JP4518009B2 - Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device - Google Patents

Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device Download PDF

Info

Publication number
JP4518009B2
JP4518009B2 JP2005343775A JP2005343775A JP4518009B2 JP 4518009 B2 JP4518009 B2 JP 4518009B2 JP 2005343775 A JP2005343775 A JP 2005343775A JP 2005343775 A JP2005343775 A JP 2005343775A JP 4518009 B2 JP4518009 B2 JP 4518009B2
Authority
JP
Japan
Prior art keywords
wavelength
light
diffraction grating
diffraction
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005343775A
Other languages
Japanese (ja)
Other versions
JP2007149249A (en
JP2007149249A5 (en
Inventor
真弘 村川
好晴 大井
公貴 梨子
陽輔 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2005343775A priority Critical patent/JP4518009B2/en
Publication of JP2007149249A publication Critical patent/JP2007149249A/en
Publication of JP2007149249A5 publication Critical patent/JP2007149249A5/ja
Application granted granted Critical
Publication of JP4518009B2 publication Critical patent/JP4518009B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、3波長用回折素子、位相板付3波長用回折素子および光ヘッド装置に関するものである。   The present invention relates to a three-wavelength diffraction element, a three-wavelength diffraction element with a phase plate, and an optical head device.

BD(Blu−rayあるいはHD−DVDを代表とする青紫色半導体レーザで再生および/または記録する次世代DVD)、DVD、CD等の異なる規格の光記録媒体の情報の再生および/または記録(以下、「再生および/または記録」を「再生・記録」と略記。)する互換光ヘッド装置において、装置の小型、軽量化の開発が盛んに行なわれている。   Reproduction and / or recording of information on optical recording media of different standards such as BD (next-generation DVD to be reproduced and / or recorded with a blue-violet semiconductor laser represented by Blu-ray or HD-DVD), DVD, CD, etc. In the compatible optical head device in which “reproduction and / or recording” is abbreviated as “reproduction / recording”), development of miniaturization and weight reduction of the device has been actively conducted.

規格が異なるBD、DVDおよびCDでは、その再生・記録に用いられるレーザ光の波長が異なる。BDでは405nm波長帯、DVDでは660nm波長帯、CDでは780nm波長帯のレーザ光が用いられる。これら異なる規格の光記録媒体を交換して使用する互換光ヘッド装置を小型、軽量化するために、上述の3つの波長帯のレーザ光を出力する3波長半導体レーザが開発されている。   BD, DVD and CD with different standards have different wavelengths of laser light used for reproduction / recording. Laser light in the 405 nm wavelength band is used for BD, 660 nm wavelength band for DVD, and 780 nm wavelength band for CD. In order to reduce the size and weight of a compatible optical head device that uses these different types of optical recording media by exchanging them, a three-wavelength semiconductor laser that outputs laser light in the three wavelength bands described above has been developed.

3波長半導体レーザを用いることで、レンズ、回折素子等の光学部品を共有化して、光ヘッド装置内の部品点数の削減が期待されている。通常、回折素子は、周期的な凹凸の断面形状からなる回折格子を有するガラスやプラスチックで形成されており、その回折効率はその凹凸の深さおよび材質の屈折率によって決まる。すなわち、BD、DVDおよびCD用の波長帯のレーザ光、それぞれに対し回折効率を自由に制御することができない。さらに、BD、DVDおよびCD用のそれぞれの波長帯のレーザ光に対し最適な回折方向を得るために複数の回折格子を形成することもできるが、前述のとおり回折効率を自由に制御できないため、回折素子の共有化を難しくしている。   The use of a three-wavelength semiconductor laser is expected to reduce the number of components in the optical head device by sharing optical components such as lenses and diffraction elements. Usually, the diffraction element is formed of glass or plastic having a diffraction grating having a periodic uneven cross-sectional shape, and the diffraction efficiency is determined by the depth of the unevenness and the refractive index of the material. In other words, the diffraction efficiency cannot be freely controlled for the laser beams in the wavelength bands for BD, DVD, and CD. Furthermore, a plurality of diffraction gratings can be formed in order to obtain optimum diffraction directions for laser beams in respective wavelength bands for BD, DVD and CD, but as described above, the diffraction efficiency cannot be freely controlled. This makes it difficult to share diffraction elements.

3つの波長帯のレーザ光に対して、設計自由度が高くかつ最適な回折効率および回折方向が得られる、すなわち、波長選択的に回折を利用できる回折素子が望まれている。たとえば、660nm波長帯および780nm波長帯のレーザ光を出力する2波長半導体レーザを使う互換光ヘッド装置において、DVDおよびCDの波長帯のレーザ光に用いる回折素子は提案されているが(特許文献1)、さらに405nm波長帯のレーザ光にも対応できる回折素子の提案は数少ない。   There is a demand for a diffractive element that has a high degree of freedom in design and can obtain optimum diffraction efficiency and diffraction direction with respect to laser light in three wavelength bands, that is, can use diffraction selectively in wavelength. For example, in a compatible optical head device using a two-wavelength semiconductor laser that outputs laser light in the 660 nm wavelength band and the 780 nm wavelength band, a diffraction element used for laser light in the DVD and CD wavelength bands has been proposed (Patent Document 1). In addition, there are few proposals of diffraction elements that can cope with laser light in the 405 nm wavelength band.

特開2001−290017号公報JP 2001-290017 A

本発明は、3波長半導体レーザを用いた互換光ヘッド装置において、従来の回折素子では波長選択性がないため素子の共有化ができず、互換光ヘッド装置の小型化、軽量化に不利であるという課題を解決するためになされたものある。   According to the present invention, in a compatible optical head device using a three-wavelength semiconductor laser, the conventional diffractive element does not have wavelength selectivity, so that the element cannot be shared, which is disadvantageous in reducing the size and weight of the compatible optical head device. Has been made to solve the problem.

すなわち、互換光ヘッド装置で用いられる3波長帯のレーザ光それぞれに対して、適切な回折効率および回折方向が得られる回折素子を得て、さらには位相変化と前記回折効果とを合わせ持った位相板付回折素子を得て、これら素子を搭載して前記機能を有しながら互換光ヘッド装置の小型化、軽量化を図るためになされたものである。   That is, for each of the laser beams in the three wavelength bands used in the compatible optical head device, a diffraction element capable of obtaining an appropriate diffraction efficiency and diffraction direction is obtained, and further, a phase that combines the phase change and the diffraction effect. The invention is made in order to obtain a diffraction element with a plate and reduce the size and weight of the compatible optical head device while having these functions by mounting these elements.

本発明は、複屈折性を示す樹脂からなる第1の凸部と、光学的等方性を示す樹脂からなる第1の凹部と、が接して断面が周期的な凹凸状をなす第1の回折格子と、複屈折性を示す樹脂からなる第2の凸部と、光学的等方性を示す樹脂からなる第2の凹部と、が接して断面が周期的な凹凸状をなす第2の回折格子と、無機材料からなる周期的な凹凸部または第3の凸部を有する第3の回折格子と、が重なって構成され、入射する3つの異なる波長λ の光、波長λ の光および波長λ(λ<λ<λの光について、前記第1の回折格子は、前記波長λ の光を回折するとともに、前記波長λの光および前記波長λ の光を透過するように、前記第1の凸部の屈折率および/または高さ、並びに前記第1の凹部の屈折率が調整され、前記第2の回折格子は、前記波長λ の光および前記波長λ の光を透過するとともに、前記波長λ の光を回折するように、前記第2の凸部の屈折率および/または高さ、並びに前記第2の凹部の屈折率が調整され、前記第3の回折格子は、前記波長λ の光および前記波長λ の光を透過するとともに前記波長λ の光を回折するように、前記凹凸部または前記第3の凸部の、屈折率および/または高さが調整されている3波長用回折素子を提供する。 In the present invention, the first convex portion made of a resin exhibiting birefringence and the first concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a concave-convex shape having a periodic cross section. A diffraction grating, a second convex portion made of a resin exhibiting birefringence, and a second concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a second irregular portion having a periodic cross section. A diffraction grating and a third diffraction grating having a periodic concavo-convex portion or a third convex portion made of an inorganic material are overlapped, and incident light having three different wavelengths λ 1 and λ 2 is incident. and the light of wavelength λ 3 (λ 1 <λ 2 <λ 3), the first diffraction grating is configured to diffract the wavelength lambda 1 of the light, the wavelength lambda 2 of the light and the wavelength lambda 3 of the light The refractive index and / or height of the first convex portion and the refractive index of the first concave portion are adjusted so as to transmit The second diffraction grating is configured to transmit the wavelength lambda 1 of light and the wavelength lambda 2 of light, so as to diffract the wavelength lambda 3 of the light, the refractive index of the second protrusions and / or The height and the refractive index of the second recess are adjusted , and the third diffraction grating transmits the light having the wavelength λ 1 and the light having the wavelength λ 3 and diffracts the light having the wavelength λ 2. as such, the uneven portion or the third convex portion, the refractive index and / or height to provide an adjusted Tei Ru 3-wavelength diffraction element.

この構成により、本発明の3波長用回折素子は、本素子に入射する波長λの光および波長λの光、波長λの光であって、波長λの光と波長λの光の偏光方向が直交し、波長λの光と波長λの光が平行であるとき、それぞれの波長の光に対して、選択的に透過および回折を制御することができる。 With this configuration, the three-wavelength diffractive element of the present invention is light having wavelength λ 1 , light having wavelength λ 2 , and light having wavelength λ 3 incident on the element, and having light having wavelength λ 1 and light having wavelength λ 2 . When the polarization directions of light are orthogonal and the light of wavelength λ 2 and the light of wavelength λ 3 are parallel, transmission and diffraction can be selectively controlled for each wavelength of light.

また、複屈折性を示す樹脂からなる第1の凸部と、光学的等方性を示す樹脂からなる第1の凹部と、が接して断面が周期的な凹凸状をなす第1の回折格子と、複屈折性を示す樹脂からなる第2の凸部と、光学的等方性を示す樹脂からなる第2の凹部と、が接して断面が周期的な凹凸状をなす第2の回折格子と、前記第1の回折格子および前記第2の回折格子を挟むように備えられた2枚の位相板と、無機材料からなる周期的な凹凸部または第3の凸部を有する第3の回折格子と、が重なって構成され、入射する3つの異なる波長λ の光、波長λ の光および波長λ (λ <λ <λ )の光について、前記第1の回折格子は、前記波長λ の光を回折するとともに、前記波長λ の光および前記波長λ の光を透過するように、前記第1の凸部の屈折率および/または高さ、並びに前記第1の凹部の屈折率が調整され、前記第2の回折格子は、前記波長λ の光を透過するとともに、前記波長λ の光を回折するように、前記第2の凸部の屈折率および/または高さ、並びに前記第2の凹部の屈折率が調整され、2枚の前記位相板は、前記波長λ の光に対して2πの位相差を有し、前記波長λ の光に対して略πの位相差を有し、かつ、前記波長λ3の光に対して略πの位相差を有し、前記第3の回折格子は、前記波長λ の光および前記波長λ の光を透過するとともに前記波長λ の光を回折するように、前記凹凸部または前記第3の凸部の、屈折率および/または高さが調整されている位相板付3波長用回折素子を提供する。 Also, a first diffraction grating having a concavo-convex shape in which a first convex portion made of a resin exhibiting birefringence and a first concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a periodic cross section And a second convex part made of resin showing birefringence and a second concave part made of resin showing optical isotropy, and a second diffractive grating whose section has a periodic concavo-convex shape And a third diffraction pattern having two phase plates provided so as to sandwich the first diffraction grating and the second diffraction grating, and a periodic concavo-convex part or a third convex part made of an inorganic material. The first diffraction grating is composed of three different wavelengths λ 1 , light having a wavelength λ 2 , and light having a wavelength λ 3 1 2 3 ). Diffracting the light of wavelength λ 1 and transmitting the light of wavelength λ 2 and the light of wavelength λ 3 The refractive index and / or height of the first convex portion and the refractive index of the first concave portion are adjusted, and the second diffraction grating transmits the light of the wavelength λ 1 and the wavelength of the wavelength λ 3 . to diffract light, refractive index and / or height of the second convex portion, and the refractive index adjustment of the second recess, the phase plate two is the wavelength lambda 1 of the light have a phase difference of 2π for, have a phase difference of substantially π to the wavelength lambda 2 of the light, and has a phase difference of substantially π to light of the wavelength [lambda] 3, the third The diffraction gratings of the concave and convex portions or the third convex portions transmit the light of the wavelength λ 1 and the light of the wavelength λ 3 and diffract the light of the wavelength λ 2. or height to provide a phase fitted with three-wavelength diffraction element is adjusted.

この構成により、本発明の位相板付3波長用回折素子は、偏光方向が平行であり、本素子に入射する波長λの光および波長λの光、波長λの光に対して、選択的に透過および回折を制御することができる。 With this configuration, the three-wavelength diffractive element with phase plate of the present invention has parallel polarization directions and is selected for light of wavelength λ 1 , light of wavelength λ 2 and light of wavelength λ 3 incident on the element. Transmission and diffraction can be controlled.

また、3つの異なる波長λ の光、波長λ の光および波長λ (λ <λ <λ の光を出射する光源と、それぞれの波長の光を光記録媒体に集光する対物レンズと、集光されて前記光記録媒体により反射された光を検出する光検出器とを備え、前記光記録媒体の情報の再生および/または記録を行なう光ヘッド装置において、前記光源と前記対物レンズとの間の光路中に、上記の3波長用回折素子または、上記の位相板付3波長用回折素子が設置されている光ヘッド装置を提供する。さらに、前記波長λ は、BD用の405nm波長帯であり、前記波長λ は、DVD用の660nm波長帯であり、前記波長λ は、CD用の780nm波長帯である上記の光ヘッド装置を提供する。 Further, a light source that emits light of three different wavelengths λ 1 , light of wavelength λ 2 , and light of wavelength λ 3 1 2 3 ) , and light of each wavelength is collected on the optical recording medium. an objective lens for, is condensed and a photodetector for detecting light reflected by the optical recording medium, an optical head device for reproducing and / or recording information of the optical recording medium, the light source wherein the optical path between the objective lens, the above-mentioned three-wavelength diffraction element or to provide an optical head apparatus above phase fitted with 3-wavelength diffraction element is that is installed with. Furthermore, the wavelength λ 1 is a 405 nm wavelength band for BD, the wavelength λ 2 is a 660 nm wavelength band for DVD, and the wavelength λ 3 is a 780 nm wavelength band for CD. Providing equipment.

この構成により、本発明の光ヘッド装置は、ひとつの素子でありながら、3つの異なる波長の光に対して選択的に回折することができるので、光ヘッド装置の部品点数を減らすことができ、光ヘッド装置を小型軽量化をすることができる。   With this configuration, the optical head device of the present invention can selectively diffract light of three different wavelengths while being a single element, so the number of components of the optical head device can be reduced, The optical head device can be reduced in size and weight.

本発明の3波長用回折素子は、回折効率および回折方向を素子に入射するレーザ光の波長に応じて選択的に制御ができる、すなわち波長選択的回折効果を有する。   The diffraction element for three wavelengths of the present invention can selectively control the diffraction efficiency and the diffraction direction according to the wavelength of the laser light incident on the element, that is, has a wavelength selective diffraction effect.

本発明の位相板付3波長用回折素子は、上記の波長選択的回折効果に加えて位相制御の効果も合わせもつ小型の回折素子となる。   The three-wavelength diffractive element with a phase plate of the present invention is a small diffractive element having a phase control effect in addition to the above-described wavelength selective diffraction effect.

また本発明の光ヘッド装置は、上記の3波長用回折素子または位相板付3波長用回折素子を搭載しているため、これらの効果を有しながら装置の小型化、軽量化を図ることができる。   Further, since the optical head device of the present invention is equipped with the above-described three-wavelength diffraction element or the three-wavelength diffraction element with a phase plate, the device can be reduced in size and weight while having these effects. .

「第1実施形態」
図1は、本発明の第1実施形態に係る3波長用回折素子の構成を示す断面図であり、3波長用回折素子は2つの回折格子を有しており、それぞれの回折格子は2つの異なる樹脂が接していてその断面形状が周期的な凹凸状をなしており、凹凸状の凸部は複屈折性を示す樹脂からなり、凹凸状の少なくとも凸部間(凹部)は充填された光学的等方性の樹脂からなる構成を有している。本構成では第1,第2および第3の3枚の透明基板を有し、第1と第2の透明基板間、第2と第3の透明基板間で2つの異なる樹脂が接していてその断面形状が周期的な凹凸状をなしており、光学的等方性の樹脂として充填接着剤などが用いられている。
“First Embodiment”
FIG. 1 is a cross-sectional view showing the configuration of the three-wavelength diffraction element according to the first embodiment of the present invention. The three-wavelength diffraction element has two diffraction gratings, and each diffraction grating has two diffraction gratings. Different resins are in contact with each other, and the cross-sectional shape is a periodic concavo-convex shape. The concavo-convex convex portion is made of a resin exhibiting birefringence, and at least the concavo-convex convex portion is filled with the filled optical It has a configuration made of an isotropic resin. In this configuration, the first, second, and third transparent substrates are provided, and two different resins are in contact with each other between the first and second transparent substrates and between the second and third transparent substrates. The cross-sectional shape has periodic irregularities, and a filling adhesive or the like is used as an optically isotropic resin.

