid crystal composition on the support to form a coating film, and the cooling temperature when cooling after heating, it is possible to The arrangement of the infrared absorbing dye can be adjusted, and as a result, the optical properties of the optically anisotropic film can be adjusted.
<用途>
 本発明の実施形態に係る光学異方性膜は、種々の用途に適用でき、例えば、光学異方性膜の面内リタデーションを調整して、いわゆる位相差板として、好ましくはλ/4板として用いることができる。
 なお、λ/4板とは、ある特定の波長の直線偏光を円偏光に(または、円偏光を直線偏光に)変換する機能を有する板である。より具体的には、所定の波長λnmにおける面内リタデーションReが1/4波長(または、この奇数倍)を示す位相差板である。
<Application>
The optically anisotropic film according to the embodiment of the present invention can be applied to various uses, for example, by adjusting the in-plane retardation of the optically anisotropic film, it can be used as a so-called retardation plate, preferably as a λ/4 plate. Can be used.
Note that the λ/4 plate is a plate that has a function of converting linearly polarized light of a certain wavelength into circularly polarized light (or circularly polarized light into linearly polarized light). More specifically, it is a retardation plate whose in-plane retardation Re at a predetermined wavelength λnm is 1/4 wavelength (or an odd multiple thereof).
 本発明の実施形態に係る光学異方性膜、および、この光学異方性膜を含む光学フィルタは、表示装置中に含まれていてもよい。この場合、光学異方性膜および光学フィルタは、例えば、液晶セルを光学補償するための光学補償フィルタ、および、有機エレクトロルミネッセンス表示装置などの表示装置に用いられる反射防止膜として用いることができる。
 なかでも、光学フィルタの好ましい態様として、光学異方性膜と偏光子とを含む円偏光板が挙げられる。この円偏光板は、上記反射防止膜として好適に使用できる。つまり、表示素子(例えば、有機エレクトロルミネッセンス表示素子)と、表示素子上に配置された円偏光板とを有する表示装置においては、反射色味がより抑制できる。
 また、本発明の光学異方性膜は、IPS(In Plane Switching)型液晶表示装置の光学補償フィルタに好適に用いられ、斜め方向から視認した時の色味変化および黒表示時の光漏れを改善できる。
The optically anisotropic film according to the embodiment of the present invention and the optical filter including this optically anisotropic film may be included in a display device. In this case, the optically anisotropic film and the optical filter can be used, for example, as an optical compensation filter for optically compensating a liquid crystal cell, and as an antireflection film used in a display device such as an organic electroluminescent display device.
Among them, a preferable embodiment of the optical filter is a circularly polarizing plate including an optically anisotropic film and a polarizer. This circularly polarizing plate can be suitably used as the above-mentioned antireflection film. That is, in a display device that includes a display element (for example, an organic electroluminescent display element) and a circularly polarizing plate disposed on the display element, reflected tint can be further suppressed.
Further, the optically anisotropic film of the present invention is suitably used in an optical compensation filter of an IPS (In Plane Switching) type liquid crystal display device, and prevents color change when viewed from an oblique direction and light leakage during black display. It can be improved.
 光学異方性膜を含む光学フィルタとしては、上述したように、偏光子と光学異方性膜とを含む円偏光板が挙げられる。
 偏光子は、光を特定の直線偏光に変換する機能を有する部材(直線偏光子)であればよく、主に、吸収型偏光子を利用できる。
 吸収型偏光子としては、ヨウ素系偏光子、二色性染料を利用した染料系偏光子、およびポリエン系偏光子などが挙げられる。ヨウ素系偏光子および染料系偏光子には、塗布型偏光子と延伸型偏光子とがあり、いずれも適用できるが、ポリビニルアルコールにヨウ素または二色性染料を吸着させ、延伸して作製される偏光子が好ましい。
 偏光子の吸収軸と光学異方性膜の遅相軸との関係は特に制限されないが、光学異方性膜がλ/4板であり、光学フィルタが円偏光フィルタとして用いられる場合は、偏光子の吸収軸と光学異方性膜の遅相軸とのなす角は、45°±10°が好ましい。
As described above, examples of the optical filter including an optically anisotropic film include a circularly polarizing plate including a polarizer and an optically anisotropic film.
The polarizer may be any member (linear polarizer) that has the function of converting light into specific linearly polarized light, and mainly an absorption type polarizer can be used.
Examples of absorption polarizers include iodine polarizers, dye polarizers using dichroic dyes, and polyene polarizers. Iodine-based polarizers and dye-based polarizers include coating type polarizers and stretching type polarizers, both of which can be applied, but they are produced by adsorbing iodine or dichroic dye to polyvinyl alcohol and stretching it. Polarizers are preferred.
The relationship between the absorption axis of the polarizer and the slow axis of the optically anisotropic film is not particularly limited, but if the optically anisotropic film is a λ/4 plate and the optical filter is used as a circularly polarizing filter, the polarization The angle between the absorption axis of the child and the slow axis of the optically anisotropic film is preferably 45°±10°.
 本発明の実施形態に係る光学異方性膜は、VRやMRの偏光折返し光学系(いわゆるパンケーキ光学系)に用いてもよい。偏光折返し光学系とは、従来の光学レンズ部分に相当する。偏光折り返し光学系は、従来型レンズの代わりにλ/4板、ハーフミラー、反射偏光板などの部材を組み合わせることで、偏光の反射を利用して従来より長い光路長を得られる光学系である。偏光折り返し光学系は、VRやMRのヘッドセットのレンズとディスプレイの間の距離を縮めることができ、軽量化が可能である。本発明の実施形態に係る光学異方性膜は、好ましくはλ/4板として用いることができる。本発明の実施形態に係る光学異方性膜を用いることで、VRやMRの色再現性の向上が期待できる。 The optically anisotropic film according to the embodiment of the present invention may be used in a polarization folding optical system (so-called pancake optical system) for VR or MR. The polarization folding optical system corresponds to a conventional optical lens part. A polarization folding optical system is an optical system that uses reflection of polarized light to obtain a longer optical path length than conventional ones by combining components such as λ/4 plates, half mirrors, and reflective polarizing plates instead of conventional lenses. . A polarization folding optical system can shorten the distance between the lens and display of a VR or MR headset, making it possible to reduce the weight. The optically anisotropic film according to the embodiment of the present invention can preferably be used as a λ/4 plate. By using the optically anisotropic film according to the embodiment of the present invention, improvement in color reproducibility in VR and MR can be expected.
 以上説明したとおり、本明細書は下記の光学異方性膜、位相差板、光学フィルタを開示する。
〔1〕波長430~680nmの全領域において、楕円率が0.9以上である、単層の光学異方性膜。
〔2〕波長830nmおよび波長850nmの少なくとも一方における透過率が97%以上である、〔1〕に記載の光学異方性膜。
〔3〕近赤外線吸収色素を含み、波長650~1100nmにおける極大吸収波長が780nm未満である、〔1〕または〔2〕に記載の光学異方性膜。
〔4〕液晶化合物を含む、〔1〕~〔3〕のいずれかに記載の光学異方性膜。
〔5〕波長430~680nmの領域における平均透過率が95%以上である、〔1〕~〔4〕のいずれかに記載の光学異方性膜。
〔6〕近赤外線吸収色素を含み、波長650~1100nmにおける極大吸収波長が750nm以上である、〔1〕~〔5〕のいずれかに記載の光学異方性膜。
〔7〕〔1〕~〔6〕のいずれかに記載の光学異方性膜を備える位相差板。
〔8〕〔1〕~〔6〕のいずれかに記載の光学異方性膜を備える光学フィルタ。
As explained above, this specification discloses the following optically anisotropic film, retardation plate, and optical filter.
[1] A single-layer optically anisotropic film having an ellipticity of 0.9 or more in the entire wavelength range of 430 to 680 nm.
[2] The optically anisotropic film according to [1], which has a transmittance of 97% or more at at least one of a wavelength of 830 nm and a wavelength of 850 nm.
