JP5407870B2 - Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body - Google Patents

Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body Download PDF

Info

Publication number
JP5407870B2
JP5407870B2 JP2009546279A JP2009546279A JP5407870B2 JP 5407870 B2 JP5407870 B2 JP 5407870B2 JP 2009546279 A JP2009546279 A JP 2009546279A JP 2009546279 A JP2009546279 A JP 2009546279A JP 5407870 B2 JP5407870 B2 JP 5407870B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
polymerizable liquid
compound
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009546279A
Other languages
Japanese (ja)
Other versions
JPWO2009078431A1 (en
Inventor
圭 坂本
直人 小越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2009546279A priority Critical patent/JP5407870B2/en
Publication of JPWO2009078431A1 publication Critical patent/JPWO2009078431A1/en
Application granted granted Critical
Publication of JP5407870B2 publication Critical patent/JP5407870B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/24Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing nitrogen-to-nitrogen bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/88Hydrazones having also the other nitrogen atom doubly-bound to a carbon atom, e.g. azines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Liquid Crystal Substances (AREA)

Description

本発明は、重合性液晶化合物、この重合性液晶化合物及び重合可能なキラル化合物を含有する重合性液晶組成物、これらを重合して得られる液晶性高分子、並びに、この液晶性高分子を構成材料とする光学異方体に関する。   The present invention relates to a polymerizable liquid crystal compound, a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound and a polymerizable chiral compound, a liquid crystal polymer obtained by polymerizing these, and the liquid crystal polymer. The present invention relates to an optical anisotropic body as a material.

近年、液晶ディスプレイに使用される光学補償板等の光学フィルムとして、液晶ポリマーあるいは重合性官能基を有する液晶化合物を配向処理した液晶配向フィルムが開発されている。このフィルムは、高分子フィルムの延伸技術を利用した複屈折フィルムでは不可能な、より高度な配向状態、すなわち傾斜配向、ねじれ配向等の配向を実現できるものとして注目されている。   In recent years, a liquid crystal alignment film obtained by aligning a liquid crystal polymer or a liquid crystal compound having a polymerizable functional group has been developed as an optical film such as an optical compensator used for a liquid crystal display. This film has been attracting attention as being capable of realizing a higher degree of orientation, that is, an orientation such as a tilt orientation and a twist orientation, which is impossible with a birefringent film utilizing a polymer film stretching technique.

また、液晶ポリマー又は液晶性(メタ)アクリレート化合物等の重合性液晶化合物とキラル化合物を組み合わせた組成物を、コレステリック配向させて得られる液晶配向フィルム(選択反射フィルム)の選択反射特性を利用したコレステリック偏光子も実用化されている。   Also, cholesteric utilizing the selective reflection characteristics of a liquid crystal alignment film (selective reflection film) obtained by cholesteric alignment of a composition comprising a polymerizable liquid crystal compound such as a liquid crystal polymer or a liquid crystalline (meth) acrylate compound and a chiral compound. Polarizers have also been put into practical use.

選択反射特性の選択反射中心波長λは、λ=n×P(nは平均屈折率、Pはコレステリックピッチを表す。)で示される。また、選択反射波長帯域△λは、△λ=△n×P〔式中、△nは(ne−no)であり、neは異常光屈折率、noは常光屈折率をそれぞれ表す。〕で表される。したがって、選択反射波長帯域Δλを広げるには、△n、すなわち、光学異方性の大きな材料が求められる。   The selective reflection center wavelength λ of the selective reflection characteristic is represented by λ = n × P (where n is an average refractive index and P is a cholesteric pitch). The selective reflection wavelength band Δλ is Δλ = Δn × P, where Δn is (ne−no), ne is an extraordinary refractive index, and no is an ordinary refractive index. ] Is represented. Therefore, in order to widen the selective reflection wavelength band Δλ, a material having Δn, that is, a large optical anisotropy is required.

また、選択反射フィルムをコレステリック偏光子として液晶ディスプレイに使用するには、可視光領域で選択反射が生じるものである必要がある。通常、選択反射フィルムの1層での選択反射波長帯域△λは可視光領域より狭いので、選択反射波長帯域△λを広帯域化するために選択反射フィルムは複数積層されている。そのため、選択反射波長帯域△λの狭い材料を用いた選択反射フィルムでは積層数が多くなり、生産性が低いという問題があった。したがって、この点からも選択反射波長帯域Δλの広い材料、すなわち△nの大きな材料(重合性液晶化合物等)が求められている。   Further, in order to use the selective reflection film as a cholesteric polarizer in a liquid crystal display, it is necessary that selective reflection occurs in the visible light region. Usually, the selective reflection wavelength band Δλ in one layer of the selective reflection film is narrower than the visible light region, and therefore a plurality of selective reflection films are laminated in order to widen the selective reflection wavelength band Δλ. Therefore, there is a problem that the selective reflection film using a material having a narrow selective reflection wavelength band Δλ has a large number of laminated layers and low productivity. Therefore, also from this point, a material having a wide selective reflection wavelength band Δλ, that is, a material having a large Δn (polymerizable liquid crystal compound or the like) is required.

しかしながら、従来知られている重合性化合物等で△nの大きなものは、いずれも、溶解性や塗工性、配向性に乏しく、均一に製膜できない場合や使用に供しうる配向性を有する選択反射フィルムを得ることが困難となる場合があった。   However, any conventionally known polymerizable compound having a large Δn is poor in solubility, coating property, and orientation, and has an orientation that can be used when it cannot be uniformly formed or used. It may be difficult to obtain a reflective film.

一方、液晶性化合物として、下記式(1a)   On the other hand, as a liquid crystalline compound, the following formula (1a)

Figure 0005407870
Figure 0005407870

(式中、Raはアルキル基を表し、Rbはアルキル基、シアノ基、フッ素原子、トリフルオロメトキシ基等を表す。)で表されるアジン類が知られている。
この化合物は液晶相を示す温度範囲が広く、化学的に比較的安定で安価に製造できる等の特性を有する優れた液晶材料である。
In the formula, Ra represents an alkyl group, and Rb represents an alkyl group, a cyano group, a fluorine atom, a trifluoromethoxy group, or the like.
This compound is an excellent liquid crystal material having characteristics such as a wide temperature range exhibiting a liquid crystal phase, chemical stability and inexpensive production.

しかしながら、これらのアジン類は現在汎用の液晶化合物との相溶性においては必ずしも満足できるものではなかった。また、上記式(1a)において、側鎖アルキル基の炭素原子数を大きくすると相溶性は幾分改善できるが、液晶相を示す温度範囲が狭くなってしまうという問題も存在していた。   However, these azines are not always satisfactory in compatibility with currently used liquid crystal compounds. In the above formula (1a), the compatibility can be somewhat improved by increasing the number of carbon atoms of the side chain alkyl group, but there is also a problem that the temperature range showing the liquid crystal phase becomes narrow.

このような問題を解決すべく、特許文献1には、下記式(1b)   In order to solve such a problem, Patent Document 1 discloses the following formula (1b):

Figure 0005407870
Figure 0005407870

(式中、Rは水素原子又は炭素原子数1〜12のアルキル基を表し、Rがアルキル基の場合、二重結合はトランス配置である。pは1〜10の整数を表し、qは0又は1を表し、W、X及びYは、フッ素原子、塩素原子、メチル基、シアノ基又は水素原子を表し、Zはフッ素原子、塩素原子、シアノ基、炭素原子数1〜12のアルキル基又はアルコキシル基、炭素原子数3〜12のアルケニル基又はアルケニルオキシ基を表すが、これらの基中に含まれる水素原子の1個又はそれ以上がフッ素原子に置換されていてもよい。)で表される液晶化合物が提案されている。 (In the formula, R represents a hydrogen atom or an alkyl group having 1 to 12 carbon atoms, and when R is an alkyl group, the double bond is in a trans configuration. P represents an integer of 1 to 10 and q represents 0. Or W, X and Y represent a fluorine atom, a chlorine atom, a methyl group, a cyano group or a hydrogen atom, and Z represents a fluorine atom, a chlorine atom, a cyano group, an alkyl group having 1 to 12 carbon atoms or An alkoxyl group, an alkenyl group having 3 to 12 carbon atoms, or an alkenyloxy group, wherein one or more hydrogen atoms contained in these groups may be substituted with fluorine atoms. Liquid crystal compounds have been proposed.

この化合物は、熱、光等に対し化学的に安定であり、液晶性に優れ、しかも工業的に製造することが容易である。また、従来の液晶化合物や液晶組成物との相溶性に優れるので、このものを用いることにより、得られる液晶の応答時間を大幅に改善することができる。従って、温度範囲が広く高速応答が可能な液晶表示素子用の液晶材料の構成成分として実用的であるとされる。
しかしながら、近年における液晶表示装置はますます高性能化が図られ、液晶相を示す温度範囲がより広く、化学的に安定で安価に製造でき、△nの大きい液晶材料の開発が求められているのが現状である。
This compound is chemically stable to heat, light, etc., has excellent liquid crystallinity, and is easy to produce industrially. Moreover, since it is excellent in compatibility with conventional liquid crystal compounds and liquid crystal compositions, the response time of the obtained liquid crystal can be greatly improved by using this. Therefore, it is considered to be practical as a constituent component of a liquid crystal material for a liquid crystal display element capable of high-speed response over a wide temperature range.
However, liquid crystal display devices in recent years have been improved in performance, and there is a demand for the development of liquid crystal materials having a large Δn, which can be manufactured at a lower temperature, a wider range of temperatures showing a liquid crystal phase, chemically stable and inexpensive. is the current situation.

特開平10−147562号公報JP-A-10-147562

本発明は、上記した従来技術の実情に鑑みてなされたものであり、液晶相を示す温度範囲がより広く、化学的に安定であり、安価に製造でき、しかも、選択反射波長帯域△λが広い、すなわち△nの大きな重合性液晶化合物、この化合物を含有する重合性液晶組成物、これらを重合して得られる液晶性高分子、及びこの液晶性高分子を構成材料とする光学異方体を提供することを課題とする。   The present invention has been made in view of the above-described prior art, and has a wider temperature range showing a liquid crystal phase, is chemically stable, can be manufactured at low cost, and has a selective reflection wavelength band Δλ. Wide, that is, a polymerizable liquid crystal compound having a large Δn, a polymerizable liquid crystal composition containing the compound, a liquid crystalline polymer obtained by polymerizing these compounds, and an optical anisotropic body comprising the liquid crystalline polymer as a constituent material It is an issue to provide.

本発明者は、上記課題を解決すべく鋭意研究した結果、一般に鎖状構造を有する重合性液晶化合物の鎖の中心に存在する、液晶配向性を付与するメソゲン基と呼ばれる共役性の直線状原子団として、アジン骨格を有する特定の化合物が熱や光等に対し化学的に安定であり、液晶性に優れ、工業的にも容易に製造することができ、しかも、選択反射波長帯域△λが広く、すなわち△nが大きく、特にコレステリック液晶層の形成材料として好適であることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventor generally has a conjugated linear atom called a mesogenic group that imparts liquid crystal alignment properties that exists at the center of a chain of a polymerizable liquid crystal compound having a chain structure. As a group, a specific compound having an azine skeleton is chemically stable to heat, light, etc., has excellent liquid crystallinity, can be easily manufactured industrially, and has a selective reflection wavelength band Δλ. It has been found that it is wide, that is, Δn is large and is particularly suitable as a material for forming a cholesteric liquid crystal layer, and the present invention has been completed.

かくして本発明の第1によれば、下記(1)〜(5)の重合性液晶化合物が提供される。
(1)下記式(I)
Thus, according to the first aspect of the present invention, the following polymerizable liquid crystal compounds (1) to (5) are provided.
(1) The following formula (I)

Figure 0005407870
Figure 0005407870

〔式中、Mは置換基を有していてもよい炭素数1〜30の2価の有機基を表す。
〜Y8はそれぞれ独立して、化学的な単結合、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−O−C(=O)−NR−、−NR−C(=O)−O−、−NR−C(=O)−NR−、−O−NR−、又は、−NR−O−を表す。ここで、Rは、水素原子又は炭素数1〜6のアルキル基を表す。
及びGはそれぞれ独立して、置換基を有していてもよい、炭素数1〜20の2価の脂肪族基を表す。該脂肪族基には、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−NR−、又は、−C(=O)−が介在していてもよい(ただし、−O−及びS−がそれぞれ2以上隣接して介在する場合を除く。)。ここで、Rは、水素原子又は炭素数1〜6のアルキル基を表す。
及びZはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2〜10のアルケニル基を表す。
及びAはそれぞれ独立して、炭素数1〜30の2価の有機基Aを表す。
〜X16はそれぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1〜10のアルキル基、シアノ基、ニトロ基、−OR、−O−C(=O)−R、−C(=O)−OR、−O−C(=O)−OR、−NR−C(=O)−R、−C(=O)−N(R)R、又は、−O−C(=O)−N(R)Rを表す。ここで、Rは、水素原子又は置換基を有していてもよい炭素数1〜10のアルキル基を表し、Rがアルキル基である場合、当該アルキル基には、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−NR−、又は、−C(=O)−が介在していてもよい(ただし、−O−及び−S−がそれぞれ2以上隣接して介在する場合を除く。)。ここで、R及びRは、水素原子又は炭素数1〜6のアルキル基を表す。
a、b、c及びdはそれぞれ独立して、0又は1である。〕
で示される重合性液晶化合物。
[In formula, M represents the C1-C30 bivalent organic group which may have a substituent.
Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C ( ═O) —O—, —NR 1 —C (═O) —, —C (═O) —NR 1 —, —O—C (═O) —NR 1 —, —NR 1 —C (═O ) —O—, —NR 1 —C (═O) —NR 1 —, —O—NR 1 —, or —NR 1 —O—. Here, R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent. The aliphatic group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C (═O) —O—, —NR 2. -C (= O) -, - C (= O) -NR 2 -, - NR 2 -, or, -C (= O) - may be interposed (but, -O- and S- are Except when two or more adjacent to each other.) Here, R < 2 > represents a hydrogen atom or a C1-C6 alkyl group.
Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.
A 1 and A 2 each independently represent a divalent organic group A having 1 to 30 carbon atoms.
X 1 to X 16 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —OR 3 , —O—C ( ═O) —R 3 , —C (═O) —OR 3 , —O—C (═O) —OR 3 , —NR 4 —C (═O) —R 3 , —C (═O) —N (R 3 ) R 4 or —O—C (═O) —N (R 3 ) R 4 is represented. Here, R 3 represents a hydrogen atom or an optionally substituted alkyl group having 1 to 10 carbon atoms. When R 3 is an alkyl group, the alkyl group includes —O—, — S—, —O—C (═O) —, —C (═O) —O—, —O—C (═O) —O—, —NR 5 —C (═O) —, —C (= O) —NR 5 —, —NR 5 —, or —C (═O) — may be present (except when two or more of —O— and —S— are present adjacent to each other). .) Wherein, R 4 and R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
a, b, c and d are each independently 0 or 1; ]
A polymerizable liquid crystal compound represented by:

(2)前記Mが、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、置換基を有していてもよいナフチレン基、又は置換基を有していてもよいトリフェニレン基である(1)記載の重合性液晶化合物。
(3)前記Z及びZが、それぞれ独立して、CH=CH−、CH=C(CH)−、CH=C(Cl)−、CH=CH−CH−、CH=C(CH)−CH−、CH=C(CH)−CH−CH−、(CHC=CH−CH−、CH−CH=CH−、又はCH−CH=CH−CH−である(1)又は(2)に記載の重合性液晶化合物。
(2) The M has a phenylene group which may have a substituent, a biphenylene group which may have a substituent, a naphthylene group which may have a substituent, or a substituent. The polymerizable liquid crystal compound according to (1), which may be a triphenylene group.
(3) Z 1 and Z 2 are each independently CH 2 = CH-, CH 2 = C (CH 3 )-, CH 2 = C (Cl)-, CH 2 = CH-CH 2- , CH 2 = C (CH 3) -CH 2 -, CH 2 = C (CH 3) -CH 2 -CH 2 -, (CH 3) 2 C = CH-CH 2 -, CH 3 -CH = CH-, Alternatively, the polymerizable liquid crystal compound according to (1) or (2), wherein CH 3 —CH═CH—CH 2 —.

(4)前記Mが、置換基を有していてもよいフェニレン基であり、
a=d=1、b=c=0であり、
、Y〜Y、Yが、それぞれ独立して、−C(=O)−O−、−O−C(=O)−、又は、−O−であり、
〜Gが、それぞれ独立して、−(CH−、又は、−(CH−であり、これらの基には、−O−、−C(=O)−O−、−O−C(=O)−、又は、−C(=O)−が介在していてもよく、
及びZが、それぞれ独立して、CH=CH−、CH=C(CH)−、又はCH=C(Cl)−である(1)に記載の重合性液晶化合物。
(4) M is a phenylene group which may have a substituent,
a = d = 1, b = c = 0,
Y 1 , Y 3 to Y 6 , Y 8 are each independently —C (═O) —O—, —O—C (═O) —, or —O—,
G 1 to G 2 are each independently — (CH 2 ) 6 — or — (CH 2 ) 4 —, and these groups include —O—, —C (═O) —O. -, -OC (= O)-, or -C (= O)-may be interposed,
The polymerizable liquid crystal compound according to (1), wherein Z 1 and Z 2 are each independently CH 2 ═CH—, CH 2 ═C (CH 3 ) —, or CH 2 ═C (Cl) —.

(5)前記Mが、炭素数1〜10の炭化水素基で置換されていてもよいフェニレン基であり、前記炭化水素基には、−O−、−C(=O)−O−、−O−C(=O)−、又は、−C(=O)−が介在していてもよく、
及びZが、共にCH=CH−である(4)に記載の重合性液晶化合物。
(6)前記Mが、−C(=O)−OR(Rは前記と同じ意味を表す。)で置換されていてもよいフェニレン基である(4)に記載の重合性液晶化合物。
(5) The M is a phenylene group which may be substituted with a hydrocarbon group having 1 to 10 carbon atoms. The hydrocarbon group includes —O—, —C (═O) —O—, — O—C (═O) — or —C (═O) — may be interposed,
The polymerizable liquid crystal compound according to (4), wherein Z 1 and Z 2 are both CH 2 ═CH—.
(6) The polymerizable liquid crystal compound according to (4), wherein M is a phenylene group which may be substituted with —C (═O) —OR 3 (R 3 represents the same meaning as described above).

本発明の第2によれば、下記(6)の重合性液晶組成物が提供される。
(7)前記(1)〜(6)のいずれかに記載の重合性液晶化合物、及び重合可能なキラル化合物を含有する重合性液晶組成物。
According to the second aspect of the present invention, the following polymerizable liquid crystal composition (6) is provided.
(7) A polymerizable liquid crystal composition comprising the polymerizable liquid crystal compound according to any one of (1) to (6) and a polymerizable chiral compound.

本発明の第3によれば、下記(8)の液晶性高分子が提供される。
(8)前記(1)〜(6)のいずれかに記載の重合性液晶化合物、又は、前記(7)に記載の重合性液晶組成物を重合して得られる液晶性高分子。
本発明の第4によれば、下記(9)の光学異方体が提供される。
(9)前記(8)に記載の液晶性高分子を構成材料とする光学異方体。
According to the third aspect of the present invention, the following liquid crystalline polymer (8) is provided.
(8) A liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound according to any one of (1) to (6) or the polymerizable liquid crystal composition according to (7).
According to the fourth aspect of the present invention, the following optical anisotropic body (9) is provided.
(9) An optical anisotropic body comprising the liquid crystalline polymer according to (8) as a constituent material.

以下、本発明を、1)重合性液晶化合物、2)重合性液晶組成物、3)液晶性高分子、及び、4)光学異方体に項分けして詳細に説明する。   Hereinafter, the present invention will be described in detail by dividing it into 1) a polymerizable liquid crystal compound, 2) a polymerizable liquid crystal composition, 3) a liquid crystal polymer, and 4) an optical anisotropic body.

