JP5034200B2 - Polymerizable liquid crystal composition and optical anisotropic body - Google Patents

Polymerizable liquid crystal composition and optical anisotropic body Download PDF

Info

Publication number
JP5034200B2
JP5034200B2 JP2005281816A JP2005281816A JP5034200B2 JP 5034200 B2 JP5034200 B2 JP 5034200B2 JP 2005281816 A JP2005281816 A JP 2005281816A JP 2005281816 A JP2005281816 A JP 2005281816A JP 5034200 B2 JP5034200 B2 JP 5034200B2
Authority
JP
Japan
Prior art keywords
liquid crystal
group
crystal composition
polymerizable liquid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281816A
Other languages
Japanese (ja)
Other versions
JP2007091847A (en
Inventor
伊佐 西山
丞治 河村
泰之 渡辺
均 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2005281816A priority Critical patent/JP5034200B2/en
Publication of JP2007091847A publication Critical patent/JP2007091847A/en
Application granted granted Critical
Publication of JP5034200B2 publication Critical patent/JP5034200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Description

本発明は、基板上に重合性液晶組成物を塗布することにより作製する、傾斜配向あるいは水平配向を示す光学異方体の、空気界面近傍の配向欠陥を改善する添加剤を含有する重合性液晶組成物、及び該重合性液晶組成物を原料とした光学異方体に関する。   The present invention relates to a polymerizable liquid crystal containing an additive for improving alignment defects in the vicinity of an air interface of an optically anisotropic body exhibiting inclined alignment or horizontal alignment, which is prepared by applying a polymerizable liquid crystal composition on a substrate. The present invention relates to a composition and an optical anisotropic body using the polymerizable liquid crystal composition as a raw material.

通常、液晶表示装置(LCD)は、液晶セル及びその両側に配置された二枚の偏光板からなる。反射型液晶表示装置は、反射板、液晶セル、及び一枚の偏光板が積層されている。これらの液晶表示装置は、視野角の拡大、着色解消、あるいは表示モードに応じて位相差を調整するために、液晶セルと偏光板との間に光学異方体の一種である光学補償シート(位相差板)を配置する場合が多い。   In general, a liquid crystal display (LCD) includes a liquid crystal cell and two polarizing plates arranged on both sides thereof. In the reflection type liquid crystal display device, a reflection plate, a liquid crystal cell, and a single polarizing plate are laminated. These liquid crystal display devices have an optical compensation sheet (a kind of optically anisotropic material) between a liquid crystal cell and a polarizing plate in order to increase the viewing angle, eliminate coloring, or adjust the phase difference according to the display mode. In many cases, a retardation plate is disposed.

通常、光学補償シートには複屈折を有する高分子フィルムが使用されており、例えば、重合性の液晶材料に配向処理を施した後、紫外線硬化させて配向状態を固定化した光学異方体からなる複屈折を有する高分子フィルムが、LCD用の光学補償シートとして実用化されている。
また、最近では、従来のバッチ製造と比較して大幅な製造効率向上を目的とした、塗工プロセスを導入したロールツウロール(Roll to Roll)法等の液晶表示装置の製造方法の開発が進んでいる。ロールツロール用途の光学補償シートは、塗工法で作製でき、且つ、得られたシートに他の部材が積層されることを前提として設計される。
Usually, a polymer film having birefringence is used for the optical compensation sheet. For example, from an optical anisotropic body in which an alignment treatment is performed on a polymerizable liquid crystal material, followed by UV curing to fix the alignment state. Such a polymer film having birefringence has been put to practical use as an optical compensation sheet for LCD.
Recently, development of manufacturing methods of liquid crystal display devices such as a roll-to-roll method using a coating process has been advanced with the aim of significantly improving manufacturing efficiency as compared with conventional batch manufacturing. It is out. An optical compensation sheet for roll roll use can be produced by a coating method, and is designed on the assumption that another member is laminated on the obtained sheet.

重合性液晶材料を用いて光学異方体を作製する場合、通常では二枚の配向膜に重合性液晶材料を挟持させ、両側からの配向規制力により液晶分子を配向させる方法が一般的である。しかし、光学補償シートの製造にロールツロールのような塗工プロセスを用いた場合や工程の短縮化のために、配向機能を有する基板上に重合性の液晶材料を塗布し、重合性の液晶材料の配向処理は、一方に形成した配向膜の配向規制力のみを利用して行われる。即ち、前者と異なり、配向膜に接していない空気との界面付近では、液晶分子に配向規制力が作用しづらい。従って、気液界面では配向欠陥が発生し、得られる光学異方体の品質低下あるいは歩留まりの低下が起こりやすかった。   When producing an optical anisotropic body using a polymerizable liquid crystal material, a method is generally used in which a polymerizable liquid crystal material is sandwiched between two alignment films and liquid crystal molecules are aligned by alignment regulating force from both sides. . However, when a coating process such as roll rolls is used in the production of an optical compensation sheet or in order to shorten the process, a polymerizable liquid crystal material is applied on a substrate having an alignment function, and a polymerizable liquid crystal The alignment treatment of the material is performed using only the alignment regulating force of the alignment film formed on one side. That is, unlike the former, the alignment regulating force hardly acts on the liquid crystal molecules near the interface with air that is not in contact with the alignment film. Accordingly, alignment defects are generated at the gas-liquid interface, and the quality of the obtained optical anisotropic body or the yield tends to decrease.

これを解決する方法として、重合性の液晶材料に混合して空気との界面付近の液晶分子の配向を制御させる添加剤が提案されており、例えば、該添加剤として、一分子中に、フッ素置換脂肪族基やオリゴシロキサン基等の疎水性基と、少なくとも二つの環状構造を含む排除体積効果を有する基とを有する化合物からなる液晶配向促進剤が知られている(例えば、特許文献1参照。)。
前記化合物の疎水性基は液晶分子と相溶しにくいので、空気との界面に偏在しようとする。一方、前記化合物の排除体積効果を有する基は液晶分子と相溶するので、液晶層に入り込もうとする。疎水性基と排除体積効果を有する基との組み合わせにより、空気界面側での液晶性分子の傾斜角を、液晶性分子の種類に限定されることなく、任意に制御できる。従ってより配向に優れた光学異方体を得ることができる。
As a method for solving this problem, an additive that is mixed with a polymerizable liquid crystal material to control the alignment of liquid crystal molecules in the vicinity of the interface with air has been proposed. A liquid crystal alignment accelerator comprising a compound having a hydrophobic group such as a substituted aliphatic group or oligosiloxane group and a group having an excluded volume effect containing at least two cyclic structures is known (for example, see Patent Document 1). .)
Since the hydrophobic group of the compound is hardly compatible with liquid crystal molecules, it tends to be unevenly distributed at the interface with air. On the other hand, the group having the excluded volume effect of the compound is compatible with the liquid crystal molecules, and therefore tends to enter the liquid crystal layer. By the combination of the hydrophobic group and the group having an excluded volume effect, the tilt angle of the liquid crystal molecule on the air interface side can be arbitrarily controlled without being limited to the type of the liquid crystal molecule. Accordingly, it is possible to obtain an optical anisotropic body that is more excellent in orientation.

しかし前記化合物では、実際には気液界面での配向不良を完全に押さえることができなかった。また、前記化合物は低分子化合物のため、全てが空気界面に偏在することができず、一部が液晶層内部に残存してしまい、これにより液晶材料の相転移点が低下し、得られる光学異方体の安定性の低下やリタデーションの低下がおこるおそれがあった。   However, in the above compound, the orientation failure at the gas-liquid interface could not be completely suppressed. In addition, since the above compounds are low molecular weight compounds, all cannot be unevenly distributed at the air interface, and some of them remain inside the liquid crystal layer, thereby lowering the phase transition point of the liquid crystal material, resulting in the obtained optical There was a risk that the stability of the anisotropic body and the retardation would decrease.

また、重合性の液晶材料と高分子化合物との混合物を硬化させてなる光学異方体としては、垂直配向膜の設けられていない基板上でホメオトロピック配向液晶層を形成しうる、炭素数1〜22のアルキル基又は炭素数1〜22のフルオロアルキル基を有する側鎖型液晶ポリマーと、光重合性液晶化合物を含有してなるホメオトロピック配向液晶性組成物、及び、これを配向させた状態で光照射した、ホメオトロピック配向液晶フィルムが知られている。(例えば、特許文献2参照)前記側鎖型液晶ポリマーはホメオトロピック配向を示し、これを10%以上混合することで、耐久性に優れるホメオトロピック配向液晶フィルムが得られる。しかしこの方法では、傾斜配向あるいは水平配向を示す光学異方体を得ることができなかった。   In addition, as an optical anisotropic body obtained by curing a mixture of a polymerizable liquid crystal material and a polymer compound, a homeotropic alignment liquid crystal layer can be formed on a substrate on which a vertical alignment film is not provided. A homeotropic alignment liquid crystalline composition comprising a side chain type liquid crystal polymer having a C22 or C22 fluoroalkyl group and a photopolymerizable liquid crystal compound, and an aligned state thereof A homeotropic alignment liquid crystal film irradiated with a light is known. (For example, refer patent document 2) The said side chain type liquid crystal polymer shows homeotropic alignment, and the homeotropic alignment liquid crystal film excellent in durability is obtained by mixing this 10% or more. However, this method has failed to obtain an optical anisotropic body exhibiting tilted orientation or horizontal orientation.

また、重合性の液晶材料に、空気との界面における該液晶材料のディレクタの固有の傾斜配向を減じる界面活性材料を添加して、液晶整列層の空気界面における該液晶材料の整列が実質的に平行又は実質的に斜めとなるような薄膜を得る方法も知られている(例えば、特許文献3参照)。該界面活性材料として、具体的には、ポリアクリル酸エステル、ポリシリコン、反応性ポリシリコン、オルガノシラン、ワックス、および離型剤等が好ましいとあり、ポリシクロヘキシルメタクリル酸エステルやポリメチルメタクリル酸エステルを使用することで、厚さ方向の傾斜角度を変化させることができる。
しかし、該公報に記載された界面活性材料では、表面付近の配向欠陥を完全に改善することができなかった。
In addition, a surface active material that reduces the intrinsic tilt orientation of the director of the liquid crystal material at the interface with the air is added to the polymerizable liquid crystal material, so that the alignment of the liquid crystal material at the air interface of the liquid crystal alignment layer is substantially reduced. A method of obtaining a thin film that is parallel or substantially oblique is also known (see, for example, Patent Document 3). Specifically, polyacrylic acid ester, polysilicon, reactive polysilicon, organosilane, wax, mold release agent and the like are preferable as the surface active material. Polycyclohexyl methacrylate and polymethyl methacrylate are preferred. By using, the inclination angle in the thickness direction can be changed.
However, the surface active material described in the publication cannot completely improve the alignment defects near the surface.

特開2000−345164号公報JP 2000-345164 A 特開2003−227935号公報JP 2003-227935 A 特開2000−105315号公報JP 2000-105315 A

発明が解決しようとする課題は、配向欠陥のない光学異方体を提供することにあり、該光学異方体を作製することのできる重合性液晶組成物を提供することにある。   The problem to be solved by the invention is to provide an optically anisotropic body free from alignment defects, and to provide a polymerizable liquid crystal composition capable of producing the optically anisotropic body.

本発明者らは、空気界面に偏在する能力の高いフッ素基を含有する側鎖、及び、液晶分子と親和性があるが排除体積効果を殆ど有さず液晶を配向させる能力が小さい基を有する(メタ)アクリル共重合体が、配向欠陥を改善する性能が高いことを見出し、該共重合体を特定量添加することで、配向欠陥のない光学異方体が得られることを見いだした。   The present inventors have a side chain containing a fluorine group having a high ability to be unevenly distributed at the air interface, and a group having an affinity for liquid crystal molecules but having little excluded volume effect and a small ability to orient the liquid crystal. It has been found that the (meth) acrylic copolymer has a high performance for improving alignment defects, and it has been found that an optical anisotropic body having no alignment defects can be obtained by adding a specific amount of the copolymer.

本発明者らは、配向欠陥は、基板からの配向規制力と空気界面付近での空気による配向規制力が異なるため、液晶の配向の向きが部分的にずれるために生じていると考え、空気界面付近の液晶の配向性を緩和するような基を、空気界面付近に存在させることで、上記課題を解決した。
具体的には、液晶分子と親和性があるが排除体積効果を殆ど有さず液晶を配向させる能力が小さい基を(メタ)アクリル共重合体にペンダントさせ、空気界面付近に存在させることで、ディスクリネーション即ち配向欠陥が発生しにくく、基板側の配向規制力が界面付近まできちんと伝播した光学異方体を得ることができる。
The present inventors consider that the alignment defect is caused by the alignment direction of the liquid crystal partially deviating because the alignment control force from the substrate is different from the alignment control force by the air near the air interface. The above problem has been solved by allowing a group that relaxes the orientation of the liquid crystal near the interface to exist near the air interface.
Specifically, by making a (meth) acrylic copolymer pendant a group that has affinity for liquid crystal molecules but has almost no excluded volume effect and has a small ability to orient the liquid crystal, it is present near the air interface, It is possible to obtain an optical anisotropic body in which disclination, that is, an alignment defect is hardly generated and the alignment regulating force on the substrate side is properly propagated to the vicinity of the interface.

(メタ)アクリル共重合体等の高分子量体は液晶に対する溶解性が低分子量体と比べて劣るため,液晶層から相分離しやすい性質がある。本発明においては更に相分離効果を高めるため、フッ化アルキル基等のフッ素基を含有する基を(メタ)アクリル共重合体に懸垂させた。該共重合体は、相分離する力が強く、且つ空気界面に偏在する力が強いので、ごく少量添加で効果があり、水に浮かべた油膜のように重合性液晶層の表面に広がり、空気界面近傍の配向欠陥のない光学異方体を得ることができる。少量添加のため、本来の重合性液晶が形成する光学異方体の光学的作用を損なうことがない。   A high molecular weight material such as a (meth) acrylic copolymer is inferior in solubility to liquid crystals compared to a low molecular weight material, and therefore has a property of being easily phase-separated from the liquid crystal layer. In the present invention, in order to further enhance the phase separation effect, a group containing a fluorine group such as a fluorinated alkyl group was suspended from the (meth) acrylic copolymer. Since the copolymer has a strong phase separation force and a strong force that is unevenly distributed at the air interface, it is effective when added in a very small amount, and spreads on the surface of the polymerizable liquid crystal layer like an oil film floating in water. An optical anisotropic body having no alignment defect in the vicinity of the interface can be obtained. The addition of a small amount does not impair the optical action of the optical anisotropic body formed by the original polymerizable liquid crystal.