[3] The optically anisotropic film according to [1] or [2], which contains a near-infrared absorbing dye and has a maximum absorption wavelength of less than 780 nm in a wavelength range of 650 to 1100 nm.
[4] The optically anisotropic film according to any one of [1] to [3], which contains a liquid crystal compound.
[5] The optically anisotropic film according to any one of [1] to [4], which has an average transmittance of 95% or more in the wavelength range of 430 to 680 nm.
[6] The optically anisotropic film according to any one of [1] to [5], which contains a near-infrared absorbing dye and has a maximum absorption wavelength of 750 nm or more in a wavelength range of 650 to 1100 nm.
[7] A retardation plate comprising the optically anisotropic film according to any one of [1] to [6].
[8] An optical filter comprising the optically anisotropic film according to any one of [1] to [6].
 次に、本発明を実施例によりさらに具体的に説明する。
 リタデーションの測定にはリタデーション測定装置(大塚電子製、RETS-100)を用いた。
 吸収スペクトルおよび分光特性の測定には可視吸収スペクトル計(島津製作所製、SolidSpec-3700DUV)を用いた。
Next, the present invention will be explained in more detail with reference to Examples.
A retardation measuring device (manufactured by Otsuka Electronics, RETS-100) was used to measure retardation.
A visible absorption spectrometer (manufactured by Shimadzu Corporation, SolidSpec-3700DUV) was used to measure the absorption spectrum and spectral characteristics.
〔合成例1:色素A-3の合成〕 [Synthesis Example 1: Synthesis of dye A-3]
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<化合物(a1)の合成>
 100mLの2口ナスフラスコにtrans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサンカルボン酸1.40g(5.55mmol)、4-(4-ヒドロキシフェニル)シクロヘキサノン1.05g(5.52mmol)、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩1.32g(6.89mmol)、4-ジメチルアミノピリジン0.820g(6.71mmol)、ジクロロメタン28.0mLを加え、窒素雰囲気下で23時間攪拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を30mL加え、ジクロロメタンで2回抽出し、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(a1)を得た。これをヘキサン:ジクロロメタン:酢酸エチル=4:1:1でカラム精製を行い、化合物(a1)を2.26g得た。(収率98%)
<Synthesis of compound (a1)>
Trans-4-(trans-4-propylcyclohexyl)cyclohexanecarboxylic acid 1.40g (5.55mmol), 4-(4-hydroxyphenyl)cyclohexanone 1.05g (5.52mmol), 1 -(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 1.32 g (6.89 mmol), 4-dimethylaminopyridine 0.820 g (6.71 mmol), and dichloromethane 28.0 mL were added, and the mixture was heated under nitrogen atmosphere for 2 hours. Stir for hours. After the reaction was completed, 30 mL of saturated aqueous sodium bicarbonate solution was added, extracted twice with dichloromethane, washed with saturated brine, dried over sodium sulfate, and then the solvent was removed under reduced pressure to obtain crude compound (a1). . This was purified by column using hexane:dichloromethane:ethyl acetate=4:1:1 to obtain 2.26 g of compound (a1). (Yield 98%)
<化合物(a2)の合成>
 100mLの2口ナスフラスコにTHFを26mL、(メトキシメチル)トリフェニルホスホニウムクロリド2.31g(6.74mmol)を加え、窒素雰囲気下、氷冷下で、t-ブトキシカリウム0.761g(6.71mmol)をゆっくり加えて30分攪拌した。上記で得られた化合物(a1)2.26g(5.32mmol)をゆっくり加え、30分攪拌し、室温に戻して1.5時間攪拌した。反応終了後、水を10mL、ブラインを10mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去した。得られた固体をヘキサンに懸濁させ、ろ過を行って固体を除去し、溶媒を減圧除去して未精製の化合物を得た。100mLの2口ナスフラスコに得られた化合物を加え、窒素雰囲気下、氷冷下で、THF(25mL)、6M塩酸(2.6mL)を加え、室温に戻して1時間撹拌した。反応終了後、ブラインを20mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物を得た。溶媒除去後、これをヘキサン:ジクロロメタン=2:1でカラム精製を行い、化合物(a2)を1.67g得た。(収率76%)
<Synthesis of compound (a2)>
Add 26 mL of THF and 2.31 g (6.74 mmol) of (methoxymethyl)triphenylphosphonium chloride to a 100 mL two-necked eggplant flask, and add 0.761 g (6.71 mmol) of t-butoxypotassium under ice cooling under a nitrogen atmosphere. ) was slowly added and stirred for 30 minutes. 2.26 g (5.32 mmol) of the compound (a1) obtained above was slowly added, stirred for 30 minutes, returned to room temperature, and stirred for 1.5 hours. After the reaction was completed, 10 mL of water and 10 mL of brine were added, extracted three times with ethyl acetate, dried over sodium sulfate, and then the solvent was removed under reduced pressure. The obtained solid was suspended in hexane, filtered to remove the solid, and the solvent was removed under reduced pressure to obtain a crude compound. The obtained compound was added to a 100 mL two-necked eggplant flask, and THF (25 mL) and 6M hydrochloric acid (2.6 mL) were added under ice cooling under a nitrogen atmosphere, and the mixture was returned to room temperature and stirred for 1 hour. After the reaction was completed, 20 mL of brine was added, extracted three times with ethyl acetate, dried over sodium sulfate, and the solvent was removed under reduced pressure to obtain a crude compound. After removing the solvent, this was purified by column using hexane:dichloromethane=2:1 to obtain 1.67 g of compound (a2). (yield 76%)
<化合物(a3)の合成>
 300mLの丸底フラスコに、2,1,3-ベンゾチアジアゾールを10.0g(73.4mmol)加えた。氷冷下、濃硫酸を200g(2039mmol)加え、室温に戻し、溶解するまで1時間撹拌した。その後、再び氷冷下でN-ブロモスクシンイミドを12.4g(69.8mmol)加え、室温に戻し、溶解するまで1時間撹拌した。さらに1時間撹拌して反応を完了させた後、800mLの氷水に反応溶液を滴下すると固体が析出したので、静置してデカンテーションで溶液を取り除いた。さらに800mLの水を加え、静置してデカンテーションで溶液を取り除いた後、析出した固体を濾過することで未精製の化合物(a3)を得た。これをヘキサン/酢酸エチル(1:1、容量比)の溶液100mLに懸濁させ、60℃に加熱し固体を溶解させた。この溶液を室温に戻し、析出した固体を濾過で取り除いた。取り除いた固体はジブロモ体であった。濾液を飽和炭酸水素ナトリウム水溶液100mLで洗浄し、無水硫酸ナトリウムで乾燥した後、溶媒を減圧除去して9.15gの固体を得た。得られた固体は化合物(a3):ジブロモ体=1:0.17(モル比)であり、含まれる化合物(a3)は7.42gであった。(収率47%)
<Synthesis of compound (a3)>