1)重合性液晶化合物
本発明の重合性液晶化物は、前記式(I)で示される化合物である。
1) Polymerizable liquid crystal compound The polymerizable liquid crystal compound of the present invention is a compound represented by the formula (I).

前記式(I)中、式中、Mは置換基を有していてもよい炭素数1〜30の2価の有機基を表す。有機基Mの炭素数としては6〜20が好ましい。Mの有機基としては、特に制限されないが、芳香族環を有するものが好ましい。
Mの具体例としては、下記のものが挙げられる。
In said formula (I), in formula, M represents the C1-C30 bivalent organic group which may have a substituent. As carbon number of the organic group M, 6-20 are preferable. Although it does not restrict | limit especially as an organic group of M, What has an aromatic ring is preferable.
Specific examples of M include the following.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

上記Mの具体例として挙げた有機基には、任意の位置に置換基を有していてもよい。当該置換基としては、炭素数1〜10の炭化水素基、炭素数1〜6のアルコキシ基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、−C(=O)−OR(Rは、後述するRと同じ意味を表す。)で表される基等が挙げられる。The organic group mentioned as a specific example of M may have a substituent at an arbitrary position. Examples of the substituent include a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, a hydroxyl group, a nitro group, —C (═O) —OR 3 (R 3 is , Which represents the same meaning as R 3 described later).

これらの中でも、Mとしては、本発明の所望の効果をより良好に発現させる観点から、置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、置換基を有していてもよいナフチレン基、又は置換基を有していてもよいトリフェニレン基が好ましく、置換基を有していてもよい、下記式(M)で表されるp−フェニレン基、及び(M)で表される1,4’−ビフェニレン基がより好ましく、下記式(M)で表されるp−フェニレン基が特に好ましい。Among these, M is a phenylene group which may have a substituent, a biphenylene group which may have a substituent, or a substituent from the viewpoint of better expressing the desired effect of the present invention. A naphthylene group which may have, or a triphenylene group which may have a substituent is preferable, and a p-phenylene group represented by the following formula (M 1 ) which may have a substituent, and A 1,4′-biphenylene group represented by (M 2 ) is more preferred, and a p-phenylene group represented by the following formula (M 1 ) is particularly preferred.

Figure 0005407870
Figure 0005407870

前記置換基を有していてもよい(フェニレン基、ビフェニレン基、ナフチレン基、又はトリフェニレン基)の置換基としては、炭素数1〜10の炭化水素基、又は、−C(=O)−OR(Rは、後述するRと同じ意味を表す。)で表される基が好ましい。As the substituent of the above-mentioned substituent (phenylene group, biphenylene group, naphthylene group, or triphenylene group), a hydrocarbon group having 1 to 10 carbon atoms, or —C (═O) —OR 3 (R 3 represents the same meaning as R 3 described later) is preferable.

炭素数1〜10の炭化水素基としては、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基等が挙げられる。また、これらの炭化水素基には、−O−、−C(=O)−O−、−O−C(=O)−、又は、−C(=O)−等が介在していてもよい。   Examples of the hydrocarbon group having 1 to 10 carbon atoms include an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an alkynyl group having 2 to 10 carbon atoms. Further, these hydrocarbon groups may contain —O—, —C (═O) —O—, —O—C (═O) —, —C (═O) — or the like. Good.

〜Y8はそれぞれ独立して、化学的な単結合、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−O−C(=O)−NR−、−NR−C(=O)−O−、−NR−C(=O)−NR−、−O−NR−、又は、−NR−O−を表す。Y 1 to Y 8 are each independently a chemical single bond, —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C ( ═O) —O—, —NR 1 —C (═O) —, —C (═O) —NR 1 —, —O—C (═O) —NR 1 —, —NR 1 —C (═O ) —O—, —NR 1 —C (═O) —NR 1 —, —O—NR 1 —, or —NR 1 —O—.

ここで、Rは、水素原子;又は、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基等の炭素数1〜6のアルキル基;を表す。これらの中でも、Rとしては、水素原子又はメチル基であることが好ましい。Here, R 1 is a hydrogen atom; or methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n -An alkyl group having 1 to 6 carbon atoms such as a hexyl group. Among these, R 1 is preferably a hydrogen atom or a methyl group.

これらの中でも、Y〜Y8としては、−C(=O)−O−、−O−C(=O)−、又は、−O−であるのが好ましい。
好ましいYの組み合わせとしては、合成しやすさ、及び本発明の所望の効果をより良好に発現させる観点から、Y、Y、Y及びYが−C(=O)−O−であり、Y、Y、Y及びYが、−O−C(=O)−である組み合わせである。
Among these, Y 1 to Y 8 are preferably —C (═O) —O—, —O—C (═O) —, or —O—.
As a preferable combination of Y, Y 1 , Y 3 , Y 4 and Y 7 are —C (═O) —O— from the viewpoint of easy synthesis and better expression of the desired effect of the present invention. Yes, Y 2 , Y 5 , Y 6 and Y 8 are combinations in which —O—C (═O) —.

及びGはそれぞれ独立して、置換基を有していてもよい、炭素数1〜20の2価の脂肪族基を表し、炭素数1〜12の2価の脂肪族基が好ましい。G 1 and G 2 each independently represent a divalent aliphatic group having 1 to 20 carbon atoms, which may have a substituent, and preferably a divalent aliphatic group having 1 to 12 carbon atoms. .

及びGの炭素数1〜20の2価の脂肪族基としては、炭素数1〜20のアルキレン基、炭素数2〜20のアルケニレン基等の鎖状の脂肪族基が挙げられる。なかでも、本発明の所望の効果をより良好に発現させる観点から、エチレン基、テトラメチレン基、ヘキサメチレン基、オクタメチレン基等の炭素数2〜20のアルキレン基が好ましい。Examples of the divalent aliphatic group having 1 to 20 carbon atoms of G 1 and G 2 include chain aliphatic groups such as an alkylene group having 1 to 20 carbon atoms and an alkenylene group having 2 to 20 carbon atoms. Of these, an alkylene group having 2 to 20 carbon atoms such as an ethylene group, a tetramethylene group, a hexamethylene group, and an octamethylene group is preferable from the viewpoint of better expressing the desired effect of the present invention.

及びGの脂肪族基の置換基としては、ハロゲン原子、炭素数1〜6のアルコキシ基;等が挙げられる。ハロゲン原子としてはフッ素原子が好ましく、アルコキシ基としては、メトキシ基、エトキシ基が好ましい。Examples of the substituent of the aliphatic group of G 1 and G 2 include a halogen atom and an alkoxy group having 1 to 6 carbon atoms. The halogen atom is preferably a fluorine atom, and the alkoxy group is preferably a methoxy group or an ethoxy group.

また、前記脂肪族基には、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−NR−、又はC(=O)−が介在していてもよい(ただし、−O−及び−S−がそれぞれ2以上隣接して介在する場合を除く。)。The aliphatic group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C (═O) —O—, — NR 2 —C (═O) —, —C (═O) —NR 2 —, —NR 2 —, or C (═O) — may be present (however, —O— and —S—) may be present. Except for two or more adjacent to each other.)

ここで、Rは、水素原子、又は前記Rの炭素数1〜6のアルキル基と同様の炭素数1〜6のアルキル基を表し、水素原子又はメチル基であることが好ましい。Here, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms similar to the alkyl group having 1 to 6 carbon atoms of R 1 , and is preferably a hydrogen atom or a methyl group.

これらの中でも、G〜Gとしては、それぞれ独立して、−O−、−C(=O)−O−、−O−C(=O)−、若しくは、−C(=O)−が介在していてもよい、−(CH−、若しくは、−(CH−であるのが好ましい。Among these, G 1 to G 2 are each independently —O—, —C (═O) —O—, —O—C (═O) —, or —C (═O) —. There may be interposed, - (CH 2) 6 - , or, - (CH 2) 4 - a is preferably.

及びZはそれぞれ独立して、ハロゲン原子で置換されていてもよい炭素数2〜10のアルケニル基を表す。Z 1 and Z 2 each independently represent an alkenyl group having 2 to 10 carbon atoms which may be substituted with a halogen atom.

及びZのアルケニル基の炭素数としては、本発明の所望の効果をより良好に発現させる観点から、2〜6が好ましい。また、Z及びZのアルケニル基の置換基であるハロゲン原子としては、塩素原子が好ましい。The number of carbon atoms of the alkenyl group of Z 1 and Z 2, from the viewpoint of better express the desired effects of the present invention, 2 to 6 are preferred. As the halogen atom is a substituent of alkenyl groups Z 1 and Z 2, a chlorine atom is preferable.

及びZの、ハロゲン原子で置換されていてもよい炭素数2〜10のアルケニル基の好ましい具体例としては、CH=CH−、CH=C(CH)−、CH=C(Cl)−、CH=CH−CH−、CH=C(CH)−CH−、CH=C(CH)−CH−CH−、(CHC=CH−CH−、CH−CH=CH−、又はCH−CH=CH−CH−等が挙げられる。Preferable specific examples of the alkenyl group having 2 to 10 carbon atoms that may be substituted with a halogen atom in Z 1 and Z 2 include CH 2 ═CH—, CH 2 ═C (CH 3 ) —, and CH 2 ═. C (Cl) -, CH 2 = CH-CH 2 -, CH 2 = C (CH 3) -CH 2 -, CH 2 = C (CH 3) -CH 2 -CH 2 -, (CH 3) 2 C ═CH—CH 2 —, CH 3 —CH═CH—, CH 3 —CH═CH—CH 2 — and the like.

これらの中でも、Z、Zとしては、それぞれ独立して、CH=CH−、CH=C(CH)−、又はCH=C(Cl)−であるのが好ましく、共にCH=CH−であるのが特に好ましい。Among these, as Z 1 and Z 2 , each independently preferably CH 2 ═CH—, CH 2 ═C (CH 3 ) —, or CH 2 ═C (Cl) —. 2 = CH— is particularly preferred.

〜X16は、それぞれ独立して、水素原子、ハロゲン原子、置換基を有していてもよい炭素数1〜10のアルキル基、シアノ基、ニトロ基、−OR、−O−C(=O)−R、−C(=O)−OR、−O−C(=O)−OR、−NR−C(=O)−R、−C(=O)−N(R)R、又は、−O−C(=O)−N(R)Rを表す。X 1 to X 16 are each independently a hydrogen atom, a halogen atom, an optionally substituted alkyl group having 1 to 10 carbon atoms, a cyano group, a nitro group, —OR 3 , —O—C. (═O) —R 3 , —C (═O) —OR 3 , —O—C (═O) —OR 3 , —NR 4 —C (═O) —R 3 , —C (═O) — N (R 3 ) R 4 or —O—C (═O) —N (R 3 ) R 4 is represented.

ここで、Rは、水素原子又は置換基を有していてもよい炭素数1〜10のアルキル基を表す。
の、置換基を有していてもよい炭素数1〜10のアルキル基の炭素数1〜10のアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、s−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、n−デシル基等が挙げられる。
Here, R < 3 > represents the C1-C10 alkyl group which may have a hydrogen atom or a substituent.
Examples of the alkyl group having 1 to 10 carbon atoms of the alkyl group having 1 to 10 carbon atoms which may have a substituent for R 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and n-butyl. Group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group and the like.

また、前記置換基を有していてもよい炭素数1〜10のアルキル基の置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等の炭素数1〜6のアルコキシ基;フェニル基、4−メチルフェニル基等の置換基を有していてもよいフェニル基;等が挙げられる。   Moreover, as a substituent of the C1-C10 alkyl group which may have the said substituent, C1-C6 alkoxy, such as halogen atoms, such as a fluorine atom and a chlorine atom; A methoxy group, an ethoxy group, etc. Group; phenyl group which may have a substituent such as phenyl group, 4-methylphenyl group; and the like.

また、Rがアルキル基である場合、当該アルキル基には、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−NR−、又は、−C(=O)−が介在していてもよい(ただし、−O−及び−S−がそれぞれ2以上隣接して介在する場合を除く。)。
ここで、R及びRは、水素原子、又は、前記Rと同様の炭素数1〜6のアルキル基を表す。
In addition, when R 3 is an alkyl group, the alkyl group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C ( ═O) —O—, —NR 5 —C (═O) —, —C (═O) —NR 5 —, —NR 5 —, or —C (═O) — may be present. (However, the case where two or more of -O- and -S- are adjacent to each other is excluded).
Wherein, R 4 and R 5 denotes a hydrogen atom or the same alkyl group having 1 to 6 carbon atoms and the R 1.

なかでも、原料の入手しやすさの観点から、X〜X16は、(1)X〜X16がいずれも水素原子であるか、(2)X、X〜X13及びX15がいずれも水素原子であり、X、X、X14及びX16の少なくとも一つが、−OR又はC(=O)−O−R(ここでRは前記と同じ意味を表す。)であり、かつ、X、X、X14及びX16のうち、−OR及びC(=O)−O−Rでないものは、水素原子であることが好ましく、Among them, from the viewpoint of easy availability of raw materials, X 1 to X 16 is (1) or X 1 to X 16 are both hydrogen atoms, (2) X 2, X 4 to X 13 and X 15 is a hydrogen atom, and at least one of X 1 , X 3 , X 14 and X 16 is —OR 3 or C (═O) —O—R 3 (wherein R 3 has the same meaning as described above). And X 1 , X 3 , X 14 and X 16 which are not —OR 3 and C (═O) —O—R 3 are preferably hydrogen atoms,

(3)X〜X16がいずれも水素原子であるか、(4)X、X〜X13及びX15がいずれも水素原子であり、X、X、X14及びX16の少なくとも一つが、−OCH、−OC、−C(=O)−O−CH、−C(=O)−O−C、−C(=O)−O−CHCHCH、−C(=O)−O−CHCHOCH、−C(=O)−O−CHCHOCHCH、又は、−C(=O)−O−CHCHOCHCHCHであり、かつ、X、X、X14及びX16のうち、−OCH、−OC、−C(=O)−O−CH、−C(=O)−O−C、−C(=O)−O−CHCHCH、−C(=O)−O−CHCHOCH、−C(=O)−O−CHCHOCHCH、及び−C(=O)−O−CHCHOCHCHCHでないものは水素原子であることがより好ましい。(3) X 1 to X 16 are all hydrogen atoms, (4) X 2 , X 4 to X 13 and X 15 are all hydrogen atoms, and X 1 , X 3 , X 14 and X 16 of at least one of, -OCH 3, -OC 2 H 5 , -C (= O) -O-CH 3, -C (= O) -O-C 2 H 5, -C (= O) -O- CH 2 CH 2 CH 3, -C (= O) -O-CH 2 CH 2 OCH 3, -C (= O) -O-CH 2 CH 2 OCH 2 CH 3, or, -C (= O) - O—CH 2 CH 2 OCH 2 CH 2 CH 3 and, among X 1 , X 3 , X 14 and X 16 , —OCH 3 , —OC 2 H 5 , —C (═O) —O—. CH 3, -C (= O) -O-C 2 H 5, -C (= O) -O-CH 2 CH 2 CH 3, -C (= O) -O-CH 2 CH OCH 3, be -C (= O) -O-CH 2 CH 2 OCH 2 CH 3, and -C (= O) -O-CH 2 CH 2 OCH 2 shall not CH 2 CH 3 is a hydrogen atom More preferred.

及びAはそれぞれ独立して、炭素数1〜30の2価の有機基を表す。A及びAの有機基の具体例としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等の炭素数1〜30のアルキレン基;置換基を有していてもよいフェニレン基、置換基を有していてもよいビフェニレン基、置換基を有していてもよいナフチレン基等の、炭素数6〜30のアリーレン基;及び、下記に示すごとくアルキレン基とアリーレン基との組合せ等が挙げられる。A 1 and A 2 each independently represent a divalent organic group having 1 to 30 carbon atoms. Specific examples of the organic group of A 1 and A 2 include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, etc. An alkylene group having -30 carbon atoms; a phenylene group which may have a substituent; a biphenylene group which may have a substituent; a naphthylene group which may have a substituent; Arylene groups; and combinations of alkylene groups and arylene groups as shown below.

Figure 0005407870
Figure 0005407870

これらの中でも、前記A及びAとしては、本発明の所望の効果をより良好に発現させる観点から、炭素数1〜30のアルキレン基が好ましく、炭素数1〜10のアルキレン基がより好ましい。Among them, as the A 1 and A 2, from the viewpoint of better express the desired effects of the present invention, preferably an alkylene group having 1 to 30 carbon atoms, more preferably an alkylene group having 1 to 10 carbon atoms .

a、b、c及びdはそれぞれ独立して、0又は1である。
前記式(I)において、A及びAにそれぞれ結合する、式:−Y−(G−Y−Z及び、式:−Y−(G−Y−Zで表される基の具体例としては、以下のものが挙げられる。
a, b, c and d are each independently 0 or 1;
In the formula (I), are respectively coupled to A 1 and A 2, wherein: -Y 2 - (G 1 -Y 1) a -Z 1 and the formula: -Y 7 - (G 2 -Y 8) d Specific examples of the group represented by —Z 2 include the following.

なお、前記a及びdはそれぞれ、(G−Y)単位及び(G−Y)単位の繰り返し数を表し、a及びdはそれぞれ独立して、0又は1である。a、dとして特に好ましい組み合わせとしては、合成しやすさ、及び本発明の所望の効果をより良好に発現させる観点から、a及びdは共に1であり、b及びcは共に0である。Incidentally, each of the a and d, (G 1 -Y 1) units and (G 2 -Y 8) represents the number of repeating units, a and d are each independently 0 or 1. As a particularly preferred combination of a and d, a and d are both 1 and b and c are 0 from the viewpoint of ease of synthesis and better expression of the desired effect of the present invention.

先ず、a又はdが1の凡例、即ち下記式(α)で表される構造について以下に言及する。   First, a legend in which a or d is 1, that is, a structure represented by the following formula (α) will be described below.

Figure 0005407870
Figure 0005407870

式中、Y又はYは−C(=O)−O−、G又はGはヘキサメチレン基、Y又はYは−O−C(=O)−、Z又はZはビニル基に相当する。
更に、その具体例を以下に示す。
In the formula, Y 2 or Y 7 is —C (═O) —O—, G 1 or G 2 is a hexamethylene group, Y 1 or Y 8 is —O—C (═O) —, Z 1 or Z 2 Corresponds to a vinyl group.
Furthermore, the specific example is shown below.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

次に、a〜d=0の凡例、即ち下記式(β)で表される構造について以下に言及する。   Next, the legend of a to d = 0, that is, the structure represented by the following formula (β) will be described below.

Figure 0005407870
Figure 0005407870

式中、Y又はYは−C(=O)−O−、Z又はZはビニル基に相当する。
更に、その具体例を以下に示す。
In the formula, Y 3 or Y 6 corresponds to —C (═O) —O—, and Z 1 or Z 2 corresponds to a vinyl group.
Furthermore, the specific example is shown below.

Figure 0005407870
Figure 0005407870

本発明の式(I)で示される重合性液晶化合物において、以下の式で表される2つの基は同一であっても、相異なっていてもよい。   In the polymerizable liquid crystal compound represented by the formula (I) of the present invention, two groups represented by the following formulas may be the same or different.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

(式中、Z、Z、Y〜Y、Y〜Y、A、A、G、G、a及びdは前記と同じ意味を表す。)(Wherein, Z 1 , Z 2 , Y 1 to Y 3 , Y 6 to Y 8 , A 1 , A 2 , G 1 , G 2 , a, and d represent the same meaning as described above.)