即ち本発明は、重合性基を有する液晶化合物を含有する重合性液晶組成物において、フッ素基を有する側鎖、及び、ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環を1つ有する側鎖を有し、質量平均分子量が10000〜300000である(メタ)アクリル共重合体(H)を含有する重合性液晶組成物を提供する。   That is, the present invention relates to a polymerizable liquid crystal composition containing a liquid crystal compound having a polymerizable group, a side chain having a fluorine group, and a side having one benzene ring, cyclohexane ring, cyclohexene ring, or six-membered heterocyclic ring. Provided is a polymerizable liquid crystal composition containing a (meth) acrylic copolymer (H) having a chain and a weight average molecular weight of 10,000 to 300,000.

また、本発明は、前記記載の重合性液晶組成物を、配向機能を有する基板上に塗布し、配向させた状態で重合させて得られる光学異方体を提供する。   Moreover, this invention provides the optically anisotropic body obtained by apply | coating the polymeric liquid crystal composition of the said description on the board | substrate which has an orientation function, and making it superpose | polymerize in the oriented state.

また、本発明は、前記記載の重合性液晶組成物を、パターン状に配向方向の異なる領域が分布している略水平配向機能を有する基板に塗布し、配向させた状態で重合させて得られる位相差膜を提供する。   In addition, the present invention is obtained by applying the polymerizable liquid crystal composition described above to a substrate having a substantially horizontal alignment function in which regions having different alignment directions are distributed in a pattern, and polymerizing in an aligned state. A retardation film is provided.

本発明の液晶組成物を使用することで、配向欠陥が改善された光学異方体を得ることができる。   By using the liquid crystal composition of the present invention, an optical anisotropic body with improved alignment defects can be obtained.

((メタ)アクリル共重合体(H) フッ素基を有する側鎖)
本発明で使用する(メタ)アクリル共重合体(H)(以下、アクリル共重合体Hと略す)において、フッ素基を有する側鎖とは、少なくとも1つの水素原子がフッ素原子で置換された炭素原子数1〜18のフッ化アルキル基(但し、該基中に存在するメチレン基は、場合によりそれぞれ相互に独立して、−SONZ−又は−CONZ−で置き換えられていても良い。Zはアルキル基を表す。またフッ化アルキル基は、ヒドロキシ基、等の置換基を有していても良い)を有する側鎖を表す。フッ化アルキル基が有するフッ素原子の数は、5〜35が好ましく、13〜25が特に好ましい。具体的には、−(CH−(C2q-s+1)、−(CH−NG−SO−(CF−CF、−(CH−NG−CO−(CF−CF(式中、p、qはそれぞれ独立して1〜17(但し、p+qは2以上17以下を満たす。)の整数を表す。sは0〜9の整数を表す。Gは炭素原子数1〜8のアルキル基又は水素を表す。また各々のメチレン基に結合する水素は、水酸基で置換されていてもよい)等のフッ化アルキル基が好ましい。中でも、pは1〜4でqは2〜16であることが好ましく、pは2〜3でqは5〜16であることがさらに好ましい。qが6〜11であると最も好ましい。
該フッ素を有する側鎖は、エステル結合等を介してアクリル共重合体主鎖に連結している。
((Meth) acrylic copolymer (H) side chain having fluorine group)
In the (meth) acrylic copolymer (H) used in the present invention (hereinafter abbreviated as “acrylic copolymer H”), the side chain having a fluorine group is a carbon in which at least one hydrogen atom is substituted with a fluorine atom. A fluorinated alkyl group having 1 to 18 atoms (provided that the methylene groups present in the group may be each independently replaced with —SO 2 NZ 2 — or —CONZ 2 —). Z 2 represents an alkyl group, and the fluorinated alkyl group represents a side chain having a substituent such as a hydroxy group. 5-35 are preferable and, as for the number of the fluorine atoms which a fluorinated alkyl group has, 13-25 are especially preferable. Specifically, - (CH 2) p - (C q H s F 2q-s + 1), - (CH 2) p -NG-SO 2 - (CF 2) q -CF 3, - (CH 2) p -NG-CO- (CF 2) q -CF 3 ( wherein, p, q are each independently 1 to 17 (however, p + q is .s represents an integer of satisfying two or more 17 or less.) 0 Represents an integer of 9. G represents an alkyl group having 1 to 8 carbon atoms or hydrogen, and the hydrogen bonded to each methylene group may be substituted with a hydroxyl group). . Especially, it is preferable that p is 1-4 and q is 2-16, it is more preferable that p is 2-3 and q is 5-16. Most preferably, q is 6-11.
The fluorine-containing side chain is linked to the acrylic copolymer main chain via an ester bond or the like.

((メタ)アクリル共重合体(H))
本発明で使用するアクリル共重合体Hにおいて、ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環は、エステル結合等を介してアクリル共重合体主鎖に連結している。本発明においては、アクリル共重合体主鎖に連結したエステル結合等の結合部位からペンダントされた、1つのベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環を含む基を「ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環を1つ有する側鎖」と称する。いずれの環でも本発明の効果は得られるが、1つの側鎖が有する環の数は1つである。
シクロヘキセン環、又は6員複素環の例としては、以下の構造が挙げられる。
((Meth) acrylic copolymer (H))
In the acrylic copolymer H used in the present invention, the benzene ring, cyclohexane ring, cyclohexene ring, or 6-membered heterocyclic ring is linked to the acrylic copolymer main chain through an ester bond or the like. In the present invention, a group containing one benzene ring, cyclohexane ring, cyclohexene ring, or 6-membered heterocyclic ring pendant from a bonding site such as an ester bond linked to the acrylic copolymer main chain is referred to as a “benzene ring, cyclohexane. It is referred to as a side chain having one ring, cyclohexene ring, or 6-membered heterocyclic ring. Although the effect of the present invention can be obtained with any ring, one side chain has one ring.
Examples of the cyclohexene ring or 6-membered heterocyclic ring include the following structures.

Figure 0005034200
Figure 0005034200

前記環は、本発明の効果を損なわない範囲で、少なくとも1つの置換基を有していてもよい。置換基は立体効果が小さいもの程排除体積効果が生じにくいので好ましい。具体的には、フッ素基、シアノ基、トリフルオロアルキル基、分岐あるいは直鎖アルキル基、分岐あるいは直鎖アルキルオキシ基、アルカノイル基、アルカノイルオキシ基、又はアルキルオキシカルボニル基等の置換基が挙げられる。直鎖アルキル基、直鎖アルキルオキシ基等の直鎖基は、炭素原子数が12以下であることが好ましく、5以下がなお好ましく、3以下が最も好ましい。また分岐アルキル基、分岐アルキルオキシ基等、分岐を有するものは、主鎖(但し、置換基を構成する鎖のうち最も長い鎖を主鎖とする)を構成する原子の数が12以下であることが好ましく、5以下がなお好ましく、3以下が最も好ましい。   The ring may have at least one substituent as long as the effects of the present invention are not impaired. Substituents with smaller steric effects are preferred because the excluded volume effect is less likely to occur. Specific examples include a substituent such as a fluorine group, a cyano group, a trifluoroalkyl group, a branched or straight chain alkyl group, a branched or straight chain alkyloxy group, an alkanoyl group, an alkanoyloxy group, or an alkyloxycarbonyl group. . The straight chain group such as a straight chain alkyl group or a straight chain alkyloxy group preferably has 12 or less carbon atoms, more preferably 5 or less, and most preferably 3 or less. A branched alkyl group, a branched alkyloxy group or the like having a branch has 12 or less atoms constituting the main chain (however, the longest chain among the chains constituting the substituent is the main chain). Preferably, 5 or less is more preferable, and 3 or less is most preferable.

前記環は、液晶分子と親和性を有し、且つ排除体積効果を殆ど有さないので液晶を配向させる能力は小さい。これらの性質は、ベンゼン環あるいはシクロヘキサン環が最も強く現れ、好ましい。   The ring has an affinity for liquid crystal molecules and has almost no excluded volume effect, so the ability to orient the liquid crystal is small. Among these properties, a benzene ring or a cyclohexane ring appears most strongly and is preferable.

前記環は、エステル結合等で直接アクリル共重合体H主鎖と結合していてもよいし、環とエステル結合等の間にスペーサーと呼ばれる連結基を有していても良い。
スペーサーの有無、あるいは長さは、前記環のパッキング特性、結晶性、液晶との親和性等を考慮しながら選択するのが好ましい。例えば、スペーサーが長くなるほど、重合性基と前記環の運動性が比較的独立したものとなり、結晶性は下がると考えられる。また、フッ素部分から前記環が離れて存在することができるようになるので、前記環と液晶分子との親和性を高くすることも可能である。
The ring may be directly bonded to the acrylic copolymer H main chain by an ester bond or the like, or may have a linking group called a spacer between the ring and the ester bond.
The presence or absence or length of the spacer is preferably selected in consideration of the packing characteristics of the ring, crystallinity, affinity with liquid crystal, and the like. For example, it is considered that as the spacer becomes longer, the polymerizable group and the mobility of the ring become relatively independent, and the crystallinity decreases. In addition, since the ring can exist away from the fluorine portion, it is possible to increase the affinity between the ring and the liquid crystal molecule.

スペーサーはアルキレン基やアルケニレン基のようなほぼ直鎖状の化学構造を有していれば良く、途中に分岐鎖を有していても良く、エステル結合、アミド結合、エーテル結合のような結合基を介していても良い。中でもアルキレン基の構造を持つものが好ましい。   The spacer only needs to have a substantially linear chemical structure such as an alkylene group or an alkenylene group, and may have a branched chain in the middle, such as an ester bond, an amide bond, or an ether bond. It may be through. Of these, those having an alkylene group structure are preferred.

本発明で使用するアクリル共重合体Hは、具体的には、主に、フッ素基を有するモノ(メタ)アクリレートと、前記環を有するモノ(メタ)アクリレートとを原料として得られる。   Specifically, the acrylic copolymer H used in the present invention is mainly obtained from a mono (meth) acrylate having a fluorine group and a mono (meth) acrylate having the ring.

(フッ化アルキル基を有するモノ(メタ)アクリレート)
前記フッ素基を有するモノ(メタ)アクリレートは、中でも、少なくとも1つの水素原子がフッ素原子で置換された炭素原子数1〜18のフッ化アルキル基(但し、該基中に存在するメチレン基は、場合によりそれぞれ相互に独立して、−SONZ−又は−CONZ−で置き換えられていても良い。Zはアルキル基を表す。またフッ化アルキル基は、ヒドロキシ基、等の置換基を有していても良い)を有するモノ(メタ)アクリレートが好ましい。フッ化アルキル基が有するフッ素原子の数は、5〜35が好ましく、13〜25が特に好ましい。具体的には、−(CH−(C2q-s+1)、−(CH−NG−SO−(CF−CF、−(CH−NG−CO−(CF−CF(式中、p、qはそれぞれ独立して1〜17(但し、p+qは2以上17以下を満たす。)の整数を表す。sは0〜9の整数を表す。Gは炭素原子数1〜8のアルキル基又は水素を表す。また各々のメチレン基に結合する水素は、水酸基で置換されていてもよい)等のフッ化アルキル基が好ましい。中でも、pは1〜4でqは2〜16であることが好ましく、pは2〜3でqは5〜16であることがさらに好ましい。qが6〜11であると最も好ましい。
フッ化アルキル基を有するモノ(メタ)アクリレートは、具体的には、一般式(2)で表される化合物が好ましい。
(Mono (meth) acrylate having fluorinated alkyl group)
The mono (meth) acrylate having a fluorine group is a fluorinated alkyl group having 1 to 18 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom (provided that the methylene group present in the group is In some cases, independently of each other, -SO 2 NZ 2 -or -CONZ 2- may be substituted, Z 2 represents an alkyl group, and the fluorinated alkyl group is a substituent such as a hydroxy group. Mono (meth) acrylates having (optionally) may be preferred. 5-35 are preferable and, as for the number of the fluorine atoms which a fluorinated alkyl group has, 13-25 are especially preferable. Specifically, - (CH 2) p - (C q H s F 2q-s + 1), - (CH 2) p -NG-SO 2 - (CF 2) q -CF 3, - (CH 2) p -NG-CO- (CF 2) q -CF 3 ( wherein, p, q are each independently 1 to 17 (however, p + q is .s represents an integer of satisfying two or more 17 or less.) 0 Represents an integer of 9. G represents an alkyl group having 1 to 8 carbon atoms or hydrogen, and the hydrogen bonded to each methylene group may be substituted with a hydroxyl group). . Especially, it is preferable that p is 1-4 and q is 2-16, it is more preferable that p is 2-3 and q is 5-16. Most preferably, q is 6-11.
Specifically, the mono (meth) acrylate having a fluorinated alkyl group is preferably a compound represented by the general formula (2).

Figure 0005034200
(2)
Figure 0005034200
(2)

式(2)において、Xは水素原子又はメチル基を表す。Zは、少なくとも1つの水素原子がフッ素原子で置換された炭素原子数1〜18のフッ化アルキル基(但し、該基中に存在するメチレン基は、場合によりそれぞれ相互に独立して、−SONZ−又は−CONZ−で置き換えられていても良い。Zはアルキル基を表す。またフッ化アルキル基は、ヒドロキシ基、等の置換基を有していても良い)を表す。
以下に、本発明で使用するフッ化アルキル基を有するモノ(メタ)アクリレートの具体例を挙げる。
In the formula (2), X represents a hydrogen atom or a methyl group. Z is a fluorinated alkyl group having 1 to 18 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom (provided that the methylene groups present in the group are, independently of each other, -SO 2 NZ 2 — or —CONZ 2 — may be substituted, Z 2 represents an alkyl group, and the fluorinated alkyl group may have a substituent such as a hydroxy group).
Specific examples of the mono (meth) acrylate having a fluorinated alkyl group used in the present invention will be given below.