10.0 g (73.4 mmol) of 2,1,3-benzothiadiazole was added to a 300 mL round bottom flask. Under ice-cooling, 200 g (2039 mmol) of concentrated sulfuric acid was added, the temperature was returned to room temperature, and the mixture was stirred for 1 hour until dissolved. Thereafter, 12.4 g (69.8 mmol) of N-bromosuccinimide was added under ice cooling again, the temperature was returned to room temperature, and the mixture was stirred for 1 hour until dissolved. After stirring for another 1 hour to complete the reaction, the reaction solution was added dropwise to 800 mL of ice water, and a solid precipitated, so the solution was left to stand and the solution was removed by decantation. Furthermore, 800 mL of water was added, the solution was left to stand and the solution was removed by decantation, and the precipitated solid was filtered to obtain unpurified compound (a3). This was suspended in 100 mL of a solution of hexane/ethyl acetate (1:1, volume ratio) and heated to 60° C. to dissolve the solid. This solution was returned to room temperature, and the precipitated solid was removed by filtration. The solid removed was dibromo. The filtrate was washed with 100 mL of saturated aqueous sodium bicarbonate solution, dried over anhydrous sodium sulfate, and then the solvent was removed under reduced pressure to obtain 9.15 g of solid. The obtained solid had a compound (a3):dibromo form=1:0.17 (mole ratio), and contained 7.42 g of compound (a3). (yield 47%)
<化合物(a4)の合成>
 還流装置を装備した500mLの3つ口丸底フラスコに、PEPPSITM-IPrを0.63g(0.93mmol)、上記で得られた化合物(a3)(ジブロモ体を17.0mol%含む)を9.15g(Br当量:46.3mmol)、t-ブトキシカリウムを6.75g(60.2mmol)、トルエンを200mL加えた。脱気および窒素置換をおこなった後、ジ(2-エチルヘキシル)アミンを9.57mL(55.5mmol)加え、100℃で5時間撹拌した。反応終了後、セライト濾過にて反応液中の固体を除去し、濾液を濃縮して未精製の化合物(a4)を得た。これをヘキサン/酢酸エチル(24:1、容量比)を展開液としたカラムクロマトグラフィーで精製し、8.53gの化合物(a4)を得た。(収率94%)
<Synthesis of compound (a4)>
In a 500 mL three-necked round bottom flask equipped with a reflux device, 0.63 g (0.93 mmol) of PEPPSITM-IPr and 9.0 g of compound (a3) (containing 17.0 mol% of dibromo compound) obtained above were added. 15 g (Br equivalent: 46.3 mmol), 6.75 g (60.2 mmol) of t-butoxypotassium, and 200 mL of toluene were added. After degassing and nitrogen substitution, 9.57 mL (55.5 mmol) of di(2-ethylhexyl)amine was added and stirred at 100° C. for 5 hours. After the reaction was completed, solids in the reaction solution were removed by filtration through Celite, and the filtrate was concentrated to obtain unpurified compound (a4). This was purified by column chromatography using hexane/ethyl acetate (24:1, volume ratio) as a developing solution to obtain 8.53 g of compound (a4). (Yield 94%)
<化合物(a5)の合成>
 50mLの2口ナスフラスコに化合物(a4)0.742g(1.98mmol)、エタノール7.5mLを加え、窒素雰囲気下、氷冷下で、水素化ホウ素ナトリウム0.215g(5.68mmol)、およびエタノールに溶かした塩化コバルト(II)六水和物0.157g(0.660mmol)をゆっくり加え、2時間撹拌した。反応終了後、ジクロロメタンでセライトろ過を行い、飽和塩化アンモニウム水溶液を10mL、飽和炭酸水素ナトリウム水溶液を20mL加え、ジクロロメタンで5回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(a5)を得た。化合物(a5)は未精製のまま次の反応に使用した。
<Synthesis of compound (a5)>
Add 0.742 g (1.98 mmol) of compound (a4) and 7.5 mL of ethanol to a 50 mL two-necked eggplant flask, and add 0.215 g (5.68 mmol) of sodium borohydride under ice cooling under a nitrogen atmosphere. 0.157 g (0.660 mmol) of cobalt (II) chloride hexahydrate dissolved in ethanol was slowly added and stirred for 2 hours. After completion of the reaction, filter through Celite with dichloromethane, add 10 mL of saturated aqueous ammonium chloride solution and 20 mL of saturated aqueous sodium bicarbonate solution, extract 5 times with dichloromethane, dry over sodium sulfate, and remove the solvent under reduced pressure to obtain unpurified Compound (a5) was obtained. Compound (a5) was used unpurified in the next reaction.
<化合物(a6)の合成>
 還流装置を装備した50mLの2口ナスフラスコに上記で得られた化合物(a5)0.653g(1.88mmol)、DMA10mLを加え、窒素雰囲気下、亜硫酸水素ナトリウム0.196g(1.88mmol)を加え、100℃に加熱した。DMAに溶かした化合物(a2)1.12g(2.55mmol)を15分かけてゆっくり滴下し、100℃で3時間撹拌した。反応終了後、飽和水酸化ナトリウム水溶液を30mL加え、ヘキサン:酢酸エチル=4:1で3回抽出し、水で洗浄し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物を得た。これをヘキサン:酢酸エチル=9:1でカラム精製を行い、化合物(a6)を0.977g得た。(収率68%)
<Synthesis of compound (a6)>
Add 0.653 g (1.88 mmol) of the compound (a5) obtained above and 10 mL of DMA to a 50 mL two-neck eggplant flask equipped with a reflux device, and add 0.196 g (1.88 mmol) of sodium bisulfite under a nitrogen atmosphere. and heated to 100°C. 1.12 g (2.55 mmol) of compound (a2) dissolved in DMA was slowly added dropwise over 15 minutes, and the mixture was stirred at 100° C. for 3 hours. After the reaction, 30 mL of saturated aqueous sodium hydroxide solution was added, extracted three times with hexane:ethyl acetate = 4:1, washed with water, dried over sodium sulfate, and the solvent was removed under reduced pressure to remove the unpurified compound. Obtained. This was purified by column using hexane:ethyl acetate=9:1 to obtain 0.977g of compound (a6). (yield 68%)
<色素A-3の合成>
 300mLの3つ口丸底ナスフラスコに化合物(a6)を0.977g(1.28mmol)、1-ブタノールを25mL、トルエンを25mL加え、窒素雰囲気下、スクアリン酸0.0882g(0.765mmol)を加え、3時間還流した。反応終了後、溶媒を減圧除去し、ヘキサンに懸濁させてろ過を行い、未精製の色素A-3を得た。これをヘキサン:酢酸エチル=9:1でカラム精製を行い、色素A-3を得た。(収率44%)
<Synthesis of dye A-3>
Add 0.977 g (1.28 mmol) of compound (a6), 25 mL of 1-butanol, and 25 mL of toluene to a 300 mL three-neck round bottom eggplant flask, and add 0.0882 g (0.765 mmol) of squaric acid under a nitrogen atmosphere. The mixture was added and refluxed for 3 hours. After the reaction was completed, the solvent was removed under reduced pressure, and the suspension was suspended in hexane and filtered to obtain unpurified dye A-3. This was purified by column using hexane:ethyl acetate=9:1 to obtain dye A-3. (yield 44%)
H-NMR(400MHz,CHLOROFORM-D)δ13.10(s,2H),7.99(d,J=9.1Hz,2H),7.25(d,J=8.3Hz,4H),7.01(d,J=8.3Hz,4H),6.52(d,J=9.1Hz,2H),4.20-3.79(m,8H),2.97(t,J=11.6Hz,2H),2.67(t,J=11.3Hz,2H),2.46-2.40(m,H),2.19-0.84(m,122H)。 1H -NMR (400MHz, CHLOROFORM-D) δ13.10 (s, 2H), 7.99 (d, J = 9.1Hz, 2H), 7.25 (d, J = 8.3Hz, 4H), 7.01 (d, J = 8.3Hz, 4H), 6.52 (d, J = 9.1Hz, 2H), 4.20-3.79 (m, 8H), 2.97 (t, J = 11.6Hz, 2H), 2.67 (t, J = 11.3Hz, 2H), 2.46-2.40 (m, H), 2.19-0.84 (m, 122H).