前記式(I)で表される本発明の重合性液晶化合物の好ましい具体例としては、以下のものが挙げられるが、本発明の重合性液晶化合物は下記の化合物に限定されるものではない。   Preferable specific examples of the polymerizable liquid crystal compound of the present invention represented by the formula (I) include the following, but the polymerizable liquid crystal compound of the present invention is not limited to the following compounds.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

本発明の重合性液晶化合物はいずれも、−O−、−S−、−NH−C(=O)−、−C(=O)−NH−、−NH−C(=O)−NH−、−O−C(=O)−、−C(=O)−O−、−C(=O)−O−C(=O)−等の種々の化学結合を形成する公知の方法(例えば、サンドラー・カロ官能基別有機化合物合成法[I]、[II] 廣川書店、1976年発行参照)を組み合わせて製造することができる。   All of the polymerizable liquid crystal compounds of the present invention are —O—, —S—, —NH—C (═O) —, —C (═O) —NH—, —NH—C (═O) —NH—. , -O-C (= O)-, -C (= O) -O-, -C (= O) -O-C (= O)-and other known methods for forming various chemical bonds (for example, Sandra, Caro functional group-specific organic compound synthesis method [I], [II] Yodogawa Shoten, published in 1976)).

本発明の重合性液晶化合物は、典型的には、エーテル結合(−O−)、エステル結合(−C(=O)−O−)、アミド結合(−C(=O)NH−)、酸クロライド(−C(=O)−Cl)、及び酸無水物(−C(=O)−O−C(=O)−)の形成反応を任意に組み合わせて、所望の構造を有する複数の公知化合物を適宜結合・修飾することにより製造することができる。   The polymerizable liquid crystal compound of the present invention typically includes an ether bond (—O—), an ester bond (—C (═O) —O—), an amide bond (—C (═O) NH—), an acid. A plurality of known compounds having a desired structure by arbitrarily combining the formation reaction of chloride (—C (═O) —Cl) and acid anhydride (—C (═O) —O—C (═O) —) It can be produced by appropriately binding and modifying the compound.

エーテル結合の形成は、例えば、以下のようにして行うことができる。
1)式:Q1−X(Xはハロゲン原子を表す。以下にて同じ。)で表される化合物と、式:Q2−OMa(Maはアルカリ金属(主にナトリウム)を表す。以下にて同じ。)で表される化合物とを混合して縮合させる。なお、式中、Q1及びQ2は任意の有機基を表す(以下にて同じ。)。この反応は一般的にウイリアムソン合成と呼ばれる。
2)式:Q1−Xで表される化合物と式:Q2−OHで表される化合物とを、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
3)式:Q1−E(Eはエポキシ基を表す。)で表される化合物と式:Q2−OHで表される化合物とを、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して縮合させる。
4)式:Q1−OFN(OFNは不飽和結合を有する基を表す。)で表される化合物と式:Q2−OMaで表される化合物とを、水酸化ナトリウム、水酸化カリウム等の塩基存在下、混合して付加反応させる。
5)式:Q1−Xで表される化合物と式:Q2−OMaで表される化合物とを、銅又は塩化第一銅存在下、混合して縮合させる。この反応は一般的にウルマン縮合と呼ばれる。
The ether bond can be formed, for example, as follows.
1) A compound represented by the formula: Q1-X (X represents a halogen atom; the same applies hereinafter) and a formula: Q2-OMa (Ma represents an alkali metal (mainly sodium). The same applies hereinafter. .) Is mixed and condensed. In the formula, Q1 and Q2 represent arbitrary organic groups (the same applies hereinafter). This reaction is generally called Williamson synthesis.
2) A compound represented by the formula: Q1-X and a compound represented by the formula: Q2-OH are mixed and condensed in the presence of a base such as sodium hydroxide or potassium hydroxide.
3) A compound represented by the formula: Q1-E (E represents an epoxy group) and a compound represented by the formula: Q2-OH were mixed in the presence of a base such as sodium hydroxide or potassium hydroxide. To condense.
4) A compound represented by the formula: Q1-OFN (OFN represents a group having an unsaturated bond) and a compound represented by the formula: Q2-OMa are present in the presence of a base such as sodium hydroxide or potassium hydroxide. Under mixing, the addition reaction is carried out.
5) A compound represented by the formula: Q1-X and a compound represented by the formula: Q2-OMa are mixed and condensed in the presence of copper or cuprous chloride. This reaction is generally called Ullmann condensation.

エステル結合及びアミド結合の形成は、例えば、以下のようにして行うことができる。
6)式:Q1−COOHで表される化合物と、式:Q2−OH又はQ2−NHで表される化合物とを、脱水縮合剤(N,N−ジシクロヘキシルカルボジイミド等)の存在下に脱水縮合させる。
7)式:Q1−COOHで表される化合物にクロル化剤を作用させることにより、式:Q1−C(=O)Clで表される酸クロライドを得、このものと、式:Q2−OH又はQ2−NHで表される化合物とを、塩基の存在下に反応させる。
8)式:Q1−COOHで表される化合物に酸無水物を作用させることにより、混合酸無水物を得た後、このものに、式:Q2−OH又はQ2−NHで表される化合物を反応させる。
9)式:Q1−COOHで表される化合物と、式:Q2−OH又はQ2−NHで表される化合物とを、酸触媒あるいは塩基触媒の存在下に脱水縮合させる。
Formation of an ester bond and an amide bond can be performed as follows, for example.
6): a compound represented by Q1-COOH, wherein: Q2-OH or a compound represented by Q2-NH 2, dehydrated in the presence of a dehydrating condensing agent (N, N-dicyclohexylcarbodiimide, etc.) condensation Let
7) A chlorinating agent is allowed to act on the compound represented by the formula: Q1-COOH to obtain an acid chloride represented by the formula: Q1-C (═O) Cl. Alternatively, the compound represented by Q2-NH 2 is reacted in the presence of a base.
8): by the action of an acid anhydride to a compound represented by Q1-COOH, after obtaining a mixed acid anhydride, in this one, the formula: Q2-OH or a compound represented by Q2-NH 2 React.
9): with a compound represented by Q1-COOH, wherein: the Q2-OH or the compound represented by Q2-NH 2, dehydration condensation in the presence of an acid catalyst or base catalyst.

酸クロライドは、公知の方法により製造することができる。例えば、(α)式:Q1-COOHで表されるカルボン酸に、三塩化リン、五塩化リン、塩化チオニル、塩化オキサリル等のクロル化剤を作用させる方法;(β)式:Q1-COOAgで表されるカルボン酸の銀塩に塩素を作用させる方法;(γ)式:Q1-COOHで表される化合物に赤色酸化第二水銀の四塩化炭素溶液を作用させる方法;等が挙げられる。   The acid chloride can be produced by a known method. For example, (α) a method in which a chlorinating agent such as phosphorus trichloride, phosphorus pentachloride, thionyl chloride, oxalyl chloride is allowed to act on a carboxylic acid represented by the formula: Q1-COOH; (β) a formula: Q1-COOAg A method in which chlorine is allowed to act on the silver salt of the carboxylic acid represented; (γ) a method in which a carbon tetrachloride solution of red mercuric oxide is allowed to act on the compound represented by the formula: Q1-COOH;

本発明の重合性液晶化合物の合成では、中間体に存在する水酸基を保護することで収率を向上させることができる。
水酸基を保護する方法としては、公知の方法(例えば、Greene’s Protective Groups in Organic Synthesis 第3版 出版:Wiley−Interscience、1999年発行参照)を利用して製造することができる。
In the synthesis of the polymerizable liquid crystal compound of the present invention, the yield can be improved by protecting the hydroxyl group present in the intermediate.
As a method for protecting a hydroxyl group, it can be produced using a known method (for example, see Green's Protective Groups in Organic Synthesis 3rd edition published by Wiley-Interscience, published in 1999).

水酸基の保護は、より具体的には、以下のようにして行うことができる。
a)式:Q1Q2Q3−Si-Xで表される化合物と、式:Q4−OHで表される化合物とを、イミダゾール、ピリジン等の塩基存在下、混合して反応させる。なお、式中、Q3、Q4は任意の有機基Bを表す(以下にて同じ。)。
b)3,4−ジヒドロ−2H−ピラン等のビニルエーテル化合物とQ2−OHで表される化合物を、パラトルエンスルホン酸、パラトルエンスルホン酸ピリジン塩、塩化水素等の酸存在下、混合して反応させる。
c)式:Q1−C(=O)−Xで表される化合物と、式:Q4−OHで表される化合物とを、トリエチルアミン、ピリジン等の塩基存在下、混合して反応させる。
d)式:Q1−C(=O)−O−C(=O)−Q2で表される酸無水化合物と、式:Q3−OHで表される化合物とを混合して反応させる、あるいは水酸化ナトリウム、トリエチルアミン等の塩基存在下、混合して反応させる。
e)Q1−Xで表される化合物と、式:Q2−OHで表される化合物とを、水酸化ナトリウム、トリエチルアミン等の塩基存在下、混合して反応させる。
f)式:Q1−O−CH−Xで表される化合物と、式:Q2−OHで表される化合物とを、水素化ナトリウム、水酸化ナトリウム、トリエチルアミン、ピリジン等の塩基存在下、混合して反応させる。
g)Q1−O−CH−C(=O)−Xで表される化合物と、式:Q4−OHで表される化合物とを、炭酸カリウム、水酸化ナトリウム等の塩基存在下、混合して反応させる。
h)式:Q1−O−C(=O)−Xで表される化合物と、式:Q2−OHで表される化合物とを、トリエチルアミン、ピリジン等の塩基存在下、混合して反応させる。
More specifically, the protection of the hydroxyl group can be performed as follows.
a) A compound represented by the formula: Q1Q2Q3-Si-X and a compound represented by the formula: Q4-OH are mixed and reacted in the presence of a base such as imidazole or pyridine. In the formula, Q3 and Q4 represent an arbitrary organic group B (the same applies hereinafter).
b) Reaction by mixing a vinyl ether compound such as 3,4-dihydro-2H-pyran and a compound represented by Q2-OH in the presence of an acid such as p-toluenesulfonic acid, p-toluenesulfonic acid pyridine salt and hydrogen chloride. Let
c) A compound represented by the formula: Q1-C (= O) -X and a compound represented by the formula: Q4-OH are mixed and reacted in the presence of a base such as triethylamine or pyridine.
d) The acid anhydride compound represented by the formula: Q1-C (= O) -OC (= O) -Q2 and the compound represented by the formula: Q3-OH are mixed and reacted, or water In the presence of a base such as sodium oxide or triethylamine, they are mixed and reacted.
e) A compound represented by Q1-X and a compound represented by the formula: Q2-OH are mixed and reacted in the presence of a base such as sodium hydroxide or triethylamine.
f) formula: and Q1-O-CH compound represented by 2 -X, wherein: the Q2-OH are represented by compounds, sodium hydride, sodium hydroxide, triethylamine, presence of a base such as pyridine, mixed And react.
g) A compound represented by Q1-O—CH 2 —C (═O) —X and a compound represented by the formula: Q4-OH were mixed in the presence of a base such as potassium carbonate or sodium hydroxide. To react.
h) A compound represented by the formula: Q1-OC (= O) -X and a compound represented by the formula: Q2-OH are mixed and reacted in the presence of a base such as triethylamine or pyridine.

水酸基の保護基の脱保護は、保護基の構造、種類によって、公知の方法を利用することで脱保護することができる。
(i)テトラブチルアンモニウムフルオライド等のフッ素化物を混合して脱保護させる。
(ii)パラトルエンスルホン酸、パラトルエンスルホン酸ピリジン塩、塩化水素、酢酸等の酸存在下、混合して脱保護させる。
(iii)水素化ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ピリジン等の塩基存在下、混合して脱保護させる。
(iv)Pd−C等の触媒存在下、水素添加することにより脱保護させる。
The deprotection of the protecting group for the hydroxyl group can be deprotected by utilizing a known method depending on the structure and type of the protecting group.
(I) Fluoride such as tetrabutylammonium fluoride is mixed to be deprotected.
(Ii) Deprotection by mixing in the presence of an acid such as paratoluenesulfonic acid, pyridine salt of paratoluenesulfonic acid, hydrogen chloride, acetic acid or the like.
(Iii) Deprotection by mixing in the presence of a base such as sodium hydride, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, pyridine.
(Iv) Deprotection is carried out by hydrogenation in the presence of a catalyst such as Pd-C.

本発明化合物は、より具体的には、以下のようにして合成することができる。   More specifically, the compound of the present invention can be synthesized as follows.

Figure 0005407870
Figure 0005407870

(式中、M、Y〜Y8、G、G、Z、Z、A、A、X〜X16、a、b、c及びdは前記と同じ意味を表す。L、Lは脱離基を表し、Y’はLと反応してYを生成する基、Y’はLと反応してYを生成する基を表す。例えば、LがCOCl、Yが−C(=O)−O−である場合には、Y’はOH基であり、LがOH基、Yが−O−C(=O)−である場合には、Y’はCOOH基であり、LがNH基、Yが−NHC(=O)−である場合には、Y’はCOOH基である。Y'の場合も同様である。)(In the formula, M, Y 1 to Y 8 , G 1 , G 2 , Z 1 , Z 2 , A 1 , A 2 , X 1 to X 16 , a, b, c and d represent the same meaning as described above. L 1 and L 2 represent a leaving group, Y 3 ′ represents a group that reacts with L 1 to generate Y 3 , and Y 6 ′ represents a group that reacts with L 2 to generate Y 6 . , L 1 is COCl and Y 3 is —C (═O) —O—, Y 3 ′ is an OH group, L 1 is an OH group, and Y 3 is —O—C (═O). - in the case of the, Y 3 'is a COOH group, 2 group L 1 is NH, Y 3 is -NHC (= O) - in the case of the, Y 3' is COOH group .Y 6 The same applies to '.)

すなわち、式(10)で表されるアルデヒド化合物(アルデヒド化合物(10))と、式(11a)及び式(11b)で表されるヒドラジド化合物(ヒドラジド化合物(11a)、ヒドラジド化合物(11b))とを反応させて、式(12)で表される化合物(化合物(12))を得た後(工程1)、このものと式(13a)及び式(13b)で表される化合物(化合物(13a)、化合物(13b))とを反応させることにより、目的とする式(I)で表される本発明化合物(本発明化合物(I))を得ることができる(工程2)。   That is, an aldehyde compound represented by formula (10) (aldehyde compound (10)) and a hydrazide compound represented by formula (11a) and formula (11b) (hydrazide compound (11a), hydrazide compound (11b)) To obtain a compound represented by formula (12) (compound (12)) (step 1), and this compound and a compound represented by formula (13a) and formula (13b) (compound (13a) ) And the compound (13b)), the target compound of the present invention represented by the formula (I) (the present compound (I)) can be obtained (step 2).

工程1の反応は、適当な溶媒中、アルデヒド化合物(10)と、ヒドラジド化合物(11a)(及びヒドラジド化合物(11b))を混合・攪拌することにより行うことができる。
この場合、ヒドラジド化合物(11a)とヒドラジド化合物(11b)が別化合物である場合には、順次反応させればよい。また、ヒドラジド化合物(11a)とヒドラジド化合物(11b)が同一である場合には、倍量以上使用すればよい。
The reaction of Step 1 can be performed by mixing and stirring the aldehyde compound (10) and the hydrazide compound (11a) (and the hydrazide compound (11b)) in an appropriate solvent.
In this case, when the hydrazide compound (11a) and the hydrazide compound (11b) are different compounds, they may be reacted sequentially. In addition, when the hydrazide compound (11a) and the hydrazide compound (11b) are the same, they may be used in a double amount or more.

工程1において、ヒドラジド化合物(11a)及び(11b)の使用量は、アルデヒド化合物(10)に対して、通常0.5〜5倍モルである。   In Step 1, the amount of the hydrazide compounds (11a) and (11b) used is usually 0.5 to 5 times the mol of the aldehyde compound (10).

工程1で用いる溶媒としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶媒;N,N−ジメチルホルムアミド、N−メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。   Examples of the solvent used in Step 1 include alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, and n-butanol; ether solvents such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, and 1,4-dioxane; Ester solvents such as ethyl acetate, propyl acetate and methyl propionate; aromatic hydrocarbon solvents such as benzene, toluene and xylene; aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; N Amide solvents such as N, dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric triamide; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; and mixed solvents composed of two or more of these solvents.

工程1の反応は、−10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。
反応時間は、反応規模にもよるが、通常、数分から数時間である。
以上のようにして、化合物(12)を含む反応液を得る。
The reaction in Step 1 proceeds smoothly in a temperature range from −10 ° C. to the boiling point of the solvent used.
The reaction time is usually from several minutes to several hours, although depending on the reaction scale.
As described above, a reaction solution containing the compound (12) is obtained.

本発明においては、得られた反応液から化合物(12)を単離し、単離した化合物(12)を次の工程2に供してもよいし、化合物(12)を単離することなく、化合物(12)を含む反応液をそのまま工程2に供してもよい。   In the present invention, the compound (12) is isolated from the obtained reaction solution, and the isolated compound (12) may be subjected to the next step 2, or the compound (12) may be isolated without isolation. You may use the reaction liquid containing (12) for the process 2 as it is.

アルデヒド化合物(10)の多くは公知化合物であり、公知の方法により製造し、入手することができる。
また、ヒドラジド化合物(11a)、(11b)は、下記に示すように、ヒドラジンと、ベンズアルデヒド誘導体(14a、14b)とをそれぞれ反応させることにより得ることができる。
Many of the aldehyde compounds (10) are known compounds and can be produced and obtained by known methods.
The hydrazide compounds (11a) and (11b) can be obtained by reacting hydrazine and benzaldehyde derivatives (14a and 14b), respectively, as shown below.

Figure 0005407870
Figure 0005407870

また、用いるベンズアルデヒド誘導体として、Y’、Y’に保護基が結合した化合物を用い、工程2の反応を行う前に、該保護基の脱保護を行って、ヒドラジド化合物(11a)、(11b)とした後に、工程2の反応を行うようにしてもよい。例えば、Y’、Y’が水酸基である場合には、該水酸基がt−ブチルジメチルシリル基等の保護基で保護されたベンズアルデヒド誘導体を使用して工程1の反応を行った後、常法に従って脱保護を行って、ヒドラジド化合物(11a)、(11b)を得ることができる。In addition, as a benzaldehyde derivative to be used, a compound in which a protecting group is bonded to Y 3 ′ and Y 6 ′ is used. Before the reaction in Step 2, the protecting group is deprotected to obtain a hydrazide compound (11a), ( After step 11b), the reaction of step 2 may be performed. For example, when Y 3 ′ and Y 6 ′ are hydroxyl groups, the reaction in Step 1 is performed after the reaction of Step 1 using a benzaldehyde derivative in which the hydroxyl groups are protected with a protecting group such as t-butyldimethylsilyl group. The hydrazide compounds (11a) and (11b) can be obtained by performing deprotection according to the method.

次いで、工程1で得られた化合物(12)に、化合物(13a)及び(13b)を反応させることにより、目的とする本発明化合物(I)を得る(工程2)。   Next, the compound (12) obtained in the step 1 is reacted with the compounds (13a) and (13b) to obtain the target compound (I) of the present invention (step 2).

工程2の反応は、適当な溶媒中、化合物(12)と、化合物(13a)(及び化合物(13b))を混合攪拌することにより行うことができる。
この場合、化合物(13a)と化合物(13b)が別化合物である場合には、順次反応させればよい。また、化合物(13a)と化合物(13b)が同一である場合には、倍量以上使用すればよい。
The reaction of step 2 can be performed by mixing and stirring the compound (12) and the compound (13a) (and the compound (13b)) in a suitable solvent.
In this case, when the compound (13a) and the compound (13b) are different compounds, they may be reacted sequentially. In addition, when the compound (13a) and the compound (13b) are the same, they may be used in a double amount or more.

工程2において、化合物(13a)及び(13b)の使用量は、化合物(12)に対して、通常0.5〜5倍モルである。   In Step 2, the amount of compounds (13a) and (13b) used is usually 0.5 to 5 moles compared to compound (12).