CF3(CF2)nCH2CH2OCOCH=CH2
(n=5-11, nの平均=9)
CF3(CF2)7CH2CH2OCOC(CH3)=CH2
CF3(CF2)7CH2CH2OCOCH=CH2
CF3(CF2)5CH2CH2OCOC(CH3)=CH2
(CF3)2CF(CF2)6(CH2)3OCOCH=CH2
(CF3)2CF(CF2)10(CH2)3OCOCH=CH2
CF3(CF2)7SO2N(C3H7)CH2CH2OCOCH=CH2
CF3(CF2)7SO2N(CH3)CH2CH2OCOC(CH3)=CH2
CF3(CF2)7SO2N(CH3)CH2CH2OCOCH=CH2
CF3(CF2)7(CH2)4OCOCH=CH2
CF3(CF2)6COOCH=CH2
CF3(CF2)7SO2N(C4H9)(CH2)4OCOCH=CH2
CF3(CF2)7CH2CH(OH)CH2OCOCH=CH2
CF3(CF2)5CON(C3H7)CH2CH2OCOC(CH3)=CH2
CF3(CF2)7CON(C2H5)CH2CH2OCOCH=CH2
CF 3 (CF 2 ) n CH 2 CH 2 OCOCH = CH 2
(n = 5-11, n average = 9)
CF 3 (CF 2 ) 7 CH 2 CH 2 OCOC (CH 3 ) = CH 2
CF 3 (CF 2 ) 7 CH 2 CH 2 OCOCH = CH 2
CF 3 (CF 2 ) 5 CH 2 CH 2 OCOC (CH 3 ) = CH 2
(CF 3 ) 2 CF (CF 2 ) 6 (CH 2 ) 3 OCOCH = CH 2
(CF 3 ) 2 CF (CF 2 ) 10 (CH 2 ) 3 OCOCH = CH 2
CF 3 (CF 2 ) 7 SO 2 N (C 3 H 7 ) CH 2 CH 2 OCOCH = CH 2
CF 3 (CF 2 ) 7 SO 2 N (CH 3 ) CH 2 CH 2 OCOC (CH 3 ) = CH 2
CF 3 (CF 2 ) 7 SO 2 N (CH 3 ) CH 2 CH 2 OCOCH = CH 2
CF 3 (CF 2 ) 7 (CH 2 ) 4 OCOCH = CH 2
CF 3 (CF 2 ) 6 COOCH = CH 2
CF 3 (CF 2 ) 7 SO 2 N (C 4 H 9 ) (CH 2 ) 4 OCOCH = CH 2
CF 3 (CF 2 ) 7 CH 2 CH (OH) CH 2 OCOCH = CH 2
CF 3 (CF 2 ) 5 CON (C 3 H 7 ) CH 2 CH 2 OCOC (CH 3 ) = CH 2
CF 3 (CF 2 ) 7 CON (C 2 H 5 ) CH 2 CH 2 OCOCH = CH 2

(前記ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環を有する(メタ)アクリレート)
前記ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環を有する(メタ)アクリレートは、一般式(1)で表される(メタ)アクリレートであることが望ましい。
((Meth) acrylate having the benzene ring, cyclohexane ring, cyclohexene ring, or 6-membered heterocyclic ring)
The (meth) acrylate having the benzene ring, cyclohexane ring, cyclohexene ring or 6-membered heterocyclic ring is preferably a (meth) acrylate represented by the general formula (1).

Figure 0005034200
(1)
Figure 0005034200
(1)

式(1)において、Xは水素原子又はメチル基を表わす。環Aはベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環(但し、環Aはフッ素基、シアノ基、トリフルオロアルキル基、分岐あるいは直鎖アルキル基、分岐あるいは直鎖アルキルオキシ基、アルカノイル基、アルカノイルオキシ基、又はアルキルオキシカルボニル基等の置換基等を有していてもよい)を表し、Rは、単結合、又は、前記スペーサー部分を表し、具体的には、炭素原子数1〜18のアルキレン基(但し、該基中に存在し、−COO−と直接結合しない1個又は2個以上のメチレン基は、場合によりそれぞれ相互に独立して、酸素原子が相互に直接に結合しないものとして、−O−で置き換えられていても良い)を表す。Rの具体例としては、−(単結合)、−(CHt−O−、−(CHt’−、−(CHCHO)t”−(但し、t、t’、t”はそれぞれ1〜18の整数を表す)等の基があげられる。中でも、単結合、炭素原子数1〜8のアルキレン基、又は炭素原子数1〜8のアルキレンオキシ基が好ましく、単結合、炭素原子数1〜5のアルキレン基、又は炭素原子数1〜5のアルキレンオキシ基がなお好ましく、単結合、炭素原子数1〜3のアルキレン基、又は炭素原子数1〜3のアルキレンオキシ基が最も好ましい。
(以下、一般式(1)における「−R−環A」を総称して基(h)と略す)
In the formula (1), X represents a hydrogen atom or a methyl group. Ring A is a benzene ring, cyclohexane ring, cyclohexene ring, or 6-membered heterocycle (wherein ring A is a fluorine group, a cyano group, a trifluoroalkyl group, a branched or straight chain alkyl group, a branched or straight chain alkyloxy group, an alkanoyl group) Group, an alkanoyloxy group, or a substituent such as an alkyloxycarbonyl group, etc.), and R represents a single bond or the spacer moiety, specifically having 1 carbon atom To 18 alkylene groups (provided that one or two or more methylene groups present in the group and not directly bonded to —COO— are optionally independently of each other, and oxygen atoms are directly bonded to each other). May be replaced by -O-). Specific examples of R include - (single bond), - (CH 2) t -O -, - (CH 2) t '-, - (CH 2 CH 2 O) t "- ( where, t, t' , T ″ each represents an integer of 1 to 18). Among them, a single bond, an alkylene group having 1 to 8 carbon atoms, or an alkyleneoxy group having 1 to 8 carbon atoms is preferable, and a single bond, an alkylene group having 1 to 5 carbon atoms, or an alkylene group having 1 to 5 carbon atoms. An alkyleneoxy group is still more preferable, and a single bond, an alkylene group having 1 to 3 carbon atoms, or an alkyleneoxy group having 1 to 3 carbon atoms is most preferable.
(Hereinafter, “-R-ring A” in general formula (1) is generically abbreviated as group (h)).

重合性液晶組成物中の(メタ)アクリル共重合体Hは、特に空気界面近傍での配向欠陥を生じさせない効果を有する。これは基(h)が、液晶を配向させる力は小さいが液晶性化合物と親和性があることに起因すると考えられる。
基(h)が有する6員環は1つであり、それ自体の形状の異方性は小さく、排除体積効果は殆ど有さないと考えられる(即ち、液晶を配向させる力は小さい)。しかし6員環自体は液晶性を有する化合物のコアと呼ばれる部分の構造の一部として使用されるので、液晶性化合物そのものとの親和性は高いと考えられる。
基(h)と液晶とが混和する空気界面付近では、基(h)と液晶とが混和したことにより液晶性が低下していると考えられる。しかし基(h)と液晶との親和性は高いので、相分離は生じず、液晶の配列は乱れない。従って配向欠陥が生じないものと考えられる。
本発明の効果は、従来知られている形状の異方性による効果、いわゆる排除体積効果とは別種のものである。
The (meth) acrylic copolymer H in the polymerizable liquid crystal composition has an effect of not causing alignment defects particularly in the vicinity of the air interface. This is considered to be due to the fact that the group (h) has a small force for aligning the liquid crystal but has an affinity for the liquid crystal compound.
The group (h) has one 6-membered ring, and its shape anisotropy is small, and it is considered that there is almost no excluded volume effect (that is, the force for aligning liquid crystals is small). However, since the 6-membered ring itself is used as part of the structure of the portion called the core of the compound having liquid crystallinity, it is considered that the affinity with the liquid crystal compound itself is high.
In the vicinity of the air interface where the group (h) and the liquid crystal are mixed, it is considered that the liquid crystallinity is lowered due to the mixing of the group (h) and the liquid crystal. However, since the affinity between the group (h) and the liquid crystal is high, phase separation does not occur and the alignment of the liquid crystal is not disturbed. Therefore, it is considered that no alignment defect occurs.
The effect of the present invention is different from the conventionally known effect due to the anisotropy of the shape, the so-called excluded volume effect.

基(h)を有するアクリル共重合体Hと組み合わせる重合性液晶組成物b(ここで、本発明の重合性液晶組成物からアクリル共重合体Hを除いた組成物を、「重合性液晶組成物b」とする。)は、重合性液晶組成物bに該アクリル共重合体(H)を過度に添加して(20質量%)得られる液晶の液体−液晶相転移温度(T)、及び、重合性液晶組成物bの液体−液晶相転移温度(T)との差(以下、混和液晶低下温度ΔTと定義する)ΔT=T−Tが、−10℃〜−0.1℃である液晶混和特性を有するような、重合性液晶組成物bが好ましい。以下、その関係を下記式に示す。 Polymerizable liquid crystal composition b to be combined with acrylic copolymer H having group (h) (here, a composition obtained by removing acrylic copolymer H from the polymerizable liquid crystal composition of the present invention is referred to as “polymerizable liquid crystal composition”). b ”) is a liquid-liquid crystal phase transition temperature (T h ) of a liquid crystal obtained by excessively adding (20% by mass) the acrylic copolymer (H) to the polymerizable liquid crystal composition b, and The difference from the liquid-liquid crystal phase transition temperature (T 0 ) of the polymerizable liquid crystal composition b (hereinafter, defined as the mixed liquid crystal lowering temperature ΔT) ΔT = T h −T 0 is −10 ° C. to −0.1 A polymerizable liquid crystal composition b having a liquid crystal miscibility characteristic of ° C. is preferable. The relationship is shown in the following formula.

Figure 0005034200
Figure 0005034200

(但し、T=(前記重合性液晶組成物が、前記アクリル共重合体(H)を20質量%含有した際の液体−液晶相転移温度)であり、T=(前記重合性液晶組成物から前記アクリル共重合体(H)を除いたとき(重合性液晶組成物b)の液体−液晶相転移温度)である) (Where T h = (liquid-liquid crystal phase transition temperature when the polymerizable liquid crystal composition contains 20% by mass of the acrylic copolymer (H)), and T 0 = (the polymerizable liquid crystal composition). When the acrylic copolymer (H) is removed from the product (liquid-liquid crystal phase transition temperature of the polymerizable liquid crystal composition b))

但し、混和液晶低下温度ΔTが下がりすぎると重合性液晶組成物自体の安定性が下がることがあるので、10℃を越えて低下しないような組み合わせが好ましい。
このような組み合わせは、基板側の配向規制力が空気界面付近まできちんと伝播した、配向欠陥のない光学異方体を得るうえでなお好ましい。この組み合わせは、特に基板側の配向規制力が略水平配向の場合に特に好ましく用いられ、基板面に対して垂直な方向から見たときの光学的異方性の大きい光学異方体を得ることができる。
However, since the stability of the polymerizable liquid crystal composition itself may be lowered if the mixed liquid crystal lowering temperature ΔT is lowered too much, a combination that does not drop exceeding 10 ° C. is preferable.
Such a combination is still preferable in order to obtain an optical anisotropic body having no alignment defect in which the alignment regulating force on the substrate side is properly propagated to the vicinity of the air interface. This combination is particularly preferably used when the alignment regulating force on the substrate side is substantially horizontal alignment, and an optical anisotropic body having a large optical anisotropy when viewed from a direction perpendicular to the substrate surface is obtained. Can do.

配向欠陥に対する効果は基(h)として環Aがフェニル環又はシクロヘキサン環である(メタ)アクリル共重合体Hが最も大きい。また、基(h)のスペーサーとしては、単結合、炭素原子数1〜3のアルキレン基、又はアルキレンオキシ基が最も好ましい。   The effect on the alignment defect is greatest in the (meth) acrylic copolymer H in which the ring A is a phenyl ring or a cyclohexane ring as the group (h). The spacer of the group (h) is most preferably a single bond, an alkylene group having 1 to 3 carbon atoms, or an alkyleneoxy group.

前記一般式(1)で表される(メタ)アクリレートと、前記一般式(2)で表される化合物に代表される、フッ化アルキル基等のフッ素基を有するモノ(メタ)アクリレートとを必須原料として共重合させることで、アクリル共重合体Hを得ることができる。共重合方法は特に限定はなく、公知の重合開始剤を用いて公知の合成方法に従って得ることができる。塊状重合、溶液重合、乳化重合、懸濁重合、放射線重合、光重合など各種の重合方式のいずれをも採用できる。中でも、溶液ラジカル重合法によるものが好ましい。
重合開始剤としては、例えば、過酸化ベンゾイル、2,2’−アゾビスイソブチロニトリル等が挙げられる。重合に際しては、ベンゼン、トルエン、キシレンなどの芳香族系炭化水素、ヘキサン、ヘプタン、シクロヘキサン等の脂肪族系炭化水素、酢酸エチル、エチレングリコ−ルモノエチルエ−テルアセテ−ト等のエステル系、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系、メタノ−ル、エタノ−ル、イソプロパノ−ル、n−ブタノ−ル、イソブタノ−ル、ジグリム、エチレングリコ−ルモノエチルエ−テル等のアルコ−ル系あるいはエ−テル系溶剤を用いることができる。一般式(h)で表される基を有するモノ(メタ)アクリレートと、フッ化アルキル基を有するモノ(メタ)アクリレートを溶剤に溶解し,脱気あるいは窒素置換などの処置を行い,重合反応が進行しやすくすることが好ましい。
The (meth) acrylate represented by the general formula (1) and the mono (meth) acrylate having a fluorine group such as a fluorinated alkyl group represented by the compound represented by the general formula (2) are essential. The acrylic copolymer H can be obtained by copolymerizing as a raw material. The copolymerization method is not particularly limited, and can be obtained according to a known synthesis method using a known polymerization initiator. Any of various polymerization methods such as bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, radiation polymerization, and photopolymerization can be employed. Of these, the solution radical polymerization method is preferred.
Examples of the polymerization initiator include benzoyl peroxide and 2,2′-azobisisobutyronitrile. In the polymerization, aromatic hydrocarbons such as benzene, toluene, xylene, aliphatic hydrocarbons such as hexane, heptane, cyclohexane, esters such as ethyl acetate, ethylene glycol monoethyl ether acetate, acetone, methyl ethyl ketone, Ketones such as methyl isobutyl ketone and cyclohexanone, methanol, ethanol, isopropanol, n-butanol, isobutanol, diglyme, ethylene glycol monoethyl ether and the like, or ether A system solvent can be used. A mono (meth) acrylate having a group represented by the general formula (h) and a mono (meth) acrylate having a fluorinated alkyl group are dissolved in a solvent, and treatment such as degassing or nitrogen substitution is performed, and a polymerization reaction is performed. It is preferable to make it easy to proceed.