〔合成例2:色素B-1の合成〕 [Synthesis Example 2: Synthesis of dye B-1]
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<化合物(b1)の合成>
 50mLの2口ナスフラスコにtrans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサンカルボン酸1.44g(5.71mmol)、4-ジメチルアミノピリジン0.734g(6.01mmol)、ジクロロメタン27.3mL、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩1.16g(6.05mmol)を加え、窒素雰囲気下で20分攪拌した。4-ヨードフェノール1.20g(5.46mmol)を加え、2時間攪拌した。反応終了後、1M塩酸を10mL、水を10mL加え、ジクロロメタンで5回抽出し、飽和炭酸水素ナトリウム水溶液で洗浄し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b1)を得た。これをヘキサン:ジクロロメタン=1:1でカラム精製を行い、化合物(b1)を2.19g得た。(収率88%)
<Synthesis of compound (b1)>
In a 50 mL two-necked eggplant flask, trans-4-(trans-4-propylcyclohexyl)cyclohexanecarboxylic acid 1.44 g (5.71 mmol), 4-dimethylaminopyridine 0.734 g (6.01 mmol), dichloromethane 27.3 mL, 1.16 g (6.05 mmol) of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride was added, and the mixture was stirred for 20 minutes under a nitrogen atmosphere. 1.20 g (5.46 mmol) of 4-iodophenol was added and stirred for 2 hours. After the reaction, 10 mL of 1M hydrochloric acid and 10 mL of water were added, extracted 5 times with dichloromethane, washed with saturated aqueous sodium bicarbonate solution, dried over sodium sulfate, and the solvent was removed under reduced pressure to obtain unpurified compound (b1). I got it. This was purified by column using hexane:dichloromethane=1:1 to obtain 2.19 g of compound (b1). (yield 88%)
<化合物(b2)の合成>
 50mLの2口ナスフラスコに3-ニトロアニリン1.06g(7.66mmol)、DMF15mLを加え、窒素雰囲気下、N-ブロモスクシンイミドを1.43g(8.03mmol)加え、1時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を20mL、水を20mL加え、ヘキサン:酢酸エチル=4:1で3回抽出し、水で洗浄を行い、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b2)を得た。これをヘキサン:酢酸エチル=1:1でカラム精製を行い、化合物(b2)を1.56g得た。(収率94%)
<Synthesis of compound (b2)>
1.06 g (7.66 mmol) of 3-nitroaniline and 15 mL of DMF were added to a 50 mL two-necked eggplant flask, and 1.43 g (8.03 mmol) of N-bromosuccinimide was added under a nitrogen atmosphere, followed by stirring for 1 hour. After the reaction was completed, 20 mL of a saturated aqueous sodium bicarbonate solution and 20 mL of water were added, extracted three times with hexane:ethyl acetate = 4:1, washed with water, dried over sodium sulfate, and then the solvent was removed under reduced pressure. Unpurified compound (b2) was obtained. This was purified by column using hexane:ethyl acetate=1:1 to obtain 1.56 g of compound (b2). (Yield 94%)
<化合物(b3)の合成>
 100mLの2口ナスフラスコに化合物(b2)1.56g(7.18mmol)、酢酸14mL、アセトニトリル14mLを加え、窒素雰囲気下、氷冷下水素化ホウ素ナトリウム0.816g(21.6mmol)を加え、20分間撹拌した。イソブチルアルデヒド2.0mL(21.5mmol)を加え、室温に戻して5時間攪拌した。反応終了後、水を10mL加え、溶媒を減圧除去した。水酸化ナトリウム水溶液で中和し、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b3)を得た。これをヘキサン:酢酸エチル=93:7でカラム精製を行い、化合物(b3)を2.19g得た。(収率93%)
<Synthesis of compound (b3)>
Add 1.56 g (7.18 mmol) of compound (b2), 14 mL of acetic acid, and 14 mL of acetonitrile to a 100 mL two-necked eggplant flask, and add 0.816 g (21.6 mmol) of sodium borohydride under ice cooling under a nitrogen atmosphere. Stir for 20 minutes. 2.0 mL (21.5 mmol) of isobutyraldehyde was added, the temperature was returned to room temperature, and the mixture was stirred for 5 hours. After the reaction was completed, 10 mL of water was added and the solvent was removed under reduced pressure. After neutralizing with an aqueous sodium hydroxide solution, extracting three times with ethyl acetate, and drying over sodium sulfate, the solvent was removed under reduced pressure to obtain crude compound (b3). This was purified by column using hexane:ethyl acetate=93:7 to obtain 2.19g of compound (b3). (Yield 93%)
<化合物(b4)の合成>
 100mLの2口ナスフラスコに化合物(b3)2.19g(6.65mmol)、THF22mLを加え、窒素雰囲気下、-40℃でビニルマグネシウムクロリド(1.6mol/L、THF溶液)14mLをゆっくり加え、4時間撹拌した。反応終了後、飽和塩化アンモニウム水溶液を15mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(b4)を得た。化合物(b4)は未精製のまま次の反応に使用した。
<Synthesis of compound (b4)>
Add 2.19 g (6.65 mmol) of compound (b3) and 22 mL of THF to a 100 mL two-necked eggplant flask, and slowly add 14 mL of vinylmagnesium chloride (1.6 mol/L, THF solution) at -40°C under a nitrogen atmosphere. Stirred for 4 hours. After the reaction was completed, 15 mL of saturated ammonium chloride aqueous solution was added, extracted three times with ethyl acetate, dried over sodium sulfate, and the solvent was removed under reduced pressure to obtain crude compound (b4). Compound (b4) was used in the next reaction without being purified.
<化合物(b5)の合成>
 200mLのナスフラスコに上記で得られた化合物(b4)2.15g(6.65mmol)、酢酸エチル44mL、トリエチルアミン4.6mL(33mmol)を加え、窒素雰囲気下、Pd/C0.53gを加え、水素置換して15時間攪拌した。反応終了後、セライトろ過を行い、溶媒を減圧除去して未精製の化合物(b5)を得た。これをヘキサン:酢酸エチル=10:1でカラム精製を行い、化合物(b5)を0.524g得た。(収率32%)
<Synthesis of compound (b5)>
Add 2.15 g (6.65 mmol) of the compound (b4) obtained above, 44 mL of ethyl acetate, and 4.6 mL (33 mmol) of triethylamine to a 200 mL eggplant flask, add 0.53 g of Pd/C under a nitrogen atmosphere, and add hydrogen. After replacement, the mixture was stirred for 15 hours. After the reaction was completed, celite filtration was performed, and the solvent was removed under reduced pressure to obtain crude compound (b5). This was purified by column using hexane:ethyl acetate=10:1 to obtain 0.524 g of compound (b5). (yield 32%)
<化合物(b6)の合成>
 50mLの2口ナスフラスコに化合物(b5)0.524g(2.14mmol)、2-ノルボルネン0.409g(4.34mmol)、炭酸カリウム0.593g(4.29mmol)、ビス(アセトニトリル)パラジウム(II)ジクロリド0.056g(0.214mmol)、DMA10.7mL、水0.1mLを加え、脱気を行い、窒素雰囲気下で化合物(b1)1.94g(4.26mmol)を加え、70℃で24時間撹拌した。反応終了後、水を30mL加え、ジクロロメタンで3回抽出し、ブラインで洗浄を行い、硫酸ナトリウムで乾燥した後、セライトろ過を行い、ろ液を回収して溶媒を減圧除去した。得られた固体をヘキサンで洗浄し、残渣を回収して未精製の化合物(b6)を得た。これをヘキサン:ジクロロメタン=1:3でカラム精製を行い、化合物(b6)を0.403g得た。(収率33%)
<Synthesis of compound (b6)>
In a 50 mL two-neck eggplant flask, compound (b5) 0.524 g (2.14 mmol), 2-norbornene 0.409 g (4.34 mmol), potassium carbonate 0.593 g (4.29 mmol), bis(acetonitrile) palladium (II) ) Add 0.056 g (0.214 mmol) of dichloride, 10.7 mL of DMA, and 0.1 mL of water, perform deaeration, add 1.94 g (4.26 mmol) of compound (b1) under nitrogen atmosphere, and heat at 70°C for 24 hours. Stir for hours. After the reaction was completed, 30 mL of water was added, extracted three times with dichloromethane, washed with brine, dried over sodium sulfate, filtered through Celite, the filtrate was collected, and the solvent was removed under reduced pressure. The obtained solid was washed with hexane, and the residue was collected to obtain unpurified compound (b6). This was purified by column using hexane:dichloromethane=1:3 to obtain 0.403 g of compound (b6). (yield 33%)
<色素B-1の合成>
 色素B-1は、色素A-3の合成において、化合物(a5)を化合物(b6)に変更した以外は、色素A-3と同様の方法で合成した。
 H-NMR(400MHz,CHLOROFORM-D)δ13.37(d,J=102.0Hz,2H),8.11(d,J=8.8Hz,2H),7.81(t,J=9.1Hz,4H),7.22-7.15(m,4H),6.79(s,2H),6.47
(s,2H),3.61(s,8H),2.54-2.45(m,2H),2.29-2.17(m,8H),1.91-1.86(m,4H),1.79-1.72(m,8H),1.61-1.52(m,4H),1.34-1.25(m,4H),1.17-1.05(m,18H),0.99(d,J=6.7Hz,24H),0.90-0.83
(m,12H)。
<Synthesis of dye B-1>
Dye B-1 was synthesized in the same manner as dye A-3, except that compound (a5) was changed to compound (b6) in the synthesis of dye A-3.