なお、少なくとも凸部間(凹部)が充填されているとは、凸部間を充填しているかまたは凸部間を充填したうえにさらに凸部を完全に埋め尽くすということを意味する。   Note that at least the space between the convex portions (concave portions) is filled means that the spaces between the convex portions are filled, or the spaces between the convex portions are filled and the convex portions are further completely filled.

第1の透明基板1、第2の透明基板2、第3の透明基板3としては、ガラス、石英ガラス、プラスチックなどの透明材料基板を使用できる。また、第1の透明基板1と第3の透明基板3の空気側の表面に、反射防止膜を成膜することで、前記回折素子を透過するレーザ光の不要な反射を防ぐことができて好ましい。   As the first transparent substrate 1, the second transparent substrate 2, and the third transparent substrate 3, transparent material substrates such as glass, quartz glass, and plastic can be used. Further, by forming an antireflection film on the air-side surface of the first transparent substrate 1 and the third transparent substrate 3, unnecessary reflection of the laser light transmitted through the diffraction element can be prevented. preferable.

第1の凸部4、第2の凸部5の材料である複屈折性の樹脂としては、高分子液晶などを用いることができる。凸部の形成方法としては、例えばネマチック液晶などの液晶モノマーを第1の透明基板1、第2の透明基板2上に均一に塗布し、UV光を照射して高分子化させた後、フォトリソグラフィとエッチングなどの技術を用いて、断面が凹凸状になるように加工すればよい。   As the birefringent resin that is the material of the first convex portion 4 and the second convex portion 5, a polymer liquid crystal or the like can be used. As a method for forming the convex portion, for example, a liquid crystal monomer such as nematic liquid crystal is uniformly applied on the first transparent substrate 1 and the second transparent substrate 2 and polymerized by irradiating with UV light. What is necessary is just to process so that a cross section may become uneven | corrugated using techniques, such as lithography and an etching.

そして、第1の凸部4と充填接着剤6が第1の回折格子の構成要素となり、第2の凸部5と充填接着剤7が第2の回折格子の構成要素となっていて、2つの回折格子が透明基板2を挟んで積層されて3波長用回折素子が形成される。この3波長用回折素子には、異なる3つの波長λ、λおよびλの光が入射して用いられるが、第1の回折格子は波長λの入射光を回折するとともに、波長λおよび波長λの入射光を透過し、第2の回折格子は波長λの入射光を透過するとともに、波長λの入射光を回折する構成となっている。以下、凸部は高分子液晶からなるとして説明する。 The first convex portion 4 and the filling adhesive 6 are constituent elements of the first diffraction grating, and the second convex portion 5 and the filling adhesive 7 are constituent elements of the second diffraction grating. Two diffraction gratings are stacked with the transparent substrate 2 interposed therebetween to form a three-wavelength diffraction element. In this three-wavelength diffraction element, light of three different wavelengths λ 1 , λ 2, and λ 3 is incident and used. The first diffraction grating diffracts incident light of wavelength λ 1 , and wavelength λ transmitted through the 2 and wavelength lambda 3 of the incident light, the second diffraction grating with which transmits incident light having a wavelength of lambda 1, has a configuration that diffracts incident light having a wavelength lambda 3. Hereinafter, description will be made assuming that the convex portion is made of polymer liquid crystal.

第1の回折格子を構成する充填接着剤6としては、その屈折率が、例えば、回折格子を透過する波長λに対する第1の凸部4の材料である高分子液晶の常光屈折率と略同じものを選択する。一方、第2の回折格子を構成する充填接着剤7としては、その屈折率が、例えば、回折格子を透過する波長λに対する第2の凸部5の材料である高分子液晶の常光屈折率と略同じものを選択する。 As the filling adhesive 6 constituting the first diffraction grating, the refractive index is substantially the same as the ordinary refractive index of the polymer liquid crystal that is the material of the first convex portion 4 with respect to the wavelength λ 3 that transmits the diffraction grating, for example. Choose the same thing. On the other hand, as the filling adhesive 7 constituting the second diffraction grating, the refractive index thereof is, for example, the ordinary refractive index of the polymer liquid crystal that is the material of the second convex portion 5 with respect to the wavelength λ 1 that transmits the diffraction grating. Select approximately the same.

さらに、高分子液晶からなる第1の凸部4の異常光屈折率の軸方向と高分子液晶からなる第2の凸部5の異常光屈折率の軸方向とが直交するように、第1の回折格子と第2の回折格子が積層される。   Further, the first convex portion 4 made of the polymer liquid crystal is orthogonal to the extraordinary refractive index axis direction of the first convex portion 4 and the second convex portion 5 made of polymer liquid crystal is perpendicular to the axial direction of the extraordinary light refractive index. And the second diffraction grating are stacked.

このとき、第1の凸部4の異常光屈折率の軸方向に、波長λのレーザ光が偏光方向を有する直線偏光であるとすると、波長λのレーザ光が、3波長用回折素子を透過する際、第1の回折格子によって回折し、第2の回折格子では回折せず透過するようできる。一方、波長λのレーザ光の偏光方向と波長λのレーザ光の偏光方向が直交するとすると、波長λのレーザ光が、該3波長用回折素子を透過する際、第1の回折格子によって回折せず、第2の回折格子では回折する。 At this time, in the axial direction of the first extraordinary refractive index of the convex portion 4, when the laser beam of wavelength lambda 1 is linearly polarized light having a polarization direction, wavelength lambda 1 of the laser beam, three-wavelength diffraction element Can be diffracted by the first diffraction grating and transmitted without being diffracted by the second diffraction grating. On the other hand, when the polarization direction of the laser beam polarization direction and wavelength lambda 3 of the wavelength lambda 1 of the laser beam is orthogonal, laser light having a wavelength lambda 3 is, when passing through the diffractive element for the three wavelengths, the first diffraction grating Is diffracted by the second diffraction grating.

上述のように、第1実施形態の回折素子によると、前記2つの回折格子の偏光依存性を利用して、波長選択的に回折を制御することができる。   As described above, according to the diffraction element of the first embodiment, diffraction can be controlled in a wavelength selective manner by utilizing the polarization dependence of the two diffraction gratings.

なお、凸部の材料である高分子液晶の異常光屈折率と、充填接着剤の屈折率を考慮して、第1の凸部4、第2の凸部5の高さを適当に決めることで、該3波長用回折素子を透過するレーザ光の波長に対し、それぞれ所望の回折効率を得ることができる。   In addition, the height of the first convex portion 4 and the second convex portion 5 is appropriately determined in consideration of the extraordinary light refractive index of the polymer liquid crystal that is the material of the convex portion and the refractive index of the filling adhesive. Thus, desired diffraction efficiencies can be obtained for the wavelengths of the laser beams that pass through the diffraction element for three wavelengths.

第1実施形態の3波長用回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、波長λのレーザ光としてBD用の405nm波長帯、波長λのレーザ光としてDVD用の660nm波長帯、波長λのレーザ光としてCD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。一方、DVDにおいては、RAM規格の再生・記録をしない場合、3ビームを用いずにトラッキングできるため、該3波長用回折素子の2つの回折格子により回折する光を必要とせず、直進透過するレーザ光のみ利用すればよい。 The diffractive element for three wavelengths of the first embodiment is a compatible optical head device for reproducing / recording BD, DVD, and CD having different standards, and a 405 nm wavelength band for BD as a laser beam of wavelength λ 1 , wavelength λ For tracking of BD and CD in a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs laser light in the 660 nm wavelength band for DVD as the laser light 2 and laser light in the 780 nm wavelength band for CD as the laser light of wavelength λ 3 It can be used as a diffraction element for obtaining the three beams. On the other hand, in the DVD, when reproduction / recording of the RAM standard is not performed, since tracking can be performed without using three beams, a laser beam that diffracts by the two diffraction gratings of the three-wavelength diffraction element is not required, and is transmitted straight ahead. It is sufficient to use only light.

第1実施形態の3波長用回折素子において、波長λのBD用のレーザ光に対して、第2の回折格子は不要な光としての回折光を発生しない、一方、波長λのCD用のレーザ光に対しては、第1の回折格子は、不要な光としての回折光を発生しない。すなわち、互換光ヘッド装置において、ノイズとなる不要な回折光を発生することがないので、良好な再生・記録特性を得ることができる。 In the three-wavelength diffractive element of the first embodiment, the second diffraction grating does not generate diffracted light as unnecessary light with respect to the BD laser light having the wavelength λ 1 , while it is for CD having the wavelength λ 3 . For the laser beam, the first diffraction grating does not generate diffracted light as unnecessary light. That is, in the compatible optical head device, unnecessary diffracted light that becomes noise is not generated, so that favorable reproduction / recording characteristics can be obtained.

また、第1実施形態の3波長用回折素子は、BDおよびCD用の波長のレーザ光それぞれに対し、回折効率および回折方向をそれぞれ自由度高く設計でき、一つの素子でありながら、回折効果を波長選択的に利用できるので、小型、軽量化が要望されている3波長半導体レーザを搭載した互換光ヘッド装置を実現できる。   Further, the three-wavelength diffraction element of the first embodiment can design the diffraction efficiency and the diffraction direction with a high degree of freedom for each of the laser beams having the wavelengths for BD and CD. Since the wavelength selective use is possible, it is possible to realize a compatible optical head device equipped with a three-wavelength semiconductor laser that is required to be small and light.

ここで、互換光ヘッド装置として、DVD用の660nm波長帯、CD用の780nm波長帯のレーザ光を出力する2波長半導体レーザと、BD用の405nm波長帯のレーザ光を出力する半導体レーザとの2つを搭載して、BD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置においても、後述する第3実施形態の3波長用回折素子を搭載してもよく、この場合、3つの波長のレーザ光が共通に通る位置に、該3波長用回折素子を設置することで上述と同じ機能を発現させることができる。   Here, as a compatible optical head device, a two-wavelength semiconductor laser that outputs laser light in a 660 nm wavelength band for DVD and a 780 nm wavelength band for CD, and a semiconductor laser that outputs laser light in a 405 nm wavelength band for BD Even in a compatible optical head device that performs two BD, DVD, and CD reproduction / recording, the three-wavelength diffractive element according to a third embodiment to be described later may be mounted. The same function as described above can be exhibited by installing the diffraction element for three wavelengths at a position through which the laser beams pass in common.

「第2実施形態」
図3は、本発明の第2実施形態に係る3波長用回折素子の構成を示す断面図であり、第1実施形態における3波長用回折素子の一方の面に無機材料からなる周期的な凸部を有する第3の回折格子がさらに形成され、かつ第1実施形態における3波長用回折素子のうち第2の回折格子が波長λの入射光を透過する3波長用回折素子となっている。ここで、第3の回折格子は、無機材料が周期的な凸部となっていてもよいが、無機材料が周期的な凹凸部すなわち谷底で連続的に繋がっていてもよい。第1実施形態に係る3波長用回折素子の部分の構成は、その説明を省略する。
“Second Embodiment”
FIG. 3 is a cross-sectional view showing the configuration of the three-wavelength diffractive element according to the second embodiment of the present invention, and a periodic projection made of an inorganic material on one surface of the three-wavelength diffractive element in the first embodiment. third diffraction grating is further formed with a part, and has a three-wavelength diffraction element second diffraction grating transmits incident light of wavelength lambda 2 of the three-wavelength diffraction element of the first embodiment . Here, in the third diffraction grating, the inorganic material may be a periodic convex portion, but the inorganic material may be continuously connected at a periodic uneven portion, that is, a valley bottom. The description of the configuration of the three-wavelength diffraction element according to the first embodiment is omitted.

第1実施形態と同様に、凸部は高分子液晶からなり、凸部間を充填する材料は光学的等方性の樹脂である充填接着剤であるとして説明する。   In the same manner as in the first embodiment, the convex portions are made of polymer liquid crystal, and the material filling the space between the convex portions is assumed to be a filling adhesive that is an optically isotropic resin.

本構成においても3枚の透明基板13、14および15を有し、第1の透明基板13、第2の透明基板14、第3の透明基板15としては、ガラス、石英ガラス、プラスチックなどを使用できる。また、第1の透明基板13の表面に、反射防止膜を成膜することで、該3波長用回折素子を透過するレーザ光の不要な反射を防ぐことができる。第3の透明基板15の表面には無機材料からなる第3の凸部18が形成されており、その表面に、反射防止膜を成膜することで、該3波長用回折素子を透過するレーザ光の不要な反射を防ぐことができる。   This configuration also has three transparent substrates 13, 14 and 15, and the first transparent substrate 13, the second transparent substrate 14, and the third transparent substrate 15 are made of glass, quartz glass, plastic, or the like. it can. Further, by forming an antireflection film on the surface of the first transparent substrate 13, unnecessary reflection of the laser light transmitted through the three-wavelength diffraction element can be prevented. A third convex portion 18 made of an inorganic material is formed on the surface of the third transparent substrate 15, and a laser that transmits the three-wavelength diffraction element by forming an antireflection film on the surface. Unnecessary reflection of light can be prevented.

ここで、第2の凸部17の高さは、該3波長用回折素子を透過する波長λのレーザ光に対する高分子液晶の異常光屈折率と充填接着剤20の屈折率との差と、凸部17の高さとの積が、波長λの整数倍、例えば1倍になるように選択する。第2の凸部17と充填接着剤20を構成要素として含む回折格子を第2の回折格子という。 Here, the height of the second convex portion 17 is the difference between the extraordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 20 with respect to the laser light having the wavelength λ 2 that passes through the diffraction element for three wavelengths. the product of the height of the convex portion 17 is an integral multiple of the wavelength lambda 2, is selected for example to be 1-fold. A diffraction grating including the second convex portion 17 and the filling adhesive 20 as constituent elements is referred to as a second diffraction grating.

一方、第1の凸部16の高さは、第1の凸部16と第1の充填接着剤19とを構成要素として含む回折格子(これを第1の回折格子という)において、該3波長用回折素子を透過する波長λのレーザ光に対し所望の回折効率を得るように選択される。 On the other hand, the height of the first convex portion 16 is such that the three wavelengths in the diffraction grating (which is referred to as the first diffraction grating) including the first convex portion 16 and the first filling adhesive 19 as constituent elements. The laser beam is selected so as to obtain a desired diffraction efficiency with respect to the laser beam having the wavelength λ 1 that is transmitted through the diffraction element.

第3の凸部18の材料である無機材料として、SiO(石英)を選択するのが、成膜あるいはエッチングによる加工が容易であるので望ましい。特に、第3の透明基板15として石英ガラスを選んだ場合、SiO膜を成膜しなくてもよく好ましい。ただし、用途によって、少なくとも波長380nm〜波長820nmの間で略無色透明であるTa 、SiON等を使用してもよい。ここで、第3の凸部18の高さは、該3波長用回折素子を透過する波長λのレーザ光に対する凸部18の屈折率と空気の屈折率との差と、その高さの積が、波長λの整数倍、例えば2倍になるように選択する。 It is desirable to select SiO 2 (quartz) as the inorganic material that is the material of the third convex portion 18 because it is easy to process by film formation or etching. In particular, when quartz glass is selected as the third transparent substrate 15, it is preferable that no SiO 2 film be formed. However, depending on the application, Ta 2 O 5 , SiON, or the like that is substantially colorless and transparent at least between a wavelength of 380 nm and a wavelength of 820 nm may be used. Here, the height of the third convex portion 18 is the difference between the refractive index of the convex portion 18 and the refractive index of air with respect to the laser beam having the wavelength λ 1 that passes through the three-wavelength diffraction element, and the height thereof. product represents an integer multiple of the wavelength lambda 1, is selected for example to be doubled.

また、充填接着剤19としては、その屈折率が、該3波長用回折素子を透過する波長λに対する第1の凸部16の材料である高分子液晶の常光屈折率と略同じものを選択する。一方、充填接着剤20としては、その屈折率が、該3波長用回折素子を透過する波長λに対する第2の凸部17の材料である高分子液晶の常光屈折率と略同じものを選択する。 The filling adhesive 19 is selected so that its refractive index is substantially the same as the ordinary refractive index of the polymer liquid crystal that is the material of the first convex portion 16 with respect to the wavelength λ 3 that passes through the diffraction element for three wavelengths. To do. On the other hand, as the filling adhesive 20, a material whose refractive index is substantially the same as the ordinary light refractive index of the polymer liquid crystal that is the material of the second convex portion 17 with respect to the wavelength λ 1 that passes through the diffraction element for three wavelengths is selected. To do.

さらに、高分子液晶からなる第1の凸部16の異常光屈折率の軸方向と、高分子液晶からなる第2の凸部17の異常光屈折率の軸方向とが直交するように第1の回折格子と第2の回折格子が積層される。   Further, the axial direction of the extraordinary light refractive index of the first convex portion 16 made of the polymer liquid crystal is orthogonal to the axial direction of the extraordinary light refractive index of the second convex portion 17 made of the polymer liquid crystal. And the second diffraction grating are stacked.