アクリル共重合体Hの重量平均分子量(以下、Mwと略す)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で10000〜300000の範囲であり、12000〜200000がなお好ましく、20000〜100000がさらに好ましい。
Mwが10000未満では、本発明の課題である配向欠陥を改善させる力が弱く、特に配向性が悪い傾向がある。また、低分子量のため溶出しやすく他の部材を汚染するおそれもある。Mwが300000を越えると、粘度が高すぎてしまい取り扱いに不便を有することや、液晶層と完全に相分離してしまい本発明の効果を発揮できないおそれがある。
アクリル共重合体HのMwは、公知の方法、例えば、モノマーの対溶液濃度や重合開始剤の種類や濃度、溶媒の種類、反応条件等を適宜変化させることで制御可能であるので、目的に応じて条件を選択すればよい。例えば、溶媒として非プロトン溶媒を使用すると、比較的高分子量のアクリル共重合体Hが得られるし、プロトン溶媒を使用すると比較的低分子量のアクリル共重合体Hが得られる。
The weight average molecular weight (hereinafter abbreviated as Mw) of the acrylic copolymer H is in the range of 10,000 to 300,000 in terms of polystyrene by gel permeation chromatography (GPC), more preferably 12,000 to 200,000, and more preferably 20000 to 100,000. Further preferred.
When Mw is less than 10,000, the force for improving the alignment defect which is the subject of the present invention is weak, and the orientation tends to be particularly poor. Moreover, since it has a low molecular weight, it may be easily eluted and may contaminate other members. If Mw exceeds 300,000, the viscosity is too high, resulting in inconvenience in handling, and there is a possibility that the effect of the present invention cannot be exhibited due to complete phase separation from the liquid crystal layer.
The Mw of the acrylic copolymer H can be controlled by a known method, for example, by appropriately changing the monomer concentration with respect to the solution, the type and concentration of the polymerization initiator, the type of solvent, the reaction conditions, etc. The conditions may be selected accordingly. For example, when an aprotic solvent is used as the solvent, a relatively high molecular weight acrylic copolymer H can be obtained, and when a proton solvent is used, a relatively low molecular weight acrylic copolymer H can be obtained.

アクリル共重合体Hは、フッ素基含有率が3〜40質量%であり、且つ、基(h)を有する側鎖の全側鎖に対する割合が9〜95モル%あると、本発明の効果を最もよく発揮できる。
両者をこのバランスとすることで、少量の使用量で効果的に空気界面付近の配向欠陥を改善させることができる。中でも、フッ素基含有率が5〜40質量%で且つ基(h)を有する側鎖の全側鎖に対する割合が9〜95モル%であることが好ましく、フッ素基含有率が10〜40質量%で且つ基(h)を有する側鎖の全側鎖に対する割合が60〜95モル%であることがなお好ましく、フッ素基含有率が10〜35質量%であり且つ基(h)を有する側鎖の全側鎖に対する割合が70〜95モル%であることが特に好ましい。
なお、ここでいうフッ素基含有率は、アクリル共重合体Hが有するフッ素原子の総量の質量%を表し、基(h)を有する側鎖の全側鎖に対する割合とは、全モノマー単位に対する基(h)を有する側鎖のモル%を表す。
When the acrylic copolymer H has a fluorine group content of 3 to 40% by mass and the ratio of the side chain having the group (h) to the total side chain is 9 to 95 mol%, the effect of the present invention can be obtained. Can be used best.
By setting both to this balance, alignment defects near the air interface can be effectively improved with a small amount of use. Especially, it is preferable that the ratio with respect to all the side chains of the side chain which has a fluorine group content rate of 5-40 mass% and a group (h) is 9-95 mol%, and a fluorine group content rate is 10-40 mass%. It is still more preferable that the ratio of the side chain having the group (h) to the total side chain is 60 to 95 mol%, the fluorine group content is 10 to 35% by mass, and the side chain having the group (h) It is particularly preferable that the ratio of to the total side chain is 70 to 95 mol%.
In addition, the fluorine group content here represents the mass% of the total amount of the fluorine atom which the acrylic copolymer H has, and the ratio with respect to all the side chains of the side chain which has group (h) is group with respect to all the monomer units. It represents the mol% of the side chain having (h).

前記比率は、基(h)を有する(メタ)アクリレートと、フッ素基を有するモノ(メタ)アクリレートとの配合量や、フッ素基を有するモノ(メタ)アクリレートのフッ素基含有率より、所望の範囲に設計することが可能である。
フッ素基含有率は、原料であるフッ素基を有するモノ(メタ)アクリレートのフッ素基含有率及び共重合する際の配合量から計算する方法や、NMR等により測定することができる。
The ratio is within a desired range from the blending amount of the (meth) acrylate having the group (h) and the mono (meth) acrylate having a fluorine group and the fluorine group content of the mono (meth) acrylate having a fluorine group. It is possible to design.
The fluorine group content can be measured by a method of calculating from the fluorine group content of the mono (meth) acrylate having a fluorine group as a raw material and the blending amount when copolymerizing, NMR or the like.

アクリル共重合体Hの好ましい例としては、例えば、2−フェニルオキシエチルアクリレートと1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートとの共重合体や、シクロヘキシルメタクリレートと1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートとの共重合体や、フェニルアクリレートと1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートとの共重合体や、2−シクロヘキシルエチルアクリレートと1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートとの共重合体や、3−フェニルオキシプロピルアクリレートと1H,1H,2H,2H−ノナデカフルオロドデシルアクリレートとの共重合体や、3−シクロヘキシルプロピルメタクリレートと1H,1H,2H,2H−ノナデカフルオロドデシルアクリレートとの共重合体や、2−(4−メチルフェニルオキシ)エチルアクリレートと1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートとの共重合体や、4−メチルシクロヘキシルメタクリレートと、1H,1H,2H,2H−ノナデカフルオロドデシルアクリレートとの共重合体や、2−(4フルオロフェニルオキシ)エチルアクリレートと1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートとの共重合体があげられる。   Preferred examples of the acrylic copolymer H include, for example, a copolymer of 2-phenyloxyethyl acrylate and 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, cyclohexyl methacrylate and 1H, 1H, 2H, 2H. -Copolymer with heptadecafluorodecyl acrylate, copolymer with phenyl acrylate and 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, 2-cyclohexylethyl acrylate with 1H, 1H, 2H, 2H- Copolymers of heptadecafluorodecyl acrylate, copolymers of 3-phenyloxypropyl acrylate and 1H, 1H, 2H, 2H-nonadecafluorododecyl acrylate, 3-cyclohexylpropyl methacrylate and 1H, 1H, 2H , 2H-Nonadekaful A copolymer of rhododecyl acrylate, a copolymer of 2- (4-methylphenyloxy) ethyl acrylate and 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, 4-methylcyclohexyl methacrylate and 1H , 1H, 2H, 2H-nonadecafluorododecyl acrylate, and 2- (4 fluorophenyloxy) ethyl acrylate and 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate It is done.

さらに,本発明の効果を損なわない範囲で、一般式(1)で表される(メタ)アクリレートとフッ素基を有するモノ(メタ)アクリレート以外に,共重合可能な公知のエチレン性単量体を加えてもよい。公知のエチレン性単量体としては、例えば、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、スチレン、α−メチルスチレン、酢酸ビニル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、iso−ブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、n−オクチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、メチルビニルエーテル、プロピルビニルエーテル、オクチルビニルエーテル、ブタジエン、イソプレン、クロロプレン、2−ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸、(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、3−クロロ−2−ヒドロキシ(メタ)アクリレート、ジアセトンアクリルアミド,n−セチル(メタ)アクリレート、n−ステアリル(メタ)アクリレート、n−ベヘニル(メタ)アクリレート、iso−ステアリル(メタ)クリレート,アセトアセトキシエチルアクリレート、アセトアセトキシエチルメタクリレート、アセトアセトキシエチルクロトナート、アセトアセトキシプロピルアクリレート、アセトアセトキシプロピルメタクリレート、アセトアセトキシプロピルクロトナート、2−シアノアセトアセトキシエチルメタクリレート、N−(2−アセトアセトキシエチル)アクリルアミド、N−(2−アセトアセトキシエチル)メタクリルアミド、アセト酢酸アリル、アセト酢酸ビニルなどが挙げられる。これらは、2種以上を併用してもよい。また、前記エチレン性単量体のうち、カルボキシル基、アミノ基、アミド基、ウレタン基等の官能基を有するものは、それらの官能基が重合中ゲル化したり、貯蔵中に反応が進行したりライフが短くなるなど好ましくないが、極少量ならば共重合することも可能である。   Furthermore, in the range which does not impair the effect of this invention, the well-known ethylenic monomer which can be copolymerized other than the (meth) acrylate represented by General formula (1) and the mono (meth) acrylate which has a fluorine group is used. May be added. Known ethylenic monomers include, for example, ethylene, propylene, vinyl chloride, vinylidene chloride, styrene, α-methylstyrene, vinyl acetate, methyl (meth) acrylate, ethyl (meth) acrylate, and n-butyl (meth). Acrylate, iso-butyl (meth) acrylate, tert-butyl (meth) acrylate, hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) Acrylate, hexadecyl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclo Tantanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, methyl vinyl ether, propyl vinyl ether, octyl vinyl ether, butadiene, isoprene, chloroprene, 2-hydroxyethyl (meth) acrylate, (meth) acrylic acid, (meth) acrylamide, N -Methylol (meth) acrylamide, 3-chloro-2-hydroxy (meth) acrylate, diacetone acrylamide, n-cetyl (meth) acrylate, n-stearyl (meth) acrylate, n-behenyl (meth) acrylate, iso-stearyl (Meth) acrylate, acetoacetoxyethyl acrylate, acetoacetoxyethyl methacrylate, acetoacetoxyethyl crotonate, acetoacetoxypropyl acrylate, Cetoacetoxypropyl methacrylate, acetoacetoxypropyl crotonate, 2-cyanoacetoacetoxyethyl methacrylate, N- (2-acetoacetoxyethyl) acrylamide, N- (2-acetoacetoxyethyl) methacrylamide, allyl acetoacetate, vinyl acetoacetate, etc. Is mentioned. Two or more of these may be used in combination. Among the ethylenic monomers, those having a functional group such as a carboxyl group, an amino group, an amide group, and a urethane group are gelled during polymerization or the reaction proceeds during storage. Although it is not preferable because the life is shortened, copolymerization is possible if the amount is extremely small.

前記公知のエチレン性単量体の使用量は、アクリル共重合体Hとしての機能を損なわない範囲内とするのが好ましく、例えば60質量%以下が好ましく、30質量%以下が最も好ましい。   The amount of the known ethylenic monomer used is preferably within a range that does not impair the function as the acrylic copolymer H. For example, it is preferably 60% by mass or less, and most preferably 30% by mass or less.

(重合性基を有する液晶化合物)
本発明の重合性液晶組成物は、アクリル共重合体Hと、(メタ)アクリロイル基、ビニルオキシ基、エポキシ基等の重合性基を有する液晶化合物を含有する。
本発明においては、本発明の重合性液晶組成物が液晶相を示すことが必要であって、使用する各々の重合性液晶化合物の全てが液晶相を示す必要はない。本発明において使用することのできる重合性液晶化合物は、単独で液晶相を示す化合物は勿論のこと、単独では液晶相を示さないが、融点を低下させて液晶相が発現するものや、他の液晶相を示す化合物と混合したときに液晶相を示すもの、液晶を示す化合物と類似した構造を持っていて他の液晶相を示す化合物が形成する液晶相の安定性を著しく低下させないもの等を含む。
(Liquid crystal compound having a polymerizable group)
The polymerizable liquid crystal composition of the present invention contains an acrylic copolymer H and a liquid crystal compound having a polymerizable group such as a (meth) acryloyl group, a vinyloxy group, or an epoxy group.
In the present invention, it is necessary that the polymerizable liquid crystal composition of the present invention exhibits a liquid crystal phase, and it is not necessary that all of the polymerizable liquid crystal compounds used exhibit a liquid crystal phase. The polymerizable liquid crystal compound that can be used in the present invention is not only a compound that exhibits a liquid crystal phase alone, but also does not exhibit a liquid crystal phase alone, but exhibits a liquid crystal phase by lowering the melting point, Those that exhibit a liquid crystal phase when mixed with a compound that exhibits a liquid crystal phase, those that have a structure similar to that of a compound that exhibits a liquid crystal, and that do not significantly reduce the stability of the liquid crystal phase formed by a compound that exhibits another liquid crystal phase, etc. Including.

本発明で使用する重合性液晶化合物としては特に限定はなく、例えば、特開平8−3111号公報に記載の液晶化合物、特開2000−178233号公報に記載の液晶化合物、特開2000−119222号公報に記載の液晶化合物、特開2000−327632号公報に記載の液晶化合物、特開2002−220421号公報に記載の液晶化合物、特開2003−55661号公報に記載の液晶化合物、特開2003−12762号公報に記載の液晶化合物等を使用することができる。重合性基を基(h)の両末端に有する棒状の二官能重合性液晶化合物あるいは三官能重合性液晶化合物を使用すると、配向を良好に固定化することができ好ましい。特に二官能重合性液晶化合物を使用することが好ましい。また、粘度や、液晶相を示す温度を調整する目的で、重合性基を基(h)の片末端に有する棒状の単官能重合性液晶化合物を併用することも好ましい。   The polymerizable liquid crystal compound used in the present invention is not particularly limited, and examples thereof include a liquid crystal compound described in JP-A-8-3111, a liquid crystal compound described in JP-A 2000-178233, and JP-A 2000-119222. The liquid crystal compound described in JP-A-2000-327632, the liquid crystal compound described in JP-A-2002-220421, the liquid crystal compound described in JP-A-2003-55661, The liquid crystal compounds described in Japanese Patent No. 12762 can be used. The use of a rod-like bifunctional polymerizable liquid crystal compound or trifunctional polymerizable liquid crystal compound having a polymerizable group at both ends of the group (h) is preferable because the orientation can be fixed satisfactorily. In particular, it is preferable to use a bifunctional polymerizable liquid crystal compound. For the purpose of adjusting the viscosity and the temperature at which the liquid crystal phase is exhibited, it is also preferred to use a rod-like monofunctional polymerizable liquid crystal compound having a polymerizable group at one end of the group (h).