工程2で用いる溶媒としては、ジエチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,4−ジオキサン等のエーテル系溶媒;酢酸エチル、酢酸プロピル、プロピオン酸メチル等のエステル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;n−ペンタン、n−ヘキサン、n−ヘプタン等の脂肪族炭化水素系溶媒;N,N−ジメチルホルムアミド、N−メチルピロリドン、ヘキサメチルリン酸トリアミド等のアミド系溶媒;ジメチルスルホキシド、スルホラン等の含硫黄系溶媒;及びこれらの2種以上からなる混合溶媒;等が挙げられる。   Examples of the solvent used in Step 2 include ether solvents such as diethyl ether, tetrahydrofuran, 1,2-dimethoxyethane, and 1,4-dioxane; ester solvents such as ethyl acetate, propyl acetate, and methyl propionate; benzene, toluene, Aromatic hydrocarbon solvents such as xylene; Aliphatic hydrocarbon solvents such as n-pentane, n-hexane and n-heptane; Amides such as N, N-dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric triamide System solvents; sulfur-containing solvents such as dimethyl sulfoxide and sulfolane; and mixed solvents composed of two or more of these solvents.

また、化合物(13a)及び(13b)が酸クロライド又は無水物である場合には、反応系に塩基を添加することにより、反応をより円滑に進行させることができる場合がある。   When the compounds (13a) and (13b) are acid chlorides or anhydrides, the reaction may be able to proceed more smoothly by adding a base to the reaction system.

用いる塩基としては、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン等の有機塩基;水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩基;が挙げられる。塩基の使用量は、化合物(13a)及び(13b)に対して、通常、1〜3倍モルである。   Examples of the base to be used include organic bases such as pyridine, triethylamine and diisopropylethylamine; inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate. The amount of the base used is usually 1 to 3 moles compared to the compounds (13a) and (13b).

工程2の反応は、−10℃から用いる溶媒の沸点までの温度範囲で円滑に進行する。
反応時間は、反応規模にもよるが、通常、数分から数時間である。
The reaction in Step 2 proceeds smoothly in a temperature range from −10 ° C. to the boiling point of the solvent used.
The reaction time is usually from several minutes to several hours, although depending on the reaction scale.

化合物(13a)及び(13b)の多くは公知化合物であり、公知の方法により製造し、入手することができる。
化合物(13a)及び(13b)の好ましい具体例としては、下記の化合物が挙げられる。もちろん、本発明はこれらの化合物に限定されることはない。
Many of the compounds (13a) and (13b) are known compounds, and can be produced and obtained by known methods.
Preferable specific examples of the compounds (13a) and (13b) include the following compounds. Of course, the present invention is not limited to these compounds.

Figure 0005407870
Figure 0005407870

(式中、r、sはそれぞれ独立して、1〜6の整数を表し、Lは塩素原子又は水酸基を表し、R10は水素原子又はメチル基を表す。)(In the formula, r and s each independently represent an integer of 1 to 6, L represents a chlorine atom or a hydroxyl group, and R 10 represents a hydrogen atom or a methyl group.)

いずれの反応においても、反応終了後は、有機合成化学における通常の後処理操作を行い、所望により、カラムクロマトグラフィー、再結晶法、蒸留法等の公知の分離・精製手段を施すことにより、目的物を単離することができる。
目的物の構造は、NMRスペクトル、IRスペクトル、マススペクトル等の測定、元素分析等により、同定することができる。
In any reaction, after the completion of the reaction, the usual post-treatment operation in organic synthetic chemistry is performed, and if desired, by applying known separation / purification means such as column chromatography, recrystallization method, distillation method, etc. Product can be isolated.
The structure of the target product can be identified by measurement of NMR spectrum, IR spectrum, mass spectrum, etc., elemental analysis or the like.

2)重合性液晶組成物
本発明の第2は、本発明の重合性液晶化合物、及び重合可能なキラル化合物(以下、「重合性キラル化合物」という。)を含有する重合性液晶組成物である。
2) Polymerizable liquid crystal composition The second aspect of the present invention is a polymerizable liquid crystal composition containing the polymerizable liquid crystal compound of the present invention and a polymerizable chiral compound (hereinafter referred to as “polymerizable chiral compound”). .

本発明の組成物は、上述した本発明の重合性液晶化合物の一種、又は二種以上を必須成分とする。本発明の組成物は、本発明の重合性液晶化合物に加えて、特開平11−130729号公報、特開平8−104870号公報、特開2005−309255号公報、特開2005−263789号公報、特表2002−533742号公報、特開2002−308832号公報、特開2002−265421号公報、特開昭62−070406号公報、特開平11−100575号公報等に記載されるごとき、その他の重合性液晶化合物の一種又は二種以上を用いることもできる。   The composition of the present invention contains one or more of the polymerizable liquid crystal compounds of the present invention described above as essential components. The composition of the present invention includes, in addition to the polymerizable liquid crystal compound of the present invention, JP-A-11-130729, JP-A-8-104870, JP-A-2005-309255, JP-A-2005-263789, Other polymerizations such as those described in JP-T-2002-533742, JP-A-2002-308832, JP-A-2002-265421, JP-A-62-070406, JP-A-11-10055, etc. One kind or two or more kinds of conductive liquid crystal compounds may be used.

本発明に用いる重合性液晶化合物に添加する、その他の重合性液晶化合物の含有量は、本発明に用いる重合性液晶化合物全量中、50重量%以下が好ましく、30重量%以下がより好ましい。   The content of the other polymerizable liquid crystal compound added to the polymerizable liquid crystal compound used in the present invention is preferably 50% by weight or less and more preferably 30% by weight or less in the total amount of the polymerizable liquid crystal compound used in the present invention.

本発明の組成物に用いる重合性キラル化合物は、分子内にキラルな炭素原子を有し、本発明の重合性液晶化合物と重合可能な化合物であって、かつ本発明の重合性液晶化合物の配向を乱さないものであれば、特に制限されない。
ここで、「重合」とは、通常の重合反応のほか、架橋反応を含む広い意味での化学反応を意味するものとする。
The polymerizable chiral compound used in the composition of the present invention is a compound having a chiral carbon atom in the molecule and polymerizable with the polymerizable liquid crystal compound of the present invention, and the orientation of the polymerizable liquid crystal compound of the present invention. If it does not disturb, there is no particular limitation.
Here, “polymerization” means a chemical reaction in a broad sense including a crosslinking reaction in addition to a normal polymerization reaction.

本発明の組成物においては、重合性キラル化合物を一種単独で、あるいは二種以上を組み合わせて用いることができる。
本発明の重合性液晶組成物を構成する本発明の重合性液晶化合物は、重合性キラル化合物と混合することでコレステリック相を発現し得る。
In the composition of the present invention, the polymerizable chiral compound can be used alone or in combination of two or more.
The polymerizable liquid crystal compound of the present invention constituting the polymerizable liquid crystal composition of the present invention can develop a cholesteric phase by mixing with the polymerizable chiral compound.

重合性キラル化合物としては、例えば、特開平11−193287号公報に記載されているごとき公知のものを使用することができる。かかるキラル化合物としては、例えば、以下の3つの一般式で示される化合物が挙げられるが、これらに限定されない。   As the polymerizable chiral compound, for example, a known compound as described in JP-A No. 11-193287 can be used. Examples of such chiral compounds include, but are not limited to, compounds represented by the following three general formulas.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

上記式中、R及びRとしては、例えば、水素原子、メチル基、メトキシ基等が挙げられる。Y及びY10としては、例えば、−O−、−O−C(=O)−、−O−C(=O)−O−等が挙げられる。また、m、mはそれぞれ独立して、2、4又は6である。これらの一般式で表される化合物の具体例としては、下記に示される化合物が挙げられる。In the above formula, examples of R 6 and R 7 include a hydrogen atom, a methyl group, and a methoxy group. Examples of Y 9 and Y 10 include —O—, —O—C (═O) —, —O—C (═O) —O—, and the like. M 1 and m 2 are each independently 2 , 4 or 6. Specific examples of the compounds represented by these general formulas include the compounds shown below.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

本発明の重合性液晶組成物において、重合性キラル化合物の配合割合は、重合性液晶化合物100重量部に対し、通常、0.1〜100重量部、好ましくは0.5〜10重量部である。   In the polymerizable liquid crystal composition of the present invention, the mixing ratio of the polymerizable chiral compound is usually 0.1 to 100 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound. .

本発明の重合性液晶組成物には、重合反応をより効率的に行う観点から、通常、重合開始剤、特に光重合開始剤を配合するのが好ましい。重合開始剤としては、後述の「3)液晶性高分子」の項で記載する重合開始剤が挙げられる。   In general, a polymerization initiator, particularly a photopolymerization initiator, is preferably added to the polymerizable liquid crystal composition of the present invention from the viewpoint of performing a polymerization reaction more efficiently. Examples of the polymerization initiator include polymerization initiators described in the section “3) Liquid crystalline polymer” described later.

本発明の重合性液晶組成物において、重合開始剤の配合割合は、重合性液晶化合物100重量部に対し、通常、重合開始剤0.1〜30重量部、好ましくは0.5〜10重量部である。   In the polymerizable liquid crystal composition of the present invention, the blending ratio of the polymerization initiator is usually 0.1 to 30 parts by weight, preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound. It is.

本発明の重合性液晶組成物には、表面張力を調整するために、界面活性剤を配合するのが好ましい。当該界面活性剤としては、特に限定はないが、通常、ノニオン系界面活性剤が好ましい。当該ノニオン系界面活性剤としては、市販品を用いればよく、例えば、分子量が数千程度のオリゴマーであるノニオン系界面活性剤、具体例としては、セイミケミカル(株)製KH−40等が挙げられる。本発明の重合性液晶組成物において、界面活性剤の配合割合は、重合性液晶化合物100重量部に対し、通常、0.01〜10重量部、好ましくは0.1〜2重量部である。   The polymerizable liquid crystal composition of the present invention preferably contains a surfactant in order to adjust the surface tension. The surfactant is not particularly limited, but a nonionic surfactant is usually preferable. As the nonionic surfactant, a commercially available product may be used, for example, a nonionic surfactant that is an oligomer having a molecular weight of about several thousand, and specific examples include KH-40 manufactured by Seimi Chemical Co., Ltd. It is done. In the polymerizable liquid crystal composition of the present invention, the blending ratio of the surfactant is usually 0.01 to 10 parts by weight, preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the polymerizable liquid crystal compound.

本発明の重合性液晶組成物を、偏光フィルムや配向膜の原料、印刷インキ、塗料、保護膜等の用途に利用する場合には、その目的に応じて、上記成分の他、後述の他の共重合可能な単量体、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物等のその他の添加剤を配合してもよい。本発明の重合性液晶組成物において、その他の添加剤の配合割合は、重合性液晶化合物100重量部に対し、通常、各々0.1〜20重量部である。   When the polymerizable liquid crystal composition of the present invention is used for applications such as a polarizing film or a raw material for an alignment film, printing ink, paint, protective film, etc., in addition to the above components, other components described below are used depending on the purpose. Copolymerizable monomers, metals, metal complexes, dyes, pigments, fluorescent materials, phosphorescent materials, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange You may mix | blend other additives, such as resin, metal oxides, such as a titanium oxide. In the polymerizable liquid crystal composition of the present invention, the blending ratio of other additives is usually 0.1 to 20 parts by weight per 100 parts by weight of the polymerizable liquid crystal compound.

本発明の重合性液晶組成物は、通常、本発明の重合性液晶化合物、重合性キラル化合物、光重合開始剤、ノニオン系界面活性剤、及び所望によりその他の添加剤の所定量を適当な有機溶媒に溶解させることにより調製することができる。   The polymerizable liquid crystal composition of the present invention usually contains a predetermined amount of the polymerizable liquid crystal compound of the present invention, a polymerizable chiral compound, a photopolymerization initiator, a nonionic surfactant, and other additives as appropriate. It can be prepared by dissolving in a solvent.

用いる有機溶媒としては、シクロペンタノン、シクロヘキサノン、メチルエチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;1,4−ジオキサン、シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;等が挙げられる。   Organic solvents to be used include ketones such as cyclopentanone, cyclohexanone and methyl ethyl ketone; acetate esters such as butyl acetate and amyl acetate; halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane; 1,4-dioxane and cyclopentylmethyl And ethers such as ether, tetrahydrofuran and tetrahydropyran;

以上のようにして得られる重合性液晶組成物は、後述するようにコレステリック液晶層やコレステリック液晶性高分子の製造原料として有用である。   The polymerizable liquid crystal composition obtained as described above is useful as a raw material for producing a cholesteric liquid crystal layer or a cholesteric liquid crystal polymer as described later.

3)液晶性高分子
本発明の第3は、本発明の重合性液晶化合物、又は本発明の重合性液晶組成物を重合して得られる液晶性高分子である。
ここで、「重合」とは、通常の重合反応のほか、架橋反応を含む広い意味での化学反応を意味するものとする。
3) Liquid crystalline polymer The third of the present invention is a liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound of the present invention or the polymerizable liquid crystal composition of the present invention.
Here, “polymerization” means a chemical reaction in a broad sense including a crosslinking reaction in addition to a normal polymerization reaction.

本発明の液晶性高分子は、具体的には、(1)本発明の重合性液晶化合物を重合して得られる液晶性高分子、又は、(2)本発明の重合性液晶組成物を重合して得られる液晶性高分子である。   Specifically, the liquid crystalline polymer of the present invention is obtained by polymerizing (1) a liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound of the present invention, or (2) polymerizing the polymerizable liquid crystal composition of the present invention. It is a liquid crystalline polymer obtained as described above.

(1)本発明の重合性液晶化合物を重合して得られる液晶性高分子
本発明の重合性液晶化合物を重合して得られる液晶性高分子としては、本発明の重合性液晶化合物の単独重合体、本発明の重合性液晶化合物の2種以上からなる共重合体、本発明の重合性液晶化合物とその他の重合性液晶化合物との共重合体、本発明の重合性液晶化合物と他の共重合可能な単量体との共重合体等が挙げられる。
(1) Liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound of the present invention The liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound of the present invention includes a single weight of the polymerizable liquid crystal compound of the present invention. A copolymer composed of two or more of the polymerizable liquid crystal compounds of the present invention, a copolymer of the polymerizable liquid crystal compound of the present invention and other polymerizable liquid crystal compounds, and the polymerizable liquid crystal compound of the present invention and other copolymers. Examples thereof include a copolymer with a polymerizable monomer.

前記その他の重合性液晶化合物としては、特開平11−130729号公報、特開平8−104870号公報、特開2005−309255号公報、特開2005−263789号公報、特表2002−533742号公報、特開2002−308832号公報、特開2002−265421号公報、特開昭62−070406号公報、特開平11−100575号公報等に記載されるごとき重合性液晶化合物が挙げられる。   Examples of the other polymerizable liquid crystal compounds include JP-A-11-130729, JP-A-8-104870, JP-A-2005-309255, JP-A-2005-263789, JP-T-2002-533742, Examples thereof include polymerizable liquid crystal compounds such as those described in JP-A No. 2002-308832, JP-A No. 2002-265421, JP-A No. 62-070406, JP-A No. 11-10055 and the like.

前記他の共重合可能な単量体としては、特に限定されるものではなく、例えば、4−(2−メタクリロイルオキシエチルオキシ)安息香酸−4’−メトキシフェニル、4−(6−メタクリロイルオキシヘキシルオキシ)安息香酸ビフェニル、4−(2−アクリロイルオキシエチルオキシ)安息香酸−4’−シアノビフェニル、4−(2−メタクリロリルオキシエチルオキシ)安息香酸−4’−シアノビフェニル、4−(2−メタクリロリルオキシエチルオキシ)安息香酸−3’,4’−ジフルオロフェニル、4−(2−メタクリロイルオキシエチルオキシ)安息香酸ナフチル、4−アクリロイルオキシ−4’−デシルビフェニル、4−アクリロイルオキシ−4’−シアノビフェニル、4−(2−アクリロイルオキシエチルオキシ)−4’−シアノビフェニル、4−(2−メタクリロイルオキシエチルオキシ)−4’−メトキシビフェニル、4−(2−メタクリロイルオキシエチルオキシ)−4’−(4”−フルオロベンジルオキシ)−ビフェニル、4−アクリロイルオキシ−4’−プロピルシクロヘキシルフェニル、4−メタクリロイル−4’−ブチルビシクロヘキシル、4−アクリロイル−4’−アミルトラン、4−アクリロイル−4’−(3,4−ジフルオロフェニル)ビシクロヘキシル、4−(2−アクリロイルオキシエチル)安息香酸(4−アミルフェニル)、4−(2−アクリロイルオキシエチル)安息香酸(4−(4’−プロピルシクロヘキシル)フェニル)等が挙げられる。   The other copolymerizable monomer is not particularly limited, and examples thereof include 4- (2-methacryloyloxyethyloxy) benzoic acid-4′-methoxyphenyl, 4- (6-methacryloyloxyhexyl). Oxy) benzoic acid biphenyl, 4- (2-acryloyloxyethyloxy) benzoic acid-4′-cyanobiphenyl, 4- (2-methacrylolyloxyethyloxy) benzoic acid-4′-cyanobiphenyl, 4- (2 -Methacryloyloxyethyloxy) benzoic acid-3 ', 4'-difluorophenyl, 4- (2-methacryloyloxyethyloxy) benzoic acid naphthyl, 4-acryloyloxy-4'-decylbiphenyl, 4-acryloyloxy- 4′-cyanobiphenyl, 4- (2-acryloyloxyethyloxy) -4′-si Nobiphenyl, 4- (2-methacryloyloxyethyloxy) -4'-methoxybiphenyl, 4- (2-methacryloyloxyethyloxy) -4 '-(4 "-fluorobenzyloxy) -biphenyl, 4-acryloyloxy- 4′-propylcyclohexylphenyl, 4-methacryloyl-4′-butylbicyclohexyl, 4-acryloyl-4′-amyltran, 4-acryloyl-4 ′-(3,4-difluorophenyl) bicyclohexyl, 4- (2- And acryloyloxyethyl) benzoic acid (4-amylphenyl), 4- (2-acryloyloxyethyl) benzoic acid (4- (4′-propylcyclohexyl) phenyl), and the like.

本発明の液晶性高分子が、本発明の重合性液晶化合物と、前記その他の重合性液晶化合物又は他の共重合可能な単量体(以下、これらをまとめて「その他の重合性液晶化合物等」ということがある。)との共重合体である場合、本発明の重合性液晶化合物単位の含有量は、特に限定されるものではないが、全構成単位に対して50重量%以上が好ましく、70重量%以上がより好ましい。かかる範囲にあれば、液晶性高分子のガラス転移温度(Tg)が高く、高い膜硬度が得られるため好ましい。   The liquid crystalline polymer of the present invention comprises the polymerizable liquid crystal compound of the present invention and the other polymerizable liquid crystal compound or other copolymerizable monomer (hereinafter referred to as “other polymerizable liquid crystal compounds, etc. The content of the polymerizable liquid crystal compound unit of the present invention is not particularly limited, but is preferably 50% by weight or more based on the total structural units. 70% by weight or more is more preferable. If it exists in this range, since the glass transition temperature (Tg) of liquid crystalline polymer is high and high film | membrane hardness is obtained, it is preferable.

本発明の重合性液晶化合物、及び必要に応じて用いられるその他の重合性液晶化合物等の(共)重合は、適当な重合開始剤の存在下に行うことができる。重合開始剤の使用割合としては、前記重合性液晶組成物中の重合性液晶化合物に対する配合割合と同様でよい。   The (co) polymerization of the polymerizable liquid crystal compound of the present invention and other polymerizable liquid crystal compounds used as necessary can be carried out in the presence of a suitable polymerization initiator. The proportion of the polymerization initiator used may be the same as the proportion of the polymerizable liquid crystal compound in the polymerizable liquid crystal composition.