このとき、第1の凸部16の異常光屈折率の軸方向に、波長λのレーザ光が偏光方向を有する直線偏光であるとすると、波長λのレーザ光が、該3波長用回折素子を透過する際、第1の回折格子によって回折し、第2の回折格子では回折せず透過し、第3の凸部18と空気による第3の回折格子で回折しないようできる。 At this time, the first axis direction of the extraordinary light refractive index of the convex portion 16, when a laser beam having a wavelength lambda 1 is linearly polarized light having a polarization direction, the laser beam of wavelength lambda 1 is diffracted for the three wavelengths When transmitting through the element, it is diffracted by the first diffraction grating, transmitted without being diffracted by the second diffraction grating, and not diffracted by the third diffraction grating by the third convex portion 18 and air.

一方、波長λのレーザ光の偏光方向と波長λのレーザ光の偏光方向とが直交するとすると、波長λのレーザ光が、該3波長回折素子を透過する際、第1の回折格子と、第2の回折格子では回折せず、第3の回折格子で回折する。 On the other hand, if the polarization direction of the polarization direction and wavelength lambda 2 of the laser beam having a wavelength lambda 1 of the laser beam is orthogonal, laser light having a wavelength lambda 2 is, when passing through the three-wavelength diffraction element, a first diffraction grating Then, the second diffraction grating does not diffract, but the third diffraction grating diffracts.

一方、波長λのレーザ光の偏光方向と波長λのレーザ光の偏光方向とが直交するとすると、波長λのレーザ光が、該3波長用回折素子を透過する際、第1の回折格子で回折せず、第2の回折格子では回折するようにできる。なお、第3の回折格子では、波長λが波長λの略2倍であるとき、波長λは回折しないので波長λはほとんど回折しない。 On the other hand, if the polarization direction of the laser beam in the polarization direction and wavelength lambda 3 of the wavelength lambda 1 of the laser beam is orthogonal, laser light having a wavelength lambda 3 is, when passing through the diffractive element for the three wavelengths, the first diffraction The second diffraction grating can diffract without diffraction by the grating. In the third diffraction grating, when the wavelength lambda 3 is approximately twice the wavelength lambda 1, wavelength lambda 3 because the wavelength lambda 1 is not diffracted hardly diffraction.

第2実施形態の3波長用回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、波長λのレーザ光としてBD用の405nm波長帯、DVD用の660nm波長帯、波長λのレーザ光としてCD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BD、DVDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。 The diffractive element for three wavelengths of the second embodiment is a compatible optical head device for reproducing / recording BD, DVD and CD having different standards, and a 405 nm wavelength band for BD as a laser beam of wavelength λ 1 and for DVD In a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs a laser beam in the 780 nm wavelength band for CD as a laser beam in the 660 nm wavelength band and wavelength λ 2 , three beams for tracking BD, DVD, and CD are obtained. Can be used as a diffractive element.

第2実施形態の3波長用回折素子において、波長λのBD用のレーザ光に対して、第2の回折格子と、第3回折格子とは、不要な光としての回折光を発生しない、一方、波長λのDVD用のレーザ光に対して、第1の回折格子と、第2の回折格子とは、不要な光としての回折光を発生しない。他方、波長λのCD用のレーザ光に対して、第1の回折格子では回折せず、第3の回折格子においても、CD用の波長λがBD用の波長λ の略2倍となるので、不要な光としての回折光をほとんど発生しない。 In three-wavelength diffraction element of the second embodiment, the laser light for BD wavelength lambda 1, a second diffraction grating, the third diffraction grating, does not generate diffracted light as unnecessary light, On the other hand, the laser light for DVD of wavelength lambda 2, the first diffraction grating, the second diffraction grating, does not generate diffracted light as unnecessary light. On the other hand, the laser light for CD of wavelength lambda 3, not diffracted in the first diffraction grating, in the third diffraction grating, approximately twice the wavelength lambda 3 is the wavelength lambda 1 for BD for CD Therefore, almost no diffracted light is generated as unnecessary light.

すなわち、互換光ヘッド装置において、ノイズとなる不要な回折光を発生することがないので、良好な再生・記録特性を得ることができ、一つの素子でありながら、回折効果を波長選択的に利用できるので、小型、軽量化を要望されている3波長半導体レーザを搭載した互換光ヘッド装置を実現できる。   In other words, the compatible optical head device does not generate unnecessary diffracted light that causes noise, so that excellent reproduction / recording characteristics can be obtained, and the diffraction effect can be selectively used while being a single element. Therefore, a compatible optical head device equipped with a three-wavelength semiconductor laser that is required to be small and light can be realized.

また、第2実施形態の3波長用回折素子は、BD、DVDおよびCD用の波長のレーザ光それぞれに対し、回折効率、回折方向をそれぞれ自由度高く設計できる。   Moreover, the diffraction element for three wavelengths of 2nd Embodiment can design a diffraction efficiency and a diffraction direction with a high freedom degree with respect to each of the laser beam of the wavelength for BD, DVD, and CD.

また、第1施形態の3波長用回折素子に比べ、BD、DVDおよびCD用のレーザ光それぞれに対する回折効率の設計自由度が少なくなっているが、DVD−RAM規格の再生・記録に対応することができる。   Further, compared to the three-wavelength diffractive element of the first embodiment, the degree of freedom in designing the diffraction efficiency for BD, DVD, and CD laser light is reduced, but it corresponds to reproduction / recording of the DVD-RAM standard. be able to.

「第3実施形態」
図5は、本発明の第3実施形態に係る回折素子の構成を示す断面図であり、第1実施形態の3波長用回折素子を挟むように2枚の位相板が積層されている位相板付3波長用回折素子である。第1実施形態に係る3波長用回折素子の部分の構成は、その説明を省略する。
“Third Embodiment”
FIG. 5 is a cross-sectional view showing the structure of the diffraction element according to the third embodiment of the present invention, with a phase plate in which two phase plates are laminated so as to sandwich the three-wavelength diffraction element of the first embodiment. A diffraction element for three wavelengths. The description of the configuration of the three-wavelength diffraction element according to the first embodiment is omitted.

本実施形態では4枚の透明基板31、32、33および34が用いられている。第1実施形態と同様に、凸部は高分子液晶からなり、凸部間を充填する材料は光学的等方性の樹脂である充填接着剤であるとして説明する。また、2枚の位相板は、例えば複屈折性樹脂からなるとする。   In the present embodiment, four transparent substrates 31, 32, 33, and 34 are used. In the same manner as in the first embodiment, the convex portions are made of polymer liquid crystal, and the material filling the space between the convex portions is assumed to be a filling adhesive that is an optically isotropic resin. Further, the two phase plates are made of, for example, a birefringent resin.

第1の透明基板31、第2の透明基板32、第3の透明基板33、第4の透明基板34としては、ガラス、石英ガラス、プラスチックなどを使用できる。また、第1の透明基板31と第4の透明基板34の空気側の表面に、反射防止膜を成膜することで、該位相板付3波長用回折素子を透過するレーザ光の不要な反射を防ぐことができる。   As the first transparent substrate 31, the second transparent substrate 32, the third transparent substrate 33, and the fourth transparent substrate 34, glass, quartz glass, plastic, or the like can be used. Further, an antireflection film is formed on the air-side surfaces of the first transparent substrate 31 and the fourth transparent substrate 34, so that unnecessary reflection of the laser light transmitted through the three-wavelength diffraction element with a phase plate can be prevented. Can be prevented.

充填接着剤39としては、その屈折率が、該位相板付3波長用回折素子を透過する波長λに対する第1の凸部37の材料である高分子液晶の常光屈折率と略同じものを選択する。一方、充填接着剤40としては、その屈折率が、該位相板付3波長用回折素子を透過する波長λに対する第2の凸部38の材料である高分子液晶の常光屈折率と略同じものを選択する。なお、凸部の材料である高分子液晶の異常光屈折率と、充填接着剤の屈折率を考慮して、第1の凸部37、第2の凸部38の高さを適当に決めることで、該位相板付3波長用回折素子を透過するレーザ光の波長に対し、それぞれ所望の回折効率を得ることができる。 The filling adhesive 39 is selected so that its refractive index is substantially the same as the ordinary refractive index of the polymer liquid crystal that is the material of the first convex portion 37 for the wavelength λ 3 that passes through the three-wavelength diffraction element with a phase plate To do. On the other hand, as the filling adhesive 40, its refractive index is substantially the same as the ordinary refractive index of the polymer liquid crystal that is the material of the second convex portion 38 with respect to the wavelength λ 1 that transmits the three-wavelength diffraction element with a phase plate. Select. The heights of the first and second convex portions 37 and 38 are appropriately determined in consideration of the extraordinary light refractive index of the polymer liquid crystal that is the material of the convex portion and the refractive index of the filling adhesive. Thus, a desired diffraction efficiency can be obtained with respect to the wavelength of the laser beam transmitted through the three-wavelength diffraction element with a phase plate.

第1の複屈折性樹脂からなる位相板35としては、波長λのレーザ光に対して、リタデーション値が、波長λに等しく、かつ波長λあるいは波長λに対し、波長の略1/2になるように複屈折材料と厚さを決める。同様に、第2の複屈折性樹脂からなる位相板36も同様に、リタデーション値が波長λに等しく、かつ波長λあるいは波長λに対し、波長の略1/2になるように複屈折材料と厚さを決める。 The phase plate 35 consisting of the first birefringent resin, the laser beam having a wavelength lambda 1, is a retardation value equal to the wavelength lambda 1, and the wavelength lambda 2 or wavelength lambda 3, approximately 1 wavelength The birefringent material and thickness are determined so as to be / 2. Similarly, the phase plate 36 made of the second birefringent resin is similarly doubled so that the retardation value is equal to the wavelength λ 1 and approximately half the wavelength with respect to the wavelength λ 2 or λ 3. Determine refractive material and thickness.

第1から第4の透明基板を積層して3波長用回折素子とする際、第1の位相板35の進相軸と第1の凸部37の異常光屈折率の軸方向のなす角度が例えば45°(135°、225°、315°などでもよい)、第1の凸部37の異常光屈折率の軸方向と第2の凸部38の異常光屈折率の軸方向のなす角度が例えば90°(270°などでもよい)、第1の位相板35の進相軸と第2の位相板36の進相軸とがなす角度が例えば90°(270°などでもよい)になるように積層する。   When the first to fourth transparent substrates are laminated to form a three-wavelength diffraction element, the angle formed by the fast axis of the first phase plate 35 and the axial direction of the extraordinary refractive index of the first convex portion 37 is For example, the angle formed by the axis direction of the extraordinary light refractive index of the first convex portion 37 and the axial direction of the extraordinary light refractive index of the second convex portion 38 is 45 ° (may be 135 °, 225 °, 315 °, etc.). For example, the angle formed by 90 ° (may be 270 °, etc.) and the fast axis of the first phase plate 35 and the fast axis of the second phase plate 36 is, for example, 90 ° (may be 270 °, etc.). Laminate to.

こうして形成される第3実施形態の位相板付3波長用回折素子において、第1の凸部37の異常光屈折率の軸方向に、波長λのレーザ光が偏光方向を有する直線偏光であるとする。波長λのレーザ光は、該位相板付3波長用回折素子を透過する際、第1の位相板35をその偏光状態を変えることなく透過し、第1の凸部37と第1の充填接着剤39を備える回折格子(これを、第1の回折格子という)によって回折され、第2の凸部38と第2の充填接着剤40を備える回折格子(これを、第2の回折格子という)に回折されずに直進透過し、第2の位相板36をその偏光状態を変えることなく透過する。 In the three-wavelength diffractive element with phase plate of the third embodiment formed in this way, the laser light of wavelength λ 1 is linearly polarized light having a polarization direction in the axial direction of the extraordinary light refractive index of the first convex portion 37. To do. When the laser light having the wavelength λ 1 is transmitted through the diffraction element for three wavelengths with a phase plate, the laser light is transmitted through the first phase plate 35 without changing its polarization state, and the first convex portion 37 and the first filling adhesion are transmitted. A diffraction grating (referred to as a first diffraction grating) that is diffracted by a diffraction grating including an agent 39 and that includes a second convex portion 38 and a second filling adhesive 40 (this is referred to as a second diffraction grating). Without being diffracted, the light passes straight and passes through the second phase plate 36 without changing its polarization state.

一方、波長λのレーザ光の偏光方向と波長該位相板付3波長用λのレーザ光とが同じ偏光方向を有するとすると、波長λのレーザ光は、回折素子を透過する際、第1の位相板35にてその偏光方向を略90°回転させて透過し、第1の回折格子を回折せずに直進透過し、第2の回折格子では回折し、第2の位相板36にて、さらに、その偏光方向を略90°回転させて、該位相板付3波長用回折素子に入射する前の偏光方向に戻って透過する。 On the other hand, assuming that the polarization direction of the laser light having the wavelength λ 1 and the laser light having the wavelength λ 2 for the three wavelengths with the phase plate have the same polarization direction, when the laser light having the wavelength λ 2 passes through the diffraction element, The first phase plate 35 transmits the light with its polarization direction rotated by approximately 90 °, passes straight through the first diffraction grating without being diffracted, diffracts at the second diffraction grating, and passes through the second phase plate 36. Further, the polarization direction is rotated by approximately 90 °, and the light is transmitted back to the polarization direction before entering the three-wavelength diffraction element with a phase plate.

同様に、波長λのレーザ光の偏光方向と波長λのレーザ光が同じ偏光方向を有するとすると、波長λのレーザ光は、該位相板付3波長用回折素子を透過する際、第1の位相板35にて、その偏光方向を略90°回転させて透過し、第1の回折格子を回折せずに直進透過し、第2回折格子では回折し、第2の位相板36にてさらにその偏光方向を略90°回転させて、該位相板付3波長用回折素子に入射する前の偏光方向に戻って透過する。 Similarly, assuming that the polarization direction of the laser beam having the wavelength λ 1 and the laser beam having the wavelength λ 3 have the same polarization direction, the laser beam having the wavelength λ 3 passes through the diffractive element for three wavelengths with the phase plate. at first phase plate 35, the polarization direction transmitted by rotating approximately 90 °, and straightly transmitted without diffracting the first diffraction grating, diffracted at the second diffraction grating, a second phase plate 36 Further, the polarization direction is rotated by approximately 90 °, and the light is transmitted back to the polarization direction before entering the three-wavelength diffraction element with a phase plate.

上述のように、第3実施形態の位相板付3波長用回折素子によると、2つの位相板の波長依存性と、2つの回折格子の偏光依存性を利用して、波長選択的に回折効果を制御することができる。   As described above, according to the three-wavelength diffraction element with a phase plate of the third embodiment, the diffraction effect is selectively obtained by utilizing the wavelength dependency of the two phase plates and the polarization dependency of the two diffraction gratings. Can be controlled.

第3実施形態の位相板付3波長用回折素子は、BDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。すなわち、図7の構成を基本とし、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、波長λのレーザ光としてBD用の405nm波長帯、波長λのレーザ光としてDVD用の660nm波長帯、波長λのレーザ光としてCD用の780nm波長帯のレーザ光を出力する3波長半導体レーザ53を搭載した互換光ヘッド装置において、BDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。一方、DVDにおいては、RAM規格の再生・記録をしない場合、3ビームを用いずにトラッキングできるため、該位相板付3波長用回折素子の2つの回折格子光を直進透過するレーザ光のみ利用する。 The three-wavelength diffractive element with phase plate of the third embodiment can be used as a diffractive element for obtaining three beams for tracking BD and CD. That is, a compatible optical head device for reproducing / recording BD, DVD and CD having different standards based on the configuration shown in FIG. 7 and having a wavelength of 405 nm as a laser beam of wavelength λ 1 and a wavelength of λ 2 In a compatible optical head device equipped with a three-wavelength semiconductor laser 53 that outputs a laser beam in a 660 nm wavelength band for DVD as a laser beam and a 780 nm wavelength band for a CD as a laser beam having a wavelength λ 3 , for tracking BD and CD It can be used as a diffraction element for obtaining three beams. On the other hand, in the DVD, when the reproduction / recording of the RAM standard is not performed, since tracking can be performed without using three beams, only the laser beam that directly transmits two diffraction grating lights of the three-wavelength diffraction element with a phase plate is used.

図7の互換光ヘッド装置において、第3実施形態の位相板付3波長用回折素子を回折素子52として設置し、前記3波長半導体レーザ53を出射するレーザ光は、回折素子52を透過した後に偏光ビームスプリッタ54で反射し、コリメートレンズ55、および1/4波長板56、対物レンズ57を透過し、光記録媒体58に集光する。光記録媒体58を反射するレーザ光は、対物レンズ57、1/4波長板56、コリメートレンズ55、偏光ビームスプリッタ54を透過して光検出器59に集光される。偏光ビームスプリッタ54としては、前記3つの波長帯のレーザ光に対し、同様な反射・透過に関する偏光依存性を有するものを選択するのが望ましい。1/4波長板56としても、前記3つの波長帯のレーザ光に対し、同様に1/4の位相差を生じ、直線偏光を円偏光、または円偏光を直線偏光に変換することができるものを選択するのが望ましい。   In the compatible optical head device of FIG. 7, the three-wavelength diffractive element with phase plate of the third embodiment is installed as the diffractive element 52, and the laser light emitted from the three-wavelength semiconductor laser 53 is polarized after passing through the diffractive element 52. The light is reflected by the beam splitter 54, passes through the collimating lens 55, the quarter wavelength plate 56, and the objective lens 57, and is condensed on the optical recording medium 58. The laser light reflected from the optical recording medium 58 passes through the objective lens 57, the quarter-wave plate 56, the collimator lens 55, and the polarization beam splitter 54 and is collected on the photodetector 59. As the polarization beam splitter 54, it is desirable to select a polarization beam splitter having the same polarization dependency with respect to reflection / transmission with respect to the laser light of the three wavelength bands. The quarter-wave plate 56 can also generate a quarter-phase difference with respect to the laser light in the three wavelength bands, and can convert linearly polarized light into circularly polarized light or circularly polarized light into linearly polarized light. It is desirable to select.