アクリル共重合体Hの使用量は、重合性液晶組成物が液晶性を示す範囲内であれば添加量は限定されず、通常は0.1〜6.0質量%の範囲で使用する。中でも、0.2〜3.0質量%の範囲が好ましく、0.2〜2.0質量%の範囲がさらに好ましく、0.3〜1.5質量%の範囲が最も好ましい。0.1質量%に満たない量では、層表面に均一に膜状にすることがやや困難であり、6.0質量%を越える量では、添加量全てが層表面に偏在できずに一部が層内部に残り、重合性液晶と相分離を起こることがある。
前記アクリル共重合体Hは、数種類を併用して使用することもできる。
The amount of the acrylic copolymer H used is not limited as long as the polymerizable liquid crystal composition exhibits liquid crystallinity, and the amount used is usually in the range of 0.1 to 6.0% by mass. Especially, the range of 0.2-3.0 mass% is preferable, the range of 0.2-2.0 mass% is more preferable, and the range of 0.3-1.5 mass% is the most preferable. If the amount is less than 0.1% by mass, it is somewhat difficult to form a uniform film on the surface of the layer. If the amount exceeds 6.0% by mass, all of the added amount cannot be unevenly distributed on the layer surface. May remain inside the layer and cause phase separation with the polymerizable liquid crystal.
The acrylic copolymer H can be used in combination of several kinds.

本発明の重合性液晶組成物は、重合性基を有していない液晶化合物を必要に応じて添加してもよい。しかし、添加量が多すぎると、得られた光学異方体から液晶化合物が溶出して積層部材を汚染する恐れがあり、加えて光学異方体の耐熱性が下がるおそれがあるので、添加する場合は、重合性液晶化合物全量に対して30質量%以下とすることが好ましく、15質量%以下がさらに好ましく、5質量%以下が特に好ましい。   In the polymerizable liquid crystal composition of the present invention, a liquid crystal compound having no polymerizable group may be added as necessary. However, if the addition amount is too large, the liquid crystal compound may be eluted from the obtained optical anisotropic body to contaminate the laminated member, and in addition, the heat resistance of the optical anisotropic body may be reduced. In this case, the content is preferably 30% by mass or less, more preferably 15% by mass or less, and particularly preferably 5% by mass or less with respect to the total amount of the polymerizable liquid crystal compound.

本発明の重合性液晶組成物は、必要に応じて、熱重合開始剤、光重合開始剤等の重合開始剤を添加することもできる。熱重合開始剤としては、例えば、過酸化ベンゾイル、2,2’−アゾビスイソブチロニトリル等が挙げられる。また、光重合開始剤としては、例えば、ベンゾインエーテル類、ベンゾフェノン類、アセトフェノン類、ベンジルケタール類、チオキサントン類等が挙げられる。また、光カチオン開始剤としては、光酸発生剤を用いることができる。光酸発生剤としてはジアゾジスルホン系化合物、トリフェニルスルホニウム系化合物、フェニルスルホン系化合物、スルフォニルピリジン系化合物、トリアジン系化合物及びジフェニルヨードニウム化合物が好適に用いられる。添加する場合は、重合性液晶組成物に対して10質量%以下であることが好ましく、6質量%以下が特に好ましく、1〜4質量%の範囲が更に好ましい。   In the polymerizable liquid crystal composition of the present invention, a polymerization initiator such as a thermal polymerization initiator or a photopolymerization initiator can be added as necessary. Examples of the thermal polymerization initiator include benzoyl peroxide and 2,2'-azobisisobutyronitrile. Examples of the photopolymerization initiator include benzoin ethers, benzophenones, acetophenones, benzyl ketals, thioxanthones, and the like. Moreover, a photo-acid generator can be used as a photocation initiator. As the photoacid generator, diazodisulfone compounds, triphenylsulfonium compounds, phenylsulfone compounds, sulfonylpyridine compounds, triazine compounds and diphenyliodonium compounds are preferably used. When adding, it is preferable that it is 10 mass% or less with respect to a polymeric liquid crystal composition, 6 mass% or less is especially preferable, and the range of 1-4 mass% is still more preferable.

本発明の重合性液晶組成物は、重合性基を有するが重合性液晶化合物ではない化合物を添加することもできる。このような化合物としては、通常、この技術分野で重合性モノマーあるいは重合性オリゴマーとして認識されるものであれば特に制限なく使用することができる。添加する場合は、本発明の重合性液晶組成物に対して、5質量%以下であることが好ましく、3質量%以下が更に好ましい。   In the polymerizable liquid crystal composition of the present invention, a compound having a polymerizable group but not a polymerizable liquid crystal compound may be added. Such a compound can be used without particular limitation as long as it is generally recognized as a polymerizable monomer or polymerizable oligomer in this technical field. When adding, it is preferable that it is 5 mass% or less with respect to the polymeric liquid crystal composition of this invention, and 3 mass% or less is still more preferable.

本発明の重合性液晶組成物は、光学活性を有する化合物、すなわちキラル化合物を添加してもよい。該キラル化合物は、それ自体が液晶相を示す必要は無く、また、重合性基を有していても、有していなくても良い。また、キラル化合物の螺旋の向きは、重合体の使用用途によって適宜選択することができる。
具体的には、例えば、キラル基としてコレステリル基を有するペラルゴン酸コレステロール、ステアリン酸コレステロール、キラル基として2−メチルブチル基を有するビーディーエイチ社製の「CB−15」、「C−15」、メルク社製の「S−1082」、チッソ社製の「CM−19」、「CM−20」、「CM」、キラル基として1−メチルヘプチル基を有するメルク社製の「S−811」、チッソ社製の「CM−21」、「CM−22」などを挙げることができる。
キラル化合物を添加する場合は、本発明の重合性液晶組成物の重合体の用途によるが、得られる重合体の厚み(d)を重合体中での螺旋ピッチ(P)で除した値(d/P)が0.1〜100の範囲となる量を添加することが好ましく、0.1〜20の範囲となる量がさらに好ましい。
The polymerizable liquid crystal composition of the present invention may be added with a compound having optical activity, that is, a chiral compound. The chiral compound itself does not need to exhibit a liquid crystal phase, and may or may not have a polymerizable group. Moreover, the direction of the spiral of the chiral compound can be appropriately selected depending on the intended use of the polymer.
Specifically, for example, CB-15, “C-15”, Merck manufactured by BDH Corporation having cholesterol as a chiral group having cholesteryl group as cholesterol group, cholesterol stearate, and 2-methylbutyl group as a chiral group. “S-1082” manufactured by the company, “CM-19”, “CM-20”, “CM” manufactured by Chisso, “S-811” manufactured by Merck having 1-methylheptyl group as a chiral group, “CM-21”, “CM-22” and the like manufactured by the company can be mentioned.
When adding a chiral compound, depending on the use of the polymer of the polymerizable liquid crystal composition of the present invention, the value obtained by dividing the thickness (d) of the obtained polymer by the helical pitch (P) in the polymer (d / P) is preferably added in an amount in the range of 0.1 to 100, more preferably in the range of 0.1 to 20.

本発明の重合性液晶組成物には、保存安定性を向上させるために安定剤を添加することもできる。安定剤として例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類等が挙げられる。添加する場合は、本発明の重合性液晶組成物に対して1質量%以下であることが好ましく、0.5質量%以下が特に好ましい。   A stabilizer may be added to the polymerizable liquid crystal composition of the present invention in order to improve storage stability. Examples of the stabilizer include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols and the like. When adding, it is preferable that it is 1 mass% or less with respect to the polymeric liquid crystal composition of this invention, and 0.5 mass% or less is especially preferable.

本発明の重合性液晶組成物を偏光フィルムや配向膜の原料、又は印刷インキ及び塗料、保護膜等の用途に利用する場合には、その目的に応じて、金属、金属錯体、染料、顔料、蛍光材料、燐光材料、界面活性剤、レベリング剤、チキソ剤、ゲル化剤、多糖類、紫外線吸収剤、赤外線吸収剤、抗酸化剤、イオン交換樹脂、酸化チタン等の金属酸化物、などを添加してもよい。   When the polymerizable liquid crystal composition of the present invention is used for a polarizing film, a raw material for an alignment film, or printing ink and paint, a protective film, etc., depending on the purpose, a metal, a metal complex, a dye, a pigment, Add fluorescent materials, phosphorescent materials, surfactants, leveling agents, thixotropic agents, gelling agents, polysaccharides, ultraviolet absorbers, infrared absorbers, antioxidants, ion exchange resins, metal oxides such as titanium oxide, etc. May be.

本発明の重合性液晶組成物を、配向機能を有する基板上に塗布し、本発明の重合性液晶組成物中の液晶分子を、ネマチック相を保持した状態で均一に配向させ、重合させることによって、本発明の光学異方体が得られる。   By applying the polymerizable liquid crystal composition of the present invention on a substrate having an alignment function, and uniformly aligning and polymerizing liquid crystal molecules in the polymerizable liquid crystal composition of the present invention while maintaining a nematic phase. Thus, the optical anisotropic body of the present invention is obtained.

(配向機能を有する基板)
前記基板は、有機、無機を問わず、公知慣用の材質の基板を使用することができる。例えば、ポリエチレンテレフタレート板、ポリカーボネート板、ポリイミド板、ポリアミド板、ポリメタクリル酸メチル板、ポリスチレン板、ポリ塩化ビニル板、ポリテトラフルオロエチレン板、セルロース板、三酢酸セルロース板,ポリエーテルスルホン板、ポリシクロオレフィン板、シリコン板、ガラス板、方解石板等が挙げられる。基板の形状としては、平板の他、曲面を有するものであっても良い。これらの基板は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。
(Substrate with orientation function)
The substrate may be a known and commonly used substrate, regardless of whether it is organic or inorganic. For example, polyethylene terephthalate plate, polycarbonate plate, polyimide plate, polyamide plate, polymethyl methacrylate plate, polystyrene plate, polyvinyl chloride plate, polytetrafluoroethylene plate, cellulose plate, cellulose triacetate plate, polyethersulfone plate, polycyclo Examples include olefin plates, silicon plates, glass plates, and calcite plates. The shape of the substrate may be a curved surface in addition to a flat plate. These substrates may have an electrode layer, an antireflection function, and a reflection function as necessary.

前記基板に配向機能を付与する方法としては特に限定はなく、公知慣用の方法が挙げられる。具体的には、布等で基板表面をラビング処理する方法、ポリイミド薄膜又はポリビニルアルコール薄膜等の有機薄膜を基板表面に形成し、これを布等でラビング処理する方法、基板にSiOを斜方蒸着して配向膜を形成する方法、分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜に、偏光または非偏光を照射する方法等が挙げられる。一様な配向状態を形成するためには、通常のツイステッド・ネマチック素子又はスーパー・ツイステッド・ネマチック素子で使用されているプレチルト角を与えるポリイミド薄膜を使用すると、液晶分子の配向状態の制御を容易にすることができる。 The method for imparting an alignment function to the substrate is not particularly limited, and a known and commonly used method can be used. Specifically, a method of rubbing a substrate surface with a cloth or the like, an organic thin film such as a polyimide thin film or polyvinyl alcohol film was formed on the substrate surface, a method of which a rubbing with a cloth or the like, orthorhombic a SiO 2 substrate Examples include a method of forming an alignment film by vapor deposition, a method of irradiating polarized light or non-polarized light to an organic thin film having a functional group that undergoes photodimerization reaction in a molecule or an organic thin film having a functional group that is isomerized by light. In order to form a uniform alignment state, it is easy to control the alignment state of liquid crystal molecules by using a polyimide thin film that gives a pretilt angle that is used in a normal twisted nematic element or a super twisted nematic element. can do.

一般に、配向機能を有する基板に液晶組成物を接触させた場合、液晶分子は基板付近で基板を配向処理した方向に沿って配向する。液晶分子が基板と水平に配向するか、傾斜あるいは垂直して配向するかは、基板への配向処理方法による影響が大きい。
例えば、インプレーンスイッチング(IPS)方式の液晶表示素子に使用するようなプレチルト角のごく小さな配向膜を基板上に設ければ、ほとんど水平に配向した重合性液晶層が得られる。
また、TN型液晶表示素子に使用するような配向膜を基板上に設けた場合は、少しだけ配向が傾斜した重合性液晶層が得られ、STN方式の液晶表示素子に使用するような配向膜を使うと、大きく配向が傾斜した重合性液晶層が得られる。
In general, when a liquid crystal composition is brought into contact with a substrate having an alignment function, liquid crystal molecules are aligned in the direction in which the substrate is aligned in the vicinity of the substrate. Whether the liquid crystal molecules are aligned horizontally with respect to the substrate or inclined or perpendicular to the substrate is greatly influenced by the alignment treatment method for the substrate.
For example, if an alignment film having a very small pretilt angle as used in an in-plane switching (IPS) type liquid crystal display element is provided on a substrate, a polymerizable liquid crystal layer aligned almost horizontally can be obtained.
In addition, when an alignment film used for a TN type liquid crystal display element is provided on the substrate, a polymerizable liquid crystal layer having a slightly inclined alignment is obtained, and the alignment film used for an STN type liquid crystal display element is obtained. When is used, a polymerizable liquid crystal layer having a large alignment gradient can be obtained.