用いる重合開始剤としては、用いる重合性液晶化合物に存在する重合性基の種類に応じて適宜なものを選択して使用すればよい。例えば、重合性基が、ラジカル重合性であればラジカル重合開始剤を、アニオン重合性の基であればアニオン重合開始剤を、カチオン重合性の基であればカチオン重合開始剤を、それぞれ使用すればよい。ラジカル重合開始剤としては、熱ラジカル発生剤と光ラジカル発生剤のいずれも使用可能であるが、光ラジカル発生剤を使用するのが好適である。   As the polymerization initiator to be used, an appropriate one may be selected and used depending on the type of polymerizable group present in the polymerizable liquid crystal compound to be used. For example, a radical polymerization initiator is used if the polymerizable group is radically polymerizable, an anionic polymerization initiator is used if it is an anionic polymerizable group, and a cationic polymerization initiator is used if it is a cationically polymerizable group. That's fine. As the radical polymerization initiator, either a thermal radical generator or a photo radical generator can be used, but it is preferable to use a photo radical generator.

前記光ラジカル発生剤としては、ベンゾイン、ベンゾインメチルエーテル及びベンゾインプロピルエーテル等のベンゾイン;アセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン及びN,N−ジメチルアミノアセトフェノン等のアセトフェノン;2−メチルアントラキノン、1−クロロアントラキノン及び2−アミルアントラキノン等のアントラキノン;2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、2−クロロチオキサントン及び2,4−ジイソプロピルチオキサントン等のチオキサントン;アセトフェノンジメチルケタール及びベンジルジメチルケタール等のケタール;ベンゾフェノン、メチルベンゾフェノン、4,4−ジクロロベンゾフェノン、4,4−ビスジエチルアミノベンゾフェノン、ミヒラーズケトン及び4−ベンゾイル−4−メチルジフェニルサルファイド等のベンゾフェノン;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等が挙げられる。   Examples of the photo radical generator include benzoin such as benzoin, benzoin methyl ether and benzoin propyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloro Acetophenones, such as acetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one and N, N-dimethylaminoacetophenone; 2-methylanthraquinone, Anthraquinones such as 1-chloroanthraquinone and 2-amylanthraquinone; 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone and 2,4-diisopropylthioxanthate Such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone, methylbenzophenone, 4,4-dichlorobenzophenone, 4,4-bisdiethylaminobenzophenone, Michler's ketone and 4-benzoyl-4-methyldiphenyl sulfide; Examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide.

光ラジカル重合開始剤の具体例としては、チバスペシャリティーケミカルズ社製の商品名Irgacure907、商品名Irgacure184、商品名Irgacure369及び商品名Irgacure651等が挙げられる。   Specific examples of the photo radical polymerization initiator include trade name Irgacure 907, trade name Irgacure 184, trade name Irgacure 369, trade name Irgacure 651 and the like manufactured by Ciba Specialty Chemicals.

前記アニオン重合開始剤の具体例としては、アルキルリチウム化合物;ビフェニル、ナフタレン、ピレン等の、モノリチウム塩又はモノナトリウム塩;ジリチウム塩、トリリチウム塩等の多官能性開始剤;等が挙げられる。   Specific examples of the anionic polymerization initiator include alkyl lithium compounds; monolithium salts or monosodium salts such as biphenyl, naphthalene and pyrene; polyfunctional initiators such as dilithium salts and trilithium salts; and the like.

また、前記カチオン重合開始剤の具体例としては、硫酸、リン酸、過塩素酸、トリフルオロメタンスルホン酸等のプロトン酸;三フッ化ホウ素、塩化アルミニウム、四塩化チタン、四塩化スズのようなルイス酸;芳香族オニウム塩又は芳香族オニウム塩と、還元剤との併用系;が挙げられる。
これらの重合開始剤は一種単独で、又は二種以上を組み合わせて用いることができる。
Specific examples of the cationic polymerization initiator include proton acids such as sulfuric acid, phosphoric acid, perchloric acid, and trifluoromethanesulfonic acid; Lewis such as boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Acid; an aromatic onium salt or a combination system of an aromatic onium salt and a reducing agent.
These polymerization initiators can be used singly or in combination of two or more.

また、前記重合性液晶化合物、及び必要に応じて用いられるその他の重合性液晶化合物等との(共)重合を行うに際しては、必要に応じて、紫外線吸収剤、赤外線吸収剤、酸化防止剤等の機能性化合物を存在させてもよい。   In performing (co) polymerization with the polymerizable liquid crystal compound and other polymerizable liquid crystal compounds used as necessary, an ultraviolet absorber, an infrared absorber, an antioxidant, etc., if necessary. The functional compound may be present.

本発明の液晶性高分子は、より具体的には、(A)適当な重合開始剤の存在下、前記重合性液晶化合物、及び必要に応じて用いられるその他の重合性液晶化合物等との(共)重合を適当な有機溶媒中で行う方法、(B)前記重合性液晶化合物、及び必要に応じて用いられるその他の重合性液晶化合物等を重合開始剤と共に有機溶媒に溶解した溶液を、公知の塗工法により支持体上に塗布した後、単量体を配向させた状態で脱溶媒し、次いで加熱又は活性エネルギー線を照射する方法により製造することができる。   More specifically, the liquid crystalline polymer of the present invention comprises (A) the above-mentioned polymerizable liquid crystal compound and other polymerizable liquid crystal compound used as necessary in the presence of a suitable polymerization initiator ( Co) polymerization in a suitable organic solvent, (B) a solution prepared by dissolving the polymerizable liquid crystal compound and other polymerizable liquid crystal compound used if necessary in an organic solvent together with a polymerization initiator. After coating on a support by the coating method, the solvent can be removed in the oriented state, and then heated or irradiated with active energy rays.

前記(A)の方法に用いる有機溶媒としては、不活性なものであれば、特に制限されず、例えば、トルエン、キシレン、メシチレン等の芳香族炭化水素;シクロヘキサノン、シクロペンタノン、メチルエチルケトン等のケトン類;酢酸ブチル、酢酸アミル等の酢酸エステル類;クロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素類;シクロペンチルメチルエーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル類;等が挙げられる。これらの中でも、取り扱い性に優れる観点から、沸点が60〜250℃のものが好ましく、60〜150℃のものがより好ましい。   The organic solvent used in the method (A) is not particularly limited as long as it is inert, and examples thereof include aromatic hydrocarbons such as toluene, xylene, mesitylene, etc .; ketones such as cyclohexanone, cyclopentanone, and methyl ethyl ketone. Acetic esters such as butyl acetate and amyl acetate; Halogenated hydrocarbons such as chloroform, dichloromethane and dichloroethane; Ethers such as cyclopentyl methyl ether, tetrahydrofuran and tetrahydropyran; Among these, from the viewpoint of excellent handleability, those having a boiling point of 60 to 250 ° C are preferable, and those having a boiling point of 60 to 150 ° C are more preferable.

(A)の方法による場合には、例えば、後述する重合反応条件に従って反応を行った後、得られた重合反応液から目的とする液晶性高分子を単離し、単離した液晶性高分子を適当な有機溶媒に溶解して溶液を調製し、この溶液を適当な支持体上に塗工して得られた塗膜を乾燥後、液晶性を示す温度以上となるまで加熱して、徐冷して液晶状態を固定化することができる。   In the case of the method (A), for example, after reacting according to the polymerization reaction conditions described later, the target liquid crystalline polymer is isolated from the obtained polymerization reaction liquid, and the isolated liquid crystalline polymer is removed. A solution is prepared by dissolving in an appropriate organic solvent, and after drying the coating film obtained by coating this solution on an appropriate support, it is heated to a temperature that exhibits liquid crystallinity or higher, and then slowly cooled. Thus, the liquid crystal state can be fixed.

液晶性高分子を溶解するための有機溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤;酢酸ブチル、酢酸アミル等のエステル系溶剤;ジクロロメタン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素系溶剤;テトラヒドロフラン、テトラヒドロピラン、1,2−ジメトキシエタン、1,4−ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶剤;等が挙げられる。   Organic solvents for dissolving the liquid crystalline polymer include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone; ester solvents such as butyl acetate and amyl acetate; dichloromethane, chloroform, dichloroethane, and the like And halogenated hydrocarbon solvents such as tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1,4-dioxane, cyclopentyl methyl ether, and the like.

前記支持体としては、有機、無機を問わず、公知慣用の材質の基板を使用することができる。当該基板の材質としては、例えば、ポリシクロオレフィン〔例えば、ゼオネックス、ゼオノア(登録商標;日本ゼオン社製)、アートン(登録商標;JSR社製)、及びアペル(登録商標;三井化学社製)〕、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、セルロース、三酢酸セルロース、ポリエーテルスルホン、シリコン、ガラス、方解石等が挙げられる。基板の形状としては、平板の他、曲面を有するものであってもよい。これらの基板は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。   As the support, a substrate made of a commonly used material can be used regardless of organic or inorganic. Examples of the material of the substrate include polycycloolefins (for example, ZEONEX, ZEONOR (registered trademark; manufactured by ZEON CORPORATION), ARTON (registered trademark; manufactured by JSR), and APPEL (registered trademark; manufactured by Mitsui Chemicals)). Polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, cellulose, cellulose triacetate, polyethersulfone, silicon, glass, calcite and the like. As a shape of a board | substrate, it may have a curved surface other than a flat plate. These substrates may have an electrode layer, an antireflection function, and a reflection function as necessary.

液晶性高分子の溶液を支持体に塗布する方法としては、公知の方法を用いることができ、例えばカーテンコーティング法、押し出しコーティング法、ロールコーティング法、スピンコーティング法、ディップコーティング法、バーコーティング法、スプレーコーティング法、スライドコーティング法、印刷コーティング法等が挙げられる。   As a method of applying the liquid crystalline polymer solution to the support, a known method can be used. For example, a curtain coating method, an extrusion coating method, a roll coating method, a spin coating method, a dip coating method, a bar coating method, Examples thereof include a spray coating method, a slide coating method, and a printing coating method.

前記(B)の方法で用いる有機溶媒としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤;酢酸ブチル、酢酸アミル等のエステル系溶剤;ジクロロメタン、クロロホルム、ジクロロエタン等のハロゲン化炭化水素系溶剤;テトラヒドロフラン、テトラヒドロピラン、1,2−ジメトキシエタン、1,4−ジオキサン、シクロペンチルメチルエーテル等のエーテル系溶剤;等が挙げられる。   Examples of the organic solvent used in the method (B) include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone; ester solvents such as butyl acetate and amyl acetate; dichloromethane, chloroform, dichloroethane, and the like. Halogenated hydrocarbon solvents; ether solvents such as tetrahydrofuran, tetrahydropyran, 1,2-dimethoxyethane, 1,4-dioxane, cyclopentyl methyl ether;

用いる支持体としては、特に限定されないが、例えば、上述した液晶性高分子の溶液を塗工するのに用いることができるものとして列記したものと同様のものが挙げられる。   Although it does not specifically limit as a support body to be used, For example, the thing similar to what was listed as what can be used for coating the solution of the liquid crystalline polymer mentioned above is mentioned.

また、前記(B)の方法において重合反応用の溶液を支持体に塗布する方法としては、特に限定されず、公知の方法を用いることができる。例えば、上述した液晶性高分子の溶液を支持体上に塗工する方法として列記したものと同様のものが挙げられる。   Moreover, it does not specifically limit as a method of apply | coating the solution for polymerization reaction to a support body in the method of said (B), A well-known method can be used. Examples thereof include the same ones listed as methods for applying the above-mentioned liquid crystalline polymer solution on the support.

(B)の方法においては、支持体上に塗工した重合性液晶化合物を配向させることが好ましい。前記重合性液晶化合物を配向させる方法としては、例えば、事前に上述の支持体に配向処理を施す方法が挙げられる。   In the method (B), it is preferable to align the polymerizable liquid crystal compound coated on the support. Examples of the method for aligning the polymerizable liquid crystal compound include a method in which an alignment treatment is performed on the above-described support in advance.

支持体に配向処理を施す好ましい方法としては、各種ポリイミド系配向膜、ポリビニルアルコール系配向膜等からなる液晶配向層を支持体の上に設け、ラビング等の処理を行う方法;支持体にSiOを斜方蒸着して配向膜を形成する方法;分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜に、偏光又は非偏光を照射する方法;等の公知の方法が挙げられる。重合性液晶化合物の重合は後述するような重合反応条件に従って行えばよい。Preferred methods of applying an orientation treatment to the support, various polyimide alignment film, a liquid crystal alignment layer comprising a polyvinyl alcohol alignment film provided on the support, the method performs the process such as rubbing; SiO the support 2 A method of irradiating polarized or non-polarized light to an organic thin film having a functional group that undergoes photodimerization reaction in the molecule or an organic thin film having a functional group that is isomerized by light; There are known methods. Polymerization of the polymerizable liquid crystal compound may be performed according to polymerization reaction conditions as described later.

(2)本発明の重合性液晶組成物を重合して得られる液晶性高分子
本発明の重合性液晶組成物を重合開始剤の存在下に重合することにより、本発明の液晶性高分子を容易に得ることができる。得られる液晶性高分子はコレステリック液晶性高分子である。本発明においては、重合反応をより効率的に行う観点から、前記したような重合開始剤、特に光重合開始剤、及び重合性キラル化合物を含む重合性液晶組成物を用いるのが好ましい。以下、かかる重合性液晶組成物を用いる態様について説明する。
(2) Liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal composition of the present invention By polymerizing the polymerizable liquid crystal composition of the present invention in the presence of a polymerization initiator, the liquid crystalline polymer of the present invention is obtained. Can be easily obtained. The obtained liquid crystalline polymer is a cholesteric liquid crystalline polymer. In the present invention, it is preferable to use a polymerizable liquid crystal composition containing a polymerization initiator as described above, particularly a photopolymerization initiator and a polymerizable chiral compound, from the viewpoint of performing a polymerization reaction more efficiently. Hereinafter, an embodiment using such a polymerizable liquid crystal composition will be described.

具体的には、本発明の重合性液晶組成物を、例えば、前記配向処理を施す方法に従って得られた、配向機能を有する支持体上に塗布し、本発明の重合性液晶組成物中の重合性液晶化合物を、コレステリック層を保持した状態で均一に配向させ、重合させることによって、本発明の液晶性高分子を得ることができる。支持体としては、前記したようなものを使用することができる。   Specifically, for example, the polymerizable liquid crystal composition of the present invention is applied on a support having an alignment function obtained according to the method for performing the alignment treatment, and the polymerization in the polymerizable liquid crystal composition of the present invention is performed. The liquid crystalline polymer of the present invention can be obtained by uniformly aligning and polymerizing the liquid crystalline compound while holding the cholesteric layer. As the support, those described above can be used.

上記方法において、一様な配向状態を形成するためには、通常のツイステッド・ネマチック(TN)素子又はスーパー・ツイステッド・ネマチック(STN)素子で使用されているプレチルト角を与えるポリイミド薄膜を使用すると、重合性液晶化合物の配向状態の制御を容易にすることができる。   In the above method, in order to form a uniform alignment state, a polyimide thin film that gives a pretilt angle used in a normal twisted nematic (TN) element or a super twisted nematic (STN) element is used. Control of the alignment state of the polymerizable liquid crystal compound can be facilitated.

一般に、配向機能を有する支持体に液晶組成物を接触させた場合、液晶化合物は支持体表面で支持体を配向処理した方向に沿って配向する。液晶化合物が支持体表面と水平に配向するか、傾斜あるいは垂直して配向するかは、支持体表面への配向処理方法による影響が大きい。
例えば、インプレーンスイッチング(IPS)方式の液晶表示素子に使用するようなプレチルト角のごく小さな配向膜を支持体上に設ければ、ほとんど水平に配向した重合性液晶層が得られる。
Generally, when a liquid crystal composition is brought into contact with a support having an alignment function, the liquid crystal compound is aligned along the direction in which the support is aligned on the support surface. Whether the liquid crystal compound is aligned horizontally with respect to the support surface or inclined or perpendicular is greatly influenced by the alignment treatment method on the support surface.
For example, when an alignment film having a very small pretilt angle as used in an in-plane switching (IPS) type liquid crystal display element is provided on a support, a polymerizable liquid crystal layer aligned almost horizontally can be obtained.

また、TN型液晶表示素子に使用するような配向膜を支持体上に設けた場合は、少しだけ配向が傾斜した重合性液晶層が得られ、STN方式の液晶表示素子に使用するような配向膜を使うと、大きく配向が傾斜した重合性液晶層が得られる。   In addition, when an alignment film used for a TN type liquid crystal display element is provided on a support, a polymerizable liquid crystal layer having a slightly inclined alignment is obtained, and an alignment used for an STN type liquid crystal display element is obtained. When a film is used, a polymerizable liquid crystal layer having a large alignment can be obtained.

また、本発明の重合性液晶組成物を、プレチルト角を有する水平配向機能を有する支持体に接触させたときは、支持体表面から空気界面付近まで一様又は連続的に角度が変化して傾斜配向した光学異方体を得ることができる。   In addition, when the polymerizable liquid crystal composition of the present invention is brought into contact with a support having a pre-tilt angle and having a horizontal alignment function, the angle changes uniformly or continuously from the support surface to the vicinity of the air interface. An oriented optical anisotropic body can be obtained.

また、分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜(以下「光配向膜」と略す。)に、偏光又は非偏光を照射する方法等(光配向法)を用いれば、パターン状に配向方向が異なる領域が分布した基板をも作製することができる。   In addition, an organic thin film having a functional group that undergoes photodimerization reaction in a molecule or an organic thin film having a functional group that is isomerized by light (hereinafter abbreviated as “photo-alignment film”) is irradiated with polarized light or non-polarized light, etc. If the photo-alignment method is used, a substrate in which regions having different orientation directions are distributed in a pattern can be produced.

初めに、光配向膜を設置した支持体上に光配向膜の吸収帯にある波長の光を照射し、一様な配向が得られる支持体を準備する。その後、当該支持体にマスクを被せ、マスクの上から光配向膜の吸収波長にある第1の照射と異なる状態の光、例えば偏光状態が異なる光あるいは照射角度及び方向が異なる光を照射して、照射部分だけに第1の照射で得られた部分と異なる配向機能を持たせる。   First, a support having a uniform orientation is prepared by irradiating light having a wavelength in the absorption band of the photo-alignment film onto the support on which the photo-alignment film is installed. Thereafter, the support is covered with a mask and irradiated with light having a different state from the first irradiation at the absorption wavelength of the photo-alignment film, for example, light having a different polarization state or light having a different irradiation angle and direction from above the mask. Only the irradiated portion has an orientation function different from that of the portion obtained by the first irradiation.

以上のようにして得られたパターン状に配向機能の異なる領域が分布した支持体に重合性液晶組成物を接触させれば、支持体の配向機能に応じてパターン状に配向方向の異なる領域が分布する。この状態で光照射による重合を行えば、配向パターンを有する液晶性高分子膜を得ることができる。   If the polymerizable liquid crystal composition is brought into contact with the support in which regions having different alignment functions are distributed in the pattern obtained as described above, regions having different alignment directions are formed in a pattern according to the alignment function of the support. Distributed. If polymerization by light irradiation is performed in this state, a liquid crystalline polymer film having an alignment pattern can be obtained.

特に、前記支持体として、パターン状に配向方向の異なる領域が分布している略水平配向機能を有する支持体を使用すれば、位相差膜として特に有用な液晶性高分子膜を得ることができる。   In particular, when a support having a substantially horizontal alignment function in which regions having different alignment directions are distributed in a pattern is used as the support, a liquid crystalline polymer film particularly useful as a retardation film can be obtained. .

そのほか、配向パターンを得る方法として、AFM(原子間力顕微鏡)の触針で配向膜をラビングする方法、光学異方体をエッヂングする方法等の光配向膜を用いない方法も採用可能であるが、光配向膜を利用する方法が簡便であり好ましい。   In addition, as a method for obtaining an alignment pattern, a method that does not use a photo-alignment film, such as a method of rubbing the alignment film with an AFM (atomic force microscope) stylus or a method of edging an optical anisotropic body, can be employed. A method using a photo-alignment film is simple and preferable.