図7の互換光ヘッド装置において、第3実施形態の位相板付3波長用回折素子は、波長λのBD用のレーザ光に対して、第2の回折格子において不要な光である回折光を発生しない、一方、波長λのCD用のレーザ光に対しても、第1の回折格子において不要な光である回折光をほとんど発生しない。すなわち、互換光ヘッド装置において、ノイズとなる不要な回折光をほとんど発生しないので、良好な再生・記録特性を得ることができる。 In the compatible optical head device of FIG. 7, the three-wavelength diffraction element with a phase plate of the third embodiment emits diffracted light, which is unnecessary light in the second diffraction grating, with respect to the BD laser light having the wavelength λ 1. On the other hand, almost no diffracted light, which is unnecessary light, is generated in the first diffraction grating even for the laser beam for CD having the wavelength λ 3 . In other words, in the compatible optical head device, unnecessary diffracted light that becomes noise is hardly generated, and thus excellent reproduction / recording characteristics can be obtained.

また、第3実施形態の位相板付3波長用回折素子は、BDおよびCD用の波長のレーザ光それぞれに対し、回折効率および回折方向をそれぞれ自由度高く設計でき、一つの素子でありながら、回折効果を波長選択的に利用できるので、小型、軽量化を要望されている3波長半導体レーザを搭載した互換光ヘッド装置を実現できる。特に、3波長半導体レーザから、直線偏光として出力されるレーザ光の偏光方向が、3つの波長帯で略同一である場合に用いることができ、偏光方向を制御する位相板を積層しているので、光ヘッド装置に搭載される部品点数を減らすことができる。   Further, the three-wavelength diffraction element with phase plate of the third embodiment can design the diffraction efficiency and the diffraction direction with a high degree of freedom for each of the laser beams having the wavelengths for BD and CD. Since the effect can be used in a wavelength selective manner, a compatible optical head device equipped with a three-wavelength semiconductor laser that is required to be small and light can be realized. In particular, it can be used when the polarization direction of laser light output as linearly polarized light from a three-wavelength semiconductor laser is substantially the same in three wavelength bands, and a phase plate that controls the polarization direction is laminated. The number of parts mounted on the optical head device can be reduced.

「第4実施形態」
図6は、本発明の第4実施形態に係る回折素子の構成を示す断面図であり、第1実施形態の3波長用回折素子を挟むように2枚の位相板が積層されていて、2枚の位相板のうち一方の位相板に、波長λおよび波長λの入射光を透過するとともに波長λの入射光を回折する無機材料からなる周期的な凹凸部または凸部を有する第3の回折格子がさらに形成されている構成を有している。ここで、第3の回折格子は、無機材料が周期的な凸部となっていてもよいが、無機材料が周期的な凹凸部すなわち谷底で連続的に繋がっていてもよい。第1実施形態に係る3波長用回折素子の部分の構成は、その説明を省略する。本実施形態では4枚の透明基板41,42,43および44が用いられている。第1実施形態と同様に、凸部は高分子液晶からなり、凸部間を充填する材料は光学的等方性の樹脂である充填接着剤であるとして説明する。また、2つの位相板は、複屈折性樹脂からなるとする。
“Fourth Embodiment”
FIG. 6 is a cross-sectional view showing the configuration of the diffraction element according to the fourth embodiment of the present invention, in which two phase plates are laminated so as to sandwich the three-wavelength diffraction element of the first embodiment. One of the phase plates has a periodic concavo-convex portion or a convex portion made of an inorganic material that transmits incident light of wavelength λ 1 and wavelength λ 3 and diffracts incident light of wavelength λ 2 . 3 diffraction gratings are further formed. Here, in the third diffraction grating, the inorganic material may be a periodic convex portion, but the inorganic material may be continuously connected at a periodic uneven portion, that is, a valley bottom. The description of the configuration of the three-wavelength diffraction element according to the first embodiment is omitted. In the present embodiment, four transparent substrates 41, 42, 43 and 44 are used. In the same manner as in the first embodiment, the convex portions are made of polymer liquid crystal, and the material filling the space between the convex portions is assumed to be a filling adhesive that is an optically isotropic resin. The two phase plates are assumed to be made of birefringent resin.

第1の透明基板41、第2の透明基板42、第3の透明基板43、第4の透明基板44としては、ガラス、石英ガラス、プラスチックなどを使用できる。また、第1の透明基板41の空気側の表面に反射防止膜を成膜することで、該回折素子を透過するレーザ光の不要な反射を防ぐことができる。第3の回折格子の表面に、反射防止膜を成膜することで、該位相板付3波長用回折素子を透過するレーザ光の不要な反射を防ぐことができる。   As the first transparent substrate 41, the second transparent substrate 42, the third transparent substrate 43, and the fourth transparent substrate 44, glass, quartz glass, plastic, or the like can be used. Further, by forming an antireflection film on the air-side surface of the first transparent substrate 41, unnecessary reflection of the laser light transmitted through the diffraction element can be prevented. By forming an antireflection film on the surface of the third diffraction grating, unnecessary reflection of the laser light transmitted through the three-wavelength diffraction element with a phase plate can be prevented.

充填接着剤50としては、その屈折率が、該位相板付3波長用回折素子を透過する波長λに対する第1の凸部45の材料である高分子液晶の常光屈折率と略同じものを選択する。一方、充填接着剤51としては、その屈折率が、該位相板付3波長用回折素子を透過する波長λに対する第2の凸部46の材料である高分子液晶の常光屈折率と略同じものを選択する。ここで、第2の凸部46の高さは、該位相板付3波長用回折素子を透過する波長λのレーザ光に対する、第2の凸部46の材料である高分子液晶の異常光屈折率と、充填接着剤51の屈折率との差が、波長λの整数倍、たとえば1倍になるように選択する。 The filling adhesive 50 is selected so that its refractive index is substantially the same as the ordinary light refractive index of the polymer liquid crystal that is the material of the first convex portion 45 for the wavelength λ 3 that transmits the three-wavelength diffraction element with a phase plate To do. On the other hand, as the filling adhesive 51, the refractive index is substantially the same as the ordinary light refractive index of the polymer liquid crystal that is the material of the second convex portion 46 with respect to the wavelength λ 1 that transmits the three-wavelength diffraction element with a phase plate. Select. Here, the height of the second protrusion 46 is such that the extraordinary light refraction of the polymer liquid crystal that is the material of the second protrusion 46 with respect to the laser light having the wavelength λ 2 that passes through the three-wavelength diffraction element with a phase plate. the difference between the rate and the refractive index of the filler adhesive 51 is an integral multiple of the wavelength lambda 2, is selected for example to be 1-fold.

一方、第1の凸部45の高さは、第1の凸部45と第1の充填接着剤50を備える回折格子(第1の回折格子という)において、該位相板付3波長用回折素子を透過する波長λのレーザ光に対し所望の回折効率を得ることができるように選択する。 On the other hand, the height of the first convex portion 45 is such that the diffraction grating for a three-wavelength with a phase plate is provided in a diffraction grating (referred to as a first diffraction grating) including the first convex portion 45 and the first filling adhesive 50. The laser beam is selected so that a desired diffraction efficiency can be obtained with respect to the laser beam having the wavelength λ 1 that is transmitted.

第3の凸部47の材料である無機材料として、SiO(石英)を選択するのが、成膜あるいはエッチングによる加工が容易であるので望ましい。特に、第4の透明基板44として石英ガラスを選んだ場合、SiO膜を成膜しなくてもよく望ましい。ただし、用途によって、少なくとも波長380nm〜波長820nmの間で略無色透明である、Ta、SiON等を使ってもよい。ここで、第3の凸部47の高さは、該位相板付3波長用回折素子を透過する波長λのレーザ光に対する凸部47の屈折率と空気の屈折率との差と高さの積が、波長λの整数倍、例えば2倍になるように選択する。 It is desirable to select SiO 2 (quartz) as the inorganic material that is the material of the third convex portion 47 because it is easy to process by film formation or etching. In particular, when quartz glass is selected as the fourth transparent substrate 44, it is desirable not to form a SiO 2 film. However, depending on the application, Ta 2 O 5 , SiON, or the like that is substantially colorless and transparent at least between a wavelength of 380 nm and a wavelength of 820 nm may be used. Here, the height of the third convex portion 47 is the difference between the height of the refractive index of the convex portion 47 and the refractive index of air with respect to the laser beam having the wavelength λ 1 transmitted through the three-wavelength diffraction element with a phase plate. product is an integral multiple of the wavelength lambda 1, is selected for example to be doubled.

第1の位相板48としては、波長λのレーザ光に対して、リタデーション値が、波長λに等しくなるように複屈折材料と厚さを決める。同様に、第2の複屈折性樹脂からなる位相板49も同様に、リタデーション値が波長λに等しく、かつ波長λあるいは波長λに対し、波長の略2分の1になるように複屈折材料と厚さを決める。 As the first phase plate 48, the laser beam of wavelength lambda 1, the retardation value, determine the birefringent material and thickness to be equal to the wavelength lambda 1. Similarly, the phase plate 49 made of the second birefringent resin similarly has a retardation value equal to the wavelength λ 1 and approximately half the wavelength with respect to the wavelength λ 2 or the wavelength λ 3. Determine birefringent material and thickness.

第1から第4の透明基板を回折素子として積層する際、第1の位相板41の進相軸と前記第1の凸部45の異常光透過率の軸方向のなす角度が例えば45°、第1の凸部45の異常光透過率の軸方向と前記第2の凸部46の異常光透過率の軸方向のなす角度が例えば90°、第1の位相板48の進相軸と第2の位相板49の進相軸がなす角度が例えば90°になるように積層する。   When laminating the first to fourth transparent substrates as diffraction elements, the angle formed between the fast axis of the first phase plate 41 and the axial direction of the extraordinary light transmittance of the first convex portion 45 is, for example, 45 °, The angle formed by the axial direction of the abnormal light transmittance of the first convex portion 45 and the axial direction of the abnormal light transmittance of the second convex portion 46 is, for example, 90 °, and the fast axis of the first phase plate 48 and the first axis The two phase plates 49 are laminated so that the angle formed by the fast axis is 90 °, for example.

こうして形成される第4実施形態の位相板付3波長用回折素子において、第1の凸部45の異常光透過率の軸方向に、波長λのレーザ光が偏光方向を有する直線偏光であるとすると、波長λのレーザ光が、該位相板付3波長用回折素子を透過する際、第1の位相板48をその偏光状態を変えることなく透過し、第1の凸部45と第1の充填接着剤50を備える回折格子(これを、第1の回折格子という)によって回折され、第2の凸部46と第2の充填接着剤51を備える回折格子(これを、第2の回折格子という)を回折せずに直進透過し、第2の位相板49をその偏光状態を変えることなく透過し、第3の回折格子を回折せずに直進透過する。 In the three-wavelength diffraction element with a phase plate of the fourth embodiment formed in this way, the laser light having the wavelength λ 1 is linearly polarized light having a polarization direction in the axial direction of the extraordinary light transmittance of the first convex portion 45. Then, when the laser light having the wavelength λ 1 is transmitted through the three-wavelength diffraction element with a phase plate, the laser beam is transmitted through the first phase plate 48 without changing its polarization state. A diffraction grating (this is referred to as a second diffraction grating) that is diffracted by a diffraction grating including a filling adhesive 50 (referred to as a first diffraction grating) and includes a second convex portion 46 and a second filling adhesive 51. ) Through the second phase plate 49 without changing its polarization state, and through the third diffraction grating without diffracting.

一方、波長λのレーザ光の偏光方向と同じ偏光方向を有する波長λのレーザ光が、該位相板付3波長用回折素子を透過する際、第1の位相板48にて、その偏光方向を略90°回転させて透過し、第1の回折格子を回折せずに直進透過し、第2の回折格子も回折せずに直進透過し、第2の位相板49にて、さらに、その偏光方向を略90°回転させて透過し、第3の回折格子で回折される。 On the other hand, the laser light of wavelength lambda 2 having the same polarization direction as the polarization direction of the laser beam having the wavelength lambda 1 is, when passing through the diffractive element for the phase Backed three wavelengths at the first phase plate 48, the polarization direction thereof Is transmitted through the first diffraction grating without being diffracted, and is transmitted through the second diffraction grating without being diffracted. The light is transmitted with the polarization direction rotated by approximately 90 °, and is diffracted by the third diffraction grating.

同様に、波長λのレーザ光の偏光方向と波長λのレーザ光が同じ偏光方向を有するとすると、波長λのレーザ光は、該位相板付3波長用回折素子を透過する際、第1の位相板48にて、その偏光方向を略90°回転させて透過し、第1の回折格子を回折せずに直進透過し、第2の回折格子では回折し、第2の位相板49にて、さらに、その偏光方向を略90°回転させて透過する。なお、第3の回折格子では、波長λが波長λの略2倍であるとき、上記のように波長λは回折せずに直進透過するので、波長λはほとんど回折しない。 Similarly, assuming that the polarization direction of the laser beam having the wavelength λ 1 and the laser beam having the wavelength λ 3 have the same polarization direction, the laser beam having the wavelength λ 3 passes through the diffractive element for three wavelengths with the phase plate. The first phase plate 48 transmits the light with its polarization direction rotated by approximately 90 °, passes straight through the first diffraction grating without being diffracted, diffracts at the second diffraction grating, and the second phase plate 49. Further, the polarization direction is rotated by approximately 90 ° and transmitted. In the third diffraction grating, when the wavelength lambda 3 is approximately twice the wavelength lambda 1, the wavelength lambda 1 as described above is straightly transmitted without being diffracted, a wavelength lambda 3 is hardly diffracted.

上述のように、第4実施形態の位相板付3波長用回折素子によると、2つの位相板の波長依存性と、2つの回折格子の偏光依存性、無機材料からなる回折格子の波長依存性を利用して、波長選択的に回折効果を制御することができる。   As described above, according to the three-wavelength diffraction element with a phase plate of the fourth embodiment, the wavelength dependency of the two phase plates, the polarization dependency of the two diffraction gratings, and the wavelength dependency of the diffraction grating made of an inorganic material are obtained. By utilizing this, the diffraction effect can be controlled in a wavelength selective manner.

第4実施形態の位相板付3波長用回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、波長λのレーザ光としてBD用の405nm波長帯、DVD用の660nm波長帯、波長λのレーザ光としてCD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BD、DVDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。 The three-wavelength diffractive element with phase plate of the fourth embodiment is a compatible optical head device for reproducing / recording BD, DVD and CD having different standards, and a 405 nm wavelength band for BD as a laser beam having a wavelength λ 1 . Three beams for tracking BD, DVD and CD in a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs laser light in the 780 nm wavelength band for CD as laser light in the 660 nm wavelength band and wavelength λ 2 for DVD It can be used as a diffraction element for obtaining

第4実施形態の位相板付3波長用回折素子は、波長λのBD用のレーザ光に対して、第2の回折格子と、第3の回折格子において不要な光である回折光を発生しない、一方、波長λのDVD用のレーザ光に対しては、第1の回折格子と、第2の回折格子において不要な光である回折光を発生しない。 The three-wavelength diffraction element with a phase plate of the fourth embodiment does not generate diffracted light, which is unnecessary light in the second diffraction grating and the third diffraction grating, with respect to the BD laser light having the wavelength λ 1 whereas, for the DVD laser light of wavelength lambda 2, the first diffraction grating, it does not generate diffracted light is unnecessary light in the second diffraction grating.

一方、波長λのCD用のレーザ光に対しては、第1の回折格子では回折せず、第3回折格子においても、CD用の波長λがBD用の波長λの略2倍となるので、不要な光である回折光をほとんど発生しない。 On the other hand, with respect to laser light for CD of wavelength lambda 3, not diffracted in the first diffraction grating, in the third diffraction grating, approximately twice the wavelength lambda 3 is the wavelength lambda 1 for BD for CD Therefore, diffracted light that is unnecessary light is hardly generated.