1H -NMR (400MHz, CHLOROFORM-D) δ13.37 (d, J = 102.0Hz, 2H), 8.11 (d, J = 8.8Hz, 2H), 7.81 (t, J = 9 .1Hz, 4H), 7.22-7.15 (m, 4H), 6.79 (s, 2H), 6.47
(s, 2H), 3.61 (s, 8H), 2.54-2.45 (m, 2H), 2.29-2.17 (m, 8H), 1.91-1.86 (m , 4H), 1.79-1.72 (m, 8H), 1.61-1.52 (m, 4H), 1.34-1.25 (m, 4H), 1.17-1.05 (m, 18H), 0.99 (d, J=6.7Hz, 24H), 0.90-0.83
(m, 12H).
〔合成例3:色素C-1の合成〕 [Synthesis Example 3: Synthesis of dye C-1]
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
<化合物(c1)の合成>
 化合物(c1)の合成は、4-ヨードフェノールを4-ブロモフェノールに変更した以外は、化合物(b1)と同様の方法で合成した。
<Synthesis of compound (c1)>
Compound (c1) was synthesized in the same manner as compound (b1) except that 4-iodophenol was changed to 4-bromophenol.
<化合物(c2)の合成>
 50mLの2口ナスフラスコに化合物(c1)0.684g(1.68mmol)、1,4-ジオキサン8.6mL、酢酸カリウム0.450g(5.06mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物0.0743g(0.0901mmol)を加えて脱気を行い、窒素雰囲気下でビス(ピナコラート)ジボロン0.501g(1.87mmol)を加え、80℃で6時間撹拌した。反応終了後、飽和炭酸水素ナトリウム水溶液を6mL、水を10mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物を得た。これをヘキサン:酢酸エチル=10:1でカラム精製を行い、化合物(c2)を0.632g得た。(収率83%)
<Synthesis of compound (c2)>
In a 50 mL two-necked eggplant flask, 0.684 g (1.68 mmol) of compound (c1), 8.6 mL of 1,4-dioxane, 0.450 g (5.06 mmol) of potassium acetate, [1,1'-bis(diphenylphosoid)] 0.0743 g (0.0901 mmol) of palladium (II) dichloride dichloromethane adduct was added and degassed, and 0.501 g (1.87 mmol) of bis(pinacolato) diboron was added under a nitrogen atmosphere, and the mixture was heated to 80°C. The mixture was stirred for 6 hours. After the reaction was completed, 6 mL of a saturated aqueous sodium bicarbonate solution and 10 mL of water were added, extracted three times with ethyl acetate, dried over sodium sulfate, and then the solvent was removed under reduced pressure to obtain a crude compound. This was purified by column using hexane:ethyl acetate=10:1 to obtain 0.632g of compound (c2). (yield 83%)
<化合物(c3)の合成>
 国際公開第2021/112020号の段落[0264]~[0267]に記載された方法に基づき、化合物(c3)を合成した。
<Synthesis of compound (c3)>
Compound (c3) was synthesized based on the method described in paragraphs [0264] to [0267] of International Publication No. 2021/112020.
<化合物(c4)の合成>
 50mLの2口ナスフラスコに1,4-ジオキサン5.3mL、化合物(c3)0.489g(1.07mmol)、トリフェニルホスフィン0.056g(0.212mmol)、化合物(c2)0.605g(1.33mmol)を加え、水0.9mLに溶かした炭酸カリウム0.585g(4.23mmol)を加えた。脱気を行い、窒素雰囲気下[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリドジクロロメタン付加物0.046g(0.055mmol)を加え、100℃で24時間撹拌した。反応終了後、水を10mL加え、酢酸エチルで3回抽出し、硫酸ナトリウムで乾燥した後、セライトろ過を行い、ろ液の溶媒を減圧除去して未精製の化合物(c4)を得た。これをヘキサン:酢酸エチル=20:1でカラム精製を行い、化合物(c4)を0.529g得た。(収率70%)
<Synthesis of compound (c4)>
In a 50 mL two-necked eggplant flask, 5.3 mL of 1,4-dioxane, 0.489 g (1.07 mmol) of compound (c3), 0.056 g (0.212 mmol) of triphenylphosphine, 0.605 g (1 0.585 g (4.23 mmol) of potassium carbonate dissolved in 0.9 mL of water was added. After degassing, 0.046 g (0.055 mmol) of [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloride dichloromethane adduct was added under a nitrogen atmosphere, and the mixture was stirred at 100° C. for 24 hours. After the reaction was completed, 10 mL of water was added, extracted three times with ethyl acetate, dried over sodium sulfate, filtered through Celite, and the solvent of the filtrate was removed under reduced pressure to obtain crude compound (c4). This was purified by column using hexane:ethyl acetate=20:1 to obtain 0.529 g of compound (c4). (yield 70%)
<色素C-1の合成>
 100mLの2口ナスフラスコに化合物(c4)0.529g(0.749mmol)、1-プロパノール30mL、トルエン10mL、オルトギ酸トリメチル0.82mL(7.5mmol)を加え、窒素雰囲気下、スクアリン酸0.062g(0.54mmol)を加え、80℃で1.5時間攪拌した。反応終了後、溶媒を減圧除去し、未精製の色素C-1を得た。これをヘキサン:酢酸エチル:ジクロロメタン=10:1:5でカラム精製を行い、色素C-1を0.214g得た。(収率38%)
 H-NMR(400MHz,CHLOROFORM-D)δ7.60(dd,J=6.7,1.9Hz,4H),7.22(dd,J=6.7,1.9Hz,4H),6.04(s,2H),3.32-3.21(m,8H),2.48(tt,J=12.2,3.6Hz,2H),2.19(d,J=11.0Hz,4H),1.88(d,J=9.1Hz,8H),1.79-1.73(m,8H),1.55(t,J=12.0Hz,4H),1.40-1.21(m,40H),1.17-0.96(m,16H),0.89(td,J=7.3,3.3Hz,32H)。
<Synthesis of dye C-1>
0.529 g (0.749 mmol) of compound (c4), 30 mL of 1-propanol, 10 mL of toluene, and 0.82 mL (7.5 mmol) of trimethyl orthoformate were added to a 100 mL two-necked eggplant flask, and 0.5 mmol of squaric acid was added under a nitrogen atmosphere. 062 g (0.54 mmol) was added and stirred at 80° C. for 1.5 hours. After the reaction was completed, the solvent was removed under reduced pressure to obtain unpurified dye C-1. This was purified by column using hexane:ethyl acetate:dichloromethane=10:1:5 to obtain 0.214g of dye C-1. (yield 38%)
1 H-NMR (400MHz, CHLOROFORM-D) δ7.60 (dd, J=6.7, 1.9Hz, 4H), 7.22 (dd, J=6.7, 1.9Hz, 4H), 6 .04 (s, 2H), 3.32-3.21 (m, 8H), 2.48 (tt, J=12.2, 3.6Hz, 2H), 2.19 (d, J=11. 0Hz, 4H), 1.88 (d, J=9.1Hz, 8H), 1.79-1.73 (m, 8H), 1.55 (t, J=12.0Hz, 4H), 1. 40-1.21 (m, 40H), 1.17-0.96 (m, 16H), 0.89 (td, J=7.3, 3.3Hz, 32H).