本発明の重合性液晶組成物を支持体上に塗布する方法としては、バーコーティング、スピンコーティング、ロールコーティング、グラビアコーティング、スプレーコーティング、ダイコーティング、キャップコーティング、ディッピング法等の公知慣用のコーティング法が挙げられる。このとき、塗工性を高めるために、本発明の重合性液晶組成物に公知慣用の有機溶媒を添加してもよい。この場合は、本発明の重合性液晶組成物を支持体上に塗布後、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等で有機溶媒を除去する必要のが好ましい。   Examples of a method for applying the polymerizable liquid crystal composition of the present invention on a support include known and usual coating methods such as bar coating, spin coating, roll coating, gravure coating, spray coating, die coating, cap coating, and dipping. Can be mentioned. At this time, in order to improve coatability, a known and commonly used organic solvent may be added to the polymerizable liquid crystal composition of the present invention. In this case, it is preferable to remove the organic solvent by natural drying, heat drying, reduced pressure drying, reduced pressure heat drying or the like after coating the polymerizable liquid crystal composition of the present invention on the support.

塗布後、本発明の重合性液晶組成物中の液晶化合物をコレステリック層を保持した状態で均一に配向させることが好ましい。具体的には、液晶の配向を促すような熱処理を行うことにより、配向をより促進することができる。   After coating, the liquid crystal compound in the polymerizable liquid crystal composition of the present invention is preferably uniformly aligned while holding the cholesteric layer. Specifically, the alignment can be further promoted by performing a heat treatment that promotes the alignment of the liquid crystal.

熱処理法としては、例えば、本発明の重合性液晶組成物を支持体上に塗布後、該液晶組成物のC(固相)−N(ネマチック相)転移温度(以下、「C−N転移温度」と略す。)以上に加熱して、該重合性液晶組成物を液晶相又は等方相液体状態にする。そこから、必要に応じ徐冷してコレステリック相を発現する。このとき、一旦液晶相を呈する温度に保ち、液晶相ドメインを充分に成長させてモノドメインとすることが望ましい。   As the heat treatment method, for example, the polymerizable liquid crystal composition of the present invention is coated on a support, and then the C (solid phase) -N (nematic phase) transition temperature (hereinafter referred to as “CN transition temperature”) of the liquid crystal composition. The aforesaid polymerizable liquid crystal composition is brought into a liquid crystal phase or an isotropic phase liquid state. From there, it is gradually cooled as necessary to develop a cholesteric phase. At this time, it is desirable to maintain the temperature at which the liquid crystal phase is once exhibited, and to sufficiently grow the liquid crystal phase domain into a mono domain.

また、本発明の重合性液晶組成物を支持体上に塗布後、本発明の重合性液晶組成物のコレステリック層が発現する温度範囲内で温度を一定時間保つような加熱処理を施してもよい。   In addition, after applying the polymerizable liquid crystal composition of the present invention on a support, a heat treatment may be performed to keep the temperature for a certain time within a temperature range where the cholesteric layer of the polymerizable liquid crystal composition of the present invention is developed. .

加熱温度が高過ぎると重合性液晶化合物が好ましくない重合反応を起こして劣化するおそれがある。また、冷却しすぎると、重合性液晶組成物が相分離を起こし、結晶の析出、スメクチック相のような高次液晶相を発現し、配向処理が不可能になることがある。
このような熱処理をすることで、単に塗布するだけの塗工方法と比べて、配向欠陥の少ない均質な液晶性高分子膜を作製することができる。
If the heating temperature is too high, the polymerizable liquid crystal compound may deteriorate due to an undesirable polymerization reaction. Moreover, when it cools too much, a polymeric liquid crystal composition raise | generates a phase-separation, expresses a high-order liquid crystal phase like crystal precipitation and a smectic phase, and an alignment process may become impossible.
By performing such heat treatment, a homogeneous liquid crystalline polymer film with few alignment defects can be produced as compared with a coating method in which coating is simply performed.

また、このようにして均質な配向処理を行った後、液晶相が相分離を起こさない最低の温度、即ち過冷却状態となるまで冷却し、該温度において液晶相を配向させた状態で重合させることにより、配向秩序が高く、透明性に優れる液晶性高分子膜を得ることができる。   In addition, after the homogeneous alignment treatment is performed in this manner, the liquid crystal phase is cooled to the lowest temperature at which phase separation does not occur, that is, is brought into a supercooled state, and the liquid crystal phase is aligned at the temperature and polymerized. Thus, a liquid crystalline polymer film having high alignment order and excellent transparency can be obtained.

本発明の重合性液晶化合物又は重合性液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましい。なかでも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。   Examples of the method for polymerizing the polymerizable liquid crystal compound or the polymerizable liquid crystal composition of the present invention include a method of irradiating active energy rays and a thermal polymerization method, but the reaction proceeds at room temperature without requiring heating. The method of irradiating active energy rays is preferable. Among these, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple.

照射時の温度は、本発明の重合性液晶化合物又は重合性液晶組成物が液晶相を保持できる温度とし、重合性液晶化合物又は重合性液晶組成物の熱重合の誘起を避けるため、可能な限り30℃以下とすることが好ましい。尚、重合性液晶化合物又は重合性液晶組成物は、通常、昇温過程において、C−N転移温度から、N(ネマチック相)−I(等方性液体相)転移温度(以下、「N−I転移温度」と略す。)範囲内で液晶相を示す。   The temperature at the time of irradiation is set to a temperature at which the polymerizable liquid crystal compound or polymerizable liquid crystal composition of the present invention can maintain a liquid crystal phase, and in order to avoid the induction of thermal polymerization of the polymerizable liquid crystal compound or polymerizable liquid crystal composition, as much as possible. It is preferable to set it at 30 degrees C or less. In addition, the polymerizable liquid crystal compound or the polymerizable liquid crystal composition usually has a N (nematic phase) -I (isotropic liquid phase) transition temperature (hereinafter referred to as “N— Abbreviated as “I transition temperature”).

一方、降温過程においては、熱力学的に非平衡状態をとるため、C−N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある重合性液晶化合物又は重合性液晶組成物も液晶相を保持している状態に含めるものとする。   On the other hand, in the temperature lowering process, a non-equilibrium state is taken thermodynamically, so that the liquid crystal state may be maintained without being solidified even at a temperature lower than the CN transition temperature. This state is called a supercooled state. In the present invention, a polymerizable liquid crystal compound or a polymerizable liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is maintained.

紫外線照射強度は、通常、1W/m〜10kW/mの範囲、好ましくは5W/m〜2kW/mの範囲である。The ultraviolet irradiation intensity is usually in the range of 1 W / m 2 to 10 kW / m 2 , preferably in the range of 5 W / m 2 to 2 kW / m 2 .

また、マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する液晶性高分子膜を得ることができる。   In addition, after polymerizing only a specific part by ultraviolet irradiation using a mask, the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized. A liquid crystalline polymer film having a plurality of regions having different orientation directions can be obtained.

また、マスクを使用して特定の部分のみを紫外線照射で重合させる際に、予め未重合状態の重合性液晶化合物又は重合性液晶組成物に電場、磁場又は温度等をかけて配向を規制し、その状態を保ったままマスク上から光を照射して重合させることによっても、異なる配向方向をもった複数の領域を有する液晶性高分子膜を得ることができる。   In addition, when only a specific part is polymerized by ultraviolet irradiation using a mask, the orientation is regulated by applying an electric field, a magnetic field or a temperature to a polymerizable liquid crystal compound or a polymerizable liquid crystal composition in an unpolymerized state in advance. A liquid crystalline polymer film having a plurality of regions having different orientation directions can also be obtained by irradiating light from above the mask and polymerizing it while maintaining this state.

本発明の重合性液晶化合物又は重合性液晶組成物を重合させて得られる液晶性高分子は、支持体から剥離して単体で使用することも、支持体から剥離せずにそのまま光学異方体として使用することもできる。   The liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound or the polymerizable liquid crystal composition of the present invention can be used alone as it is peeled from the support, or it can be used as it is without being peeled from the support. It can also be used as

特に、本発明の重合性液晶組成物を重合して得られる液晶性高分子膜は、コレステリック液晶膜であり、極めて高い反射率を有するため、液晶表示素子における偏光子として好適である。   In particular, the liquid crystalline polymer film obtained by polymerizing the polymerizable liquid crystal composition of the present invention is a cholesteric liquid crystal film and has an extremely high reflectance, and thus is suitable as a polarizer in a liquid crystal display element.

これに加えて積層法によりこのような液晶性高分子膜を複数積層させ、かつ選択される液晶性高分子膜の選択波長を適切に選択することにより、可視スペクトルの全ての光をカバーする多層偏光子を得ることもできる(EP0720041号公報参照。)。   In addition to this, a multilayer that covers all light in the visible spectrum by laminating a plurality of such liquid crystalline polymer films by a laminating method and appropriately selecting the selection wavelength of the selected liquid crystalline polymer film A polarizer can also be obtained (see EP07720041).

また、このような多層の偏光子の代わりに、適切な化合物及び加工条件と組合せて、いわゆる広域バンド偏光子(broad−band polarizer)として使用することもできる。このための実施方法としては、例えば、WO98/08135号パンフレット、EP0606940号公報、GB2312529号公報、WO96/02016号パンフレット等に記載された方法が挙げられる。   Further, instead of such a multilayer polarizer, it can also be used as a so-called broad-band polarizer in combination with appropriate compounds and processing conditions. As an implementation method for this purpose, for example, the methods described in WO98 / 08135 pamphlet, EP0606940 gazette, GB23125029 gazette, WO96 / 02016 pamphlet and the like can be mentioned.

さらに、本発明の重合性液晶化合物又は重合性液晶組成物を用いてカラーフィルターを製造することもできる。このために、当業者に慣用の塗布方法によって、必要とされる波長を適切に施与することができる。   Furthermore, a color filter can also be produced using the polymerizable liquid crystal compound or polymerizable liquid crystal composition of the present invention. For this purpose, the required wavelengths can be applied appropriately by the application methods customary for those skilled in the art.

さらにまた、コレステリック液晶の熱変色性を利用することもできる。温度の調整により、コレステリックな層の色彩が赤色から緑色を経由して青色へと推移する。マスクを用いて特定の帯域を定義された温度で重合することができる。   Furthermore, the thermochromic property of cholesteric liquid crystal can also be used. By adjusting the temperature, the color of the cholesteric layer changes from red to blue via green. A specific zone can be polymerized at a defined temperature using a mask.

以上のようにして得られる本発明の液晶性高分子の数平均分子量は、好ましくは500〜500,000、更に好ましくは5,000〜300,000である。該数平均分子量がかかる範囲にあれば、高い膜硬度が得られ、取り扱い性にも優れるため望ましい。液晶性高分子の数平均分子量は、単分散のポリスチレンを標準試料とし、テトラヒドロフラン(THF)を溶離液としてゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。   The number average molecular weight of the liquid crystalline polymer of the present invention obtained as described above is preferably 500 to 500,000, more preferably 5,000 to 300,000. If the number average molecular weight is within such a range, a high film hardness can be obtained and handleability is excellent, which is desirable. The number average molecular weight of the liquid crystalline polymer can be measured by gel permeation chromatography (GPC) using monodispersed polystyrene as a standard sample and tetrahydrofuran (THF) as an eluent.

本発明の液晶性高分子は、架橋点が分子内で均一に存在すると推定される。本発明の重合性液晶化合物を重合して得られるものであるから、架橋効率が高く、硬度に優れている。   In the liquid crystalline polymer of the present invention, it is presumed that the crosslinking points are present uniformly in the molecule. Since it is obtained by polymerizing the polymerizable liquid crystal compound of the present invention, the crosslinking efficiency is high and the hardness is excellent.

本発明の液晶性高分子は、その配向性、及び屈折率、誘電率、磁化率等の物理的性質の異方性を利用して、位相差板、液晶表示素子用配向膜、偏光板、視野角拡大板、カラーフィルター、ローパスフィルター、光偏光プリズム、各種光フィルター等の光学異方体の構成材料として用いることができる。   The liquid crystalline polymer of the present invention utilizes the orientation and the anisotropy of physical properties such as refractive index, dielectric constant, magnetic susceptibility, and the like, a retardation plate, an alignment film for liquid crystal display elements, a polarizing plate, It can be used as a constituent material of an optical anisotropic body such as a viewing angle widening plate, a color filter, a low-pass filter, a light polarizing prism, and various optical filters.

4)光学異方体
本発明の第4は、本発明の液晶性高分子を構成材料とする光学異方体である。
本発明の光学異方体としては、位相差板、液晶表示素子用配向膜、偏光板、視野角拡大板、カラーフィルター、ローパスフィルター、光偏光プリズム、各種光フィルター等が挙げられる。
4) Optical anisotropic body The fourth aspect of the present invention is an optical anisotropic body comprising the liquid crystalline polymer of the present invention as a constituent material.
Examples of the optical anisotropic body of the present invention include a retardation plate, an alignment film for liquid crystal display elements, a polarizing plate, a viewing angle widening plate, a color filter, a low-pass filter, a light polarizing prism, and various optical filters.

本発明の光学異方体は、本発明の重合性液晶化合物を重合して得られる液晶性高分子を構成材料としているので、均一で高品質な液晶配向性を有している。   Since the optical anisotropic body of the present invention uses a liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal compound of the present invention as a constituent material, it has a uniform and high-quality liquid crystal alignment.

本発明の製造方法を実施例により、さらに詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。なお、「部」及び「%」は特に断りのない限り重量基準である。   The production method of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples. “Parts” and “%” are based on weight unless otherwise specified.

(実施例1) 化合物1の合成 Example 1 Synthesis of Compound 1

Figure 0005407870
Figure 0005407870

(ステップ1) 中間体Aの合成 (Step 1) Synthesis of Intermediate A

Figure 0005407870
Figure 0005407870

2,5−ジヒドロキシ安息香酸4.00g(26.0mmol)、及びアクリル酸2−ヒドロキシエチル9.04g(77.9mmol)をテトラヒドロフラン(以下、「THF」と略記する。)50mlに溶解した溶液に、ジシクロヘキシルカルボジイミド6.69g(32.4mmmol)をTHF70mlに溶解した溶液を室温で加え、5時間攪拌した。反応液をセライトろ過し、ろ液をロータリーエバポレーターで濃縮して、粗生成物18.94gを粘調な無色オイルとして得た。このものをシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=80:20(体積比))で精製して中間体A2.95gを粘調な無色オイルとして得た。(収率45%)   To a solution of 4.00 g (26.0 mmol) of 2,5-dihydroxybenzoic acid and 9.04 g (77.9 mmol) of 2-hydroxyethyl acrylate in 50 ml of tetrahydrofuran (hereinafter abbreviated as “THF”). A solution of 6.69 g (32.4 mmol) of dicyclohexylcarbodiimide in 70 ml of THF was added at room temperature and stirred for 5 hours. The reaction solution was filtered through Celite, and the filtrate was concentrated with a rotary evaporator to obtain 18.94 g of a crude product as a viscous colorless oil. This was purified by silica gel column chromatography (toluene: ethyl acetate = 80: 20 (volume ratio)) to obtain 2.95 g of Intermediate A as a viscous colorless oil. (Yield 45%)

(中間体AのH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):9.969(s,1H)、7.272(d,1H,J=3.0Hz)、7.022(dd,1H,J=3.0,9.2Hz)、6.877(d,1H,J=9Hz)、6.450(d,1H,J=17.2Hz)、6.150(dd,1H,J=10.4,17.2Hz)、5.880(d,1H,J=10.4Hz)、5.316(br,1H)、4.599−4.509(m,4H)
(1 H-NMR spectral data of the intermediate A)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 9.969 (s, 1H), 7.272 (d, 1H, J = 3.0 Hz), 7.022 (dd, 1H, J = 3) 0.0, 9.2 Hz), 6.877 (d, 1 H, J = 9 Hz), 6.450 (d, 1 H, J = 17.2 Hz), 6.150 (dd, 1 H, J = 10.4, 17.2 Hz), 5.880 (d, 1H, J = 10.4 Hz), 5.316 (br, 1H), 4.599-4.509 (m, 4H)

(ステップ2) 中間体Bの合成 (Step 2) Synthesis of Intermediate B

Figure 0005407870
Figure 0005407870

中間体A 1.50g(6.0mmol)、4−ホルミル安息香酸2.68g(17.9mmol)及び4−ジメチルアミノピリジン733mg(6.0mmol)をTHF30mlに溶解した溶液に、N−ジメチルアミノプロピル−N’−エチルカルボジイミド塩酸塩 2.88g(15.0mmol)を室温で加え、全容を5時間攪拌した。反応液を500mlの酢酸エチルで希釈し、水、次いで飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ロータリーエバポレーターで濃縮して、中間体Bの粗生成物5.86gを粘調な無色オイルとして得た。シリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=90:10(体積比))で精製して、中間体Bを無色粉末として1.44g得た。(収率47%)   To a solution of Intermediate A 1.50 g (6.0 mmol), 4-formylbenzoic acid 2.68 g (17.9 mmol) and 4-dimethylaminopyridine 733 mg (6.0 mmol) in THF 30 ml, N-dimethylaminopropyl was dissolved. -N'-ethylcarbodiimide hydrochloride 2.88 g (15.0 mmol) was added at room temperature, and the whole volume was stirred for 5 hours. The reaction solution was diluted with 500 ml of ethyl acetate and washed with water and then with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated on a rotary evaporator to obtain 5.86 g of a crude intermediate B product as a viscous colorless oil. Purification by silica gel column chromatography (toluene: ethyl acetate = 90: 10 (volume ratio)) gave 1.44 g of intermediate B as a colorless powder. (Yield 47%)

(中間体BのH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):10.165(s,2H)、8.045(d,2H,J=8.4Hz)、8.390(d,2H,J=8.4Hz)、8.053(d,2H,J=8.4Hz)、8.051(d,2H、J=8.4Hz)、8.011(d,1H,J=2.8Hz)、7.544(dd,1H、J=2.8,8.8Hz)、7.339(d,1H,J=8.8Hz)、6.376(d,1H、J=17.2Hz)、6.040(dd,1H,J=10.4,17.2Hz)、5.810(d,1H,J=10.4Hz)、4.450(t,2H,J=7.0Hz)、4.288(t,2H,J=7.0Hz)
(1 H-NMR spectral data of the intermediates B)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 10.165 (s, 2H), 8.045 (d, 2H, J = 8.4 Hz), 8.390 (d, 2H, J = 8) .4 Hz), 8.053 (d, 2H, J = 8.4 Hz), 8.051 (d, 2H, J = 8.4 Hz), 8.011 (d, 1H, J = 2.8 Hz), 7 .544 (dd, 1H, J = 2.8, 8.8 Hz), 7.339 (d, 1H, J = 8.8 Hz), 6.376 (d, 1H, J = 17.2 Hz), 6. 040 (dd, 1H, J = 10.4, 17.2 Hz), 5.810 (d, 1H, J = 10.4 Hz), 4.450 (t, 2H, J = 7.0 Hz), 4.288 (T, 2H, J = 7.0Hz)

(ステップ3) 中間体Cの合成
(ステップ3−1) 中間体Dの合成
(Step 3) Synthesis of Intermediate C (Step 3-1) Synthesis of Intermediate D

Figure 0005407870
Figure 0005407870

(式中、TBSはt−ブチルジメチルシリル基を表す。以下にて同じ。)
4−t−ブチルジメチルシリルオキシベンズアルデヒド2.64g(11.1mmol)のエタノール30ml溶液を、ヒドラジン一水和物2.80g(55.9mmol)のエタノール30ml溶液に室温で滴下した。滴下終了後、さらに室温で3時間攪拌した後、反応液をロータリーエバポレーターで濃縮して、エタノールと過剰のヒドラジン一水和物を除去した後、残渣を300mlのクロロホルムに溶かし、50mlの飽和炭酸水素ナトリウム水溶液で洗浄した。有機層に3mlのトリエチルアミンを加え、無水硫酸マグネシウムで乾燥した後、ロータリーエバポレーターで濃縮して、中間体Dの粗生成物3.06gを粘調な褐色オイルとして得た。この組成生物は精製することなく、次のステップ3−2に供した。
(In the formula, TBS represents a t-butyldimethylsilyl group. The same applies hereinafter.)
A solution of 2.64 g (11.1 mmol) of 4-t-butyldimethylsilyloxybenzaldehyde in 30 ml of ethanol was added dropwise at room temperature to a solution of 2.80 g (55.9 mmol) of hydrazine monohydrate in 30 ml of ethanol. After completion of the dropwise addition, the mixture was further stirred at room temperature for 3 hours, and then the reaction solution was concentrated with a rotary evaporator to remove ethanol and excess hydrazine monohydrate. Washed with aqueous sodium solution. 3 ml of triethylamine was added to the organic layer, dried over anhydrous magnesium sulfate, and then concentrated on a rotary evaporator to obtain 3.06 g of a crude product of Intermediate D as a viscous brown oil. This composition organism was subjected to the next step 3-2 without purification.