すなわち、互換光ヘッド装置において、ノイズとなる不要な回折光を発生することがないので、良好な再生・記録特性を得ることができ、一つの素子でありながら、回折効果を波長選択的に利用できるので、小型、軽量化を要望されている3波長半導体レーザを搭載した互換光ヘッド装置を実現できる。特に、3波長半導体レーザから、直線偏光として出力されるレーザ光の偏光方向が、3つの波長帯で略同一である場合に用いることができ、偏光方向を制御する位相板を積層しているので、光ヘッド装置に搭載される部品点数を減らすことができる。   In other words, the compatible optical head device does not generate unnecessary diffracted light that causes noise, so that excellent reproduction / recording characteristics can be obtained, and the diffraction effect can be selectively used while being a single element. Therefore, a compatible optical head device equipped with a three-wavelength semiconductor laser that is required to be small and light can be realized. In particular, it can be used when the polarization direction of laser light output as linearly polarized light from a three-wavelength semiconductor laser is substantially the same in three wavelength bands, and a phase plate that controls the polarization direction is laminated. The number of parts mounted on the optical head device can be reduced.

また、第4実施形態の位相板付3波長用回折素子は、BD、DVDおよびCD用の波長のレーザ光それぞれに対し、回折効率、回折方向をそれぞれ自由度高く設計できる。また、第3施形態の位相板付3波長用回折素子に比べ、BD、DVDおよびCD用のレーザ光それぞれに対する回折効率の設計自由度が少なくなっているが、DVD−RAM規格の再生・記録に対応することができる。   Further, the three-wavelength diffractive element with phase plate of the fourth embodiment can design the diffraction efficiency and the diffraction direction with a high degree of freedom for each of the laser beams having the wavelengths for BD, DVD and CD. In addition, the degree of freedom in designing the diffraction efficiency for BD, DVD, and CD laser light is reduced compared to the three-wavelength diffraction element with phase plate of the third embodiment. Can respond.

「例1」
本例は図1に示した第1実施形態の具体例であり、作方法を以下に記す。まず、ガラス製の第1透明基板1の空気側の表面に、真空蒸着法を用いて反射防止膜を成膜する。次に、ガラス製の第1透明基板1に、複屈折性を有する液晶モノマーを均一に塗布し、UV光を照射して高分子化させて、高分子液晶膜とする。このとき、液晶分子の配向方向が紙面に垂直になるように選択し、かつ厚さが1.8μmになるように、塗布条件を決める。この高分子液晶膜の波長405nmに対する常光屈折率が1.542、異常光屈折率が1.588である。波長660nmに対する常光屈折率が1.517、異常光屈折率が1.556である。波長780nmに対する常光屈折率が1.514、異常光屈折率が1.552である。この高分子液晶膜にフォトリソグラフィとエッチングの技術を用いて、断面が凹凸状になるように加工する。
"Example 1"
This example is a specific example of the first embodiment shown in FIG. 1, it referred to work made methods below. First, the glass of the first air-side surface of the transparent substrate 1, forming an anti-reflection film by vacuum deposition. Next, the first transparent substrate 1 made of glass, a liquid crystal monomer having birefringence is uniformly applied, by polymerization by irradiation with UV light, a polymer liquid crystal film. At this time, the coating conditions are determined so that the alignment direction of the liquid crystal molecules is selected to be perpendicular to the paper surface and the thickness is 1.8 μm. This polymer liquid crystal film has an ordinary light refractive index of 1.542 and an extraordinary light refractive index of 1.588 with respect to a wavelength of 405 nm. The ordinary light refractive index with respect to the wavelength of 660 nm is 1.517, and the extraordinary light refractive index is 1.556. The ordinary light refractive index with respect to the wavelength of 780 nm is 1.514, and the extraordinary light refractive index is 1.552. The polymer liquid crystal film is processed so as to have a concavo-convex cross section using photolithography and etching techniques.

同様に、ガラス製の第2の透明基板2に、前記液晶モノマーを用いて高分子液晶膜を成膜する。このとき、液晶分子の配向方向が紙面に平行になるように選択し、かつ3.3μmの厚さになるように成膜する。さらに、フォトリソグラフィとエッチングの技術を用いて、断面が凹凸状になるように加工する。このとき、形成する凸部5の周期と方向は、前記第1透明基板1の高分子液晶からなる凸部4の周期と方向と異なっている。すなわち、ピッチにして、数μm〜数10μm、格子角度にして1°程度異なっている。   Similarly, a polymer liquid crystal film is formed on the second transparent substrate 2 made of glass using the liquid crystal monomer. At this time, the liquid crystal molecules are selected so that the alignment direction of the liquid crystal molecules is parallel to the paper surface, and the film is formed to have a thickness of 3.3 μm. Further, processing is performed using a photolithography and etching technique so that the cross section becomes uneven. At this time, the period and direction of the convex part 5 to be formed are different from the period and direction of the convex part 4 made of the polymer liquid crystal of the first transparent substrate 1. That is, the pitch is several μm to several tens of μm, and the lattice angle is different by about 1 °.

次に、第2透明基板2の高分子液晶からなる凸部5を埋めるように、充填接着剤7を用いて第3透明基板3を接着する。なお、第3透明基板3の接着していない面には、反射防止膜が成膜されている。このとき、充填接着剤7としては、波長405nmに対する屈折率が1.542、波長660nmに対する屈折率が1.515、波長780nmに対する屈折率が1.512になるものを選ぶ。ここで、凸部5と充填接着剤7を有する回折格子を第2の回折格子とする。 Then, so as to fill the protrusions 5 formed of the second transparent substrate 2 liquid crystal polymer, bonding the third transparent substrate 3 with the filler adhesive 7. Note that the surface not bonded to the third transparent substrate 3, the anti-reflection film is formed. At this time, as the filling adhesive 7, an adhesive having a refractive index of 1.542 for a wavelength of 405 nm, a refractive index of 1.515 for a wavelength of 660 nm, and a refractive index of 1.512 for a wavelength of 780 nm is selected. Here, let the diffraction grating which has the convex part 5 and the filling adhesive 7 be a 2nd diffraction grating.

次に、第1透明基板1の高分子液晶からなる凸部4を埋めるように、充填接着剤6を用いて、第2透明基板2の接着していない面を接着する。このとき、充填接着剤6としては、波長405nmに対する屈折率が1.544、波長660nmに対する屈折率が1.518、波長780nmに対する屈折率が1.514になるものを選ぶ。ここで、凸部4と充填接着剤6を有する回折格子を第1の回折格子とする。 Then, so as to fill the protrusions 4 formed of a first transparent substrate 1 polymer liquid crystal, by using a filling adhesive 6, to adhere the adhesive to non surface of the second transparent substrate 2. At this time, as the filling adhesive 6, an adhesive having a refractive index of 1.544 for a wavelength of 405 nm, a refractive index of 1.518 for a wavelength of 660 nm, and a refractive index of 1.514 for a wavelength of 780 nm is selected. Here, the diffraction grating having the convex portions 4 and the filling adhesive 6 is defined as a first diffraction grating.

こうして作製される本例の3波長用回折素子において、波長が405nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、第1の回折格子では、高分子液晶の異常光屈折率と充填接着剤の屈折率の差と格子高さ(1.8μm)の関係から回折する。このとき、0次透過率が約67%、1次回折効率が約13.5%となる。一方、第2の回折格子では、高分子液晶の常光屈折率と充填接着剤7の屈折率が等しいので回折せずに直進透過する。   In the thus produced three-wavelength diffraction element of this example, when laser light having a wavelength of 405 nm and linearly polarized light whose polarization direction is perpendicular to the plane of the paper is transmitted through this element, the first diffraction grating Diffraction occurs from the relationship between the extraordinary light refractive index and the refractive index of the filled adhesive and the grating height (1.8 μm). At this time, the 0th-order transmittance is about 67% and the first-order diffraction efficiency is about 13.5%. On the other hand, in the second diffraction grating, the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 7 are the same, so that the light passes straight without being diffracted.

波長が780nm、偏光方向が紙面に平行な直線偏光であるレーザ光が本素子を透過する際、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤6の屈折率が等しいので回折せずに直進透過し、第2の回折格子では、高分子液晶の異常光屈折率と充填接着剤7の屈折率との差と格子高さ(3.3μm)の関係から回折する。このとき、0次透過率が約74%、1次回折効率が約10%となる。   When laser light having a wavelength of 780 nm and linearly polarized light whose polarization direction is parallel to the paper surface is transmitted through this element, in the first diffraction grating, the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 6 are equal. The second diffraction grating diffracts from the relationship between the difference between the extraordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 7 and the grating height (3.3 μm). At this time, the 0th order transmittance is about 74%, and the first order diffraction efficiency is about 10%.

一方、波長が660nm、偏光方向が紙面に平行な直線偏光であるレーザ光が本素子を透過する際、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤6の屈折率が略等しいのでほとんど回折せずに直進透過し、第2の回折格子では、高分子液晶の異常光屈折率と充填接着剤7の屈折率の差と格子高さ(3.3μm)の関係から回折する。このとき、0次透過率が約64%、1次回折効率が約14.6%となる。   On the other hand, when laser light having a wavelength of 660 nm and linearly polarized light whose polarization direction is parallel to the paper surface is transmitted through this element, the first diffraction grating has the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 6. Since it is almost equal, it passes straight through without almost diffracting, and the second diffraction grating is diffracted from the relationship between the extraordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 7 and the grating height (3.3 μm). To do. At this time, the 0th order transmittance is about 64%, and the first order diffraction efficiency is about 14.6%.

本例の3波長用回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、BD用の405nm波長帯、DVD用の660nm波長帯、CD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。   The three-wavelength diffractive element of this example is a compatible optical head device for reproducing / recording BD, DVD and CD with different standards, and has a 405 nm wavelength band for BD, a 660 nm wavelength band for DVD, and 780 nm for CD. In a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs a laser beam in the wavelength band, it can be used as a diffractive element for obtaining three beams for tracking BD and CD.

「例2」
本例は図2に示す構造をもつ3波長用回折素子である。第1の透明基板8に形成された高分子液晶からなる凸部10と、第2の透明基板9に形成された高分子液晶からなる凸部11が向かいあうように充填接着剤12にて接着されている。また、第1の透明基板と第2の透明基板の接着していない面には、反射防止膜が成膜されている。ここで、凸部10と充填接着剤12を有する回折格子が第1の回折格子であり、凸部11と充填接着剤12を有する回折格子が第2の回折格子である。
"Example 2"
This example is a three-wavelength diffraction element having the structure shown in FIG. The convex portion 10 made of polymer liquid crystal formed on the first transparent substrate 8 and the convex portion 11 made of polymer liquid crystal formed on the second transparent substrate 9 are bonded with a filling adhesive 12 so as to face each other. ing. Further, an antireflection film is formed on the surface of the first transparent substrate and the second transparent substrate that are not bonded. Here, the diffraction grating having the convex portion 10 and the filling adhesive 12 is a first diffraction grating, and the diffraction grating having the convex portion 11 and the filling adhesive 12 is a second diffraction grating.

第1の透明基板8の凸部10と第2の透明基板9の凸部11は、例1の3波長用回折素子と同じ材料を用いて同様に作製する。充填接着剤12としては、波長405nmに対する屈折率が1.542、波長660nmに対する屈折率が1.517、波長780nmに対する屈折率が1.512になるものを選ぶ。   The convex part 10 of the 1st transparent substrate 8 and the convex part 11 of the 2nd transparent substrate 9 are produced similarly using the same material as the diffraction element for 3 wavelengths of Example 1. FIG. As the filling adhesive 12, an adhesive having a refractive index of 1.542 for a wavelength of 405 nm, a refractive index of 1.517 for a wavelength of 660 nm, and a refractive index of 1.512 for a wavelength of 780 nm is selected.

本例の3波長用回折素子は、例1の3波長用回折素子と同様に、規格が異なるBD、DVDおよびCDの再生・記録を行なう3波長半導体レーザを搭載した互換光ヘッド装置において、BDおよびCDのトラッキング用の3ビームを得るための回折素子として利用でき、同様の効果を得ることができる。   The diffractive element for three wavelengths of this example is the same as the diffractive element for three wavelengths of Example 1, in a compatible optical head device equipped with a three-wavelength semiconductor laser for reproducing / recording BD, DVD and CD having different standards. It can be used as a diffractive element for obtaining three beams for tracking CDs, and the same effect can be obtained.

さらに、素子を構成する透明基板の数を削減できるので、回折素子自体の小型・軽量化を実現できる。   Furthermore, since the number of transparent substrates constituting the element can be reduced, the diffractive element itself can be reduced in size and weight.

「例3」
本例は図3に示した第2実施形態の具体例であり、作方法を以下に記す。
"Example 3"
This example is a specific example of the second embodiment shown in FIG. 3, it referred to work made methods below.

まず、ガラス製の第1透明基板13の空気側の表面に、真空蒸着法を用いて反射防止膜を成膜する。次に、ガラス製の第1透明基板13に、例1(図1)の高分子液晶からなる凸部4と同じ、凸部16を形成する。同様に、ガラス製の第2透明基板14に、同じ液晶モノマーを用いて高分子液晶膜を成膜する。このとき、液晶の配向方向が紙面に平行になるように選択し、かつ16.1μmの厚さになるように成膜する。さらに、フォトリソグラフィとエッチングの技術を用いて、断面が凹凸状になるように加工する。このとき、形成する凸部17の周期と方向は、第1の透明基板13の高分子液晶からなる凸部16の周期と方向と異なっている。 First, the glass of the air-side surface of the first transparent substrate 13, forming the antireflection film by vacuum deposition. Next, the first transparent substrate 13 made of glass, the same as the convex portions 4 comprising a polymer liquid crystal of Example 1 (FIG. 1), to form the convex portion 16. Similarly, the second transparent substrate 14 made of glass, forming a polymer liquid crystal film using the same liquid crystal monomer. At this time, the liquid crystal alignment direction is selected so as to be parallel to the paper surface, and the film is formed so as to have a thickness of 16.1 μm. Further, processing is performed using a photolithography and etching technique so that the cross section becomes uneven. At this time, the period and direction of the convex part 17 to be formed are different from the period and direction of the convex part 16 made of the polymer liquid crystal of the first transparent substrate 13.

次に、第2透明基板14の高分子液晶からなる凸部17を埋めるように、充填接着剤20を用いて第3透明基板15を接着する。充填接着剤20としては、例1(図1)の充填接着剤4と同じものを用いる。ここで、凸部17と充填接着剤20を有する回折格子が第2の回折格子である。 Then, so as to fill the protrusions 17 made of a polymer liquid crystal of the second transparent substrate 14, bonding the third transparent substrate 15 using a packed adhesive 20. As the filling adhesive 20, the same one as the filling adhesive 4 of Example 1 (FIG. 1) is used. Here, the diffraction grating having the convex portion 17 and the filling adhesive 20 is the second diffraction grating.

なお、第3の透明基板15の接着していない面には、無機材料からなる凸部18が形成されている。無機材料からなる凸部18は、第2の透明基板14と接着する前に形成され、その表面には反射防止膜が成膜されている。作方法は、第3の透明基板15に石英をスパッタで成膜したのち、フォトリソグラフィとエッチングの技術を用いて、断面が凸状になるように加工する。このとき、形成される凸部18の周期と方向は、前記第1の透明基板13の高分子液晶からなる凸部16の周期および方向、第2の透明基板14の高分子液晶からなる凸部17の周期および方向と異なっている。このとき成膜する石英の波長405nmに対する屈折率が1.470、波長660nmに対する屈折率が1.456、波長780nmに対する屈折率が1.454になっている。また、エッチングする凸部の深さは、1.72μmである。ここで、凸部18を有する回折格子が第3の回折格子である。 In addition, the convex part 18 which consists of inorganic materials is formed in the surface which the 3rd transparent substrate 15 has not adhere | attached. The convex portion 18 made of an inorganic material is formed before bonding to the second transparent substrate 14, and an antireflection film is formed on the surface thereof. Work made method after forming the quartz by sputtering in the third transparent substrate 15, using a photolithography and etching technique, it is processed so that the cross section is convex. At this time, the period and direction of the protrusions 18 to be formed are the period and direction of the protrusions 16 made of the polymer liquid crystal of the first transparent substrate 13 and the protrusions made of the polymer liquid crystal of the second transparent substrate 14. 17 different periods and directions. At this time, the refractive index for the wavelength of 405 nm of the quartz film to be formed is 1.470, the refractive index for the wavelength of 660 nm is 1.456, and the refractive index for the wavelength of 780 nm is 1.454. Moreover, the depth of the convex part to be etched is 1.72 μm. Here, the diffraction grating having the convex portion 18 is the third diffraction grating.

次に、第1の透明基板13の高分子液晶からなる凸部16を埋めるように、充填接着剤19を用いて、第2の透明基板14の接着していない面を接着する。充填接着剤19として、例1(図1)で用いた充填接着剤6と同じものを用いる。ここで、凸部16と充填接着剤19を有する回折格子が第1の回折格子である。   Next, the unadhered surface of the second transparent substrate 14 is bonded using a filling adhesive 19 so as to fill the convex portions 16 made of polymer liquid crystal on the first transparent substrate 13. As the filling adhesive 19, the same one as the filling adhesive 6 used in Example 1 (FIG. 1) is used. Here, the diffraction grating having the convex portion 16 and the filling adhesive 19 is the first diffraction grating.