〔合成例4:色素D-1の合成〕 [Synthesis Example 4: Synthesis of dye D-1]
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<化合物(d1)の合成>
 国際公開第2021/112020号の段落[0272]~[0274]に記載された方法に基づき、化合物(d1)を合成した。
<Synthesis of compound (d1)>
Compound (d1) was synthesized based on the method described in paragraphs [0272] to [0274] of International Publication No. 2021/112020.
<化合物(d2)の合成>
 50mLの2口ナスフラスコに化合物(d1)0.440g(1.04mmol)、エタノール3.5mL、6M水酸化ナトリウム水溶液1.74mLを加え、窒素雰囲気下で3時間還流した。反応終了後、溶媒を減圧除去し、6M塩酸水溶液を2mL加えて中和した。水を10mL加えてジクロロメタンで3回抽出し、硫酸ナトリウムで乾燥した後、溶媒を減圧除去して未精製の化合物(d2)を得た。化合物(d2)は未精製のまま次の反応に使用した。
<Synthesis of compound (d2)>
0.440 g (1.04 mmol) of compound (d1), 3.5 mL of ethanol, and 1.74 mL of a 6M aqueous sodium hydroxide solution were added to a 50 mL two-necked eggplant flask, and the mixture was refluxed for 3 hours under a nitrogen atmosphere. After the reaction was completed, the solvent was removed under reduced pressure, and 2 mL of 6M hydrochloric acid aqueous solution was added to neutralize. After adding 10 mL of water and extracting three times with dichloromethane and drying over sodium sulfate, the solvent was removed under reduced pressure to obtain crude compound (d2). Compound (d2) was used unpurified in the next reaction.
<化合物(d3)の合成>
 化合物(d3)の合成は、化合物(b1)の合成において、trans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサンカルボン酸を化合物(d2)に変更し、4-ヨードフェノールをtrans-4-(trans-4-プロピルシクロヘキシル)シクロヘキサノールに変更した以外は、化合物(b1)と同様の方法で合成した。
<Synthesis of compound (d3)>
Compound (d3) was synthesized by changing trans-4-(trans-4-propylcyclohexyl)cyclohexanecarboxylic acid to compound (d2) in the synthesis of compound (b1), and replacing 4-iodophenol with trans-4-( It was synthesized in the same manner as compound (b1) except that cyclohexanol (trans-4-propylcyclohexyl) was used.
<色素D-1の合成>
 色素D-1の合成は、化合物(c4)を化合物(d3)に変更した以外は、色素C-1と同様の方法で合成した。
H-NMR(400MHz,CHLOROFORM-D)δ9.29(s,2H),6.41(s,2H),6.25(d,J=15.7Hz,2H),4.81-4.75(m,2H),3.35(d,J=7.4Hz,8H),2.15(d,J=9.1Hz,4H),1.93-1.71(m,16H),1.60-1.29(m,38H),1.15-0.96(m,20H),0.93-0.85(m,30H)。
<Synthesis of dye D-1>
Dye D-1 was synthesized in the same manner as dye C-1, except that compound (c4) was changed to compound (d3).
1 H-NMR (400 MHz, CHLOROFORM-D) δ9.29 (s, 2H), 6.41 (s, 2H), 6.25 (d, J=15.7Hz, 2H), 4.81-4. 75 (m, 2H), 3.35 (d, J = 7.4Hz, 8H), 2.15 (d, J = 9.1Hz, 4H), 1.93-1.71 (m, 16H), 1.60-1.29 (m, 38H), 1.15-0.96 (m, 20H), 0.93-0.85 (m, 30H).
〔例1-1〕
 下記の各材料を、下記表6に示す割合で混合してジクロロメタンに溶解し、乾燥してジクロロメタンを除去することで重合性液晶組成物1-1を得た。
 液晶化合物L-1は、日本国特開2011-207765号公報に記載された方法に基づき合成した。なお液晶化合物L-1は、逆分散性を示し、またネマチック相を示す重合性液晶化合物である。
 酸化防止剤としてBASF社製 Irganox1010を用いた。
 光重合開始剤としてBASF社製 Irgacure369Eを用いた。
[Example 1-1]
The following materials were mixed in the proportions shown in Table 6 below, dissolved in dichloromethane, and dried to remove dichloromethane to obtain polymerizable liquid crystal composition 1-1.
Liquid crystal compound L-1 was synthesized based on the method described in Japanese Patent Application Publication No. 2011-207765. The liquid crystal compound L-1 is a polymerizable liquid crystal compound that exhibits inverse dispersion and exhibits a nematic phase.
Irganox 1010 manufactured by BASF was used as an antioxidant.
Irgacure 369E manufactured by BASF was used as a photopolymerization initiator.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 イーエッチシー社製の2.3μmのギャップが保たれた配向セルを160℃に加熱し、得られた重合性液晶組成物1-1をセル内に注入し、120℃まで放冷し、ネマチック相を形成させた。
 波長365nmのUV光を、120℃で80mW/cm×60秒の条件で照射することで、重合性液晶組成物1-1を重合させ、光学異方性膜を得た。
 液晶化合物の配向方向(ラビング方向)と平行な偏光および垂直な偏光を光学異方性膜に照射し、それぞれの吸収スペクトル(A||およびA⊥)を測定することで、波長650~1100nmにおける極大吸収波長および二色比、可視光領域(430~680nm)における入射角0°での平均透過率、近赤外センシング波長(830nmおよび850nm)での透過率を算出した。なお、二色比は極大吸収波長においてA⊥/A||で表される値を用いた。
 また、リタデーション測定装置を用いて、可視光領域(430~680nm)のリタデーションを測定し、以下の式(1)および(2)を用いて楕円率(X)を算出した。なお、楕円率角をθ、リタデーションをRe、波長をλとした。
  X=tanθ   (1)
  sin2θ=sin(Re/λ×360°)   (2)
 また、偏光板、光学異方性膜、反射板をこの順に貼り合わせることで、反射防止膜を作成し、可視光領域(430~680nm)の入射角5°での反射率を測定した。なお、偏光板と光学異方性膜の軸のなす角が45°となるよう貼り合わせ、各層の貼合にはUV硬化型接着剤を用いた。
An alignment cell manufactured by EHC Co., Ltd. with a gap of 2.3 μm maintained was heated to 160°C, and the obtained polymerizable liquid crystal composition 1-1 was injected into the cell, allowed to cool to 120°C, and nematic A phase was formed.
By irradiating UV light with a wavelength of 365 nm at 120° C. and 80 mW/cm 2 ×60 seconds, polymerizable liquid crystal composition 1-1 was polymerized to obtain an optically anisotropic film.
By irradiating the optically anisotropic film with polarized light parallel to and perpendicular to the alignment direction (rubbing direction) of the liquid crystal compound and measuring the respective absorption spectra (A|| and A⊥), The maximum absorption wavelength and dichroic ratio, the average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm), and the transmittance at near-infrared sensing wavelengths (830 nm and 850 nm) were calculated. Note that, as the dichroic ratio, a value expressed by A⊥/A|| at the maximum absorption wavelength was used.
Further, retardation in the visible light region (430 to 680 nm) was measured using a retardation measuring device, and ellipticity (X) was calculated using the following equations (1) and (2). Note that the ellipticity angle is θ, the retardation is Re, and the wavelength is λ.
X=tanθ (1)
sin2θ=sin(Re/λ×360°) (2)
Furthermore, an antireflection film was prepared by laminating a polarizing plate, an optically anisotropic film, and a reflecting plate in this order, and the reflectance at an incident angle of 5° in the visible light region (430 to 680 nm) was measured. The polarizing plate and the optically anisotropic film were bonded together so that the angle between their axes was 45°, and a UV-curable adhesive was used to bond each layer.