(ステップ3−2) 中間体Cの合成 (Step 3-2) Synthesis of Intermediate C

Figure 0005407870
Figure 0005407870

ステップ2で得た中間体B 3.06gに、ステップ3−1で得た中間体Dの1.44g(2.8mmol)をエタノール15mlに溶解した溶液を室温で滴下し、同温度で一晩攪拌した。反応液をロータリーエバポレーターで濃縮後、500mlの酢酸エチルで希釈し、50mlの水次いで50mlの飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮して淡黄色のオイル5.06gを得た。このものをシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=95:5(体積比))で精製して、中間体Cを粘調な淡黄色オイルとして1.04g得た。(収率38%)   A solution prepared by dissolving 1.44 g (2.8 mmol) of intermediate D obtained in step 3-1 in 15 ml of ethanol was added dropwise to 3.06 g of intermediate B obtained in step 2 at room temperature, and overnight at the same temperature. Stir. The reaction solution was concentrated with a rotary evaporator, diluted with 500 ml of ethyl acetate, and washed with 50 ml of water and then with 50 ml of saturated brine. The organic layer was dried over anhydrous magnesium sulfate and then concentrated on a rotary evaporator to obtain 5.06 g of a pale yellow oil. This was purified by silica gel column chromatography (toluene: ethyl acetate = 95: 5 (volume ratio)) to obtain 1.04 g of Intermediate C as a viscous light yellow oil. (Yield 38%)

(中間体CのH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):8.717(s,2H)8.658(s,2H)、8.288(d,4H,J=8.4Hz)、8.005−7.990(m,5H)、7.770(d,4H,J=8.4Hz)、7.551(d,1H,J=8.4Hz)、7.340(d,1H,J=8.4Hz)、6.927(d,4H,J=8.4Hz)、6.378(d,1H,J=17.2Hz)、6.041(dd,1H,J=10.4,17.2Hz)、5.809(d,1H,J=10.4Hz)、4.449(t,2H,J=7.0Hz)、4.289(t,2H,J=7.0Hz)、1.026(s,18H)、0.256(s,12H)
(1 H-NMR spectral data of the intermediate C)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 8.717 (s, 2H) 8.658 (s, 2H), 8.288 (d, 4H, J = 8.4 Hz), 8.005 −7.990 (m, 5H), 7.770 (d, 4H, J = 8.4 Hz), 7.551 (d, 1H, J = 8.4 Hz), 7.340 (d, 1H, J = 8.4 Hz), 6.927 (d, 4 H, J = 8.4 Hz), 6.378 (d, 1 H, J = 17.2 Hz), 6.041 (dd, 1 H, J = 10.4, 17) .2 Hz), 5.809 (d, 1 H, J = 10.4 Hz), 4.449 (t, 2 H, J = 7.0 Hz), 4.289 (t, 2 H, J = 7.0 Hz), 1 .026 (s, 18H), 0.256 (s, 12H)

(ステップ4) 化合物1の合成
(ステップ4−1) 中間体Eの合成
(Step 4) Synthesis of Compound 1 (Step 4-1) Synthesis of Intermediate E

Figure 0005407870
Figure 0005407870

コハク酸モノ(2−アクリルオキシエチル)0.58g(2.7mmol)をトルエン5mlに溶解した溶液に、1.7g(13.4mmol)の塩化オキザリルを室温で滴下し、同温度で3時間攪拌した。反応液をロータリーエバポレーターで減圧濃縮して、トルエン及び過剰の塩化オキザリルを除去して、中間体Eの粗生成物を粘調な無色オイルとして0.68g得た。このものは精製することなく次のステップ2に供した。   To a solution obtained by dissolving 0.58 g (2.7 mmol) of mono (2-acryloxyethyl) succinate in 5 ml of toluene, 1.7 g (13.4 mmol) of oxalyl chloride was added dropwise at room temperature, followed by stirring at the same temperature for 3 hours. did. The reaction solution was concentrated under reduced pressure using a rotary evaporator to remove toluene and excess oxalyl chloride to obtain 0.68 g of a crude product of Intermediate E as a viscous colorless oil. This was subjected to the next step 2 without purification.

(ステップ4−2) 化合物1の合成 (Step 4-2) Synthesis of Compound 1

Figure 0005407870
Figure 0005407870

中間体C1.04g(1.1mmol)をTHF10mlに溶解した溶液に、フッ化テトラn−ブチルアンモニウムの1mol/L THF溶液3.0mlを室温で滴下し、同温度で15分間攪拌した。次いで、ステップ4−1で得た中間体E0.68gをTHF10mlに溶解した溶液を室温で滴下し、同温度で30分間攪拌した。反応液を500mlの酢酸エチルで希釈し、水50ml次いで飽和食塩水50mlで洗浄した。有機層を無水硫酸マグネシウムで乾燥後、ロータリーエバポレーターで濃縮して、淡黄色オイル2.21gを得た。このものをシリカゲルカラムクロマトグラフィー(トルエン:酢酸エチル=90:10(体積比))で精製して、化合物1を淡黄色固体として478.1mg得た。(収率54%)   To a solution of 1.04 g (1.1 mmol) of Intermediate C dissolved in 10 ml of THF, 3.0 ml of a 1 mol / L THF solution of tetra n-butylammonium fluoride was added dropwise at room temperature and stirred at the same temperature for 15 minutes. Next, a solution prepared by dissolving 0.68 g of the intermediate E obtained in Step 4-1 in 10 ml of THF was dropped at room temperature, and the mixture was stirred at the same temperature for 30 minutes. The reaction solution was diluted with 500 ml of ethyl acetate and washed with 50 ml of water and then with 50 ml of saturated brine. The organic layer was dried over anhydrous magnesium sulfate and concentrated using a rotary evaporator to obtain 2.21 g of a pale yellow oil. This was purified by silica gel column chromatography (toluene: ethyl acetate = 90: 10 (volume ratio)) to obtain 478.1 mg of Compound 1 as a pale yellow solid. (Yield 54%)

(化合物1のH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):8.714(s,2H)、8.675(s,2H)、8.291(d,4H,J=6.8Hz)、7.988(m,5H)、7.890(d,4H,J=8.0Hz)、7.548(d,1H,J=8.4Hz)、7.354(dd,1H,J=8.4,13.4Hz)、7.223(d,4H,J=8.8Hz)、6.458−6.414(m,3H)、6.165−6.009(m,3H)、5.866−5.799(m,3H)、4.447−4.278(m,12H)、2.925(t,4H,J=6.4Hz)、2.798(t,4H,J=6.4Hz)
( 1 H-NMR spectrum data of Compound 1)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 8.714 (s, 2H), 8.675 (s, 2H), 8.291 (d, 4H, J = 6.8 Hz), 7. 988 (m, 5H), 7.890 (d, 4H, J = 8.0 Hz), 7.548 (d, 1H, J = 8.4 Hz), 7.354 (dd, 1H, J = 8.4) , 13.4 Hz), 7.223 (d, 4H, J = 8.8 Hz), 6.458-6.414 (m, 3H), 6.165-6.009 (m, 3H), 5.866 -5.799 (m, 3H), 4.447-4.278 (m, 12H), 2.925 (t, 4H, J = 6.4 Hz), 2.798 (t, 4H, J = 6. 4Hz)

(実施例2) 化合物2の合成 Example 2 Synthesis of Compound 2

Figure 0005407870
Figure 0005407870

(ステップ1) 中間体Fの合成 (Step 1) Synthesis of Intermediate F

Figure 0005407870
Figure 0005407870

実施例1の中間体Aの合成において、アクリル酸2−ヒドロキシエチルをエチレングリコールモノn−プロピルエーテルに変更した以外は、実施例1の中間体Aの合成と同様な方法で中間体Fを合成した。(収率40%)   In the synthesis of intermediate A in Example 1, intermediate F was synthesized in the same manner as in the synthesis of intermediate A in Example 1, except that 2-hydroxyethyl acrylate was changed to ethylene glycol mono n-propyl ether. did. (Yield 40%)

(中間体FのH−NMRスペクトルデータ)
H−NMR(400MHz、CDCl,TMS,δppm):10.210(s,1H)、7.292(d,1H,J=2.8Hz)、6.984(dd,1H,J=2.8,8.8Hz)、6.835(d,1H,J=8.8Hz)、5.827(br,1H)、4.481(t,2H,J=4.8Hz)、3.793(t,2H,J=4.8Hz)、3.514(t,2H,J=6.8Hz)、1.673−1.620(m,2H)、0.940(t,3H,J=7.4Hz)
(1 H-NMR spectral data of the intermediate F)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 10.210 (s, 1H), 7.292 (d, 1H, J = 2.8 Hz), 6.984 (dd, 1H, J = 2) .8, 8.8 Hz), 6.835 (d, 1 H, J = 8.8 Hz), 5.827 (br, 1 H), 4.481 (t, 2 H, J = 4.8 Hz), 3.793 (T, 2H, J = 4.8 Hz), 3.514 (t, 2H, J = 6.8 Hz), 1.673-1.620 (m, 2H), 0.940 (t, 3H, J = 7.4Hz)

(ステップ2) 中間体Gの合成 (Step 2) Synthesis of Intermediate G

Figure 0005407870
Figure 0005407870

実施例1の中間体Bの合成において、中間体Aを中間体Fに変更した以外は実施例1の中間体Bの合成と同様な方法で中間体Gを合成した。(収率54%)   In the synthesis of Intermediate B of Example 1, Intermediate G was synthesized in the same manner as the synthesis of Intermediate B of Example 1 except that Intermediate A was changed to Intermediate F. (Yield 54%)

(中間体GのH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):10.166(s,1H)、10.160(s,1H)、8.047(d,2H,J=8.4Hz)、8.385(d,2H,J=8.4Hz)、8.056(d,2H,J=8.4Hz)、8.049(d,2H,J=8.4Hz)、8.005(d,1H,J=2.8Hz)、7.545(dd,1H,J=2.8,8.8Hz)、7.340(d,1H,J=8.8Hz)、4.343(t,2H,J=4.8Hz)、3.559(t,2H,J=4.8Hz)、3.292(t,2H,J=6.4Hz)、1.564−1.475(m,2H)、0.878(t,3H,J=6.4Hz)
(1 H-NMR spectral data of the intermediate G)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 10.166 (s, 1H), 10.160 (s, 1H), 8.047 (d, 2H, J = 8.4 Hz), 8. 385 (d, 2H, J = 8.4 Hz), 8.056 (d, 2H, J = 8.4 Hz), 8.049 (d, 2H, J = 8.4 Hz), 8.005 (d, 1H) , J = 2.8 Hz), 7.545 (dd, 1H, J = 2.8, 8.8 Hz), 7.340 (d, 1H, J = 8.8 Hz), 4.343 (t, 2H, J = 4.8 Hz), 3.559 (t, 2H, J = 4.8 Hz), 3.292 (t, 2H, J = 6.4 Hz), 1.564-1.475 (m, 2H), 0.878 (t, 3H, J = 6.4Hz)

(ステップ3) 中間体Hの合成 (Step 3) Synthesis of Intermediate H

Figure 0005407870
Figure 0005407870

実施例1の中間体Cの合成において、中間体Bを中間体Gに変更した以外は実施例1の中間体Cの合成と同様な方法で中間体Hを合成した。(収率41%)   In the synthesis of intermediate C in Example 1, intermediate H was synthesized in the same manner as in the synthesis of intermediate C in Example 1, except that intermediate B was changed to intermediate G. (Yield 41%)

(中間体HのH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):8.716(s,2H)、8.659(s,2H)、8.320−8.270(m,4H)、8.001−7.981(m,5H)、7.769(d,4H,J=8.6Hz)、7.532(dd,1H,J=2.8,8.4Hz)、7.328(d,1H,J=8.4Hz)、6.926(d,4H,J=8.6Hz)、4.344(t,2H,J=4.8Hz)、3.532(t,2H,J=4.8Hz)、3.275(t,2H,J=7.0Hz)、1.563−1.473(m,2H)、1.004(s,18H)、0.860(t,3H,J=7.4Hz)、0.248(s,12H)
( 1 H-NMR spectrum data of intermediate H)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 8.716 (s, 2H), 8.659 (s, 2H), 8.320-8.270 (m, 4H), 8.001- 7.981 (m, 5H), 7.769 (d, 4H, J = 8.6 Hz), 7.532 (dd, 1H, J = 2.8, 8.4 Hz), 7.328 (d, 1H) , J = 8.4 Hz), 6.926 (d, 4H, J = 8.6 Hz), 4.344 (t, 2H, J = 4.8 Hz), 3.532 (t, 2H, J = 4. 8 Hz), 3.275 (t, 2H, J = 7.0 Hz), 1.563-1.473 (m, 2H), 1.004 (s, 18H), 0.860 (t, 3H, J = 7.4 Hz), 0.248 (s, 12H)

(ステップ4) 化合物2の合成 (Step 4) Synthesis of Compound 2

Figure 0005407870
Figure 0005407870

実施例1の化合物1の合成において、中間体Cを中間体Hに変更した以外は実施例1の化合物1の合成と同様な方法で化合物2を合成した。(収率64%)   In the synthesis of Compound 1 of Example 1, Compound 2 was synthesized in the same manner as the synthesis of Compound 1 of Example 1 except that Intermediate C was changed to Intermediate H. (Yield 64%)

(化合物2のH−NMRスペクトルデータ)
H−NMR(400MHz,CDCl,TMS,δppm):8.719(s,2H)、8.680(s,2H)、8.288(d,4H,J=6.8Hz)、8.005(m,5H)、7.890(d,4H,J=8.0Hz)、7.528(d,1H、J=8.6Hz)、7.362(dd,1H,J=8.6,13.2Hz)、7.223(d,4H,J=8.8Hz)、6.438(d,2H,J=17.2Hz)、6.131(dd,2H,J=10.4,17.2Hz)、5.858(d,2H,J=10.4Hz)、4.390(s,10H)、3.536(t,2H,J=5.0Hz)、3.278(t,2H,J=6.8Hz)、2.926(t,4H,J=6.4Hz)、2.793(t,4H,J=6.4Hz)、1.606−1.529(m,2H)、0.890(t,3H,J=7.4Hz)
( 1 H-NMR spectrum data of Compound 2)
1 H-NMR (400 MHz, CDCl 3 , TMS, δ ppm): 8.719 (s, 2H), 8.680 (s, 2H), 8.288 (d, 4H, J = 6.8 Hz), 8. 005 (m, 5H), 7.890 (d, 4H, J = 8.0 Hz), 7.528 (d, 1H, J = 8.6 Hz), 7.362 (dd, 1H, J = 8.6) , 13.2 Hz), 7.223 (d, 4H, J = 8.8 Hz), 6.438 (d, 2H, J = 17.2 Hz), 6.131 (dd, 2H, J = 10.4, 17.2 Hz), 5.858 (d, 2 H, J = 10.4 Hz), 4.390 (s, 10 H), 3.536 (t, 2 H, J = 5.0 Hz), 3.278 (t, 2H, J = 6.8 Hz), 2.926 (t, 4H, J = 6.4 Hz), 2.793 (t, 4H, J = 6.4 Hz) , 1.606-1.529 (m, 2H), 0.890 (t, 3H, J = 7.4Hz)

<化合物の評価>
(1)相転移温度の測定
化合物1、2(試験化合物)をそれぞれ10mg計量し、固体状態のままで2枚のラビング処理を施したポリイミド配向膜付きのガラス基板に挟んだ。この基板をホットプレート上にて、30℃から250℃まで昇温した後、再び30℃まで降温させた。昇温、降温する際の組織構造の変化を偏向光学顕微鏡(ニコン社製 ECLIPSE LV100POL型)で観察した。測定した相転移温度を第1表に示す。
<Evaluation of compound>
(1) Measurement of phase transition temperature 10 mg of each of the compounds 1 and 2 (test compound) was weighed and sandwiched between two glass substrates with a polyimide alignment film that had been subjected to rubbing treatment in a solid state. The substrate was heated from 30 ° C. to 250 ° C. on a hot plate, and then lowered to 30 ° C. again. Changes in the structure of the structure when the temperature was raised or lowered were observed with a deflection optical microscope (ECLIPSE LV100POL type manufactured by Nikon Corporation). The measured phase transition temperatures are shown in Table 1.

第1表中、「C」はCrystal、「N」はNematic、「I」はIsotropicをそれぞれ表す。ここで、Crystalとは、試験化合物が固相にあることを、Nematicとは、試験化合物がネマチック液晶相にあること、Isotropicとは、試験化合物が等方性液体相にあることを、それぞれ示す。   In Table 1, “C” represents Crystal, “N” represents Nematic, and “I” represents Isotropic. Here, “Crystal” indicates that the test compound is in the solid phase, “Nematic” indicates that the test compound is in the nematic liquid crystal phase, and “Isotropic” indicates that the test compound is in the isotropic liquid phase. .

(2)光学異方性(Δn値)の測定
化合物1、2それぞれ100重量部をシクロペンタノン233重量部に溶解して溶液とした。これに、光重合開始剤(チバ・スペシャルティ・ケミカルズ社製:イルガキュア907)を液晶化合物に対して2.7重量部添加し溶解した溶液を調製した。調製した溶液を、ラビング処理を施したポリビニルアルコール膜を有するガラス基板上に、バーコーター(テスター産業製:バーコーター Rod No.4、シャフト径 12.7mm)を用いて塗布した後、ホットプレート上にて100℃で2分間乾燥させた。得られた皮膜に水銀ランプで700mJ/cmに相当する紫外線を照射して厚さ1.5μmの高分子硬化膜を得た。この硬化膜をエリプソメーター(J.A.Woollam社製 XLS−100型)を用いて波長545.3nmのレタデーション(Re)を測定した。その後、別に求めた液晶層の膜厚(d)から、計算式Δn=Re/dにより、Δnを算出した。算出結果を第1表に示す。
(2) Measurement of optical anisotropy (Δn value) 100 parts by weight of each of compounds 1 and 2 were dissolved in 233 parts by weight of cyclopentanone to prepare a solution. A solution in which 2.7 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: Irgacure 907) was added to the liquid crystal compound and dissolved therein was prepared. The prepared solution was applied onto a glass substrate having a polyvinyl alcohol film subjected to rubbing treatment using a bar coater (manufactured by Tester Sangyo: Bar coater Rod No. 4, shaft diameter 12.7 mm), and then on a hot plate. And dried at 100 ° C. for 2 minutes. The obtained film was irradiated with ultraviolet rays corresponding to 700 mJ / cm 2 with a mercury lamp to obtain a cured polymer film having a thickness of 1.5 μm. The cured film was measured for retardation (Re) at a wavelength of 545.3 nm using an ellipsometer (XLS-100 type, manufactured by JA Woollam). Thereafter, Δn was calculated from the thickness (d) of the liquid crystal layer obtained separately by the calculation formula Δn = Re / d. The calculation results are shown in Table 1.