液晶組成物をプレチルト角のごく小さな水平配向(略水平配向)機能を有する基板に接触させたとき、組成物中の液晶分子は、基板付近ではきちんと水平配向するが空気界面付近では配向規制力がうまく伝播されず、一部配向が乱れる(これが配向欠陥である)。しかしアクリル共重合体Hを含有する本発明の重合性液晶組成物は、該共重合体Hが空気界面近傍に偏在し、重合性液晶組成物中の液晶分子が受けた基板側の配向規制力を妨げることなく、空気界面付近の液晶分子を配向させるため、ほとんど水平に配向した、あるいは、連続的に傾き角が変化し傾斜配向した重合性液晶層を得ることができ、配向欠陥がなく、基板面に対して垂直な方向から見たときの光学的異方性の大きい光学異方体を得ることができると考えられる。この効果は、基(h)が、排除体積効果による配向力がほとんどないと考えられるフェニル環やシクロヘキサン環であるアクリル共重合体Hを使用した時に最も大きく得られ、更に、該アクリル共重合体Hを添加することにより液体−液晶転移温度が低下するような重合性液晶組成物bの組み合わせで使用すると最も効果的である。該組み合わせでは、空気界面付近の液体−液晶転移温度が低下するので、基板側からうける液晶分子の配向規制力がさらに効果的に界面付近まできちんと伝播すると考えられる。   When the liquid crystal composition is brought into contact with a substrate having a horizontal alignment (substantially horizontal alignment) function with a very small pretilt angle, the liquid crystal molecules in the composition are aligned horizontally in the vicinity of the substrate, but the alignment regulating force is in the vicinity of the air interface. It is not propagated well, and the orientation is partially disturbed (this is an orientation defect). However, the polymerizable liquid crystal composition of the present invention containing the acrylic copolymer H has a substrate-side alignment regulation force that the copolymer H is unevenly distributed near the air interface and the liquid crystal molecules in the polymerizable liquid crystal composition receive. In order to align the liquid crystal molecules in the vicinity of the air interface without hindering, it is possible to obtain a polymerizable liquid crystal layer that is aligned almost horizontally, or the tilt angle continuously changes and tilts and has no alignment defects. It is considered that an optical anisotropic body having a large optical anisotropy when viewed from a direction perpendicular to the substrate surface can be obtained. This effect is most greatly obtained when the acrylic copolymer H in which the group (h) is a phenyl ring or a cyclohexane ring, which is considered to have almost no orientation force due to the excluded volume effect, is further obtained. It is most effective when used in combination with the polymerizable liquid crystal composition b in which the liquid-liquid crystal transition temperature is lowered by adding H. In this combination, the liquid-liquid crystal transition temperature in the vicinity of the air interface decreases, so it is considered that the alignment regulating force of the liquid crystal molecules received from the substrate side propagates more effectively near the interface.

また、本発明の重合性液晶組成物を、プレチルト角を有する水平配向機能を有する基板に接触させたときは、基板付近から空気界面付近まで一様又は連続的に角度が変化して傾斜配向した光学異方体を得ることができる。この機構も上記と同様と考えられる。   Further, when the polymerizable liquid crystal composition of the present invention is brought into contact with a substrate having a pre-tilt angle and having a horizontal alignment function, the angle is uniformly or continuously changed from the vicinity of the substrate to the vicinity of the air interface so that the alignment is inclined. An optical anisotropic body can be obtained. This mechanism is also considered to be similar to the above.

また、分子内に光二量化反応する官能基を有する有機薄膜や光で異性化する官能基を有する有機薄膜(以下光配向膜と略す)に、偏光または非偏光を照射する方法等(光配向法)を用いれば、パターン状に配向方向が異なる領域が分布した基板を作製することができる。   In addition, an organic thin film having a functional group that undergoes photodimerization reaction in the molecule or an organic thin film having a functional group that is isomerized by light (hereinafter referred to as a photo-alignment film) is irradiated with polarized light or non-polarized light (photo-alignment method). ) Can be used to produce a substrate in which regions with different orientation directions are distributed in a pattern.

初めに、光配向膜を設置した基板上に光配向膜の吸収帯にある波長の光を照射し、一様な配向が得られる基板を準備する。その後、当該基板にマスクを被せ、マスクの上から光配向膜の吸収波長にある第1の照射と異なる状態の光、例えば偏光状態が異なる光あるいは照射角度及び方向が異なる光を照射して、照射部分だけに第1の照射で得られた部分と異なる配向機能を持たせる。   First, a substrate on which a uniform alignment is obtained is prepared by irradiating light having a wavelength in the absorption band of the photo-alignment film onto the substrate on which the photo-alignment film is installed. After that, the substrate is covered with a mask, and irradiated with light in a state different from the first irradiation at the absorption wavelength of the photo-alignment film from above the mask, for example, light having a different polarization state or light having a different irradiation angle and direction, Only the irradiated portion has an orientation function different from the portion obtained by the first irradiation.

以上のように得られたパターン状に配向機能の異なる領域が分布した基板に重合性液晶組成物を接触させれば、基板の配向機能に応じてパターン状に配向方向の異なる領域が分布する。この状態で光照射による重合を行えば、配向パターンを有する光学異方体を得ることができる。   When the polymerizable liquid crystal composition is brought into contact with the substrate in which regions having different alignment functions are distributed in the pattern obtained as described above, regions having different alignment directions are distributed in a pattern according to the alignment function of the substrate. If polymerization by light irradiation is performed in this state, an optical anisotropic body having an alignment pattern can be obtained.

特に、前記基板として、パターン状に配向方向の異なる領域が分布している略水平配向機能を有する基板を使用すれば、位相差膜として特に有用な光学異方体を得ることができる。   In particular, when a substrate having a substantially horizontal alignment function in which regions having different alignment directions are distributed in a pattern is used as the substrate, an optical anisotropic body particularly useful as a retardation film can be obtained.

この時に使われる光配向膜は、複数回の光照射に反応してそれぞれ配向方向を変えられなければならないので、低分子量の化合物から成るものが望ましい。   The photo-alignment film used at this time is preferably made of a low molecular weight compound because the orientation direction must be changed in response to a plurality of times of light irradiation.

光配向膜を使わずに配向パターンを得る方法としては、AFMの触針で配向膜をラビングする方法、光学異方体をエッヂングする方法などが挙げられるが、光配向膜を利用する方法が簡便であり好ましい。   Examples of a method for obtaining an alignment pattern without using a photo-alignment film include a method of rubbing the alignment film with an AFM stylus and a method of edging an optical anisotropic body, but a method using a photo-alignment film is simple. It is preferable.

(塗布方法)
本発明の重合性液晶組成物を基板上に塗布する場合は、バーコーティング、スピンコーティング、ロールコーティング、グラビアコーティング、スプレーコーティング、ダイコーティング、キャップコーティング、ディッピング法等の公知慣用のコーティング法を利用すればよい。このとき、塗工性を高めるために、本発明の重合性液晶組成物に公知慣用の有機溶媒を添加しても良い。この場合は、本発明の重合性液晶組成物を基板上に塗布後、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥等で有機溶媒を除去する。
(Application method)
When the polymerizable liquid crystal composition of the present invention is applied on a substrate, a known and commonly used coating method such as bar coating, spin coating, roll coating, gravure coating, spray coating, die coating, cap coating, dipping method or the like can be used. That's fine. At this time, in order to improve coatability, a known and commonly used organic solvent may be added to the polymerizable liquid crystal composition of the present invention. In this case, after coating the polymerizable liquid crystal composition of the present invention on the substrate, the organic solvent is removed by natural drying, heat drying, reduced pressure drying, reduced pressure heat drying or the like.

塗布後、本発明の重合性液晶組成物中の液晶分子をネマチック相を保持した状態で均一に配向させることが好ましい。具体的には、液晶の配向を促すような熱処理を行うと、アクリル共重合体Hをより表面に偏在させ、配向をより促進することができ好ましい。熱処理法としては、例えば、本発明の重合性液晶組成物を基板上に塗布後、該液晶組成物のN(ネマチック相)−I(等方性液体相)転移温度(以下、N−I転移温度と略す)以上に加熱して、該液晶組成物を等方相液体状態にする。そこから、必要に応じ徐冷してネマチック相を発現させる。このとき、一旦液晶相を呈する温度に保ち、液晶相ドメインを充分に成長させてモノドメインとすることが望ましい。
あるいは、本発明の重合性液晶組成物を基板上に塗布後、本発明の重合性液晶組成物のネマチック相が発現する温度範囲内で温度を一定時間保つような加熱処理を施しても良い。
After coating, it is preferable to uniformly align the liquid crystal molecules in the polymerizable liquid crystal composition of the present invention while maintaining the nematic phase. Specifically, it is preferable to perform a heat treatment that promotes the alignment of the liquid crystal because the acrylic copolymer H is more unevenly distributed on the surface and the alignment can be further promoted. As a heat treatment method, for example, after applying the polymerizable liquid crystal composition of the present invention on a substrate, the N (nematic phase) -I (isotropic liquid phase) transition temperature (hereinafter referred to as the NI transition) of the liquid crystal composition. The liquid crystal composition is brought into an isotropic liquid state by heating to a temperature higher than that. From there, it is gradually cooled as necessary to develop a nematic phase. At this time, it is desirable to maintain the temperature at which the liquid crystal phase is once exhibited, and to sufficiently grow the liquid crystal phase domain into a mono domain.
Alternatively, after the polymerizable liquid crystal composition of the present invention is applied on a substrate, a heat treatment may be performed such that the temperature is maintained for a certain time within a temperature range in which the nematic phase of the polymerizable liquid crystal composition of the present invention is expressed.

加熱温度が高過ぎると重合性液晶化合物が好ましくない重合反応を起こして劣化するおそれがある。また、冷却しすぎると、重合性液晶組成物が相分離を起こし、結晶の析出、スメクチック相のような高次液晶相を発現し、配向処理が不可能になることがある。
このような熱処理をすることで、単に塗布するだけの塗工方法と比べて、配向欠陥の少ない均質な光学異方体を作製することができる。
また、このようにして均質な配向処理を行った後、液晶相が相分離を起こさない最低の温度、即ち過冷却状態となるまで冷却し、該温度において液晶相を配向させた状態で重合すると、より配向秩序が高く、透明性に優れる光学異方体を得ることができる。
If the heating temperature is too high, the polymerizable liquid crystal compound may deteriorate due to an undesirable polymerization reaction. Moreover, when it cools too much, a polymeric liquid crystal composition raise | generates a phase-separation, expresses a high-order liquid crystal phase like crystal precipitation and a smectic phase, and an alignment process may become impossible.
By performing such a heat treatment, it is possible to produce a homogeneous optical anisotropic body with few alignment defects as compared with a coating method in which coating is simply performed.
In addition, after performing the homogeneous alignment treatment in this way, the liquid crystal phase is cooled to a minimum temperature at which phase separation does not occur, that is, is supercooled, and polymerization is performed in a state where the liquid crystal phase is aligned at the temperature. Thus, an optical anisotropic body having higher orientation order and excellent transparency can be obtained.

(重合方法)
本発明の重合性液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。照射時の温度は、本発明の重合性液晶組成物が液晶相を保持できる温度とし、重合性液晶組成物の熱重合の誘起を避けるため、可能な限り30℃以下とすることが好ましい。尚、液晶組成物は、通常、昇温過程において、C(固相)−N(ネマチック)転移温度(以下、C−N転移温度と略す。)から、N−I転移温度範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C−N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。紫外線照射強度は、1W/m〜10kW/mの範囲が好ましい。特に、5W/m〜2kW/mの範囲が好ましい。紫外線強度が1W/m未満の場合、重合を完了させるのに多大な時間がかかる。一方、2kW/mを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にあることや、重合熱が多く発生して重合中の温度が上昇し、重合性液晶のオーダーパラメーターが変化して、重合後のフィルムのリタデーションに狂いが生じる可能性がある。
(Polymerization method)
Examples of the method for polymerizing the polymerizable liquid crystal composition of the present invention include a method of irradiating active energy rays and a thermal polymerization method. However, since the reaction proceeds at room temperature without requiring heating, active energy rays are used. A method of irradiating is preferable, and among them, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple. The temperature at the time of irradiation is preferably set to 30 ° C. or less as much as possible in order to avoid the induction of thermal polymerization of the polymerizable liquid crystal composition so that the polymerizable liquid crystal composition of the present invention can maintain the liquid crystal phase. The liquid crystal composition usually has a liquid crystal phase in the range from the C (solid phase) -N (nematic) transition temperature (hereinafter abbreviated as C-N transition temperature) to the NI transition temperature in the temperature rising process. Indicates. On the other hand, in the temperature lowering process, a non-equilibrium state is taken thermodynamically, so that the liquid crystal state may be maintained without being solidified even at a temperature lower than the CN transition temperature. This state is called a supercooled state. In the present invention, the liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is retained. The ultraviolet irradiation intensity is preferably in the range of 1 W / m 2 to 10 kW / m 2 . In particular, the range of 5 W / m 2 to 2 kW / m 2 is preferable. When the ultraviolet intensity is less than 1 W / m 2 , it takes a lot of time to complete the polymerization. On the other hand, when the strength exceeds 2 kW / m 2 , liquid crystal molecules in the polymerizable liquid crystal composition tend to be photodegraded, or a large amount of polymerization heat is generated to increase the temperature during polymerization. The parameter may change, and the retardation of the film after polymerization may be distorted.

マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。   After only a specific part is polymerized by UV irradiation using a mask, the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized. An optical anisotropic body having a plurality of regions having orientation directions can also be obtained.

また、マスクを使用して特定の部分のみを紫外線照射で重合させる際に、予め未重合状態の重合性液晶組成物に電場、磁場又は温度等をかけて配向を規制し、その状態を保ったままマスク上から光を照射して重合させることによっても、異なる配向方向をもった複数の領域を有する光学異方体を得ることができる。   Further, when only a specific portion was polymerized by ultraviolet irradiation using a mask, the alignment was regulated in advance by applying an electric field, magnetic field or temperature to the unpolymerized polymerizable liquid crystal composition, and the state was maintained. An optical anisotropic body having a plurality of regions having different orientation directions can also be obtained by irradiating light from above the mask and polymerizing it.

本発明の重合性液晶組成物を重合させて得られる光学異方体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。特に、他の部材を汚染し難いので、被積層基板として使用したり、他の基板に貼り合わせて使用したりするときに有用である。   The optical anisotropic body obtained by polymerizing the polymerizable liquid crystal composition of the present invention can be peeled off from the substrate and used alone as an optical anisotropic body, or it can be used as an optical anisotropic body as it is without peeling off from the substrate. You can also In particular, since it is difficult to contaminate other members, it is useful when used as a laminated substrate or by being attached to another substrate.