〔例1-2および例1-4~例1-5〕
 色素および色素濃度を下記表7に示す条件に変えた以外は、例1-1と同様の手順に従って、重合性液晶組成物1-2および1-4~1-5を調製し、重合体を得て光学異方性膜を製造した。得られた光学異方性膜の、波長650~1100nmにおける極大吸収波長および二色比、可視光領域(430~680nm)における入射角0°での平均透過率、近赤外センシング波長(830nmおよび850nm)における入射角0°での透過率を測定した。また、可視光領域(430~680nm)のリタデーションを測定し、楕円率を算出した。さらに、例1-1と同様に反射防止膜を作成し、可視光領域(430~680nm)における入射角5°での反射率を測定した。
[Example 1-2 and Examples 1-4 to 1-5]
Polymerizable liquid crystal compositions 1-2 and 1-4 to 1-5 were prepared according to the same procedure as in Example 1-1, except that the dye and dye concentration were changed to the conditions shown in Table 7 below. An optically anisotropic film was obtained. Maximum absorption wavelength and dichroic ratio in the wavelength range of 650 to 1100 nm, average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm), near-infrared sensing wavelength (830 nm and 850 nm) at an incident angle of 0°. In addition, the retardation in the visible light region (430 to 680 nm) was measured, and the ellipticity was calculated. Furthermore, an antireflection film was prepared in the same manner as in Example 1-1, and the reflectance at an incident angle of 5° in the visible light region (430 to 680 nm) was measured.
〔例1-3〕
 色素および色素濃度を下記表7に示す条件に変え、液晶化合物を、上記液晶化合物L-1(88質量部)と、下記に示す液晶化合物L-2(12質量部)との混合物に変更した以外は、例1-1と同様の手順に従って、重合性液晶組成物1-3を調製し、重合体を得て光学異方性膜を製造した。得られた光学異方性膜の、波長650~1100nmにおける極大吸収波長および二色比、可視光領域(430~680nm)における入射角0°での平均透過率、近赤外センシング波長(830nmおよび850nm)における入射角0°での透過率を測定した。また、可視光領域(430~680nm)のリタデーションを測定し、楕円率を算出した。さらに、例1-1と同様に反射防止膜を作成し、可視光領域(430~680nm)における入射角5°での反射率を測定した。
 液晶化合物L-2は、国際公開第2009/148142号に記載された方法に基づき合成した。なお液晶化合物L-2は、フラット分散性を示し、またネマチック相を示す重合性液晶化合物である。
[Example 1-3]
The dye and dye concentration were changed to the conditions shown in Table 7 below, and the liquid crystal compound was changed to a mixture of the above liquid crystal compound L-1 (88 parts by mass) and the liquid crystal compound L-2 shown below (12 parts by mass). Except for this, polymerizable liquid crystal composition 1-3 was prepared in accordance with the same procedure as in Example 1-1, and a polymer was obtained to produce an optically anisotropic film. Maximum absorption wavelength and dichroic ratio in the wavelength range of 650 to 1100 nm, average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm), near-infrared sensing wavelength (830 nm and 850 nm) at an incident angle of 0°. In addition, the retardation in the visible light region (430 to 680 nm) was measured, and the ellipticity was calculated. Furthermore, an antireflection film was prepared in the same manner as in Example 1-1, and the reflectance at an incident angle of 5° in the visible light region (430 to 680 nm) was measured.
Liquid crystal compound L-2 was synthesized based on the method described in International Publication No. 2009/148142. Note that the liquid crystal compound L-2 is a polymerizable liquid crystal compound that exhibits flat dispersibility and also exhibits a nematic phase.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 例1-1~例1-5で得られた光学異方性膜の波長650~1100nmにおける極大吸収波長および二色比、可視光領域(430~680nm)における入射角0°での平均透過率、近赤外センシング波長(830nmおよび850nm)における入射角0°での透過率、リタデーションから算出した楕円率、および反射防止膜の可視光領域(430~680nm)における入射角5°での平均反射率を、下記表7にまとめて示す。また、例1-1~例1-4の光学異方性膜における波長と楕円率の相関関係を図1~4にそれぞれ示す。
 楕円率に関しては、波長430~680nmの全領域において0.9以上であれば○とし、一部の領域において0.9未満であれば×とした。
Maximum absorption wavelength and dichroic ratio in the wavelength range of 650 to 1100 nm, and average transmittance at an incident angle of 0° in the visible light region (430 to 680 nm) of the optically anisotropic films obtained in Examples 1-1 to 1-5. , transmittance at an incident angle of 0° at near-infrared sensing wavelengths (830 nm and 850 nm), ellipticity calculated from retardation, and average reflection at an incident angle of 5° in the visible light range (430 to 680 nm) of the antireflection film. The rates are summarized in Table 7 below. Further, the correlation between wavelength and ellipticity in the optically anisotropic films of Examples 1-1 to 1-4 is shown in FIGS. 1 to 4, respectively.
Regarding the ellipticity, if it is 0.9 or more in the entire wavelength range of 430 to 680 nm, it is marked as ○, and if it is less than 0.9 in some region, it is marked as ×.
 例1-1~例1-3は実施例であり、例1-4~例1-5は比較例である。 Examples 1-1 to 1-3 are examples, and Examples 1-4 to 1-5 are comparative examples.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 上記結果より、可視光領域(430~680nm)における楕円率が0.9以上を満たす例1-1~例1-3の光学異方性膜を用いた反射防止膜では、可視光のうち波長430~680nmの全域において高い反射防止効果が得られた。一方、波長430~680nmのうち一部における楕円率が0.9未満の例1-4および例1-5の光学異方性膜を用いた反射防止膜では、当該領域における高い反射防止効果が得られなかった。
 さらに、波長650~1100nmにおける極大吸収波長が750nm以上780nm未満である例1-1の光学異方性膜は、可視光領域(430~680nm)における平均透過率が95%を上回ったことから、高い可視光透過性が認められた。また、近赤外センシング波長(830nmおよび850nm)での透過率はいずれも97%以上であることから、近赤外光のセンシング性能を阻害しない光学異方性膜が得られた。一方、波長650~1100nmにおける極大吸収波長が750nmを下回る例1-2の光学異方性膜では、可視光領域(430~680nm)における平均透過率が95%を下回り、可視光透過性は低かった。また、波長650~1100nmにおける極大吸収波長が780nm以上の例1-3および例1-4の光学異方性膜では、近赤外センシング波長(830nmおよび850nm)での透過率がいずれも97%を大きく下回り、近赤外光のセンシング性能を阻害しうる結果となった。
From the above results, the antireflection coatings using the optically anisotropic films of Examples 1-1 to 1-3, which have an ellipticity of 0.9 or more in the visible light region (430 to 680 nm), have a wavelength of A high antireflection effect was obtained in the entire range of 430 to 680 nm. On the other hand, the antireflection films using the optically anisotropic films of Examples 1-4 and 1-5 in which the ellipticity in a part of the wavelength range of 430 to 680 nm is less than 0.9 have a high antireflection effect in that region. I couldn't get it.
Furthermore, the optically anisotropic film of Example 1-1, in which the maximum absorption wavelength in the wavelength range of 650 to 1100 nm was 750 nm or more and less than 780 nm, had an average transmittance of more than 95% in the visible light region (430 to 680 nm). High visible light transmittance was observed. Furthermore, since the transmittance at near-infrared sensing wavelengths (830 nm and 850 nm) was 97% or higher, an optically anisotropic film that did not inhibit near-infrared sensing performance was obtained. On the other hand, in the optically anisotropic film of Example 1-2, in which the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is less than 750 nm, the average transmittance in the visible light region (430 to 680 nm) is less than 95%, and the visible light transmittance is low. Ta. Furthermore, in the optically anisotropic films of Examples 1-3 and 1-4, in which the maximum absorption wavelength in the wavelength range of 650 to 1100 nm is 780 nm or more, the transmittance at the near-infrared sensing wavelengths (830 nm and 850 nm) is 97%. The result was that the sensing performance of near-infrared light could be inhibited.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2022年7月27日出願の日本特許出願(特願2022-119966)、2022年11月2日出願の日本特許出願(特願2022-176665)、および2022年11月2日出願の日本特許出願(特願2022-176666)に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is a Japanese patent application filed on July 27, 2022 (Japanese patent application No. 2022-119966), a Japanese patent application filed on November 2, 2022 (Japanese patent application No. 2022-176665), and a Japanese patent application filed on November 2, 2022. It is based on the Japanese patent application (Japanese Patent Application No. 2022-176666), the contents of which are incorporated herein by reference.