(3)コレステリック層の形成
化合物1、2それぞれ100重量部をシクロペンタノン153重量部に溶解して溶液とした。これに、光重合開始剤(チバ・スペシャルティ・ケミカルズ社製:イルガキュア1919)を3.3重量部、キラル剤6.0重量部、界面活性剤(1重量%のシクロペンタノン溶液として使用)11.6重量部を添加して溶解した溶液を調製した。キラル剤として前記式(X)で示される化合物を、界面活性剤として、KH−40(セイミケミカル社製)をそれぞれ使用した。
(3) Formation of Cholesteric Layer 100 parts by weight of each of Compounds 1 and 2 were dissolved in 153 parts by weight of cyclopentanone to obtain a solution. To this, 3.3 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: Irgacure 1919), 6.0 parts by weight of a chiral agent, and a surfactant (used as a 1% by weight cyclopentanone solution) 11 A solution was prepared by adding 6 parts by weight. The compound represented by the formula (X) was used as a chiral agent, and KH-40 (manufactured by Seimi Chemical Co., Ltd.) was used as a surfactant.

次いで、調製した溶液を、ラビング処理を施したポリイミド配向膜付きのガラス基板上に、バーコーター(テスター産業社製:SA−203 バーコーター Rod No.8、シャフト径 12.7mm)を用いて塗布した後、ホットプレート上にて100℃で3分間乾燥させた。得られた皮膜に水銀ランプで1000mJ/cmに相当する紫外線を照射して厚さ4μmの硬化膜を得た。Next, the prepared solution was applied on a glass substrate with a polyimide alignment film subjected to a rubbing treatment using a bar coater (manufactured by Tester Sangyo Co., Ltd .: SA-203 bar coater Rod No. 8, shaft diameter 12.7 mm). Then, it was dried on a hot plate at 100 ° C. for 3 minutes. The obtained film was irradiated with ultraviolet rays corresponding to 1000 mJ / cm 2 with a mercury lamp to obtain a cured film having a thickness of 4 μm.

上記で得た試験化合物の硬化膜の透過スペクトルを分光光度計(大塚電子社製、瞬間マルチ測光システム MCPD−3000)を使用して測定した。選択反射領域(透過率が約50%となる領域)が観察され、コレステリック層が形成されていることがわかった。その帯域幅は、約50−100nmであった。
測定結果を第1表に示す。
The transmission spectrum of the cured film of the test compound obtained above was measured using a spectrophotometer (Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-3000). A selective reflection region (a region where the transmittance is about 50%) was observed, and it was found that a cholesteric layer was formed. Its bandwidth was about 50-100 nm.
The measurement results are shown in Table 1.

(3)溶解性
化合物1、2の溶解性を次のようにして評価した。
すなわち、完全に溶解するとすれば濃度40重量%のシクロペンタノン溶液が得られる量の試験化合物(化合物1,2)を、60℃の加温下でシクロペンタノンに添加し、試験化合物がシクロペンタノンに溶解できた場合を○、できなかった場合を×として、溶解性を評価した。
評価結果を第1表に示す。
(3) Solubility Solubility of compounds 1 and 2 was evaluated as follows.
That is, a test compound (compounds 1 and 2) in an amount that gives a cyclopentanone solution having a concentration of 40% by weight if completely dissolved is added to cyclopentanone under heating at 60 ° C. The solubility was evaluated by ◯ when it was dissolved in pentanone and x when it could not be dissolved.
The evaluation results are shown in Table 1.

(4)相溶性の評価
化合物1、2の相溶姓を次のようにして評価した。
すなわち、上記で得た試験化合物の硬化膜の濁りの有無を23℃で目視観察し、目視観察において濁りがない場合を○、濁りが発生した場合を×として、相溶性を評価した。
評価結果を第1表に示す。
(4) Evaluation of compatibility The compatibility of compounds 1 and 2 was evaluated as follows.
That is, the presence / absence of turbidity in the cured film of the test compound obtained above was visually observed at 23 ° C., and the compatibility was evaluated by ◯ when no turbidity was observed in visual observation and x when turbidity occurred.
The evaluation results are shown in Table 1.

Figure 0005407870
Figure 0005407870

第1表より、化合物1、2は溶剤への高い溶解性を示すだけでなく、重合開始剤、キラル剤等の添加剤との相溶性に優れ、ハンドリング性に優れることがわかる。
また、いずれの化合物の硬化膜も広い温度範囲で良好な液晶性を示し、コレステリック層を形成していた。得られた硬化皮膜は高い光学異方性(△n)を示す良好な液晶皮膜であった。
From Table 1, it can be seen that Compounds 1 and 2 not only exhibit high solubility in a solvent, but also have excellent compatibility with additives such as a polymerization initiator and a chiral agent, and excellent handling properties.
Moreover, the cured film of any compound showed favorable liquid crystallinity over a wide temperature range, and formed a cholesteric layer. The obtained cured film was a good liquid crystal film exhibiting high optical anisotropy (Δn).

(比較例1)
液晶化合物として、下記重合性液晶化合物(化合物3、BASF社製、商品名:LC242)を使用して、化合物1、2についての<化合物の評価>(1)〜(4)の方法と同様にして評価した。評価結果を第2表に示す。
(Comparative Example 1)
As the liquid crystal compound, the following polymerizable liquid crystal compound (compound 3, manufactured by BASF, trade name: LC242) is used, and the compounds 1 and 2 are evaluated in the same manner as in the methods (1) to (4). And evaluated. The evaluation results are shown in Table 2.

(比較例2)
また、従来のアジン液晶化合物(化合物4、特開平10−147562号公報の実施例2に記載された化合物)の相転移温度を、特開平10−147562号公報より抜粋して第2表に示した。
(Comparative Example 2)
Further, the phase transition temperature of a conventional azine liquid crystal compound (Compound 4, the compound described in Example 2 of JP-A-10-147562) is extracted from JP-A-10-147562 and shown in Table 2. It was.

Figure 0005407870
Figure 0005407870

化合物3
、4の構造を以下に示す。
Compound 3
The structure of 4 is shown below.

Figure 0005407870
Figure 0005407870

Figure 0005407870
Figure 0005407870

本発明の重合性液晶化合物は、液晶相を示す温度範囲が広く、化学的に安定であり、安価に製造でき、しかも、選択反射波長帯域△λが広い、すなわち△nの大きな液晶材料である。
本発明の重合性液晶組成物によれば、液晶相を示す温度範囲が広く、選択反射波長帯域△λが広い、すなわち△nの大きな液晶層を形成することができる。
本発明の液晶性高分子は、配向性に優れ、光学異方性(△n)が高いことから、位相差板、液晶表示素子用配向膜、偏光板、視野角拡大板、カラーフィルター、ローパスフィルター、光偏光プリズム、各種光フィルター等の光学異方体の製造原料として有用である。 本発明の光学異方体は、本発明の重合性液晶化合物を用いて製造されたものであるので、均一で高品質な液晶配向性を有する。
The polymerizable liquid crystal compound of the present invention is a liquid crystal material that has a wide temperature range showing a liquid crystal phase, is chemically stable, can be produced at low cost, and has a wide selective reflection wavelength band Δλ, that is, a large Δn. .
According to the polymerizable liquid crystal composition of the present invention, a liquid crystal layer having a wide temperature range showing a liquid crystal phase and a wide selective reflection wavelength band Δλ, that is, a large Δn can be formed.
Since the liquid crystalline polymer of the present invention has excellent orientation and high optical anisotropy (Δn), it is a retardation plate, an alignment film for liquid crystal display elements, a polarizing plate, a viewing angle widening plate, a color filter, a low pass. It is useful as a raw material for producing optical anisotropic bodies such as filters, light polarizing prisms, and various optical filters. Since the optical anisotropic body of the present invention is produced using the polymerizable liquid crystal compound of the present invention, it has uniform and high-quality liquid crystal alignment.

Claims (7)

下記式(I)
Figure 0005407870
{式中、Mは、〔炭素数1〜10の炭化水素基、炭素数1〜6のアルコキシ基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又は、−C(=O)−OR (R は、後述するR と同じ意味を表す。)〕で置換されていてもよい、p−フェニレン基、又は4,4’−ビフェニレン基を表す。
〜Y8はそれぞれ独立して、−C(=O)−O−、−O−C(=O)−、又は、−O−を表す。
及びGはそれぞれ独立して、炭素数2〜20のアルキレン基を表す。
及びZはそれぞれ独立して、CH =CH−、CH =C(CH )−、CH =C(Cl)−、CH =CH−CH −、CH =C(CH )−CH −、CH =C(CH )−CH −CH −、(CH C=CH−CH −、CH −CH=CH−、又はCH −CH=CH−CH を表す。
及びAはそれぞれ独立して、炭素数1〜10のアルキレン基を表す。
〜X16は、(1)いずれも水素原子であるか、(2)X 、X 〜X 13 及びX 15 がいずれも水素原子であり、X 、X 、X 14 及びX 16 の少なくとも一つが、−OR 又はC(=O)−O−R であり、かつ、X 、X 、X 14 及びX 16 のうち、−OR 及びC(=O)−O−R でないものは、水素原子である。ここで、Rは、水素原子、又は、(ハロゲン原子、炭素数1〜6のアルコキシ基、フェニル基、又は4−メチルフェニル基)で置換されていてもよい炭素数1〜10のアルキル基を表し、Rがアルキル基である場合、当該アルキル基には、−O−、−S−、−O−C(=O)−、−C(=O)−O−、−O−C(=O)−O−、−NR−C(=O)−、−C(=O)−NR−、−NR−、又は、−C(=O)−が介在していてもよい(ただし、−O−及び−S−がそれぞれ2以上隣接して介在する場合を除く。)。ここで、Rは、水素原子又は炭素数1〜6のアルキル基を表す。
a、b、c及びdはそれぞれ独立して、0又は1である。}
で示される重合性液晶化合物。
Formula (I)
Figure 0005407870
{In the formula, M represents [a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, a hydroxyl group, a nitro group, or -C (= O) -OR 3]. (R 3 represents the same meaning as R 3 described later .)] Represents a p-phenylene group or a 4,4′-biphenylene group which may be substituted .
Y 1 to Y 8 each independently represent —C (═O) —O—, —O—C (═O) —, or —O— .
G 1 and G 2 each independently represent an alkylene group having 2 to 20 carbon atoms .
Z 1 and Z 2 are each independently CH 2 ═CH—, CH 2 ═C (CH 3 ) —, CH 2 ═C (Cl) —, CH 2 ═CH—CH 2 —, CH 2 ═C ( CH 3) -CH 2 -, CH 2 = C (CH 3) -CH 2 -CH 2 -, (CH 3) 2 C = CH-CH 2 -, CH 3 -CH = CH-, or CH 3 -CH = CH-CH 2 - represents a.
A 1 and A 2 each independently represents an alkylene group having 1 to 10 carbon atoms .
X 1 to X 16 are either (1) all hydrogen atoms, or (2) X 2 , X 4 to X 13 and X 15 are all hydrogen atoms, and X 1 , X 3 , X 14 and X At least one of 16 is —OR 3 or C (═O) —O—R 3 , and among X 1 , X 3 , X 14 and X 16 , —OR 3 and C (═O) —O What is not -R 3 is a hydrogen atom . Here, R 3 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with (a halogen atom, an alkoxy group having 1 to 6 carbon atoms, a phenyl group, or a 4-methylphenyl group). And R 3 is an alkyl group, the alkyl group includes —O—, —S—, —O—C (═O) —, —C (═O) —O—, —O—C. Even if (═O) —O—, —NR 5 —C (═O) —, —C (═O) —NR 5 —, —NR 5 —, or —C (═O) — are present. Good (except that -O- and -S- are not less than two adjacent to each other). Here, R 5 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
a, b, c and d are each independently 0 or 1; }
A polymerizable liquid crystal compound represented by:
前記Mが、〔炭素数1〜10の炭化水素基、炭素数1〜6のアルコキシ基、ハロゲン原子、シアノ基、ヒドロキシル基、ニトロ基、又は、−C(=O)−OR (R は前記と同じ意味を表す。)〕で置換されていてもよいフェニレン基であり、
a=d=1、b=c=0であり
及びが、それぞれ独立して、−(CH−、又は、−(CH−であり
及びZが、それぞれ独立して、CH=CH−、CH=C(CH)−、又はCH=C(Cl)−である請求項1に記載の重合性液晶化合物。
Wherein M is [a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a halogen atom, a cyano group, a hydroxyl group, a nitro group, or, -C (= O) -OR 3 (R 3 Represents the same meaning as described above))], and is a phenylene group optionally substituted.
a = d = 1, b = c = 0 ,
G 1 and G 2 are each independently — (CH 2 ) 6 — or — (CH 2 ) 4,
2. The polymerizable liquid crystal compound according to claim 1, wherein Z 1 and Z 2 are each independently CH 2 ═CH—, CH 2 ═C (CH 3 ) —, or CH 2 ═C (Cl) —.
前記Mが、炭素数1〜10の炭化水素基で置換されていてもよいフェニレン基であり、前記炭化水素基には、−O−、−C(=O)−O−、−O−C(=O)−、又は、−C(=O)−が介在していてもよく、
及びZが、共にCH=CH−である請求項2に記載の重合性液晶化合物。
The M is a phenylene group which may be substituted with a hydrocarbon group having 1 to 10 carbon atoms, and the hydrocarbon group includes —O—, —C (═O) —O—, —O—C. (= O)-or -C (= O)-may be interposed,
The polymerizable liquid crystal compound according to claim 2 , wherein Z 1 and Z 2 are both CH 2 ═CH—.
前記Mが、−C(=O)−OR(Rは前記と同じ意味を表す。)で置換されていてもよいフェニレン基である請求項2に記載の重合性液晶化合物。 The polymerizable liquid crystal compound according to claim 2, wherein the M is a phenylene group optionally substituted with —C (═O) —OR 3 (R 3 represents the same meaning as described above). 請求項1〜のいずれかに記載の重合性液晶化合物、及び重合可能なキラル化合物を含有する重合性液晶組成物。 The polymerizable liquid crystal compound according to any one of claims 1-4, and a polymerizable chiral compound containing a polymerizable liquid crystal composition. 請求項1〜のいずれかに記載の重合性液晶化合物、又は、請求項に記載の重合性液晶組成物を重合して得られる液晶性高分子。 The polymerizable liquid crystal compound according to any one of claims 1-4, or liquid crystalline polymer obtained by polymerizing the polymerizable liquid crystal composition according to claim 5. 請求項に記載の液晶性高分子を構成材料とする光学異方体。 An optical anisotropic body comprising the liquid crystalline polymer according to claim 6 as a constituent material.
JP2009546279A 2007-12-19 2008-12-17 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body Active JP5407870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009546279A JP5407870B2 (en) 2007-12-19 2008-12-17 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007328035 2007-12-19
JP2007328035 2007-12-19
PCT/JP2008/072963 WO2009078431A1 (en) 2007-12-19 2008-12-17 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optical isomer
JP2009546279A JP5407870B2 (en) 2007-12-19 2008-12-17 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body

Publications (2)

Publication Number Publication Date
JPWO2009078431A1 JPWO2009078431A1 (en) 2011-04-28
JP5407870B2 true JP5407870B2 (en) 2014-02-05

Family

ID=40795545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009546279A Active JP5407870B2 (en) 2007-12-19 2008-12-17 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body

Country Status (3)

Country Link
JP (1) JP5407870B2 (en)
TW (1) TW200946649A (en)
WO (1) WO2009078431A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102171216B (en) * 2008-10-01 2014-07-23 日本瑞翁株式会社 Polymerizable chiral compound, polymerizable liquid crystalline composition, liquid crystalline polymer, and optically anisotropic body
CN102791749B (en) * 2010-03-31 2016-03-16 日本瑞翁株式会社 Polymerizable chiral compound, polymerizable liquid crystal compound, liquid crystal liquid crystal property polymer and optically anisotropic body
EP4223746A1 (en) * 2011-04-27 2023-08-09 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic material
US9029490B2 (en) 2011-06-10 2015-05-12 Zeon Corporation Polymerizable compound, polymerizable composition, polymer, and optically anisotropic body
EP2727904B1 (en) * 2011-06-24 2016-08-10 Zeon Corporation Polymerizable compounds, polymerizable composition, polymer, and optically anisotropic body
JP6672815B2 (en) * 2015-04-14 2020-03-25 Jsr株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal element
JP6933004B2 (en) * 2016-08-03 2021-09-08 Dic株式会社 Optical anisotropic body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940585A (en) * 1995-07-28 1997-02-10 Rolic Ag Photo-crosslinkable liquid crystal 1,4-phenylene derivative
EP0825176A1 (en) * 1996-08-22 1998-02-25 Dainippon Ink And Chemicals, Inc. Azine derivative, process for the preparation thereof, nematic liquid crystal composition and liquid crystal display system comprising same
JP2004182702A (en) * 2002-12-06 2004-07-02 Nitto Denko Corp Polymerizable terphenyl liquid crystal compound, liquid crystalline composition, cholesteric liquid crystal composition, optical film, and image display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411989B2 (en) * 2004-01-30 2010-02-10 Dic株式会社 Compound, liquid crystal composition containing the compound, and liquid crystal display device using the liquid crystal composition
EP2036969B1 (en) * 2006-06-05 2012-09-05 Zeon Corporation Cholesteric liquid-crystal composition, circular polarization separation sheet, and use thereof
TWI418613B (en) * 2007-02-23 2013-12-11 Zeon Corp A liquid crystal compound, a liquid crystal composition, an optical film, and an optical laminate
KR101233950B1 (en) * 2007-04-24 2013-02-15 제온 코포레이션 Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optically anisotropic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0940585A (en) * 1995-07-28 1997-02-10 Rolic Ag Photo-crosslinkable liquid crystal 1,4-phenylene derivative
EP0825176A1 (en) * 1996-08-22 1998-02-25 Dainippon Ink And Chemicals, Inc. Azine derivative, process for the preparation thereof, nematic liquid crystal composition and liquid crystal display system comprising same
JP2004182702A (en) * 2002-12-06 2004-07-02 Nitto Denko Corp Polymerizable terphenyl liquid crystal compound, liquid crystalline composition, cholesteric liquid crystal composition, optical film, and image display device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6009001952; Gerold S. et al.: 'Cholesteric Networks Based on Lyotropic Mixtures' ChemPhysChem 4(5), 2003, p.505-508 *
JPN6009001953; 根岸 真 et al.: 'STN-LCD用アジン系液晶の開発' DIC Technical Review No.5, 1999, p.17-20 *

Also Published As

Publication number Publication date
WO2009078431A1 (en) 2009-06-25
TW200946649A (en) 2009-11-16
JPWO2009078431A1 (en) 2011-04-28

Similar Documents

Publication Publication Date Title
JP5510321B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5401822B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
KR101233950B1 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystalline polymer, and optically anisotropic material
JP5522047B2 (en) Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystalline polymer and optical anisotropic body
JP5201130B2 (en) Liquid crystalline compound, liquid crystalline composition, optical film and optical laminate
JPWO2008105538A1 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5564773B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP4385997B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP5401823B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5407870B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
TWI523936B (en) Copolymer and liquid crystal alignment layer which is a cured product of the copolymer
US20030072893A1 (en) Polymerizable liquid crystal compound and optical film
JP2007119415A (en) Polymerizable liquid crystal compound having condensed ring, and homo- and co-polymers of the polymerizable liquid crystal compound
JP5396815B2 (en) Polymerizable compound, polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5621584B2 (en) Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystalline polymer and optical anisotropic body
JP5034200B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP5737283B2 (en) Polymerizable chiral compound, polymerizable liquid crystal composition, liquid crystalline polymer and optical anisotropic body
US11959005B2 (en) Liquid crystal compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131021

R150 Certificate of patent or registration of utility model

Ref document number: 5407870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250