こうして作製される本例の3波長用回折素子において、波長が405nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、第1の回折格子では、高分子液晶の異常光屈折率と充填接着剤19の屈折率との差と格子高さ(1.8μm)の関係から回折する。このとき、0次透過率が約67%、1次回折効率が約13.5%となる。第2の回折格子では、高分子液晶の常光屈折率と充填接着剤の屈折率が等しいので回折せずに直進透過する。また、第3の回折格子では、その凹部の光路長と凸部の光路長の差が、波長の2倍である810nmになるので回折せずに直進透過する。   In the thus produced three-wavelength diffraction element of this example, when laser light having a wavelength of 405 nm and a linearly polarized light whose polarization direction is perpendicular to the paper surface is transmitted through the element, the first diffraction grating has Diffraction occurs from the relationship between the difference between the extraordinary light refractive index and the refractive index of the filling adhesive 19 and the grating height (1.8 μm). At this time, the 0th-order transmittance is about 67% and the first-order diffraction efficiency is about 13.5%. In the second diffraction grating, since the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive are equal, they pass straight without being diffracted. Further, in the third diffraction grating, the difference between the optical path length of the concave portion and the optical path length of the convex portion is 810 nm, which is twice the wavelength, so that the light passes straight without being diffracted.

波長が660nm、偏光方向が紙面に平行な直線偏光であるレーザ光が本素子を透過する際、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤19の屈折率が略等しいのでほとんど回折せずに直進透過し、第2の回折格子では、その凹部の光路長と凸部の光路長の差が、波長の1倍である660nmになるので、回折せずに直進透過する。また、第3の回折格子では、凸部の石英と凹部の空気の屈折率の差と格子高さ(1.72μm)の関係から回折する。このとき、0次透過率は69%であり、1次回折効率は12.6%となる。   When laser light having a wavelength of 660 nm and linearly polarized light whose polarization direction is parallel to the paper surface is transmitted through the element, the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 19 are substantially equal in the first diffraction grating. Therefore, in the second diffraction grating, the difference between the optical path length of the concave portion and the optical path length of the convex portion is 660 nm, which is one wavelength, so that it passes straight through without being diffracted. . The third diffraction grating diffracts from the relationship between the refractive index difference between the convex quartz and the concave air and the grating height (1.72 μm). At this time, the 0th-order transmittance is 69%, and the first-order diffraction efficiency is 12.6%.

波長が780nm、偏光方向が紙面に平行な直線偏光であるレーザ光が本素子を透過する際、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤19の屈折率が等しいので回折せずに直進透過し、第2の回折格子では、高分子液晶の異常光屈折率と充填接着剤20の屈折率の差と格子高さ(16.1μm)の関係から回折する。このとき、0次透過率が約73%、1次回折効率が約11%となる。また、第3の回折格子では、その凹部の光路長と凸部の光路長の差が、波長の1倍である780nmになるので、回折せずに直進透過する。   When laser light having a wavelength of 780 nm and linearly polarized light whose polarization direction is parallel to the paper surface is transmitted through this element, in the first diffraction grating, the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 19 are equal. The second diffraction grating diffracts from the relationship between the extraordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 20 and the grating height (16.1 μm). At this time, the 0th order transmittance is about 73% and the first order diffraction efficiency is about 11%. In the third diffraction grating, the difference between the optical path length of the concave portion and the optical path length of the convex portion is 780 nm, which is one time the wavelength, so that the light passes straight without being diffracted.

本例の3波長用回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、BD用の405nm波長帯、DVD用の660nm波長帯、CD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BD、DVDおよびCDのそれぞれのトラッキング用の3ビームを得るための回折素子として利用できる。   The three-wavelength diffractive element of this example is a compatible optical head device for reproducing / recording BD, DVD and CD with different standards, and has a 405 nm wavelength band for BD, a 660 nm wavelength band for DVD, and 780 nm for CD. In a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs laser light in the wavelength band, it can be used as a diffractive element for obtaining three BD, DVD, and CD tracking beams.

「例4」
本例は図4に示す構造をもつ回折素子である。第1の透明基板21に形成された高分子液晶からなる凸部23と、第2の透明基板22に形成された高分子液晶からなる凸部24が向かいあうように充填接着剤26にて接着されている。また、第1の透明基板21の接着していない面には、反射防止膜が成膜されている。ここで、凸部23と充填接着剤26を有する回折格子が第1の回折格子であり、凸部24と充填接着剤26を有する回折格子が第2の回折格子である。
"Example 4"
This example is a diffractive element having the structure shown in FIG. The convex portion 23 made of polymer liquid crystal formed on the first transparent substrate 21 and the convex portion 24 made of polymer liquid crystal formed on the second transparent substrate 22 are bonded with a filling adhesive 26 so as to face each other. ing. An antireflection film is formed on the surface of the first transparent substrate 21 that is not bonded. Here, the diffraction grating having the convex portion 23 and the filling adhesive 26 is a first diffraction grating, and the diffraction grating having the convex portion 24 and the filling adhesive 26 is a second diffraction grating.

一方、第2の透明基板22の接着していない面には、無機材料からなる凸部25が形成されている。無機材料からなる凸部25は、第2透明基板22のもう1面に形成されている高分子液晶からなる凸部24を形成する前に、形成される。作方法は、例3(図3)の第3の透明基板15に形成する無機材料からなる凸部18と同様である。また、その表面には反射防止膜が成膜されている。ここで、凸部25を有する回折格子が第3の回折格子である。 On the other hand, a convex portion 25 made of an inorganic material is formed on the surface of the second transparent substrate 22 that is not bonded. The convex portion 25 made of an inorganic material is formed before the convex portion 24 made of a polymer liquid crystal formed on the other surface of the second transparent substrate 22 is formed. Work made method is similar to the convex portion 18 made of an inorganic material for forming the third transparent substrate 15 of Example 3 (Figure 3). Further, an antireflection film is formed on the surface. Here, the diffraction grating having the convex portions 25 is the third diffraction grating.

透明基板22の凸部24は、例3の3波長用回折素子と同じ材料を用いて同様に作製する。充填接着剤26としては、例2(図2)の回折素子に用いた充填接着剤12を用いる。   The convex part 24 of the transparent substrate 22 is produced in the same manner using the same material as the three-wavelength diffraction element of Example 3. As the filling adhesive 26, the filling adhesive 12 used in the diffraction element of Example 2 (FIG. 2) is used.

本例の3波長用回折素子は、例3の回折素子と同様に、規格が異なるBD、DVDおよびCDの再生・記録を行なう3波長半導体レーザを搭載した互換光ヘッド装置において、BD、DVDおよびCDのトラッキング用の3ビームを得るための回折素子として利用でき、同様の効果を得ることができる。   The diffractive element for three wavelengths of this example is the same as the diffractive element of Example 3, in a compatible optical head device equipped with a three-wavelength semiconductor laser for reproducing / recording BD, DVD and CD having different standards. It can be used as a diffraction element for obtaining three beams for CD tracking, and the same effect can be obtained.

さらに、素子を構成する透明基板の数を削減できるので、回折素子自体の小型・軽量化を実現できる。   Furthermore, since the number of transparent substrates constituting the element can be reduced, the diffractive element itself can be reduced in size and weight.

「例5」
本実施例は図5に示した第3実施形態の具体例であり、作方法を以下に記す。

"Example 5"
This embodiment is a specific example of the third embodiment shown in FIG. 5, referred to work made methods below.

まず、ガラス製の第1の透明基板31の空気側の表面に、真空蒸着法を用いて反射防止膜を成膜する。次に、ガラス製の第1の透明基板31に、例1で用いた複屈折性を有する液晶モノマーを均一に塗布し、UVを照射して高分子化させて、高分子液晶膜とする。このとき、液晶分子の配向方向が紙面奥行き右45度方向になるように選択し、かつ厚さが8.8μmになるように、塗布条件を決める。   First, an antireflection film is formed on the air-side surface of the first transparent substrate 31 made of glass using a vacuum deposition method. Next, the liquid crystal monomer having the birefringence used in Example 1 is uniformly applied to the first transparent substrate 31 made of glass, and polymerized by UV irradiation to obtain a polymer liquid crystal film. At this time, the application conditions are determined so that the alignment direction of the liquid crystal molecules is selected to be 45 degrees to the right of the paper depth and the thickness is 8.8 μm.

同様に、ガラス製の第4の透明基板34の空気側の表面に、真空蒸着法を用いて反射防止膜を成膜する。次に、ガラス製の第4の透明基板34に、上述の複屈折性を有する液晶モノマーを均一に塗布し、UVを照射して高分子化させて、高分子液晶膜とする。このとき、液晶の配向方向が紙面奥行き左45度方向になるように選択し、かつ厚さが8.8μmになるように、塗布条件を決める。   Similarly, an antireflection film is formed on the air-side surface of the fourth transparent substrate 34 made of glass using a vacuum vapor deposition method. Next, the above-mentioned liquid crystal monomer having birefringence is uniformly applied to the fourth transparent substrate 34 made of glass, and polymerized by irradiation with UV to obtain a polymer liquid crystal film. At this time, the liquid crystal alignment direction is selected so as to be a 45 degree left depth direction, and the coating conditions are determined so that the thickness is 8.8 μm.

ガラス製の第2の透明基板32には、例1(図1)の高分子液晶からなる凸部4と、同じ凸部37を形成する。同様に、ガラス製の第3の透明基板33には、例1(図1)の高分子液晶からなる凸部5と同じ凸部38を形成する。   The same convex part 37 as the convex part 4 which consists of a polymer liquid crystal of Example 1 (FIG. 1) is formed in the 2nd transparent substrate 32 made from glass. Similarly, the same convex part 38 as the convex part 5 which consists of a polymer liquid crystal of Example 1 (FIG. 1) is formed in the 3rd transparent substrate 33 made from glass.

次に、第2の透明基板32の高分子液晶からなる凸部37を埋めるように、充填接着剤39を用いて第1の透明基板31の高分子液晶膜35を向かいあわせて接着する。充填接着剤39としては、例1(図1)の充填接着剤6と同じものを用いる。ここで、凸部37と充填接着剤39を有する回折格子が第1の回折格子である。   Next, the polymer liquid crystal film 35 of the first transparent substrate 31 is bonded face-to-face using a filling adhesive 39 so as to fill the convex portions 37 made of the polymer liquid crystal of the second transparent substrate 32. As the filling adhesive 39, the same adhesive as the filling adhesive 6 of Example 1 (FIG. 1) is used. Here, the diffraction grating having the convex portion 37 and the filling adhesive 39 is the first diffraction grating.

次に、第3透明基板33の高分子液晶からなる凸部38を埋めるように、充填接着剤40を用いて、上述の第2の透明基板32の接着していない面を接着する。充填接着剤40としては、例1(図1)の充填接着剤7と同じものを用いる。ここで、凸部38と充填接着剤40を有する回折格子が第2の回折格子である。 Then, so as to fill the protrusions 38 made of a polymer liquid crystal of the third transparent substrate 33, using a packed adhesive 40 to bond the adhesive to non surface of the second transparent substrate 32 described above. As the filling adhesive 40, the same adhesive as the filling adhesive 7 of Example 1 (FIG. 1) is used. Here, the diffraction grating having the convex portions 38 and the filling adhesive 40 is the second diffraction grating.

さらに、第4の透明基板34の高分子液晶膜36と、第3透明基板33の接着していない面を向かいあわせて、透明な接着剤で接着する。   Further, the polymer liquid crystal film 36 of the fourth transparent substrate 34 and the non-adhered surface of the third transparent substrate 33 face each other and are bonded with a transparent adhesive.

ここで、本例の位相板付3波長用回折素子を作製する上で、4枚の透明基板の積層方法としては、第2の透明基板32の高分子液晶からなる凸部37を埋めるように、充填接着剤39を用いて、第1の透明基板31の高分子液晶膜35を向かいあわせて接着したもの、第3の透明基板33の高分子液晶からなる凸部38を埋めるように、充填接着剤40を用いて第4の透明基板34の高分子液晶膜36を向かいあわせて接着したものを別々に用意したのち、第2の透明基板32の高分子液晶からなる凸部37のない面と、第3の透明基板33の高分子液晶からなる凸部38のない面を透明な接着剤で接着する積層方法でもよい。これは、図5とは異なる構成である。   Here, in producing the three-wavelength diffraction element with a phase plate of this example, as a method of laminating the four transparent substrates, so as to fill the convex portion 37 made of the polymer liquid crystal of the second transparent substrate 32, Filling adhesion so that the polymer liquid crystal film 35 of the first transparent substrate 31 and the polymer liquid crystal film 35 of the third transparent substrate 33 are bonded to each other using the filling adhesive 39 to fill the convex portion 38 made of the polymer liquid crystal of the third transparent substrate 33. After separately preparing the polymer liquid crystal film 36 of the fourth transparent substrate 34 facing each other using the agent 40, the surface of the second transparent substrate 32 having no convex portion 37 made of polymer liquid crystal and Alternatively, a lamination method may be used in which the surface of the third transparent substrate 33 without the convex portion 38 made of polymer liquid crystal is adhered with a transparent adhesive. This is a configuration different from FIG.

こうして作製される本例の回折素子において、波長が405nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、第1の透明基板31の高分子液晶膜35が、高分子液晶の異常光屈折率と常光屈折率との差と、その厚さ(8.8μm)の積からなるリタデーション値405nmを有する位相板(第1の位相板)としての機能を有する。このリタデーション値が、波長と等しいため、レーザ光の偏光状態を変えることなく透過する。第1の回折格子では、高分子液晶の異常光屈折率と充填接着剤39の屈折率との差と格子高さの関係から回折する。このとき、0次透過率が約67%、1次回折効率が約13.5%となる。一方、第2の回折格子では、高分子液晶の常光屈折率と充填接着剤40の屈折率とが等しいので回折せずに直進透過する。第4の透明基板34の高分子液晶膜36も、リタデーション値405nmを有する位相板(第2の位相板)としての機能を有し、同様にレーザ光の偏光状態を変えることなく透過する。   In the diffractive element of this example manufactured in this way, when a laser beam having a wavelength of 405 nm and a linearly polarized light whose polarization direction is perpendicular to the paper surface is transmitted through this element, the polymer liquid crystal film 35 of the first transparent substrate 31 is It functions as a phase plate (first phase plate) having a retardation value of 405 nm, which is the product of the difference between the extraordinary refractive index and the ordinary refractive index of the polymer liquid crystal and its thickness (8.8 μm). Since this retardation value is equal to the wavelength, it passes through without changing the polarization state of the laser light. The first diffraction grating diffracts from the relationship between the difference between the extraordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 39 and the grating height. At this time, the 0th-order transmittance is about 67% and the first-order diffraction efficiency is about 13.5%. On the other hand, in the second diffraction grating, since the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 40 are equal, they pass straight without being diffracted. The polymer liquid crystal film 36 of the fourth transparent substrate 34 also has a function as a phase plate (second phase plate) having a retardation value of 405 nm, and similarly transmits without changing the polarization state of the laser light.

波長が780nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、第1の位相板である高分子液晶膜35が、リタデーション値334nmを有する位相板としての機能を有し、レーザ光の偏光状態を変化させる。このとき、紙面に垂直な偏光成分の強度は5%、紙面に平行な偏光成分の強度が95%となる楕円偏光に変わる。   When laser light having a wavelength of 780 nm and linearly polarized light whose polarization direction is perpendicular to the paper surface is transmitted through this element, the polymer liquid crystal film 35 serving as the first phase plate functions as a phase plate having a retardation value of 334 nm. And change the polarization state of the laser light. At this time, the intensity of the polarized light component perpendicular to the paper surface is changed to elliptical polarized light having an intensity of 5% and a polarized light component parallel to the paper surface of 95%.

紙面に平行な偏光成分のレーザ光は、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤39の屈折率が等しいので回折せずに直進透過し、第2の回折格子では、高分子液晶の異常光屈折率と充填接着剤40の屈折率との差と格子高さの関係から回折する。このとき、0次透過率が約74%、1次回折効率が約10%となる。   In the first diffraction grating, the laser light having a polarization component parallel to the paper surface is transmitted straight without being diffracted because the ordinary light refractive index of the polymer liquid crystal is equal to the refractive index of the filling adhesive 39, and in the second diffraction grating, The diffraction is performed from the relationship between the difference between the extraordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 40 and the grating height. At this time, the 0th order transmittance is about 74%, and the first order diffraction efficiency is about 10%.

一方、紙面に垂直な偏光成分のレーザ光は、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤39の屈折率の差と、格子高さの関係から回折する。このとき、0次透過率が約90%、1次回折効率が約4%となる。一方、の第2の回折格子では、高分子液晶の常光屈折率と充填接着剤40の屈折率が略等しいのでほとんど回折せずに直進透過する。   On the other hand, the laser beam having a polarization component perpendicular to the paper surface is diffracted in the first diffraction grating due to the relationship between the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 39 and the grating height. At this time, the 0th-order transmittance is about 90% and the first-order diffraction efficiency is about 4%. On the other hand, in the second diffraction grating, the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 40 are substantially equal, so that they pass straight through with almost no diffraction.