 本発明の光学異方性膜は、たとえば優れた逆波長分散性を示す位相差板(1/4波長板)として有用である。 The optically anisotropic film of the present invention is useful, for example, as a retardation plate (1/4 wavelength plate) exhibiting excellent reverse wavelength dispersion.

Claims (11)

  1.  波長430~680nmの全領域において、楕円率が0.9以上である、単層の光学異方性膜。 A single-layer optically anisotropic film with an ellipticity of 0.9 or more in the entire wavelength range of 430 to 680 nm.
  2.  波長830nmおよび波長850nmの少なくとも一方における透過率が97%以上である、請求項1に記載の光学異方性膜。 The optically anisotropic film according to claim 1, having a transmittance of 97% or more at at least one of a wavelength of 830 nm and a wavelength of 850 nm.
  3.  近赤外線吸収色素を含み、波長650~1100nmにおける極大吸収波長が780nm未満である、請求項1に記載の光学異方性膜。 The optically anisotropic film according to claim 1, which contains a near-infrared absorbing dye and has a maximum absorption wavelength of less than 780 nm in a wavelength range of 650 to 1100 nm.
  4.  近赤外線吸収色素を含み、波長830nmおよび波長850nmの少なくとも一方における透過率が97%以上であり、波長650~1100nmにおける極大吸収波長が780nm未満である、請求項1に記載の光学異方性膜。 The optically anisotropic film according to claim 1, which contains a near-infrared absorbing dye, has a transmittance of 97% or more at at least one of a wavelength of 830 nm and a wavelength of 850 nm, and has a maximum absorption wavelength of less than 780 nm in a wavelength range of 650 to 1100 nm. .
  5.  液晶化合物を含む、請求項4に記載の光学異方性膜。 The optically anisotropic film according to claim 4, comprising a liquid crystal compound.
  6.  波長430~680nmの領域における平均透過率が95%以上である、請求項1に記載の光学異方性膜。 The optically anisotropic film according to claim 1, having an average transmittance of 95% or more in the wavelength range of 430 to 680 nm.
  7.  近赤外線吸収色素を含み、波長650~1100nmにおける極大吸収波長が750nm以上である、請求項1に記載の光学異方性膜。 The optically anisotropic film according to claim 1, which contains a near-infrared absorbing dye and has a maximum absorption wavelength of 750 nm or more in a wavelength range of 650 to 1100 nm.
  8.  近赤外線吸収色素を含み、波長430~680nmの領域における平均透過率が95%以上であり、波長650~1100nmにおける極大吸収波長が750nm以上である、請求項1に記載の光学異方性膜。 The optically anisotropic film according to claim 1, which contains a near-infrared absorbing dye, has an average transmittance of 95% or more in the wavelength range of 430 to 680 nm, and has a maximum absorption wavelength of 750 nm or more in the wavelength range of 650 to 1100 nm.
  9.  液晶化合物を含む、請求項8に記載の光学異方性膜。 The optically anisotropic film according to claim 8, comprising a liquid crystal compound.
  10.  請求項1~9のいずれか1項に記載の光学異方性膜を備える位相差板。 A retardation plate comprising the optically anisotropic film according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の光学異方性膜を備える光学フィルタ。 An optical filter comprising the optically anisotropic film according to any one of claims 1 to 9.
PCT/JP2023/026899 2022-07-27 2023-07-21 Optically anisotropic film and phase difference plate WO2024024701A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-119966 2022-07-27
JP2022119966 2022-07-27
JP2022-176665 2022-11-02
JP2022-176666 2022-11-02
JP2022176666 2022-11-02
JP2022176665 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024024701A1 true WO2024024701A1 (en) 2024-02-01

Family

ID=89706585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026899 WO2024024701A1 (en) 2022-07-27 2023-07-21 Optically anisotropic film and phase difference plate

Country Status (1)

Country Link
WO (1) WO2024024701A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061829A (en) * 2002-07-29 2004-02-26 Jsr Corp Optical low pass filter
JP2006236549A (en) * 2005-01-31 2006-09-07 Asahi Glass Co Ltd Optical head apparatus, wide band phase plate, and polarization diffraction element
KR20100050795A (en) * 2008-11-06 2010-05-14 주식회사 엘엠에스 Phase retardation device and optical pick-up apparatus having the same
JP2020109956A (en) * 2018-12-28 2020-07-16 マクセル株式会社 Imaging apparatus
WO2021059946A1 (en) * 2019-09-25 2021-04-01 富士フイルム株式会社 Optically anisotropic film, polarizing plate, image display device, composition, and compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004061829A (en) * 2002-07-29 2004-02-26 Jsr Corp Optical low pass filter
JP2006236549A (en) * 2005-01-31 2006-09-07 Asahi Glass Co Ltd Optical head apparatus, wide band phase plate, and polarization diffraction element
KR20100050795A (en) * 2008-11-06 2010-05-14 주식회사 엘엠에스 Phase retardation device and optical pick-up apparatus having the same
JP2020109956A (en) * 2018-12-28 2020-07-16 マクセル株式会社 Imaging apparatus
WO2021059946A1 (en) * 2019-09-25 2021-04-01 富士フイルム株式会社 Optically anisotropic film, polarizing plate, image display device, composition, and compound

Similar Documents

Publication Publication Date Title
KR102208206B1 (en) Liquid crystal composition, retardation plate, image display device, and method for controlling wavelength dispersion in optically anisotropic layer
CN101470212B (en) Optical film
JP6616489B2 (en) Coloring composition, light-absorbing anisotropic film, laminate and image display device
JP4186980B2 (en) Optical film
CN101470227B (en) Optical film
JP6616963B2 (en) Coloring composition, light absorption anisotropic film, laminate, polarizing plate, image display device and compound
JP5613992B2 (en) Composition, film and method for producing film
KR101653948B1 (en) Liquid crystalline compound, liquid crystalline composition, anisotropically light-absorbing film, and liquid crystal display device
JP6986841B2 (en) Polymerizable liquid crystal compounds, compositions for optical films and optical films containing them, compensating films, antireflection films and display devices
US20110140041A1 (en) Polymerizable liquid crystal compounds, polymerizable liquid crystal compositions, liquid crystalline polymers and optically anisotropic materials
JP5407870B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP7273985B2 (en) optically anisotropic film, polarizing plate, image display device, composition, compound
JP7192085B2 (en) optically anisotropic film, laminate, circularly polarizing plate, display device
WO2024024701A1 (en) Optically anisotropic film and phase difference plate
CN112334797B (en) Polarizer and image display device
CN114450607A (en) Polarizer and image display device
US20230151275A1 (en) Compound, composition for anisotropic dye films including the compound, anisotropic dye film, and optical element
US9127104B2 (en) Polymerizable liquid crystal compound, a liquid crystal composition comprising the compound, and an optically anisotropic body
US20210382348A1 (en) Optically anisotropic film, laminate, circularly polarizing plate, and display device
WO2024024700A1 (en) Liquid crystal composition, optical anisotropic film, near infrared ray-absorbing dye
JP6798600B2 (en) Anisotropic dye film forming composition, anisotropic dye film, and optical element
JP7467850B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element
KR20200131223A (en) Composition for anisotropic dye film formation, anisotropic dye film, and optical element
JP7363887B2 (en) Composition for forming an anisotropic pigment film, anisotropic pigment film, and optical element
JP7467851B2 (en) Composition for forming anisotropic dye film, anisotropic dye film, and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846431

Country of ref document: EP

Kind code of ref document: A1