以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は『質量%』を意味する。また、(メタ)アクリル共重合体HのMwは、ポリスチレン換算のGPCにて測定した。また、基(h)及びフッ化アルキル基の含有率(モル分率)はNMRにより決定した。   EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. Further, “%” in the compositions of the following examples and comparative examples means “mass%”. Further, Mw of the (meth) acrylic copolymer H was measured by GPC in terms of polystyrene. The content (molar fraction) of the group (h) and the fluorinated alkyl group was determined by NMR.

(合成例1 アクリル共重合体(H−1の合成)
ガラス製反応管に,2−フェノキシエチルアクリレート0.65gと、1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレート0.36g、及び2,2’アゾビス(2,4−ジメチルバレロニトリル)0.02gを秤取し,トルエン3mLを加えて溶解させた。この溶液に窒素気流を通じて酸素を取り除いた後,80℃で8時間、さらに、100℃で2時間反応させた。反応終了後、反応液を濃縮し,濃縮液を50mLのメタノール中に滴下、撹拌した。メタノール層をデカンテーションし、残留物を同様の操作で3回洗浄し、Mw36000の、2−フェノキシエチル基及び1H,1H,2H,2H−ヘプタデカフルオロデシル基を有するアクリル共重合体(H−1)0.4gを得た。
(Synthesis Example 1 Acrylic Copolymer (Synthesis of H-1)
In a glass reaction tube, 0.65 g of 2-phenoxyethyl acrylate, 0.36 g of 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate, and 2,2′azobis (2,4-dimethylvaleronitrile). 02 g was weighed and 3 mL of toluene was added and dissolved. After removing oxygen from this solution through a nitrogen stream, the solution was reacted at 80 ° C. for 8 hours and further at 100 ° C. for 2 hours. After completion of the reaction, the reaction solution was concentrated, and the concentrated solution was dropped into 50 mL of methanol and stirred. The methanol layer was decanted, and the residue was washed three times in the same manner, and an acrylic copolymer (H- 36000) having a 2-phenoxyethyl group and 1H, 1H, 2H, 2H-heptadecafluorodecyl group (H- 1) 0.4 g was obtained.

(合成例2 アクリル共重合体(H−2)の合成)
合成例1において、2−フェノキシエチルアクリレートの仕込み量を0.51g、1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートの仕込み量を0.50gに変えた以外は合成例1と同様にして、Mw41000の、2−フェノキシエチル基及び1H,1H,2H,2H−ヘプタデカフルオロデシル基を有するアクリル共重合体(H−2)0.35gを得た。
(Synthesis Example 2 Synthesis of Acrylic Copolymer (H-2))
In Synthesis Example 1, the same procedure as in Synthesis Example 1 was conducted except that the amount of 2-phenoxyethyl acrylate was changed to 0.51 g, and the amount of 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate was changed to 0.50 g. , Mw 41000, 0.35 g of an acrylic copolymer (H-2) having a 2-phenoxyethyl group and 1H, 1H, 2H, 2H-heptadecafluorodecyl group was obtained.

(合成例3 (メタ)アクリル共重合体(H−3)の合成)
合成例1において、2−フェノキシエチルアクリレートの代わりにシクロヘキシルメタクリレートを0.80g、1H,1H,2H,2H−ヘプタデカフルオロデシルアクリレートの仕込み量を0.20gに変えた以外は合成例1と同様にして、Mw31000の、シクロヘキシル基及び1H,1H,2H,2H−ヘプタデカフルオロデシル基を有する(メタ)アクリル共重合体(H−3)0.55gを得た。
(Synthesis Example 3 Synthesis of (meth) acrylic copolymer (H-3))
In Synthesis Example 1, the same procedure as in Synthesis Example 1 except that 0.80 g of cyclohexyl methacrylate was used instead of 2-phenoxyethyl acrylate, and the charge amount of 1H, 1H, 2H, 2H-heptadecafluorodecyl acrylate was changed to 0.20 g. Thus, 0.55 g of a (meth) acrylic copolymer (H-3) having a cyclohexyl group and 1H, 1H, 2H, 2H-heptadecafluorodecyl group of Mw31000 was obtained.

(比較合成例1 メタクリル重合体(H−4)の合成)
合成例1において、モノマーをメチルメタクリレートのみにした他は合成例1と同様にして、Mw29,600のメタクリル重合体(H−4)を得た。
(Comparative Synthesis Example 1 Synthesis of Methacrylic Polymer (H-4))
In Synthesis Example 1, a methacrylic polymer (H-4) having an Mw of 29,600 was obtained in the same manner as in Synthesis Example 1 except that the monomer was only methyl methacrylate.

(比較例用の添加剤)
比較例用の添加剤として、式Mで表される構造のフッ素系化合物を使用した。(添加剤(M)中のフッ素含有量は50質量%,基(h)の含有量は35質量%、分子量は644である)
(Additive for comparative example)
As an additive for the comparative example, a fluorine-based compound having a structure represented by the formula M was used. (The fluorine content in the additive (M) is 50 mass%, the content of the group (h) is 35 mass%, and the molecular weight is 644)

Figure 0005034200
(M)
Figure 0005034200
(M)

(重合性液晶組成物LC−1の調製)
式(a)〜(e)で表される化合物を(a):(b):(c):(d):(e)の配合比率が、質量比にして33:22:22:18:5となるよう使用し、重合性液晶組成物LC−1を調製した。
(Preparation of polymerizable liquid crystal composition LC-1)
The compounds represented by formulas (a) to (e) have a mixing ratio of (a) :( b) :( c) :( d) :( e) in a mass ratio of 33: 22: 22: 18: 5 was used to prepare a polymerizable liquid crystal composition LC-1.

Figure 0005034200
Figure 0005034200

(光学異方体用基板の作成)
下記式(S)で表されるアゾ化合物0.5gを、N−メチルピロリドン25gに加熱溶解し、この溶液にブチルセロソルブ(2−ブトキシエタノール)25gを加えた。これをポリフッ化ビニリデン製の孔径0.45μmのメンブランフィルターでろ過した。超音波洗浄を行った厚さ1mm、サイズが76mm×52mmの光学ガラス製ガラス板に前記アゾ化合物(S)溶液をスピンコートし(500回転/分で5秒後、2500回転/分で20秒)、100℃のホットプレート上で1分乾燥させた。その後室温で該光学ガラス板の真上から366nmの偏光紫外線照射(紫外線強度は200W/m、照射時間は100秒)を行った。
(Creation of optical anisotropic substrate)
0.5 g of an azo compound represented by the following formula (S) was dissolved by heating in 25 g of N-methylpyrrolidone, and 25 g of butyl cellosolve (2-butoxyethanol) was added to this solution. This was filtered through a membrane filter made of polyvinylidene fluoride and having a pore diameter of 0.45 μm. The azo compound (S) solution was spin-coated on an optical glass glass plate having a thickness of 1 mm and a size of 76 mm × 52 mm that had been subjected to ultrasonic cleaning (5 seconds at 500 rpm and 20 seconds at 2500 rpm). ) And dried on a hot plate at 100 ° C. for 1 minute. Thereafter, irradiation with polarized ultraviolet rays of 366 nm (ultraviolet intensity is 200 W / m 2 , irradiation time is 100 seconds) from directly above the optical glass plate at room temperature.

Figure 0005034200
Figure 0005034200

(リタデーション値)
リタデーションは中央精機(株)製「液晶特性評価装置(OMS−DI4RD)」を用いて測定した。
(Retardation value)
Retardation was measured using “Liquid Crystal Characteristic Evaluation Apparatus (OMS-DI4RD)” manufactured by Chuo Seiki Co., Ltd.

(重合性液晶組成物に(メタ)アクリル共重合体Hを20%添加したときの、液体―液晶転移温度測定方法)
重合性液晶組成物LC−1に、前記方法により合成した(メタ)アクリル共重合体Hを20質量%添加し、液体―液晶転移温度を測定した。測定は、メトラー社製DSC822eを用いて、サンプルを一度液体状態まで加温し、10℃/minで降温しながら行った。
(Measurement method of liquid-liquid crystal transition temperature when 20% of (meth) acrylic copolymer H is added to the polymerizable liquid crystal composition)
20% by mass of the (meth) acrylic copolymer H synthesized by the above method was added to the polymerizable liquid crystal composition LC-1, and the liquid-liquid crystal transition temperature was measured. The measurement was performed using a Mettler DSC 822e, once heating the sample to a liquid state and lowering the temperature at 10 ° C./min.

(実施例1)
アクリル共重合体(H−1)を0.5部、重合性液晶組成物LC−1を96部、チバスペシャリティケミカルズ(株)製の光重合開始剤「イルガキュア907」4部、キシレン100部を混合し、塗工用の組成物とした。この組成物をスピンコーターを用いて前記配向膜付きの光学異方体用基板上にスピンコートし(500回転/分で5秒後、2500回転/分で20秒)、重合性液晶組成物層を作成した。スピンコート直後の重合性液晶組成物層を偏光顕微鏡にて観察したところ、ディスクリネーションはまったく観察されず、良好な配向であった。この後、窒素雰囲気下で1分保った後、窒素雰囲気下で紫外線照射(紫外線強度:34W/m、照射時間:120秒)することで、ディスクリネーションのない、きれいな光学異方体を得た。得られた光学異方体の垂直方向から測定したリタデーション値は168nmと大きい値を示し、光学的異方性の大きい光学異方体であることが確認できた。また、配向規制軸に沿って垂直方向から傾くに従いリタデーション値は小さくなり垂直方向からみた場合のリタデーション値が最大値であったことから液晶分子は略水平配向していることがわかった。また、LC−1にアクリル共重合体(H−1)を20%添加したときの液体―液晶転移温度は1.0℃低下した。
Example 1
0.5 parts of acrylic copolymer (H-1), 96 parts of polymerizable liquid crystal composition LC-1, 4 parts of photopolymerization initiator “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd. and 100 parts of xylene It mixed and it was set as the composition for coating. The composition is spin-coated on the optically anisotropic substrate with the alignment film by using a spin coater (500 seconds / minute for 5 seconds and 2500 revolutions / minute for 20 seconds), and a polymerizable liquid crystal composition layer It was created. When the polymerizable liquid crystal composition layer immediately after spin coating was observed with a polarizing microscope, no disclination was observed and the alignment was good. After that, after maintaining for 1 minute in a nitrogen atmosphere, ultraviolet irradiation (ultraviolet light intensity: 34 W / m 2 , irradiation time: 120 seconds) is performed in a nitrogen atmosphere, thereby producing a clean optical anisotropic body without disclination. Obtained. The retardation value measured from the vertical direction of the obtained optical anisotropic body was as large as 168 nm, and it was confirmed that the optical anisotropic body had a large optical anisotropy. Further, the retardation value decreased as it tilted from the vertical direction along the alignment control axis, and the retardation value when viewed from the vertical direction was the maximum value, indicating that the liquid crystal molecules were aligned substantially horizontally. Further, the liquid-liquid crystal transition temperature was lowered by 1.0 ° C. when 20% of acrylic copolymer (H-1) was added to LC-1.

(実施例2)
アクリル共重合体(H−1)を、アクリル共重合体(H−2)に変更した他は実施例1と同様にして重合性液晶組成物層を作成した。スピンコート直後の重合性液晶組成物層を偏光顕微鏡にて観察したところ、ディスクリネーションはまったく観察されず、良好な配向であった。この後、実施例1と同様にして光重合を行い、ディスクリネーションのない、きれいな光学異方体を得た。得られた光学異方体の垂直方向から測定したリタデーション値は90nmであり、配向規制軸に沿って垂直方向から50度傾けた方向からのリタデーション値は188nmと大きくなり、逆方向に50度傾けた方向からのリタデーション値は40nmと小さくなっていたので液晶分子の配向はハイブリッドであることがわかった。また、LC−1にアクリル共重合体(H−2)を20%添加したときの液体―液晶転移温度は0.2℃低下した。
(Example 2)
A polymerizable liquid crystal composition layer was prepared in the same manner as in Example 1 except that the acrylic copolymer (H-1) was changed to the acrylic copolymer (H-2). When the polymerizable liquid crystal composition layer immediately after spin coating was observed with a polarizing microscope, no disclination was observed and the alignment was good. Thereafter, photopolymerization was carried out in the same manner as in Example 1 to obtain a clean optical anisotropic body without disclination. The retardation value measured from the vertical direction of the obtained optical anisotropic body is 90 nm, the retardation value from the direction tilted 50 degrees from the vertical direction along the alignment control axis is as large as 188 nm, and tilted 50 degrees in the reverse direction. Since the retardation value from the other direction was as small as 40 nm, the orientation of the liquid crystal molecules was found to be hybrid. Further, when 20% of acrylic copolymer (H-2) was added to LC-1, the liquid-liquid crystal transition temperature decreased by 0.2 ° C.

(実施例3)
アクリル共重合体(H−1)を、(メタ)アクリル共重合体(H−3)に変更した他は実施例1と同様にして重合性液晶組成物層を作成した。スピンコート直後の重合性液晶組成物層を偏光顕微鏡にて観察したところ、ディスクリネーションはまったく観察されず、良好な配向であった。この後、実施例1と同様にして光重合を行い、ディスクリネーションのない、きれいな光学異方体を得た。得られた光学異方体の垂直方向から測定したリタデーション値は171nmと大きい値を示し、光学的異方性の大きい光学異方体であることが確認できた。また、配向規制軸に沿って垂直方向から傾くに従いリタデーション値は小さくなり垂直方向からみた場合のリタデーション値が最大値であったことから液晶分子は略水平配向していることがわかった。また、LC−1にアクリル共重合体(H−3)を20%添加したときの液体―液晶転移温度は0.5℃低下した。
(Example 3)
A polymerizable liquid crystal composition layer was prepared in the same manner as in Example 1 except that the acrylic copolymer (H-1) was changed to the (meth) acrylic copolymer (H-3). When the polymerizable liquid crystal composition layer immediately after spin coating was observed with a polarizing microscope, no disclination was observed and the alignment was good. Thereafter, photopolymerization was carried out in the same manner as in Example 1 to obtain a clean optical anisotropic body without disclination. The retardation value measured from the perpendicular direction of the obtained optical anisotropic body was as large as 171 nm, and it was confirmed that the optical anisotropic body was large in optical anisotropy. Further, the retardation value decreased as it tilted from the vertical direction along the alignment control axis, and the retardation value when viewed from the vertical direction was the maximum value, indicating that the liquid crystal molecules were aligned substantially horizontally. Further, when 20% of acrylic copolymer (H-3) was added to LC-1, the liquid-liquid crystal transition temperature decreased by 0.5 ° C.