第2の位相板である高分子液晶膜36も、リタデーション値334nmを有する位相板としての機能を有するが、高分子液晶膜35(第1の位相板)の進相軸と直交した進相軸を有するため、結果的に、高分子液晶膜36(第2の位相板)を透過する際、レーザ光の偏光状態は本例の回折素子に入射する前と略同じ偏光状態、すなわち、偏光方向が紙面に垂直な直線偏光となって、本例の回折素子を出射する。   The polymer liquid crystal film 36 which is the second phase plate also has a function as a phase plate having a retardation value of 334 nm, but the fast axis perpendicular to the fast axis of the polymer liquid crystal film 35 (first phase plate). As a result, when passing through the polymer liquid crystal film 36 (second phase plate), the polarization state of the laser light is substantially the same as that before entering the diffraction element of this example, that is, the polarization direction. Becomes linearly polarized light perpendicular to the paper surface and exits the diffraction element of this example.

このとき、本例の回折素子により得られる0次透過率は約75%、1次回折効率は約9.5%である。なお、第1の回折格子による1次回折光は、不要となる光である。ただし、その回折効率は約0.2%であり十分小さい。   At this time, the zero-order transmittance obtained by the diffraction element of this example is about 75%, and the first-order diffraction efficiency is about 9.5%. Note that the first-order diffracted light by the first diffraction grating is unnecessary light. However, the diffraction efficiency is about 0.2%, which is sufficiently small.

一方、波長が660nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、高分子液晶膜35(第1の位相板)が、リタデーション値343nmを有する位相板としての機能を有し、レーザ光の偏光状態を変化させる。このとき、リタデーション値が、波長の略1/2になるので、99%以上の紙面に平行な偏光成分を有する略直線偏光に変わる。   On the other hand, when a laser beam having a wavelength of 660 nm and a linearly polarized light whose polarization direction is perpendicular to the paper surface is transmitted through this element, the polymer liquid crystal film 35 (first phase plate) serves as a phase plate having a retardation value of 343 nm. It has a function and changes the polarization state of the laser beam. At this time, since the retardation value is approximately ½ of the wavelength, it changes to approximately linearly polarized light having a polarization component parallel to the paper surface of 99% or more.

紙面に平行な略直線偏光は、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤39の屈折率が等しいので回折せずに直進透過し、第2の回折格子では、高分子液晶の異常光屈折率と充填接着剤40の屈折率との差と格子高さの関係から回折する。このとき、0次透過率が約64%、1次回折効率が約14.6%となる。   The substantially linearly polarized light parallel to the paper surface is transmitted straight without being diffracted in the first diffraction grating because the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 39 are equal, and in the second diffraction grating, Diffraction occurs from the relationship between the difference between the extraordinary refractive index of the molecular liquid crystal and the refractive index of the filling adhesive 40 and the grating height. At this time, the 0th order transmittance is about 64%, and the first order diffraction efficiency is about 14.6%.

高分子液晶膜36(第2の位相板)も、リタデーション値343nmを有する位相板としての機能を有するが、高分子液晶膜35(第1の位相板)の進相軸と直交した進相軸を有するため、結果的に、高分子液晶膜36(第2の位相板)を透過する際、レーザ光の偏光状態は本例の回折素子に入射する前と略同じ偏光状態、すなわち、偏光方向が紙面に垂直な直線偏光となって、本例の回折素子を出射する。このとき、本例の回折素子により得られる0次透過率は約63%、1次回折効率は約14.5%である。   The polymer liquid crystal film 36 (second phase plate) also has a function as a phase plate having a retardation value of 343 nm, but the phase advance axis orthogonal to the phase advance axis of the polymer liquid crystal film 35 (first phase plate). As a result, when passing through the polymer liquid crystal film 36 (second phase plate), the polarization state of the laser light is substantially the same as that before entering the diffraction element of this example, that is, the polarization direction. Becomes linearly polarized light perpendicular to the paper surface and exits the diffraction element of this example. At this time, the zero-order transmittance obtained by the diffraction element of this example is about 63%, and the first-order diffraction efficiency is about 14.5%.

本実施例の位相板付3波長用回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、BD用の405nm波長帯、DVD用の660nm波長帯、CD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BDおよびCDのトラッキング用の3ビームを得るための回折素子として利用できる。一方、DVDにおいては、RAM規格の再生・記録をしない場合、3ビームを用いずにトラッキングできるため、本実施例の回折素子による回折光を必要とせず、64%の0次透過光のみ利用する。   The three-wavelength diffractive element with a phase plate of this embodiment is a compatible optical head device for reproducing / recording BD, DVD, and CD with different standards, and includes a 405 nm wavelength band for BD, a 660 nm wavelength band for DVD, a CD In a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs laser light in the 780 nm wavelength band, it can be used as a diffractive element for obtaining three beams for BD and CD tracking. On the other hand, in the case of not performing reproduction / recording of the RAM standard in the DVD, since tracking can be performed without using three beams, diffracted light by the diffractive element of this embodiment is not required, and only 64% 0th order transmitted light is used. .

「例6」
本例は図6に示した第4実施形態の具体例であり、作方法を以下に記す。

"Example 6"
This embodiment is a specific example of the fourth embodiment shown in FIG. 6, mark the work made methods below.

まず、ガラス製の第1の透明基板41の空気側の表面に、真空蒸着法を用いて反射防止膜を成膜する。次に、ガラス製の第1の透明基板41に、例5(図5)の高分子液晶膜35と同じ、高分子液晶膜48を成膜する。   First, an antireflection film is formed on the air-side surface of the first transparent substrate 41 made of glass using a vacuum deposition method. Next, the same polymer liquid crystal film 48 as the polymer liquid crystal film 35 of Example 5 (FIG. 5) is formed on the first transparent substrate 41 made of glass.

次に、ガラス製の第4透明基板44に、例3(図3)の第3の透明基板15の石英からなる凸部18と同じ、凸部47を形成し、その表面に反射防止膜を成膜する。さらに、凸部47を形成していない面に、例5(図5)の第4の透明基板34の高分子液晶膜36と同じ、高分子液晶膜49を成膜する。   Next, the same convex part 47 as the convex part 18 made of quartz of the third transparent substrate 15 of Example 3 (FIG. 3) is formed on the fourth transparent substrate 44 made of glass, and an antireflection film is formed on the surface thereof. Form a film. Further, a polymer liquid crystal film 49 which is the same as the polymer liquid crystal film 36 of the fourth transparent substrate 34 of Example 5 (FIG. 5) is formed on the surface where the convex portions 47 are not formed.

次に、ガラス製の第2の透明基板42に、例5(図5)の第2の透明基板32の高分子液晶からなる凸部37と、同じ凸部45を形成する。同様に、ガラス製の第3の透明基板43に、例3(図3)の第2の透明基板14の高分子液晶からなる凸部17と同じ、凸部46を形成する。   Next, the same convex part 45 as the convex part 37 which consists of a polymer liquid crystal of the 2nd transparent substrate 32 of Example 5 (FIG. 5) is formed in the 2nd transparent substrate 42 made from glass. Similarly, the same convex part 46 as the convex part 17 which consists of a polymer liquid crystal of the 2nd transparent substrate 14 of Example 3 (FIG. 3) is formed in the 3rd transparent substrate 43 made from glass.

なお、高分子液晶からなる凸部45、46、および石英からなる凸部47の周期と方向は、それぞれ異なっている。   The periods and directions of the convex portions 45 and 46 made of polymer liquid crystal and the convex portion 47 made of quartz are different from each other.

次に、第2の透明基板42の高分子液晶からなる凸部45を埋めるように、充填接着剤50を用いて第1の透明基板41の高分子液晶膜48を向かいあわせて接着する。充填接着剤50としては、例1(図1)の充填接着剤6と同じものを用いる。次に、第3の透明基板43の高分子液晶からなる凸部46を埋めるように、充填接着剤51を用いて、上述の第2の透明基板42の接着していない面を接着する。充填接着剤51としては、例1(図1)の充填接着剤7と同じものを用いる。ここで、凸部45と充填接着剤50を有する回折格子が第1の回折格子であり、凸部46と充填接着剤51を有する回折格子が第2の回折格子である。   Next, the polymer liquid crystal film 48 of the first transparent substrate 41 is bonded face-to-face using a filling adhesive 50 so as to fill the convex portions 45 made of the polymer liquid crystal of the second transparent substrate 42. As the filling adhesive 50, the same adhesive as the filling adhesive 6 of Example 1 (FIG. 1) is used. Next, the surface of the second transparent substrate 42 that is not bonded is bonded using the filling adhesive 51 so as to fill the convex portions 46 made of the polymer liquid crystal of the third transparent substrate 43. As the filling adhesive 51, the same one as the filling adhesive 7 of Example 1 (FIG. 1) is used. Here, the diffraction grating having the convex portion 45 and the filling adhesive 50 is the first diffraction grating, and the diffraction grating having the convex portion 46 and the filling adhesive 51 is the second diffraction grating.

さらに、第4の透明基板43の高分子液晶膜49と、第3の透明基板43の接着していない面を向かいあわせて、透明な接着剤で接着する。   Further, the polymer liquid crystal film 49 of the fourth transparent substrate 43 and the non-bonded surface of the third transparent substrate 43 face each other and are bonded with a transparent adhesive.

ここで、本例の位相板付3波長用回折素子を作製する上で、4枚の透明基板の積層方法としては、第2透明基板42の高分子液晶からなる凸部45を埋めるように、充填接着剤50を用いて、第1透明基板41の高分子液晶膜48を向かいあわせて接着したもの、第3透明基板43の高分子液晶からなる凸部46を埋めるように、充填接着剤51を用いて第4透明基板44の高分子液晶膜49を向かいあわせて接着したものを別々に用意したのち、第2透明基板42の高分子液晶からなる凸部45のない面と、第3透明基板43の高分子液晶からなる凸部46のない面を透明な接着剤で接着する積層方法でもよい。これは図6とは異なる構成である。   Here, in producing the three-wavelength diffractive element with a phase plate of this example, as a method of laminating the four transparent substrates, the second transparent substrate 42 is filled so as to fill the convex portions 45 made of polymer liquid crystal. A filling adhesive 51 is used so that the polymer liquid crystal film 48 of the first transparent substrate 41 is adhered to the first transparent substrate 41 with the adhesive 50 and the convex portion 46 made of the polymer liquid crystal of the third transparent substrate 43 is filled. After preparing separately the polymer liquid crystal film 49 of the fourth transparent substrate 44 bonded to each other, the surface of the second transparent substrate 42 without the convex portions 45 made of polymer liquid crystal and the third transparent substrate A lamination method may be used in which a surface having no convex portion 46 made of 43 polymer liquid crystal is adhered with a transparent adhesive. This is a configuration different from that of FIG.

こうして作製される本例の位相板付3波長用回折素子において、波長が405nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、第1の透明基板41の高分子液晶膜48が、高分子液晶の異常光屈折率と常光屈折率との差と、その厚さの積からなるリタデーション値405nmを有する位相板(第1の位相板)としての機能を有するが、このリタデーション値が波長と等しいため、レーザ光の偏光状態を変えることなく透過する。第1の回折格子では、高分子液晶の異常光屈折率と充填接着剤50の屈折率との差と格子高さの関係から回折する。このとき、0次透過率が約67%、1次回折効率が約13.5%となる。一方、第2の回折格子では、高分子液晶の常光屈折率と充填接着剤51の屈折率とが等しいので回折せずに直進透過する。高分子液晶膜49も、リタデーション値405nmを有する位相板(第2の位相板)としての機能を有し、同様にレーザ光の偏光状態を変えることなく透過する。さらに、第4の透明基板44の回折格子(第3の回折格子)では、その凹部の光路長と凸部の光路長の差が、波長の2倍である810nmになるように、凸部の深さを決めており、回折せずに直進透過する。   In the three-wavelength diffractive element with a phase plate manufactured in this way in this way, when the laser beam having a wavelength of 405 nm and the polarization direction is linearly polarized light perpendicular to the paper surface is transmitted through the element, the polymer of the first transparent substrate 41 The liquid crystal film 48 has a function as a phase plate (first phase plate) having a retardation value 405 nm that is a product of the difference between the extraordinary refractive index and the ordinary refractive index of the polymer liquid crystal and the thickness thereof. Since this retardation value is equal to the wavelength, it passes through without changing the polarization state of the laser light. The first diffraction grating diffracts from the relationship between the difference between the extraordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 50 and the grating height. At this time, the 0th-order transmittance is about 67% and the first-order diffraction efficiency is about 13.5%. On the other hand, in the second diffraction grating, since the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 51 are equal, they pass straight without being diffracted. The polymer liquid crystal film 49 also has a function as a phase plate (second phase plate) having a retardation value of 405 nm, and similarly transmits the laser light without changing the polarization state. Furthermore, in the diffraction grating (third diffraction grating) of the fourth transparent substrate 44, the difference between the optical path length of the concave portion and the optical path length of the convex portion is 810 nm, which is twice the wavelength. The depth is determined, and the light passes straight without being diffracted.

一方、波長が660nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、高分子液晶膜48(第1の位相板)が、リタデーション値343nmを有する位相板としての機能を有し、レーザ光の偏光状態を変化させる。このとき、リタデーション値が、波長の略1/2になるので、99%以上の紙面に平行な偏光成分を有する略直線偏光に変わる。   On the other hand, when a laser beam having a wavelength of 660 nm and a linearly polarized light whose polarization direction is perpendicular to the paper surface is transmitted through this element, the polymer liquid crystal film 48 (first phase plate) serves as a phase plate having a retardation value of 343 nm. It has a function and changes the polarization state of the laser beam. At this time, since the retardation value is approximately ½ of the wavelength, it changes to approximately linearly polarized light having a polarization component parallel to the paper surface of 99% or more.

紙面に平行な略直線偏光は、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤50の屈折率が略等しいのでほとんど回折せずに直進透過し、第2の回折格子では、その凹部の光路長と凸部の光路長の差が、波長の等倍である660nmになるように、凸部の高さを決めており、回折せずに直進透過する。   In the first diffraction grating, the linear refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 50 are substantially equal in the first diffraction grating, so that almost straight polarized light parallel to the paper surface is transmitted straight through without being diffracted. In the second diffraction grating, The height of the convex portion is determined so that the difference between the optical path length of the concave portion and the optical path length of the convex portion is 660 nm which is equal to the wavelength, and the light passes straight without being diffracted.

第2の位相板である高分子液晶膜49も、リタデーション値343nmを有する位相板としての機能を有するが、高分子液晶膜48(第1の位相板)の進相軸と直交した進相軸を有するため、結果的に、高分子液晶膜49(第2の位相板)を透過する際、レーザ光の偏光状態は本例の回折素子に入射する前と略同じ偏光状態になる。また、第3の回折格子では、凸部の石英と凹部の空気の屈折率の差と格子高さの関係から回折する。このとき、0次透過率は69%であり、1次回折効率は12.6%である。   The polymer liquid crystal film 49 which is the second phase plate also has a function as a phase plate having a retardation value of 343 nm, but the fast axis perpendicular to the fast axis of the polymer liquid crystal film 48 (first phase plate). As a result, when passing through the polymer liquid crystal film 49 (second phase plate), the polarization state of the laser light is substantially the same as that before entering the diffraction element of this example. The third diffraction grating diffracts from the relationship between the difference in refractive index between the convex quartz and the concave air and the grating height. At this time, the 0th order transmittance is 69%, and the first order diffraction efficiency is 12.6%.

このとき、本例の回折素子により得られる0次透過率は約68%、1次回折効率は約12.5%である。   At this time, the zero-order transmittance obtained by the diffraction element of this example is about 68%, and the first-order diffraction efficiency is about 12.5%.

波長が780nm、偏光方向が紙面に垂直な直線偏光であるレーザ光が本素子を透過する際、高分子液晶膜48(第1の位相板)が、リタデーション値334nmを有する位相板としての機能を有し、レーザ光の偏光状態を変化させる。このとき、紙面に垂直な偏光成分の強度は5%、紙面に平行な偏光成分の強度が95%となる楕円偏光に変わる。   When a laser beam having a wavelength of 780 nm and linearly polarized light whose polarization direction is perpendicular to the paper surface is transmitted through this element, the polymer liquid crystal film 48 (first phase plate) functions as a phase plate having a retardation value of 334 nm. And change the polarization state of the laser light. At this time, the intensity of the polarized light component perpendicular to the paper surface is changed to elliptical polarized light having an intensity of 5% and a polarized light component parallel to the paper surface of 95%.

紙面に平行な偏光成分は、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤50の屈折率が等しいので回折せずに直進透過し、第2の回折格子では、高分子液晶の異常光屈折率と充填接着剤51の屈折率との差と格子高さの関係から回折する。このとき、0次透過率が約73%、1次回折効率が約11%となる。   In the first diffraction grating, the polarized light component parallel to the paper surface is transmitted straight without being diffracted because the ordinary refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 50 are equal, and in the second diffraction grating, the polymer component is polymerized. Diffraction occurs from the relationship between the difference between the extraordinary light refractive index of the liquid crystal and the refractive index of the filling adhesive 51 and the grating height. At this time, the 0th order transmittance is about 73% and the first order diffraction efficiency is about 11%.