(比較例1)
アクリル共重合体を使用しなかった以外は、実施例1と同様にして重合性液晶組成物層を作成した。スピンコート直後の重合性液晶組成物層を偏光顕微鏡にて観察したところ、多数のディスクリネーションが観察され配向性は悪かった。この後、実施例1と同様にして光重合を行ったところ、得られた光学異方体にも多数のディスクリネーションが観察され、配向性は悪かった。
(Comparative Example 1)
A polymerizable liquid crystal composition layer was prepared in the same manner as in Example 1 except that the acrylic copolymer was not used. When the polymerizable liquid crystal composition layer immediately after spin coating was observed with a polarizing microscope, many disclinations were observed and the orientation was poor. Thereafter, photopolymerization was carried out in the same manner as in Example 1. As a result, many disclinations were observed in the obtained optical anisotropic body, and the orientation was poor.

(比較例2)
アクリル共重合体(H−1)を、メタクリル重合体(H−4)に変更した他は実施例1と同様にして重合性液晶組成物層を作成した。スピンコート直後の重合性液晶組成物層を偏光顕微鏡にて観察したところ、多数のディスクリネーションが観察され配向性は悪かった。この後、実施例1と同様にして光重合を行ったところ、得られた光学異方体にも多数のディスクリネーションが観察され、配向性は悪かった。
(Comparative Example 2)
A polymerizable liquid crystal composition layer was prepared in the same manner as in Example 1 except that the acrylic copolymer (H-1) was changed to the methacrylic polymer (H-4). When the polymerizable liquid crystal composition layer immediately after spin coating was observed with a polarizing microscope, many disclinations were observed and the orientation was poor. Thereafter, photopolymerization was carried out in the same manner as in Example 1. As a result, many disclinations were observed in the obtained optical anisotropic body, and the orientation was poor.

(比較例3)
添加剤Mを、重合性液晶組成物LC−1 100gに対するアクリル共重合体(H−1)由来のフッ素基量が、実施例1と同じ0.135質量%となるように、0.21部加えた以外は、実施例1と同様にして光学異方体を作製した(このときの基(h)含有量は0.050質量%であった)。スピンコート直後の重合性液晶組成物層を偏光顕微鏡にて観察したところ、多数のディスクリネーションが観察され配向性は悪かった。この後、実施例1と同様にして光重合を行ったところ、得られた光学異方体にも多数のディスクリネーションが観察され、配向性は悪かった。



(Comparative Example 3)
Additive M was added in an amount of 0.21 part so that the amount of fluorine group derived from the acrylic copolymer (H-1) with respect to 100 g of polymerizable liquid crystal composition LC-1 was 0.135% by mass as in Example 1. An optical anisotropic body was produced in the same manner as in Example 1 except for the addition (the group (h) content at this time was 0.050% by mass). When the polymerizable liquid crystal composition layer immediately after spin coating was observed with a polarizing microscope, many disclinations were observed and the orientation was poor. Thereafter, photopolymerization was carried out in the same manner as in Example 1. As a result, many disclinations were observed in the obtained optical anisotropic body, and the orientation was poor.



Claims (8)

重合性基を有する液晶化合物を含有する重合性液晶組成物において、フッ素基を有する側鎖、及び、ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環を1つ有する側鎖を有し、質量平均分子量が10000〜300000であり、フッ素基含有率が3〜40質量%であり、ベンゼン環、シクロヘキサン環、シクロヘキセン環、又は6員複素環の、全側鎖に対する割合が9〜95モル%である(メタ)アクリル共重合体(H)を0.1〜6.0質量%含有し、下記式で定義される混和液晶低下温度ΔTが−10℃〜−0.1℃である請求項1記載の重合性液晶組成物。
Figure 0005034200
(但し、T =(前記重合性液晶組成物が、前記アクリル共重合体(H)を20質量%
含有した際の液体−液晶相転移温度)であり、T =(前記重合性液晶組成物から前記ア
クリル共重合体(H)を除いたときの液体−液晶相転移温度)である。)
In a polymerizable liquid crystal composition containing a liquid crystal compound having a polymerizable group, it has a side chain having a fluorine group and a side chain having one benzene ring, cyclohexane ring, cyclohexene ring, or six-membered heterocyclic ring, The mass average molecular weight is 10,000 to 300,000, the fluorine group content is 3 to 40% by mass, and the ratio of the benzene ring, cyclohexane ring, cyclohexene ring, or 6-membered heterocyclic ring to all side chains is 9 to 95 mol%. The (meth) acrylic copolymer (H) is 0.1 to 6.0% by mass , and the mixed liquid crystal lowering temperature ΔT defined by the following formula is −10 ° C. to −0.1 ° C. The polymerizable liquid crystal composition according to 1.
Figure 0005034200
(However, Th = (The polymerizable liquid crystal composition contains 20% by mass of the acrylic copolymer (H).
(Liquid-liquid crystal phase transition temperature) when contained, and T 0 = (from the polymerizable liquid crystal composition)
It is a liquid-liquid crystal phase transition temperature when the kryl copolymer (H) is removed. )
前記(メタ)アクリル共重合体(H)が、一般式(1)で表される化合物と、少なくとも1つの水素原子がフッ素原子で置換された炭素原子数1〜18のフッ化アルキル基を有するモノ(メタ)アクリレートとを必須原料とする(メタ)アクリル共重合体である、請求項1に記載の重合性液晶組成物。
Figure 0005034200
(1)
(式中、Xは水素原子又はメチル基を表わし、環Aはベンゼン環、シクロヘキサン環、シ
クロヘキセン環、又は6員複素環(但し、環Aはフッ素基、シアノ基、トリフルオロアル
キル基、炭素原子数1〜12の分岐又は直鎖アルキル基、炭素原子数1〜12の分岐ある
いは直鎖アルキルオキシ基、炭素原子数1〜12のアルカノイル基、炭素原子数1〜12
のアルカノイルオキシ基、又は炭素原子数1〜12のアルキルオキシカルボニル基を置換
基として有していても良い)を表し、Rは、単結合、又は炭素原子数1〜18のアルキレ
ン基(但し、該基中に存在し、−COO−と直接結合しない1個又は2個以上のメチレン
基は、場合によりそれぞれ相互に独立して、酸素原子が相互に直接に結合しないものとし
て、−O−で置き換えられていても良い)を表す。)
The (meth) acrylic copolymer (H) has a compound represented by the general formula (1) and a fluorinated alkyl group having 1 to 18 carbon atoms in which at least one hydrogen atom is substituted with a fluorine atom. The polymerizable liquid crystal composition according to claim 1, which is a (meth) acrylic copolymer containing mono (meth) acrylate as an essential raw material.
Figure 0005034200
(1)
(Wherein X represents a hydrogen atom or a methyl group, ring A is a benzene ring, cyclohexane ring, cyclohexene ring, or 6-membered heterocyclic ring (where ring A is a fluorine group, a cyano group, a trifluoroalkyl group, a carbon atom) A branched or straight chain alkyl group having 1 to 12 carbon atoms, a branched or straight chain alkyloxy group having 1 to 12 carbon atoms, an alkanoyl group having 1 to 12 carbon atoms, and 1 to 12 carbon atoms
Alkanoyloxy group or an alkyloxycarbonyl group having 1 to 12 carbon atoms as a substituent, and R is a single bond or an alkylene group having 1 to 18 carbon atoms (provided that One or more methylene groups present in the group and not directly bonded to -COO- may optionally be independently of one another, as oxygen atoms are not directly bonded to each other, May be replaced). )
ネマチック液晶相を示す、請求項1に記載の重合性液晶組成物。 The polymerizable liquid crystal composition according to claim 1, which exhibits a nematic liquid crystal phase. 請求項1に記載の重合性液晶組成物を、配向機能を有する基板上に塗布し、配向させた状態で重合させて得られることを特徴とする光学異方体。 An optical anisotropic body obtained by applying the polymerizable liquid crystal composition according to claim 1 onto a substrate having an alignment function and polymerizing the polymerizable liquid crystal composition in an aligned state. 前記配向機能を有する基板が、略水平配向機能を有する基板である、請求項に記載の光学異方体。 The optical anisotropic body according to claim 4 , wherein the substrate having the alignment function is a substrate having a substantially horizontal alignment function. 前記配向機能を有する基板が、パターン状に配向方向の異なる領域が分布している配向機能を有する基板である、請求項に記載の光学異方体。 The optical anisotropic body according to claim 4 , wherein the substrate having the alignment function is a substrate having an alignment function in which regions having different alignment directions are distributed in a pattern. 前記配向機能を有する基板が光配向膜を有する基板である請求項に記載の光学異方体。 The optical anisotropic body according to claim 4 , wherein the substrate having the alignment function is a substrate having a photo-alignment film. 請求項1に記載の重合性液晶組成物を、パターン状に配向方向の異なる領域が分布している略水平配向機能を有する基板に塗布し、配向させた状態で重合させて得られることを特徴とする位相差膜。 The polymerizable liquid crystal composition according to claim 1 is obtained by applying the polymerized liquid crystal composition to a substrate having a substantially horizontal alignment function in which regions having different alignment directions are distributed in a pattern and polymerizing the substrate in an aligned state. Retardation film.
JP2005281816A 2005-09-28 2005-09-28 Polymerizable liquid crystal composition and optical anisotropic body Active JP5034200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281816A JP5034200B2 (en) 2005-09-28 2005-09-28 Polymerizable liquid crystal composition and optical anisotropic body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281816A JP5034200B2 (en) 2005-09-28 2005-09-28 Polymerizable liquid crystal composition and optical anisotropic body

Publications (2)

Publication Number Publication Date
JP2007091847A JP2007091847A (en) 2007-04-12
JP5034200B2 true JP5034200B2 (en) 2012-09-26

Family

ID=37977929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281816A Active JP5034200B2 (en) 2005-09-28 2005-09-28 Polymerizable liquid crystal composition and optical anisotropic body

Country Status (1)

Country Link
JP (1) JP5034200B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007641B2 (en) * 2007-09-28 2012-08-22 大日本印刷株式会社 Optical element defect correcting method, optical element, and liquid crystal display device incorporating the optical element
JP4955594B2 (en) * 2008-03-17 2012-06-20 富士フイルム株式会社 Optical material patterned in optical axis direction and phase difference
KR101874837B1 (en) * 2010-08-11 2018-07-05 닛산 가가쿠 고교 가부시키 가이샤 Resin composition, liquid crystal orientation material, and phase difference material
JP2013071945A (en) * 2011-09-26 2013-04-22 Fujifilm Corp Polymerizable liquid crystal composition and optically anisotropic film
JP2012037906A (en) * 2011-10-17 2012-02-23 Fujifilm Corp Manufacturing method of optical compensation film
TWI502220B (en) * 2011-11-17 2015-10-01 Lg Chemical Ltd Optical device and stereoscopic image display device somprising the same
GB2541310B (en) 2014-06-23 2017-09-06 Dainippon Ink & Chemicals Polymerizable liquid crystal composition and optically anisotropic body, retardation film, and patterned retardation film using the same
CN115819735A (en) * 2022-12-07 2023-03-21 江西科技师范大学 Liquid crystal elastomer and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4078569B2 (en) * 1997-11-18 2008-04-23 大日本インキ化学工業株式会社 Polymerizable liquid crystal composition and optical anisotropic body comprising the composition
US5995184A (en) * 1998-09-28 1999-11-30 Rockwell Science Center, Llc Thin film compensators having planar alignment of polymerized liquid crystals at the air interface
JP2000345164A (en) * 1999-03-31 2000-12-12 Fuji Photo Film Co Ltd Liquid crystal orientation promoting agent, liquid crystal composition and optically anisotropic element
JP4059683B2 (en) * 2002-02-05 2008-03-12 日東電工株式会社 Birefringent film, method for producing the same, optical film, and image display device
JP4336140B2 (en) * 2003-05-07 2009-09-30 富士フイルム株式会社 Optical compensation sheet and method for producing optically anisotropic layer used therefor
JP4506105B2 (en) * 2003-06-10 2010-07-21 Dic株式会社 Liquid crystal alignment accelerator, liquid crystal composition and optical anisotropic body
JP4385997B2 (en) * 2004-05-31 2009-12-16 Dic株式会社 Polymerizable liquid crystal composition and optical anisotropic body

Also Published As

Publication number Publication date
JP2007091847A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4385997B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
EP1754768B1 (en) Polymerizable liquid crystal composition and optically anisotropic body
JP5034200B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP3963035B2 (en) Liquid crystalline (meth) acrylate compound and composition, and optical anisotropic body using the same
JP5401822B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5201130B2 (en) Liquid crystalline compound, liquid crystalline composition, optical film and optical laminate
KR101857497B1 (en) Copolymer, and liquid crystal alignment layer comprising hardened product thereof
JP5564773B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP4207233B2 (en) Liquid crystal composition and optical anisotropic body using the same
KR101136495B1 (en) Polymerizable liquid crystal composition and optically anisotropic body
JP5401823B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5407870B2 (en) Polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP5396815B2 (en) Polymerizable compound, polymerizable liquid crystal compound, polymerizable liquid crystal composition, liquid crystal polymer and optical anisotropic body
JP4957977B1 (en) Composition for liquid crystal alignment layer
JPH1195205A (en) Optically anisotropic film and its production as well as liquid crystal display device
CN114502609A (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal element
JP4895088B2 (en) Polymerizable liquid crystal composition and optical anisotropic body
JP5979828B2 (en) Optical film
JP4766291B2 (en) Polymerizable liquid crystal compound, composition, and optical anisotropic body
JP4622726B2 (en) Manufacturing method of optical anisotropic body
JP3972430B2 (en) Liquid crystalline (meth) acrylate compound, composition containing the compound, and optical anisotropic body using the same
JP4182452B2 (en) Liquid crystal composition and optical anisotropic body using the same
CN105441089A (en) Polymeric liquid crystal composition and application thereof
JP3651614B2 (en) Manufacturing method of optical anisotropic body and alignment film forming material used therefor
JPH1121269A (en) Liquid-crystal (meth)acrylate compound, liquid-crystal composition, and optical an isotropic body using the same compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250