一方、紙面に垂直な偏光成分のレーザ光は、第1の回折格子では、高分子液晶の常光屈折率と充填接着剤50の屈折率との差と格子高さの関係から回折する。このとき、0次透過率が約90%、1次回折効率が約4%となる。一方、第2の回折格子では、高分子液晶の常光屈折率と充填接着剤51の屈折率が略等しいのでほとんど回折せずに直進透過する。   On the other hand, the laser beam having a polarization component perpendicular to the paper surface is diffracted in the first diffraction grating due to the relationship between the difference between the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 50 and the grating height. At this time, the 0th-order transmittance is about 90% and the first-order diffraction efficiency is about 4%. On the other hand, in the second diffraction grating, since the ordinary light refractive index of the polymer liquid crystal and the refractive index of the filling adhesive 51 are substantially equal, they pass through straightly without being diffracted.

高分子液晶膜49(第2の位相板)も、リタデーション値334nmを有する位相板としての機能を有するが、高分子液晶膜48(第1の位相板)の進相軸と直交した進相軸を有するため、結果的に、高分子液晶膜49(第2の位相板)を透過する際、レーザ光の偏光状態は本例の回折素子に入射する前と略同じ偏光状態になる。また、第3の回折格子では、その凹部の光路長と凸部の光路長の差が、波長の等倍である780nmになるように、凸部の高さを決めており、回折せずに直進透過する。   The polymer liquid crystal film 49 (second phase plate) also has a function as a phase plate having a retardation value of 334 nm, but the fast axis perpendicular to the fast axis of the polymer liquid crystal film 48 (first phase plate). As a result, when passing through the polymer liquid crystal film 49 (second phase plate), the polarization state of the laser light is substantially the same as that before entering the diffraction element of this example. Further, in the third diffraction grating, the height of the convex portion is determined so that the difference between the optical path length of the concave portion and the optical path length of the convex portion is 780 nm which is equal to the wavelength. It goes straight through.

このとき、本例の回折素子により得られる0次透過率は約74%、1次回折効率は約10.5%である。なお、第1の回折格子による1次回折光は、不要となる光である。ただし、その効率は約0.2%であり十分小さい。   At this time, the zero-order transmittance obtained by the diffraction element of this example is about 74%, and the first-order diffraction efficiency is about 10.5%. Note that the first-order diffracted light by the first diffraction grating is unnecessary light. However, the efficiency is about 0.2%, which is sufficiently small.

本例の回折素子は、規格が異なるBD、DVDおよびCDの再生・記録を行なう互換光ヘッド装置であって、BD用の405nm波長帯、DVD用の660nm波長帯、CD用の780nm波長帯のレーザ光を出力する3波長半導体レーザを搭載した互換光ヘッド装置において、BD、DVDおよびCDのそれぞれのトラッキング用の3ビームを得るための回折素子として利用できる。   The diffraction element of this example is a compatible optical head device for reproducing / recording BD, DVD and CD with different standards, and has a 405 nm wavelength band for BD, a 660 nm wavelength band for DVD, and a 780 nm wavelength band for CD. In a compatible optical head device equipped with a three-wavelength semiconductor laser that outputs laser light, it can be used as a diffractive element for obtaining three BD, DVD, and CD tracking beams.

本発明の3波長用回折素子または位相板付3波長用回折素子は、複屈折性樹脂による回折格子、位相板と無機媒質による回折格子を形成したものであり、それぞれのもつ偏光依存性および波長依存性を利用して、1つの回折素子でありながら複数波長の光に対して、選択的に回折効率および回折方向を制御できる効果を有する。この回折素子を用いることで、小型、軽量化を期待される3波長半導体レーザを搭載した互換光ヘッド装置を実現できる。   The three-wavelength diffractive element or the three-wavelength diffractive element with a phase plate of the present invention is formed by forming a diffraction grating made of a birefringent resin, and a diffraction grating made of a phase plate and an inorganic medium. This has the effect that the diffraction efficiency and the diffraction direction can be selectively controlled with respect to light of a plurality of wavelengths even though it is a single diffraction element. By using this diffraction element, a compatible optical head device equipped with a three-wavelength semiconductor laser that is expected to be small and light can be realized.

本発明の第1実施形態の3波長用回折素子Diffraction element for three wavelengths according to the first embodiment of the present invention 本発明の第1実施形態の3波長用回折素子の変形例であり、実施例2の回折素子It is a modification of the diffraction element for 3 wavelengths of 1st Embodiment of this invention, and the diffraction element of Example 2 本発明の第2実施形態の3波長用回折素子Diffraction element for three wavelengths according to the second embodiment of the present invention 本発明の第2実施形態の3波長用回折素子の変形例であり、実施例4の回折素子It is a modification of the diffraction element for 3 wavelengths of 2nd Embodiment of this invention, and the diffraction element of Example 4 本発明の第3実施形態の位相板付3波長用回折素子The diffraction element for three wavelengths with a phase plate of 3rd Embodiment of this invention 本発明の第4実施形態の位相板付3波長用回折素子The diffraction element for three wavelengths with a phase plate of 4th Embodiment of this invention 本発明の第3実施形態の位相板付3波長用回折素子を搭載した互換光ヘッド装置A compatible optical head device equipped with the three-wavelength diffraction element with phase plate according to the third embodiment of the present invention

符号の説明Explanation of symbols

1、2、3、8、9、13、14、15、21、22 透明基板
31、32、33、34、41、42、43、44 透明基板
4、5、10、11、16、17 凸部
23、24、37、38、45、46 凸部
15、18、25、47 凸部
6、7、12、19、20、26、39、40、50、51 充填接着剤
35、36、48、49 位相板
53 3波長半導体レーザ
52 本発明の第3実施形態の位相板付3波長用回折素子
54 偏光ビームスプリッタ
55 コリメートレンズ
56 1/4波長板
57 対物レンズ
58 光記録媒体
59 光検出器
1, 2, 3, 8, 9, 13, 14, 15, 21, 22 Transparent substrate 31, 32, 33, 34, 41, 42, 43, 44 Transparent substrate 4, 5, 10, 11, 16, 17 Convex Part 23, 24, 37, 38, 45, 46 Convex part 15, 18, 25, 47 Convex part 6, 7, 12, 19, 20, 26, 39, 40, 50, 51 Filling adhesive 35, 36, 48 , 49 Phase plate 53 Three-wavelength semiconductor laser 52 Three-wavelength diffractive element with phase plate according to the third embodiment of the present invention 54 Polarizing beam splitter 55 Collimator lens 56 1/4 wavelength plate 57 Objective lens 58 Optical recording medium 59 Optical detector

Claims (4)

複屈折性を示す樹脂からなる第1の凸部と、光学的等方性を示す樹脂からなる第1の凹部と、が接して断面が周期的な凹凸状をなす第1の回折格子と、
複屈折性を示す樹脂からなる第2の凸部と、光学的等方性を示す樹脂からなる第2の凹部と、が接して断面が周期的な凹凸状をなす第2の回折格子と、
無機材料からなる周期的な凹凸部または第3の凸部を有する第3の回折格子と、が重なって構成され、
入射する3つの異なる波長λ の光、波長λ の光および波長λ(λ<λ<λの光について、
前記第1の回折格子は、前記波長λ の光を回折するとともに、前記波長λ の光および前記波長λ の光を透過するように、前記第1の凸部の屈折率および/または高さ、並びに前記第1の凹部の屈折率が調整され、
前記第2の回折格子は、前記波長λ の光および前記波長λ の光を透過するとともに、前記波長λ の光を回折するように、前記第2の凸部の屈折率および/または高さ、並びに前記第2の凹部の屈折率が調整され
前記第3の回折格子は、前記波長λ の光および前記波長λ の光を透過するとともに前記波長λ の光を回折するように、前記凹凸部または前記第3の凸部の、屈折率および/または高さが調整されている3波長用回折素子。
A first diffraction grating in which a first convex portion made of a resin exhibiting birefringence and a first concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a concave-convex shape having a periodic cross section;
A second diffraction grating in which a second convex portion made of a resin exhibiting birefringence and a second concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a concavo-convex shape having a periodic cross section;
A third diffraction grating having a periodic concavo-convex portion or a third convex portion made of an inorganic material,
For incident light of three different wavelengths λ 1 , light of wavelength λ 2 and light of wavelength λ 3123 ) ,
Wherein the first diffraction grating is configured to diffract the wavelength lambda 1 of the light, to transmit the wavelength lambda 2 of the light and the wavelength lambda 3 of the light, the refractive index of the first convex portion and / or The height as well as the refractive index of the first recess are adjusted,
The second diffraction grating is configured to transmit the wavelength lambda 1 of light and the wavelength lambda 2 of light, so as to diffract the wavelength lambda 3 of the light, the refractive index of the second protrusions and / or The height as well as the refractive index of the second recess are adjusted ,
The third diffraction grating transmits the light having the wavelength λ 1 and the light having the wavelength λ 3 and refracts the light having the wavelength λ 2 and diffracts the light having the wavelength λ 2. rate and / or height is adjusted Tei Ru 3-wavelength diffraction element.
複屈折性を示す樹脂からなる第1の凸部と、光学的等方性を示す樹脂からなる第1の凹部と、が接して断面が周期的な凹凸状をなす第1の回折格子と、
複屈折性を示す樹脂からなる第2の凸部と、光学的等方性を示す樹脂からなる第2の凹部と、が接して断面が周期的な凹凸状をなす第2の回折格子と、
前記第1の回折格子および前記第2の回折格子を挟むように備えられた2枚の位相板と、
無機材料からなる周期的な凹凸部または第3の凸部を有する第3の回折格子と、が重なって構成され、
入射する3つの異なる波長λ の光、波長λ の光および波長λ (λ <λ <λ )の光について、
前記第1の回折格子は、前記波長λ の光を回折するとともに、前記波長λ の光および前記波長λ の光を透過するように、前記第1の凸部の屈折率および/または高さ、並びに前記第1の凹部の屈折率が調整され、
前記第2の回折格子は、前記波長λ の光を透過するとともに、前記波長λ の光を回折するように、前記第2の凸部の屈折率および/または高さ、並びに前記第2の凹部の屈折率が調整され、
2枚の前記位相板は、前記波長λの光に対して2πの位相差を有し、前記波長λの光に対して略πの位相差を有し、かつ、前記波長λの光に対して略πの位相差を有し、
前記第3の回折格子は、前記波長λ の光および前記波長λ の光を透過するとともに前記波長λ の光を回折するように、前記凹凸部または前記第3の凸部の、屈折率および/または高さが調整されている位相板付3波長用回折素子。
A first diffraction grating in which a first convex portion made of a resin exhibiting birefringence and a first concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a concave-convex shape having a periodic cross section;
A second diffraction grating in which a second convex portion made of a resin exhibiting birefringence and a second concave portion made of a resin exhibiting optical isotropy are in contact with each other to form a concavo-convex shape having a periodic cross section;
Two phase plates provided to sandwich the first diffraction grating and the second diffraction grating; and
A third diffraction grating having a periodic concavo-convex portion or a third convex portion made of an inorganic material,
For incident light of three different wavelengths λ 1 , light of wavelength λ 2 and light of wavelength λ 3 1 2 3 ),
The first diffraction grating diffracts the light of the wavelength λ 1 and transmits the light of the wavelength λ 2 and the light of the wavelength λ 3 and / or the refractive index of the first convex portion. The height as well as the refractive index of the first recess are adjusted,
The second diffraction grating transmits the light of the wavelength λ 1 and diffracts the light of the wavelength λ 3 , and the refractive index and / or height of the second convex portion, and the second The refractive index of the recess of the
The two of the phase plate, a phase difference of 2π with respect to the wavelength lambda 1 of light, a phase difference of substantially π to the wavelength lambda 2 of the light, and the wavelength lambda 3 have a phase difference of substantially π to light,
The third diffraction grating transmits the light having the wavelength λ 1 and the light having the wavelength λ 3 and refracts the light having the wavelength λ 2 and diffracts the light having the wavelength λ 2. rate and / or height that is tuned phase fitted with three-wavelength diffraction element.
3つの異なる波長λ の光、波長λ の光および波長λ (λ <λ <λ の光を出射する光源と、それぞれの波長の光を光記録媒体に集光する対物レンズと、集光されて前記光記録媒体により反射された光を検出する光検出器とを備え、前記光記録媒体の情報の再生および/または記録を行なう光ヘッド装置において、
前記光源と前記対物レンズとの間の光路中に、請求項1に記載の3波長用回折素子または、請求項に記載の位相板付3波長用回折素子が設置されている光ヘッド装置。
A light source that emits light of three different wavelengths λ 1 , light of wavelength λ 2 , and light of wavelength λ 3 1 2 3 ) , and an object that focuses the light of each wavelength on the optical recording medium and the lens is condensed and a photodetector for detecting light reflected by the optical recording medium, an optical head device for reproducing and / or recording information of the optical recording medium,
3-wavelength diffraction element or a phase fitted with 3 optical head device diffraction element for wavelength that are placed according to claim 2 according to the optical path, in claim 1 between the light source and the objective lens.
前記波長λThe wavelength λ 1 は、BD用の405nm波長帯であり、前記波長λIs a 405 nm wavelength band for BD, and the wavelength λ 2 は、DVD用の660nm波長帯であり、前記波長λIs a 660 nm wavelength band for DVD, and the wavelength λ 3 は、CD用の780nm波長帯である請求項3に記載の光ヘッド装置。4. The optical head device according to claim 3, which is a 780 nm wavelength band for CD.
JP2005343775A 2005-11-29 2005-11-29 Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device Expired - Fee Related JP4518009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005343775A JP4518009B2 (en) 2005-11-29 2005-11-29 Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005343775A JP4518009B2 (en) 2005-11-29 2005-11-29 Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010089548A Division JP2010153039A (en) 2010-04-08 2010-04-08 Diffraction element for three wavelengths, diffraction element for three wavelengths with topology plate and optical head apparatus

Publications (3)

Publication Number Publication Date
JP2007149249A JP2007149249A (en) 2007-06-14
JP2007149249A5 JP2007149249A5 (en) 2008-10-30
JP4518009B2 true JP4518009B2 (en) 2010-08-04

Family

ID=38210483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005343775A Expired - Fee Related JP4518009B2 (en) 2005-11-29 2005-11-29 Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device

Country Status (1)

Country Link
JP (1) JP4518009B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009043383A (en) 2007-08-10 2009-02-26 Sanyo Electric Co Ltd Optical pickup device
JP5178339B2 (en) 2008-06-20 2013-04-10 三洋電機株式会社 Optical pickup device
CN102112898A (en) * 2008-08-07 2011-06-29 旭硝子株式会社 Diffraction grating, aberration correction element and optical head device
TW201021039A (en) 2008-10-30 2010-06-01 Sanyo Electric Co Optical pickup device and optical disc device equipped with same
JP5059079B2 (en) 2009-10-21 2012-10-24 キヤノン株式会社 Laminated diffractive optical element and optical system
JP5496258B2 (en) * 2012-06-11 2014-05-21 キヤノン株式会社 Laminated diffractive optical element and optical system
CN115657182B (en) * 2022-11-11 2024-03-12 上海镭望光学科技有限公司 Transflective double-sided diffraction optical element and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290017A (en) * 2000-01-31 2001-10-19 Asahi Glass Co Ltd Diffraction device for two wavelengths and optical head device
JP2005327338A (en) * 2004-05-12 2005-11-24 Sony Corp Optical pickup and disk-shaped optical recording medium recording and reproducing apparatus
JP2005353225A (en) * 2004-06-14 2005-12-22 Nec Corp Optical head device an optical information recording and reproducing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001290017A (en) * 2000-01-31 2001-10-19 Asahi Glass Co Ltd Diffraction device for two wavelengths and optical head device
JP2005327338A (en) * 2004-05-12 2005-11-24 Sony Corp Optical pickup and disk-shaped optical recording medium recording and reproducing apparatus
JP2005353225A (en) * 2004-06-14 2005-12-22 Nec Corp Optical head device an optical information recording and reproducing device

Also Published As

Publication number Publication date
JP2007149249A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4341332B2 (en) Optical head device
KR101105186B1 (en) Polarizing diffraction element and optical head device
JP4518009B2 (en) Three-wavelength diffraction element, three-wavelength diffraction element with phase plate, and optical head device
JP5146317B2 (en) Diffraction element and optical head device provided with the same
JP2001290017A (en) Diffraction device for two wavelengths and optical head device
US20060193235A1 (en) Diffraction element and optical head device
JP4300784B2 (en) Optical head device
KR100779693B1 (en) Wave selection type diffractive optical elements and optical pickup device has them
JP5417815B2 (en) Diffraction element, optical head device, and projection display device
JP2003288733A (en) Aperture-limiting element and optical head device
JP4218240B2 (en) Optical head device
KR100985422B1 (en) Double-wavelength light source unit and optical head device
JP2012009096A (en) Wavelength selection wavelength plate, wavelength selection diffraction element and optical head device
JP2010153039A (en) Diffraction element for three wavelengths, diffraction element for three wavelengths with topology plate and optical head apparatus
JP4337510B2 (en) Diffraction element and optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
JP5234151B2 (en) Diffraction element and optical head device
JP5082792B2 (en) Optical head device
JP2002365416A (en) Polarization diffraction element and optical head device
JP2013077374A (en) Diffraction element and optical head unit
JP4325365B2 (en) Optical head device
JP4735749B2 (en) Optical head device
JP2002040257A (en) Opening limiting element and optical head device
JP2011060405A (en) Optical head
JP2013093070A (en) Diffraction optical element and optical head device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4518009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees